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Abstract

Context-sensitive software timing simulation enables a precise approximation of
software timing at a high simulation speed. The number of cycles required to
execute a sequence of instructions depends on the state of the microarchitecture
prior to the execution of that sequence, which in turn heavily depends on the
preceding instructions. This is exploited in context-sensitive timing simulation by
selecting one of multiple pre-calculated cycle counts for an instruction sequence
based on the control flow leading to a particular execution of the sequence. In this
chapter, we give an overview of this concept and present our context-sensitive
simulation framework. Experimental results demonstrate that our framework
enables an accurate and fast timing simulation for software executing on current
commercial embedded processors with complex high-performance microarchi-
tectures without any slow, explicit modeling of components such as caches
during simulation.
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MIPS Million Instructions Per Second
PSTC Path Segment Timing Characterization
RTL Register Transfer Level
SIMD Single Instruction, Multiple Data
SLS Source-Level Simulation
TDB Timing Database
VIVU Virtual Inlining and Virtual Unrolling
WCET Worst-Case Execution Time
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20.1 Introduction

Hardware/software cosimulation is an essential tool during the codesign process. In
principle, well-known techniques such as Register Transfer Level (RTL) simulation
could be used to create simulations that provide a level of detail (e.g., cycle-by-
cycle exact timing) that is sufficient for most purposes. However, the low simulation
performance makes them impractical in many scenarios while this level of detail
is unnecessary for many use cases. For example, a developer analyzing software
performance is likely not directly interested in the contents of the branch history
table of the processor, but only indirectly in its influence on the time required to
execute a particular function. A simulation used by this developer does not need to
simulate the branch history table if it can still accurately approximate its influence
on performance. Therefore, simulation performance can be improved by raising the
abstraction level, if a reasonable accuracy can be maintained.

In this chapter, we discuss an approach that is capable of accurately approximat-
ing the timing influence of the full microarchitecture, yet at the same time allows
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for a highly efficient simulation as no components of the microarchitecture are
explicitly simulated. This is achieved by preestimating target code instruction block
timings in a Path Segment Timing Characterization (PSTC). For each block, timings
are differentiated by the execution paths and thus the instructions executed before
a particular execution of the block. So-called contexts serve as an abstraction of
these paths. Context essentially enable an approximate consideration of the different
possible states of the microarchitecture before and its impact on the execution time
of a particular block execution. We implemented this approach in a highly flexible
framework that support both static and dynamic methods for the PSTC. Results are
stored in a common format, the so-called Timing Database (TDB). We integrated
our timing simulation with QEMU [3], a fast functional simulator for binary code,
which enables us to support a wide range of commercially embedded processors.

This chapter is organized as follows: In Sect. 20.2 we introduce fundamental
concepts of context-sensitive timing simulation and give an overview of the current
state of the art. In Sect. 20.3 we present our simulation framework and detail the
main aspects of the context-sensitive timing simulation. Experimental results are
presented in Sect. 20.4. A discussion of our main findings is provided in Sect. 20.5.
This chapter is concluded in Sect. 20.6.

20.2 Context-Sensitive Simulation Fundamentals

In this section we first introduce the basic idea of context-sensitive timing simulation
in Sect. 20.2.1. The necessary background on control-flow graphs and context
mappings is introduced in Sects. 20.2.2 and 20.2.3. Related work is summarized
in Sect. 20.2.4. We discuss various challenges that must be handled by context-
sensitive simulation approaches in Sect. 20.2.5.

20.2.1 Basic Idea of Context-Sensitive Simulation

Binary-Level Simulation (BLS) and Source-Level Simulation (SLS), which are,
respectively, discussed in �Chaps. 18, “Multiprocessor System-on-Chip Prototyp-
ing Using Dynamic Binary Translation” and � 19, “Host-Compiled Simulation”,
are well-known techniques to simulate software functionality in hardware/software
cosimulation at a high performance. However, providing accurate approximations of
time at this abstraction level is challenging. Typically software timing simulations
consider the processor pipeline, branch prediction, and the memory subsystem –
caches in particular. However, a detailed simulation of all relevant components and
their interactions is extremely slow. While this approach is common in interpretative
instruction-set simulation (e.g., Gem5 [4]), it degrades overall simulation perfor-
mance of BLS to a level that makes the functional simulation performances nearly
irrelevant [6, 22]. Such a detailed timing simulation is therefore not reasonable,
if BLS or the significantly faster SLS is utilized to achieve a significant boost in
simulation performance.

http://dx.doi.org/10.1007/978-94-017-7267-9_20
http://dx.doi.org/10.1007/978-94-017-7267-9_18
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Fig. 20.1 Example of execution order/path dependent execution time. (a) Target code. (b)
Instruction sequence executed by processor

A reasonable trade-off between timing simulation accuracy and overhead over
a purely functional simulation can be achieved by advancing time by a number
of processor cycles for each execution of an instruction block, for example,
as discussed by Tach, Tamiya, Kuwamura, and Ike [26] for BLS. Simulation
performance is improved by analyzing the processing of an instruction block by
the processor pipeline only once. The results of this analysis are reused on each
execution of a block. Further influences of the microarchitecture (e.g., caches) are
accounted for by modeling the respective components during the simulation and
applying timing penalties for certain events (e.g., cache misses). Usually, these
events are assumed to not occur during the pipeline analysis, and only a single
timing is calculated per block.

A major drawback of these approaches is that influences of preceding
blocks (e.g., instruction dependencies) on the execution time of a block are not
reflected due to the use of a single value and an isolated consideration of each
block. The problem is illustrated in Fig. 20.1 for a simple loop. Before the loop is
entered, the iteration count is loaded into a register, which is used as loop counter.
The loop counter register is decremented by the first instruction in the loop body.
In the first loop iteration, this instruction is directly preceded by the load in the
instruction sequence executed by the processor and can only be processed once
the loaded is completed. In subsequent iteration this is not an issue. The timing
of the instruction block containing the decrement, thus, depends on which block
is executed beforehand: the block preceding the loop (i.e., containing the load) or
the loop block (i.e., itself). This issue can significantly impair simulation accuracy
and becomes even more significant for the deeper and wider pipelines found in
high-performance processors.



20 Precise Software Timing Simulation Considering Execution Contexts 625

a b

Fig. 20.2 Quintessential difference between context-insensitive and context-sensitive timing
simulation. (a) Context-insensitive simulation. (b) Context-sensitive simulation

Context-sensitive simulation aims to improve simulation accuracy by enabling
a consideration of the influence of preceding instructions on the timing of an
instruction block. Multiple values are provided for each block, one of which is
selected for a particular execution of a block based on the current context. The
context essentially abstracts the precedingly executed instructions. This difference
between context-sensitive and context-insensitive block-level timing simulation is
illustrated in Fig. 20.2. A context-insensitive simulation selects the timing purely
based on the currently executing instruction block, whereas a context-sensitive
simulation can additionally consider the execution history by means of the current
context.

The use of context-sensitive block timings can provide further advantages,
because they can accurately reflect the influence of caches and branch prediction
without an explicit model: Firstly, while online cache and branch prediction models
are much faster than an online model of the full processor, they can still lead to
a significant overhead [13, 26]. Secondly, a fixed penalty for cache misses and
branch mis-predictions essentially corresponds to assuming the pipeline is halted
in these situations, whereas, for example, in a typical super-scalar processor only
instruction that depend on the result of the instruction that caused a cache miss will
be stalled.

The main drawback of context-sensitive simulation is the increased complexity
of calculating block cycle counts. All published approaches, therefore, require an
analysis step to derive these values before an actual simulation can be performed.
However, such an PSTC, that is an ahead-of-time partial characterization of timing
properties of execution path segments, is also necessary for other simulation
approaches (cf. �Chap. 21, “Timing Models for Fast Embedded Software Perfor-
mance Analysis”). For context-sensitive simulations, the PSTC needs to calculate
possible execution paths through the software and characterize segments of these
paths regarding their timing properties. PSTC results are then utilized to simulate
the actual timing of the simulated path during the simulation. The PSTC can be static
or dynamic. A static PSTC considers multiple (or even all) possible executions of
the software in a single analysis. A dynamic PSTC considers only a single execution
of the software at a time.

http://dx.doi.org/10.1007/978-94-017-7267-9_22
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20.2.2 Control-Flow Graphs

The control flow of a program can be formally expressed by a Control-Flow Graph
(CFG). A CFG is a directed graph where nodes represent Basic Blocks (BBs)
and edges represent possible control flow between them. Basic blocks can only be
entered at the beginning and left at the end by control-flow changes. They usually
represent particular code sequences, but sometimes additional empty nodes that do
not represent actual code are also included. Here, we are only concerned with CFGs
of binary code without such empty nodes. However, CFGs are also used on other
abstraction levels such as source code.

In a binary-level CFG, basic blocks cover sequences of processor instructions,
as shown in Fig. 20.3b. Branch instructions establish the control flow and thus basic
block boundaries. In a basic block, branches can only occur as the last instruction.
Furthermore, instructions that can be executed after a branch (i.e., branch targets
and instructions directly after a branch) can only occur as the first instruction.

For a context-sensitive timing simulation, basic knowledge of the CFG for
the simulated software is required and usually reconstructed from binary code.
For some approaches, a simple subdivision into blocks and edges is sufficient.
However, more complex approaches operate on an Interprocedural Control-Flow
Graph (ICFG), where blocks are grouped into routines, and edges carry additional
semantic information to express various types of control flow (e.g., calls and
returns). Additionally, loops can be represented as independent, recursive routines,
and loop-back edges are represented as recursive routine calls. These concepts
are illustrated in Fig. 20.3 for the source code shown in Fig. 20.3a. Typically, the
function itself would be represented in a ICFG as shown in Fig. 20.3c, whereas with
loop extraction a ICFG as shown in Fig. 20.3d is used. In such an ICFG, the term
routine may also refer to extracted loops. The transformation of loop to recursive
routines is only performed for so-called natural loops. In practice, this is not a
significant restriction, as this condition is fulfilled for typical code of reasonable
quality [14].

20.2.3 Context Mappings

The set of instruction sequences that can be executed before a particular block of
instructions can be expressed by the set of ICFG paths that lead to it. In the presence
of loops and recursions, this set can be infinite. Hence, it is infeasible to provide a
separate timing value for each path leading to a particular block of instructions.
Therefore context-sensitive timings are only provided for a finite number of subsets
of the set of control-flow paths. These subsets are referred to as contexts. A function
that maps a control-flow path to a context is referred to as a context mapping. This
function must be chosen such that the set of contexts is finite.

This consideration and the concept of contexts is well known in the domain of
static program analysis, where alternative context concepts are also known (e.g.,
parameter-value-based contexts). Here, we restrict our discussion to the two map-
pings that have been applied to timing simulation in the literature: The n-block
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a b

c d

Fig. 20.3 Example of control-flow representations. (a) Source code. (b) Target code subdivided
into basic blocks. (c) Plain ICFG. (d) ICFG with extracted loop

mapping and the Virtual Inlining and Virtual Unrolling (VIVU) mapping. A
simplified comparison of the two mappings is shown in Fig. 20.4. The example
shows a control-flow path through the example CFG from Fig. 20.3 to the second
iteration of the loop. We will use this example in the following to explain both
mappings.
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Fig. 20.4 Example of context mappings (cf. Fig. 20.3)

As VIVU only considers call edges, it only differentiates contexts by a subset
of the preceding blocks. Therefore, VIVU can consider much longer histories, but
at a smaller granularity. This has the advantage that the timing influence of states
that are maintained much longer, such as cache contents, can be reflected accurately
without explicit modeling. In practice this means that a simulation using VIVU
does not necessarily require an online cache model, whereas it is necessary when
using an n-block mapping. However, this advantage comes at the cost of being
less sensitive to more local influences such as instruction dependencies. We would
expect a combination of VIVU and an n-block mapping to provide the overall best
results, but currently find such an extension unnecessary based on the very high
simulation accuracy provided by the VIVU mapping in our experiments.

20.2.3.1 n-Block Mapping
For the n-block mapping, the control-flow path to the currently executing basic
block is expressed as a sequence of executed blocks. In an n-block mapping, this
path is simply truncated to the last n elements to form a context. In more practical
terms, contexts are differentiated by the n most recently executed basic blocks.

This mapping has two main advantages: Firstly, it is relatively simple and
therefore straightforward to apply. Secondly, it always includes all most recently
executed instructions to differentiate contexts and can therefore provide a high
accuracy for local timing influences, such as instruction dependencies.

The main drawback of this mapping is that only small values of n can be chosen,
as otherwise an excessive number of contexts has to be considered. This limits
the ability of this mapping to accurately reflect global timing influences such as
caches. For example, the path from Fig. 20.4 would be extended by BB2 for each
further loop iteration. Even for the largest published n D 16 [20], only the first 16
iterations of the loop could be differentiated, as afterward the context would always
be a sequence of 16 instances of BB2.
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20.2.3.2 VIVU Mapping
The VIVU mapping [14] is an approach to enhancing the accuracy of interprocedu-
ral program analysis with a special consideration of loops. It has been successfully
applied in static Worst-Case Execution Time (WCET) analysis of binary code [9].
Our presentation of the VIVU mapping is based on the notation used by Theiling in
his dissertation [27]. A sequence of a followed by b is denoted as a ı b. The empty
sequence is denoted as ".

For VIVU the control-flow path to the currently executing basic block is
expressed as a sequence of edges. Compared to the n-block mapping, VIVU reduces
the accuracy for local timing influences, but can accurately reflect global influences.
VIVU is usually applied to an ICFG, where loops are represented as recursive
routines (cf. Sect. 20.2.2). Thereby, besides function calls, a call string also reflects
loop iterations counts. As shown in Fig. 20.4, VIVU does not consider the whole
path, but only edges that represent calls to routines that are currently executing (i.e.,
have not returned yet). These edges are referred to as call edges, and the sequence
of call edges is referred to as call string. For example, after the loop is left, the call
string would be e5;1, as e1;2 and e2;2 represent calls to the loop.

VIVU maps a call string to a sequence of so-called context links. A context link
is a pair .e; x/ of a call edge e and a recursion count of x. A sequence of context
links is referred to as a VIVU context. The call string is mapped to a VIVU context
by iteratively extending the empty context " by each call edge in the call string using
the VIVU context connector ˚k

n and starting with the first (i.e., oldest) call edge. The
context " is empty in terms of a context as a sequence of context links. In terms of
a context as a set of control-flow paths it is the exact opposite, that is the context
for all control-flow paths. The call string e5;1 ı e1;2 ı e2;2 in Fig. 20.4 is mapped to
.." ˚k

n e5;1/ ˚k
n e1;2/ ˚k

n e2;2/. The context connector ˚k
n applies one of two rules. It

can be adapted by the parameters n and k to influence the granularity of the contexts.
A particular VIVU mapping is denoted as VIVU(n,k). n is an upper limit for the
recursion count, while k limits the number of context links in a context. Both k and
n can be unbounded, which is, respectively, denoted as n D 1 or k D 1. Their
exact functionality is discussed below.

Which of the two rules is applied depends on whether the connected edge
(right-hand side) has the same destination as any edge in a context link in the to-
be-extended context (left-hand side). An edge where this condition is true w.r.t. the
to-be-extended context is referred to as recursive.

If the edge is not recursive, the context is extended by a context link with that
edge and a recursion count of 0. For example, ."˚k

ne5;1/˚k
ne1;2 D .e5;1; 0/˚k

ne1;2 D

.e5;1; 0/ ı .e1;2; 0/. If the length of the new context would exceed k, it is shortened
to the last k elements. With k D 1, for example, .e5;1; 0/ ˚k

n e1;2 D .e1;2; 0/. The
context link .e5;1; 0/ is dropped to meet the length restriction. For k D 0, all call
strings are mapped to ".

If the edge is recursive, the context is truncated to end with the context link with
the same destination, and its recursion count is incremented by 1. For example,
..e5;1; 0/ ı .e1;2; 0// ˚k

n e2;2 D .e5;1; 0/ ı .e1;2; 1/, as e1;2 and e2;2 have the same
destination. The recursion count is further bounded to the value of n. Theiling [27]
denotes the recursion count in this case as >, we do not make this distinction. For
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n D 1, ..e5;1; 0/ ı .e1;2; 1// ˚k
n e2;2 D .e5;1; 0/ ı .e1;2; 1/, because the recursion

count is limited to 1. As a more complex example, assume the ICFG in Fig. 20.3d
contained an additional edge e2;1, because the function calc calls itself recursively
from within the loop. A typical context would be calculated as ..e5;1; 0/ı.e1;2; 1//˚k

n

e2;1 D .e5;1; 1/. The context link .e1;2; 1/ is dropped because the context is truncated
to end with the context link containing e5;1, as it has the same destination as e2;1.

In some cases the interaction between rules and parameters can become complex.
For k D 1, ..e5;1; 0/˚1

n e1;2/˚1
n e2;1 D .e1;2; 0/˚1

n e2;1 D .e2;1; 0/. Because .e5;1; 0/

is dropped in the first application of the context connector, e2;1 is not considered
recursive anymore in the second application of the context connector.

To ensure a finite set of contexts when n D 1, an edge-specific limit nmax.e/

is required and applied in the same way as n. In a static PSTC, this value can be
derived automatically in some cases and has to be specified by a user otherwise. In
a dynamic PSTC it can formally be assumed to be equal to the number of traversals
of an edge that in a particular analysis and thus ignored in practice.

20.2.4 Related Work

Here we provide a brief introduction to closely related work, a more comprehensive
overview can be found in our previous publications [16, 17, 25], which also served
as a foundation of this chapter and �Chap. 21, “Timing Models for Fast Embedded
Software Performance Analysis”.

Chakravarty, Zhao, and Gerstlauer [5] presented a SLS with a 1-block mapping.
A similar, but more general, concept for a BLS for an n-block mapping with n � 16

has been presented by Plyaskin, Wild, and Herkersdorf [19–21]. Stattelmann [23]
applied VIVU contexts in a SLS. In our framework we also apply VIVU.

The main difference between the use of VIVU in our simulation framework
and Stattelmann’s simulation is that his approach only uses the mapping implicitly
by essentially tracing the path through a so-called expanded supergraph [14]. The
expanded supergraph is an ICFG where a node is copied for each context that node
can be executed in. While this approach simplifies an efficient implementation, the
inherent loss of the meaning of a context restricts the handling of contexts. Most
importantly, control flow that was not considered during the preceding static PSTC
is not handled in Stattelmann’s simulation.

20.2.5 Challenges in Context-Sensitive Simulation

While context-sensitive simulation has many advantages to offer, the increased
complexity in the required understanding of a program also poses several challenges
that we discuss in the following.

20.2.5.1 Incomplete Data
At its core a context-sensitive simulation requires knowledge of the program control
flow during the PSTC. It can be obtained by static or dynamic techniques. In both
cases discovering the full control flow is nontrivial: Dynamic analysis techniques are

http://dx.doi.org/10.1007/978-94-017-7267-9_22
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restricted to the control flow of the observed executions, which in turn depends on
the used input. While static techniques do not suffer from this issue, it is complicated
by computed and indirect branches (e.g., function pointers) and asynchronous
changes of control flow (e.g., interrupts). In practice achieving a sufficiently high
coverage is nontrivial in a single dynamic or static PSTC.

Three types of coverage issues can be differentiated:

Code If the PSTC fails to discover parts of the code the respective
nodes are missing from the reconstructed control flow graph. For
example, for a program with an interrupt handler, a static PSTC
will not discover the handler code, as typically no explicit control
flow to the handler is contained in a program. In a dynamic PSTC
on the other hand, the handler could be missing if the interrupt is
not raised during the observation.

Control-Flow A PSTC can also fail to discover edges between nodes. For
example, when it fails to discover all possible call sites for a
function pointer.

Context A dynamic PSTC is unlikely to execute a program in all contexts
that can occur during a simulation. However, this issue can also
occur in static PSTC as a consequence of limited code or control-
flow coverage.

20.2.5.2 Context Granularity
Even for small benchmarks, the large number of possible control-flow paths can
lead to an excessive number of contexts. An increased number of contexts typically
reduces the simulation performance, due to the increased memory footprint of the
timing data and the increased complexity of context selection. On the other hand,
with only few contexts, a simulation will provide a reduced accuracy.

The number of contexts is therefore a trade-off between simulation accuracy
and performance. Furthermore, different contexts can be identical in terms of
timing, as contexts only indirectly reflect the state of the microarchitecture. Most
context mappings can be parametrized to influence the granularity of contexts.
Furthermore it is possible to automatically remove unnecessary contexts, without
reducing simulation accuracy.

20.2.5.3 Execution Variations
Context-sensitive timing simulations achieve a good trade-off between simulation
accuracy and performance by preestimating many influences on software timing. A
drawback of this approach is that variations between the simulation and the PSTC
are not trivial to handle. Variations in the following areas can be considered:

Input If dynamic PSTC is used, it is desirable that the simulation is not
restricted to the executions that were observed during the analysis –
in particular for changes to program input including hardware stimu-
lations such as interrupts. This can firstly lead to the aforementioned
coverage issues, but can cause subtle changes in timing behavior.
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Hardware As large, or all, parts of the hardware components that influence soft-
ware timing are considered before the simulation, different simulation
cannot reflect different hardware configurations without a reexecution
of the PSTC.

Code If the analyzed code changes, the analysis results become stale. Current
context-sensitive approaches require a full reexecution of the PSTC in
this case. In the future more advanced analyses may allow an adaption
of the exiting timing data.

20.3 Context-Sensitive Simulation Framework

An overview of our context-sensitive timing simulation framework is shown in
Fig. 20.5. As first step, context-sensitive timings of instruction blocks in a given
binary code have to be obtained by a PSTC based on a detailed microarchitectural
model. Our framework is very flexible in what kind of analysis technique and
model can be used. Currently, we support static analysis using abstract models
intended for WCET analysis by abstract interpretation and dynamic analysis using
actual hardware implementations of a processor. Additionally, we plan to support
further models, such as Field-Programmable Gate Array (FPGA)-based processor
prototypes and detailed models in Gem5 [4], in the future. Therefore, even though
our framework requires a detailed model, it is retargetable with a low effort
if a model is available. Supported targets of our framework so far include the
ARM7TDMI, LEON3, ARM Cortex-M3, ARM Cortex-A9, and ARM Cortex-A15
processors.
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The PSTC produces an initial TDB. The TDB includes an ICFG of the analyzed
binary code and context-sensitive timing data for instruction blocks. We make
use of VIVU [14] (cf. Sect. 20.2.3.2) as context mapping. This initial TDB could
in principle already be used in a simulation. However, it is usually improved by
applying further optimizations that lead to both, improved simulation performance
and accuracy. Furthermore, it is possible to merge multiple TDBs.

After a TDB has been generated, it can be reused in multiple simulations. As
a functional simulator, we support BLS based on QEMU [3] and are currently
working toward the integration of an experimental SLS tool. Both produce a trace
of the binary basic blocks executed in the simulation to drive the timing simulation.

Based on the basic block execution order, contexts are selected from the TDB.
The current context is used to choose a timing value for a simulated block
execution by which to advance simulation time. The combined functional and timing
simulation for the software is then usually combined with a hardware simulation in
order to provide a cosimulation. However, other use cases such as a direct profiling
or debugging of the simulated software are also supported. Currently, the framework
only targets single core processors. Multi- and many-core systems can be modeled
in a cosimulation using multiple instances of the software simulation. A feedback
between the timing and functional simulation is also possible. For example, when
interrupts influence the control flow in the functional simulation and are triggered
by a simulated peripheral based on the simulated timing.

20.3.1 Timing Database Contents

The TDB consists of two main parts: an ICFG and context-dependent cycle counts
for instruction blocks.

20.3.1.1 Control Flow
In the TDB the control flow of the target binary code is expressed by an ICFG
with loops extracted, as outlined in Sect. 20.2.2 and shown in Fig. 20.3d. To support
a tracking of the current context during the simulation, edges can be marked as
a return or call edge. While a call edge always represents a single call, a return
edge can represent multiple returns. For example, if the program shown in Fig. 20.3
contained a return within the loop, the corresponding edges from BB2 to BB6/BB8
would represent two returns. In our current implementation, the number of returns
always corresponds to the number of routines left by the return, including all directly
recursive calls of these routines. More details on the handling of returns are given in
Sect. 20.3.3.1.

20.3.1.2 Context-Sensitive Timings
Context-sensitive timings are differentiated by the outgoing edges of a block and
an associated context. More formally, the stored timings can be thought of as a
function timing.e; c/ that returns the timing of block bx , when it is left via an edge
e D .bx; by/ to execute by in context c. An example is shown in Table 20.1 and
explained in Sect. 20.3.1.3.
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Table 20.1 Example of context-sensitive timings for a loop (cf. Fig. 20.3)

Timings Valid for call string

Context e2;2 e2;3 e5;1 ı e1;2 e7;1 ı e1;2 ı e2;2

" 5 7 Yes Yes

.e1;2; 1/ 3 5 No Yes, highest precedence

.e1;2; 0/ 6 6 Yes Yes

.e7;1; 0/ ı .e1;2; 0/ 5 6 No Yes

.e5;1; 0/ ı .e1;2; 0/ 3 8 Yes, highest precedence No

In classic use of VIVU contexts for static WCET analysis, the set of known
control-flow paths from an analysis starting point (e.g., the main function) is
partitioned into contexts. Essentially, there is exactly one corresponding context
for each path, which can be calculated by applying a particular VIVU mapping.
However, this approach is not practical for our framework, as it should provide a
best-effort approximation for paths that were not considered during TDB generation
due to the limitations of the used analysis technique (cf. Sect. 20.2.5).

For example, a TDB generated from timings observed in an execution of the
program in Fig. 20.3 where calc is called via BB5, there may not be a context
for calls via BB7. This would prevent the simulation of an execution where calc
is called via BB7 instead of BB5. In this simple example, a reasonable alternative
would be a context that does not differentiate between the two call edges to calc.
In the general case, a flexible relationship between paths and contexts must be
considered to achieve the goals of our framework.

Arbitrary contexts may be combined in the TDB, and a context is considered
valid for a control-flow path, if the path could be mapped to the context for arbitrary
VIVU parameters n and k and an arbitrary analysis starting point. In other words,
a VIVU context in the TDB can be thought of as a condition that must be fulfilled
by an arbitrary suffix of the simulated path to make the respective context-sensitive
timings a valid choice. The drawback of this approach is that it becomes necessary
to define which of the valid contexts should be selected during simulation.

20.3.1.3 Context Precedence
As outlined in the preceding section, a TDB may – and typically does – contain
multiple contexts that are valid for a path or more specifically the respective call
string. One of these contexts has to be selected during the simulation such that the
simulated timing is as accurate as possible. In our framework this process is based
on two assumptions: First, in terms of the set of control-flow paths represented
by a context, a context that represents a smaller set is more likely to be accurate
because variations in the timing of fewer paths are less likely. Second, a context
that represents paths that share recent control flow is likely more accurate, as it
is more likely that recent control flow (i.e., more recently executed instructions)
still have an impact on the timing of the currently executing block. For example, if
two precedingly executed blocks caused memory to be loaded into the cache, the
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memory that was loaded by the more recently executed block is more likely to still
reside in the cache.

An example of context-sensitive timings and the precedence of various contexts
is shown in Table 20.1 for the loop from the example program in Fig. 20.3. As
can be seen each context provides timings for the outgoing edges of the blocks in
the routine (BB2). As every call string may be mapped to ", it is a valid choice
for every call string, but also takes the lowest precedence. Thus it can serve as a
fallback if no other context is available. For the call string e5;1 ı e1;2, the context
.e5;1; 0/ı.e1;2; 0/ is the preferred choice, as it is more specific than .e1;2; 0/ or ". For
the call string e7;1ıe1;2ıe2;2, the preferred context is .e1;2; 1/. While .e7;1; 0/ı.e1;2; 0/

can be considered equal in terms of the first assumption, it represents less recent
control flow and thus has a lower precedence. Roughly it can be said that the choice
between .e7;1; 0/ ı .e1;2; 0/ and .e1;2; 1/ is a choice between a context that reflects
e7;1 and one that reflects e2;2. Since e2;2 ultimately represents more recently executed
instructions, .e1;2; 1/ is the preferred context.

Since a context may represent an infinite number of paths, some of which may
not have been discovered during TDB generation, using these assumptions directly
to establish context precedence is not a good solution. Furthermore the efficiency of
the context lookup has also been considered. The context selection scheme of the
simulation framework is outlined in Sect. 20.3.3.3.

20.3.2 Timing Database Generation

The TDB can be generated using either a static or a dynamic PSTC of the
application binary code for the target platform. Compared to the static PSTC, the
main advantage of the dynamic PSTC-based generation is that it can provide highly
accurate results even for complex system architectures. However, this requires
appropriate program stimuli during the dynamic PSTC, which is not necessary for
the static PSTC.

20.3.2.1 Dynamic PSTC
The dynamic PSTC-based TDB generation requires a timed trace of a program
execution as an input. The trace must allow a full reconstruction of the program
control flow (i.e., the exact sequence of executed instructions), whereas timing data
is only required for every execution of a basic block. In practice, such traces can
be obtained from on-chip tracing units available for many embedded processors.
For example, they are supported by ARM CoreSight [2] and the Nexus 5001
standard [15]. Note that such tracing units typically only provide time stamps for
executed branch instructions. More specifically, ARM style traces provide a time
stamp for take and non-taken branches, whereas Nexus style traces only provide
time stamps for taken branches. Therefore, some time stamps may cover multiple
basic blocks. In this case the timing of individual block executions is interpolated.

To construct a TDB, two passes are performed over a trace. During the first
pass, an ICFG is extracted. The extracted graph is analyzed to identify loops and
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subsequently transformed to the form described in Sect. 20.2.2. During the second
pass, the graph is traversed based on the trace, and the observed timings are stored
in the TDB for the current context.

If the VIVU mapping is limited (i.e., n ¤ 1 or k ¤ 1) or the traced execution
contains indirect recursions, it is possible that multiple observations are stored in the
same context. In this case an average is stored in the TDB. Additionally, we store the
number of observations underlying a timing value as this information is required in
the context generalization optimization. This optimization is applied after the TDB
generation to enable an accurate simulation if the simulated control flow differs from
the traced control flow. A description is given in Sect. 20.3.2.3.

20.3.2.2 Static PSTC
For the static PSTC, we adopt well-known techniques from the domain of static
WCET analysis. More specifically, we employ a static control-flow analysis to
extract the ICFG, on which block timings are estimated using abstract interpreta-
tion [7]. In our current implementation, these steps are performed by Absint aiT [1],
which is a commercial tool for WCET analysis, from which we read intermediate
results. The intermediate results are translated to a TDB, and we typically execute
multiple analyses and merge the resulting TDBs, as a single analysis may not
provide sufficient coverage. This is, for example, the case for typical programs with
interrupt handlers: As the analysis only discovers explicit control-flow changes, an
analysis of the main function does not cover interrupt handlers and vice versa. The
TDB generator could, for example, execute two distinct analyses in aiT, one starting
at the main function and another at the interrupt handler, and merge their results in
a single TDB.

As aforementioned, the control-flow representation and context mapping used
in the TDB are based on research into WCET analysis. More specifically, they are
based on their use in aiT and earlier work [23, 24] by our groups that essentially
directly made use of the same intermediate results. However, for the TDB we make
two small, but significant changes: First, aiT only considers discovered control-flow
paths for each context, whereas the TDB assumes a context is valid for any control-
flow path that can be mapped to it. As a result, when simulating control flow beyond
the control flow considered during the analysis, the worst-case timing guarantees
made by the analysis cannot be maintained. We expect that changing the static
analysis to enable a generic worst-case timing simulation is feasible, but this topic
is beyond the scope of our current research activities. Second, there is a difference
between the ICFGs used by the static analysis and the ICFGs used in simulation that
we describe in the following.

The ICFGs used during the static analysis include special empty nodes to avoid
the complexity of handling various special cases. For example, calls are represented
by a call and a return node that follow/precede the basic block a call is made
from/returns to. As these nodes contain no instructions, their execution cannot
be registered during a simulation, and we therefore do not include them in the
TDB. During the translation of analysis results to a TDB, we map path between
nonempty blocks that contain only empty blocks to a single edge. A resulting edge
can therefore cross call and/or multiple returns. This translation is not sensible for



20 Precise Software Timing Simulation Considering Execution Contexts 637

arbitrary graphs, but in our experience the analysis only produces graphs where this
translation can be handled with a reasonable effort.

20.3.2.3 Optimization
Various optimizations can be applied to the TDB that improve simulation perfor-
mance and/or accuracy. Performance improvements can be achieved by removing
unnecessary contexts. Thereby the overall memory footprint of a simulation is
reduced and the context lookup algorithm used in the simulation, which we describe
later in Sect. 20.3.3.3, can terminate early. Accuracy improvements on the other
hand are achieved by synthesizing new contexts and/or adding new data to existing
contexts. These new contexts may then be used to simulate the timing of paths that
were not considered during the PSTC and thus may not be represented by the context
produced by the PSTC. This step is especially critical for the dynamic PSTC, as only
a single execution is considered. In practice it enables a simulation of the timing
of a program for multiple different inputs (and thus potentially different paths)
based on the timing observed for one input. Typically, the resulting TDB is smaller
after all optimizations have been applied. All optimizations are performed on a per-
routine basis. They are constructed such that timing data remains unchanged for the
executions considered during TDB generation.

Removing Unnecessary Contexts
Contexts can be removed from a TDB under some conditions. For example, assume
a TDB contained only the contexts .e5;1; 0/ ı .e1;2; 0/ and .e5;1; 0/ ı .e1;2; 1/ for the
loop from the example in Fig. 20.3. As the contexts are not differentiated by the
context link .e5;1; 0/, the contexts .e1;2; 0/ and .e1;2; 1/ can be used, respectively.
This is possible because these shorter contexts will be selected for each path the
original contexts would be selected for, and as no other contexts exists, these were
the only paths considered during analysis. Furthermore, if the context-sensitive data
for both contexts is identical, .e1;2; 1/ can be removed based on the same rationale.
As .e1;2; 0/ is the only remaining context, it can simply be replaced by ".

In general, these optimizations are expressed by two rules that define which
contexts can be considered for removal without considering the associated data and
separate consideration if the data of two contexts is mergeable. The data for two
contexts is considered mergeable, if cycle counts are identical for all edges that are
present in both sets of data. In more practical terms, two contexts are mergeable if
cycle count lookup that was successful in either context before the merge returns the
same result after the merge. Note that a context without any associated data may be
merged with any other context. The first rule is referred to as shorten call strings. It
defines that a context .e1; r1/ ı .e2; r2/ ı � � � ı .en; rn/ may be removed and merged
with .e2; r2/ ı � � � ı .en; rn/, if no other context .ex; rx/ ı .e2; r2/ ı � � � ı .en; rn/ with
ex ¤ e1 ^ rx ¤ e1 exists. The second rule is referred to as merge leaf iterations. It
defines that a context .ex; rx/ ı : : : may be removed and merged with .ex; ry/ ı : : : ,
if ry < rx and ry is the largest value where this holds. As can be seen from the
example in the beginning of this section, each rule can create a situation where the
other rule can be applied. They are therefore applied in turn until a fixed point is
reached.
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Context Generalization
The prime motivation for the context generalization optimization is the incom-
pleteness of a TDB created from a single program execution using the dynamic
PSTC-based TDB generation. As example assume a TDB for the example in
Fig. 20.3 was generated from the timings observed for an execution where calc
is called from BB5. Such a TDB could only contain the contexts .e5;1; 0/ ı .e1;2; 0/

and .e5;1; 0/ ı .e1;2; 1/. If calc is called via BB7 in a simulation, a call string for
the second iteration of the loop would be e7;1 ı e1;2 ı e2;2. No context could be
selected for this call string. A good alternative would be to use the data from context
.e5;1; 0/ ı .e1;2; 1/, that is, use the timing of the second iteration when the call was
from BB5 to simulate the timing of the second iteration when the call was from BB7.
This could, for example, accurately reflect that timing under consideration that the
instruction cache was already filled with the loop instructions in the first iteration.

For a general understanding of this optimization, it is helpful to consider contexts
as sets of control-flow paths (i.e., the set of paths that could be mapped to the
context). As a first step consider the valid contexts of a call string that was not
considered during the initial TDB generation. Each of these contexts represents a
set of control-flow paths that includes the paths represented by the call string. For
some of these potential contexts, there exist other contexts in the TDB that represent
a subset of a potential context, a condition that is always at least true for ". For the
example mentioned in the preceding paragraph, a valid context for the call string
e7;1 ı e1;2 ı e2;2 would be .e1;2; 1/, of which the existing context .e5;1; 0/ ı .e1;2; 1/ is
a subset. The best context to generate would be the one with the highest precedence
as discussed in Sect. 20.3.1.3.

However, generating these contexts is not possible before the simulation, as not
all call strings may be known, and could be very inefficient during simulation.
Instead the context generalization synthesizes more general versions of the existing
contexts. For each context .e1; r1/ ı .e2; r2/ ı � � � ı .en; rn/, new contexts .e2; r2/ ı

� � � ı .en; rn/, .e3; r3/ı � � � ı .en; rn/ and so on until " are generated. Each new context
is associated with average timings of the underlying original contexts. The averages
are weighted by the number of underlying observations, if a dynamic PSTC was
used for the initial TDB generation.

An additional issue is also handled by this optimization: The timing for some
edges may only have been observed for some of the original contexts. To ensure
that all context contain a timing for all edges of a routine, missing values in original
and synthesized contexts are filled in from the most specific context that contains a
value for that edge and is a generalized version of the context with the missing data.

20.3.3 Simulation

To make use of the context-dependent timing, appropriate contexts have to be
selected during a simulation. A naive approach to look up a context from the TDB
during simulation would be to maintain the current call string during the simulation,
and on each change find the valid context with the highest precedence in the TDB
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by applying various VIVU(n, k) mappings. However, this approach is unlikely to
achieve a high simulation performance.

To enable a robust, flexible, and efficient context lookup, under consideration
of the discussion of context precedence outline in Sect. 20.3.1.3, we developed the
following approach: During simulation, similarly to a call string, we maintain a
so-called intermediate string. Contexts in the TDB are structured in a per-routine
context tree. They can be looked up by the dynamic context selection algorithm.

During simulation the execution of target binary code basic blocks must be
registered as an event. In BLS, we perform this by instrumenting the first instruction
of every basic block. In SLS, this can be achieved by so-called path simulation
code [24], which reconstructs the execution path through the target binary code
based on the source code execution path (cf. �Chap. 19, “Host-Compiled Simula-
tion”). Time is advanced for each executed block by the cycle count stored in the
TDB for the taken outgoing edge in the current context.

20.3.3.1 Intermediate String
An intermediate string is similar and in simple cases identical to a VIVU context for
n D 1 and k D 1. More specifically, it is a sequence of context links (i.e., a pair
of a call edge and a recursion count) with an unbounded length and unbounded
recursion counters. On each traversal of a call edge, the intermediate string is
updated. Usually, a new context link with a recursion count of 0 is appended to
the intermediate string. If an edge is a direct recursion (i.e., has the same destination
as the last context link element) and is marked as a non-returning call (e.g., it is
a loop back edge), no element is appended and the recursion counter of the last
element is increased instead. This process is similar to the VIVU context connector,
but prevents a loss of information that may be required for a context lookup or a
future update of the intermediate string. In contrast to maintaining a call string, it
has the advantage that no additional memory is required for loop iterations, which
are the most common case of recursive calls.

An edge can only represent a single call, as every natural loop has a distinct
header (control-flow structures that could intuitively be considered two distinct
loops with a shared header are formally considered a single natural loop) and, in
practice, functions always have a few prologue instructions. However, an edge can
represent multiple returns, for example, when a loop contains a function return. In
the TDB an edge can therefore be a call edge (or not) and additionally represent an
arbitrary number of returns, which shall be performed before the call. The number
of returns is not the number of call edges that should be removed from a call string,
as this number may be statically unknown (e.g., in the aforementioned case of a
return from within a loop). Instead it is defined as the number of context links that
shall be removed from the intermediate string.

20.3.3.2 VIVU Context Tree
In the TDB contexts for a routine are structured as a tree, where each node
corresponds to a particular VIVU context but may be empty/unused. The children
of a node represent more specific versions of contexts of their parent. The root of

http://dx.doi.org/10.1007/978-94-017-7267-9_18
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the tree represents the context " and therefore is a valid context for any control-flow
path. Each step from a node to a direct child is associated with a context link, where
the context of the child is given by prepending the context link to the context of the
parent. The full context of a node is therefore the sequence of context links for the
path from the node to the root (the path from the root to the node is the reversed
context). An example for the context tree is given in the next section.

20.3.3.3 Dynamic Context Selection
The dynamic context selection algorithm is used to select a particular context for
an intermediate string from a context tree. Essentially, the context tree is ordered
such that during a descend into the tree, each step to a child node leads to a more
specific context for the intermediate string. As the path from the root to a node
is the revered context for that node, the intermediate string is also processed in
reverse. Usually the child to descend into is selected based on the next context
link in the reversed intermediate string until no further valid child is available. An
exception are recursions over multiple call edges and returnable direct recursions,
where multiple children may be a valid choice and a scoring scheme is used to select
a particular context. In the following, we first describe the lookup algorithm without
consideration for this special case and provide a separate description afterward.

The lookup starts at the root node, which corresponds to the context ", which
is a valid choice for any intermediate string. For descending into child nodes, the
intermediate string is considered in reverse order. A child node is considered a
candidate for descending, if the edge of the context link for the step to the child node
and the edge for the currently considered context link of the intermediate string are
identical. Often (e.g., for loops) multiple candidates with different recursion counts
exist. In this case the candidate with the highest recursion count is selected, that
is, less than or equal to the recursion count of the currently considered context link
of the intermediate string. This process is repeated until no further candidate for
descending can be found. The deepest encountered node with valid timing data is
selected as current context, usually this is the last node the lookup descended to. In
the worst case, when no descend from the root is possible, the context " is selected if
it contains valid timing data. In our current implementation, we ensure this is always
the case by an optimization of the TDB (cf. Sect. 20.3.2.3).

An example for the context tree and dynamic context selection is shown in
Fig. 20.6. Both intermediate strings are evaluated in reveres. For .e5;1; 0/ı.e1;2; 0/ all
intermediate strings are evaluated, and the context links to the child nodes and from
the intermediate string are identical. For .e5;1; 0/ ı .e1;2; 2/ on the other hand, the
child node for .e1;2; 1/ is selected, as there is no child node with a higher recursion
count. Furthermore, the intermediate string is not evaluated further, as there are no
child nodes to descend into.

To handle recursions over multiple call edges and returnable direct recursions,
the algorithm checks whether other context links of the (unreversed) intermediate
string preceding the context link has an identical destination. If this is the case, it
preforms additional descends for the other elements and a recursion count that is the
sum of both recursion counts plus one (to account for the increment that would have
been performed by the VIVU mapping but was not performed for the intermediate
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Fig. 20.6 Example of
context tree (black) for the
example contexts from
Fig. 20.1 and context
selection (gray) for
intermediate strings
.e5;1; 0/ ı .e1;2; 0/ (dashed)
and .e5;1; 0/ ı .e1;2; 2/
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string). The depth is not a sufficient criterion to select the most specific context
in this case. Therefore, each encountered node is scored based on the sum of all
recursion counts of all context links that were evaluated during the descend to this
node plus the number of evaluated context links. The node with the highest score
is selected and if multiple nodes have the same score the first encountered node is
preferred.

20.3.3.4 Fallback Strategies
It is unlikely that a TDB provides perfect coverage of the simulated control flow
for various reasons: For example, changes in control flow due to interrupts (e.g.,
a timer interrupt driving a preemptive scheduler) are not expressed in an ICFG.
Another reason can be imperfect matchings in a SLS, which can lead to blocks
missing from the path simulation code. The simulation framework includes various
fallback mechanisms to handle such cases. First, the TDB provides a fallback cycle
count for each block, which we currently calculate by averaging all cycle counts
for the outgoing edges of a block. This value can be used if a block execution
order is simulated for which no corresponding edge exists in the ICFG stored in the
TDB. Second, if such an execution order is simulated the intermediate string may be
incorrect, because the missing edge may have been a call or return. This is handled
by removing elements from the intermediate string until the edge of the last context
link is an incoming edge of the currently executing routine. In the worst case the
intermediate string is cleared. For example, a program with preemptive scheduling
is roughly simulated as follows: The program is simulated normally as outlined
above. When control flow is diverted to the timer interrupt handler, the fallback
value for the currently executing block is used to advance simulation time and the
intermediate string is cleared. During the subsequent execution of the scheduler,
the intermediate string is rebuild providing progressively more accurate timings.
Once the interrupt handler returns to a different or the previously executing thread,
a similar sequence is repeated.

20.4 Experimental Results

In this section we present experimental results for our timing simulation framework.
First, we establish a baseline regarding simulation accuracy based on results
for small benchmarks. Afterward, we discuss case studies for more complex
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applications. Due to space restrictions, we do not provide an in-depth description
of the experiments here, more details can be found in our preceding publications
[16, 17].

20.4.1 Benchmarks

As benchmarks we use several programs from the Mälardalen WCET bench-
mark [10] collection. Each of these benchmarks focuses on specific control-flow
structures, for example, typical computations such as matrix multiplications or
implementation patterns such as state machines. This has the drawback that the
benchmark collection does not provide representative workloads. However, it
allows an evaluation of the relationship between program structure and simulation
properties.

Some benchmarks were excluded for various reasons: Several benchmarks had
very short execution times or were even completely optimized by the compiler.
Furthermore we had to adapt benchmarks to allow a variation of inputs for our
experiments using a dynamic PSTC. For these experiments we selected benchmark
where such an adaptation was feasible with a reasonable effort. This adaptation was
primarily necessary, as our framework can simulate the timing exactly without input
variations.

We performed experiments with these benchmarks for TDB generation using
static PSTC for an ARM Cortex-M3 system and using dynamic PSTC for an
ARM Cortex-A9 system. The experiments using a static PSTC were evaluated
regarding both simulation accuracy and performance, whereas the experiments
using a dynamic PSTC were only evaluated regarding simulation accuracy.

20.4.1.1 Simulation Accuracy
Figure 20.7 shows the deviation of simulation results from hardware measurements
for the Mälardalen benchmarks using four different TDBs and two different
hardware configurations. The TDBs inf and opt represent the intended use of our
simulation framework: a TDB that was generated using a VIVU(1,1) mapping
in the static PSTC and, in the case of opt, further optimization of the TDB. Noctx
represents a simulation that does not itself make use of contexts but relies on the
results of a static PSTC that does use contexts. Whereas the zero case represents a
simulation where contexts are used in neither.

Many programs can be simulated accurately by any TDB, but only the context-
sensitive simulations provide accurate simulation results in all cases. The difference
is more pronounced in the configuration with two wait states. Here, the increased la-
tency of the flash the benchmarks are executed from makes the timing behavior more
complex, which can only be reflected accurately by the context-sensitive simulation.

Table 20.2 shows minimum and maximum simulation errors when using a
dynamic PSTC to generate a TDB. As the main issue with a dynamic analysis-
based TDB generation is a variation of program inputs, we adapted a subset of
the Mälardalen benchmarks to enable parameter variations. For this evaluation we
chose a wide range of values for each parameter (e.g., size parameters in a range
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Table 20.2 Simulation error when using a dynamic PSTC

Avg./max. error %

Program Param. Alla Singleb Pairc

matmult
Seed 0:0 0:0 0:0 0:0 0:0 0:0

Matrix size 12:5 28:8 8:2 16:2 4:1 12:0

crc
Input size 2:4 14:2 0:8 3:9 0:4 1:2

Input values 0:2 0:5 0:1 0:4 0:0 0:2

adpcm

Input amp. 0:9 1:8 0:7 1:7 0:0 0:1

Input freq. 1:0 3:1 0:2 0:6 0:1 0:4

Num. samples 0:6 1:5 0:4 0:7 0:0 0:0

bsort100
Seed 0:0 0:0 0:0 0:0 0:0 0:0

Array size 15:2 84:3 0:7 2:1 0:2 0:8

qsort-exam
Seed 4:2 7:0 2:8 4:0 2:8 4:0

Array size 8:2 21:9 3:4 6:5 2:4 6:1

prime Tested prime 11:1 29:0 6:3 12:8 2:3 5:3

select
Seed 0:7 1:8 0:5 0:9 0:3 0:6

Array size 8:0 42:7 2:2 9:2 0:6 1:3

All None 0:0 0:0 0:0 0:0 0:0 0:0

aAll: All TDBs
bSingle: on average most accurate TDB
cPair: Most accurate pair of TDBs when choosing the more accurate one of the pair per program

such that the working set size exceeds the L1 cache size for some values but not for
others), traced executions for each parameter value and generated a TDB from every
trace. Afterward, each TDB was used to simulate executions for all parameters. We
calculate mean and maximum simulation errors from these simulation for multiple
scenarios of selecting a TDB for a simulation. In all we include all TDBs, which
is similar to a user choosing tracing inputs arbitrarily. In single we selected the
single, on average best TDB, which represents the best result a user could achieve
when he deliberately selects tracing inputs. The pair selection strategy is similar, but
additionally considers that a user may generate multiple TDBs – two in this case –
to further improve simulation accuracy.

The control flow in most benchmarks does not change significantly when the
working set size is identical in TDB generation and simulation. In these cases even
using arbitrary inputs during tracing leads to a high simulation accuracy. An extreme
exception to these rules is the prime benchmark, as it makes heavy use of a low-
level math function to perform modulo operations. This function essentially contains
a large switch statement, if the TDB is generated for shorter executions the switch
statement is not covered sufficiently. In this case and also variations of the working
set size, a more careful selection of tracing input is required. In most cases using
two TDBs provides a further accuracy improvements.
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20.4.1.2 Simulation Performance
Figure 20.8 shows the overhead of the timing simulation for the Mälardalen
benchmarks in the experiments for the Cortex-M3 processor using a static PSTC.
The overhead is independent of the used hardware configuration, as during the
simulation the only difference between the two cases is the timing values stored
in the TDB. While not shown in the figure, this has also the consequence that there
is no significant difference in simulation performance for a TDB generated using
a dynamic or static PSTC. A performance gain of over factor 10 can be achieved
utilizing SLS and an automaton based encoding of the timing data [18].

20.4.2 Case Studies

Benchmarks are usually significantly smaller and less complex than real appli-
cations, but our simulation becomes more complex with application size and
complexity. We therefore put a focus on using real code in the evaluations of our
simulation framework. Here we present a few selected case studies.

20.4.2.1 eCos
Our eCos case study explores the capabilities of the simulation to exceed the
limitations of a static PSTC used during TDB generation. For this purpose we
ported the embedded operating system eCos [8] to our reference hardware that was
also used in the experiments for the Mälardalen benchmarks using static PSTC.
We configured eCos with support for preemptive multi-threading and crafted an
application that executed two concurrent instances of the matmult benchmark.

The preemption creates a feedback between the temporal and the functional
behavior of the program, as changes in software performance lead to additional
thread switches. This factor complicates the static PSTC used to generate a TDB.
In particular an accurate simulation would be impossible without dynamic context
selection and the fusion of results from multiple analyses.

When using an optimized TDB, our simulation can approximate the hardware
execution with an error of less than 0:25%, whereas a simulation and analysis
without context lead to an error of over 70%. This large error is not only the result
of the decreased accuracy of the block-level timings but also the resulting change in
the functional simulation due to additional thread switches. This demonstrates the
importance of an accurate low-level timing simulation in the presence of feedback
between the functional and the timing behavior of an application.

While the difference in the functional behavior prevents an exact calculation
of the timing simulation overhead, the difference in simulation performance is
comparable to the results for the Mälardalen benchmarks: The context-sensitive
simulation with an optimized TDB achieves about 22 Million Instructions Per
Second (MIPS), while a simulation without timing and thus a sequential execution
of both threads achieves 39 MIPS.



20 Precise Software Timing Simulation Considering Execution Contexts 647

768 x 512 pixels 576 x 384 pixels 384 x 256 pixels 192 x 128 pixels

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
compression quality

cy
cl

es

arbitrary deliberate measurement

Fig. 20.9 Min/mean/max number of cycles for execution of image compression as simulated
using arbitrarily and deliberately selected tracing inputs compared to hardware measurements

20.4.2.2 Image Compression
As an example for highly optimized software, we investigated the simulation
accuracy for the libjpeg-turbo [12] image compression library on a Cortex-A9,
which makes use of Single Instruction, Multiple Data (SIMD) instruction set
extensions. We created an application that compresses images from a collection
by Kodak [11] at various compression quality settings. To further vary the image
size, we rescaled some of the images to obtain four groups of constant size with
five images each. TDBs were generated using a dynamic PSTC and explored the
relationship between tracing input and simulation accuracy.

If an arbitrary input is used in tracing, the simulation error is 2:07% on
average and at most 30:63%. If more care is taken by making sure tracing and
simulation image size are identical and the special case of a compression quality
of 100 is handled separately, the error can be reduced to 1:18% on average
and at most 11:66%. Figure 20.9 shows a comparison of simulation results with
hardware measurements. As can be seen, the simulation accurately characterizes
the application timing, but for the case of arbitrary tracing inputs suggests a wider
variation.

20.4.2.3 Advanced Driver Assistance
As an example for a complex, modern embedded application we experimented with
a video based circular traffic sign recognition on the same platform used in the image
compression application. The application processes each image in two stages. First,
in the segmentation stage circles are detected. In the subsequent classification stage
these circles are classified as a particular traffic signs or no sign. For our experiments
we varied two segmentation parameters that influence the number of circles that go
into the classification stage and must be tuned in practice to achieve a reasonable
trade-off between application performance and recognition accuracy. Furthermore
we used several input images.
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Fig. 20.10 Subset of simulation results for advanced driver assistance application compared to
hardware measurements

If an arbitrary input is used in tracing, the simulation error is 0:98% on average
and at most 7:55%. If more care is taken by making sure tracing and simulation
images are identical or at least very similar, the error can be reduced to 0:27% on
average and at most 2:06%. Figure 20.10 shows a comparison of simulation results
with hardware measurements. As can be seen, the simulation slightly idealizes the
application timing, which is more erratic on hardware.

20.5 Discussion

Context-sensitive software timing simulation offers many advantages over other
approaches to software timing simulation. However, the need for a PSTC of the
software code and the complexity of the control-flow models as well as context
mappings lead to a number of limitations. In this section we list advantages and
limitations of context-sensitive simulation at the current state of the art.

20.5.1 Advantages

While the simulation at its core is still driven by events at a higher level of
abstraction than individual processor cycles, the use of contexts allows an accurate
approximation of the flow of instructions through the processor pipeline from a
timing perspective. As a consequence, context-sensitive timing simulation can offer
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an extremely high accuracy, in particular, when used with a dynamic PSTC that can
also consider application behavior for typical workloads.

Furthermore, if VIVU is used as context mapping, contexts can also approximate
cache effects. This makes online cache models unnecessary, which otherwise
can significantly reduce simulation performance. Furthermore, both caches and
the pipeline can be considered simultaneously during the PSTC, which enables
an accurate consideration of their interactions that is not possible in a context-
insensitive simulation. This applies to instruction caches in particular, as their
impact on application timing is mainly influenced by the control flow. However,
our experimental results demonstrate that it is also possible to accurately model
the timing influence of data and unified caches if a dynamic PSTC is used. It
remains to be seen how far these advantages can be maintained in multi- and many-
core systems. For example, if coherent caches are used the timing of instructions
executed on one core can be influenced by those executed on another core.

Another interesting advantage is offered by our simulation framework if a
dynamic PSTC by hardware tracing is used. As the timing information is extracted
from hardware, a software model of the hardware is not needed during the PSTC.
Such a model is not only hard to construct, but the necessary details of the
microarchitecture are not always publicly available.

20.5.2 Limitations

The main limitation of context-sensitive simulation is the need to re-execute
the PSTC when the software code or the system configuration (to the extent
considered in the PSTC) changes. This complicates the application of context-
sensitive simulation in Design Space Exploration (DSE) and for self modifying
code.

For systems with self-modifying code, for example, those using just-in-time
compilation (e.g., Java in Android) or dynamic code relocation (e.g., shared libraries
under Linux) context-sensitive simulation is currently not possible. However, for
DSE, Plyaskin, Wild, and Herkersdorf [21] demonstrated that limited variations in
the hardware architecture can still be considered in a context-sensitive simulation.

20.6 Conclusions

In this chapter we discussed context-sensitive timing simulation for embedded
software. This concept improves simulation accuracy by considering the control
flow that leads to the execution of an instruction sequence to more accurately
approximate the timing of that particular execution. Furthermore, it permits novel
approaches, such as highly accurate simulations of application performance over
a wide range of inputs based on hardware measurements for only few inputs.
Moreover, as could be observed in our experimental results, context-sensitive
simulation can remove the need for slow online models of caches and branch
prediction.
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These advantages come at the drawback of requiring a PSTC of the application
code before a simulation. This analysis induces an overhead which is only recouped
if multiple and/or longer running simulations are performed based on the results of
one analysis. Furthermore the complexity of dynamic and static PSTC complicates
a practical application.

Even though these drawbacks appear significant, we expect an increase in the
practical relevance of context-sensitive simulations in future hardware/software
cosimulations. We base this assessment on three factors: First, future products such
as autonomous vehicles will require highly complex and performance-demanding
software which must fulfill high safety standards. Cosimulations using context-
sensitive software timing simulation can provide a valuable tool to developers of
these products. Second, we expect that future research will simplify the application
of the approach, for example, by simplifying the PSTC by combining static and
dynamic analysis techniques. Third, other future and existing simulation techniques
using block-level timings can exploit contexts to improve simulation accuracy, even
if they only apply simple mappings that only consider the preceding block.
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