
19Host-Compiled Simulation

Daniel Mueller-Gritschneder and Andreas Gerstlauer

Abstract

Virtual Prototypes (VPs), also known as virtual platforms, have been now widely
adopted by industry as platforms for early software development, HW/SW
coverification, performance analysis, and architecture exploration. Yet, rising
design complexity, the need to test an increasing amount of software functionality
as well as the verification of timing properties pose a growing challenge in
the application of VPs. New approaches overcome the accuracy-speed bottle-
neck of today’s virtual prototyping methods. These next-generation VPs are
centered around ultra-fast host-compiled software models. Accuracy is obtained
by advanced methods, which reconstruct the execution times of the software
and model the timing behavior of the operating system, target processor, and
memory system. It is shown that simulation speed can further be increased
by abstract TLM-based communication models. This support of ultra-fast and
accurate HW/SW cosimulation will be a key enabler for successfully developing
tomorrows Multi-Processor System-on-Chip (MPSoC) platforms.

Acronyms

API Application Programming Interface
CFG Control-Flow Graph
HAL Hardware Abstraction Layer
HW Hardware
IPC Inter-Process Communication

D. Mueller-Gritschneder (�)
Department of Electrical and Computer Engineering, Technical University of Munich, Munich,
Germany
e-mail: daniel.mueller@tum.de

A. Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: gerstl@ece.utexas.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_18

593

mailto:daniel.mueller@tum.de
mailto:gerstl@ece.utexas.edu

594 D. Mueller-Gritschneder and A. Gerstlauer

IR Intermediate Representation
ISA Instruction-Set Architecture
ISS Instruction-Set Simulator
MPSoC Multi-Processor System-on-Chip
OS Operating System
SLDL System-Level Description Language
TD Temporal Decoupling
TLM Transaction-Level Model
VP Virtual Prototype
WCET Worst-Case Execution Time

Contents

19.1 Introduction . 594
19.1.1 Traditional Virtual Prototype Simulation . 595
19.1.2 Next-Generation Virtual Prototypes . 596
19.1.3 Temporal Decoupling . 597

19.2 Source-Level Software Simulation . 598
19.2.1 Binary to Source Mapping . 600
19.2.2 Memory Trace Reconstruction . 602
19.2.3 Block-Level Timing Characterization . 603
19.2.4 Back-Annotation . 604

19.3 Host-Compiled OS and Processor Modeling . 605
19.3.1 OS Modeling . 606
19.3.2 Processor Modeling . 608
19.3.3 Cache Modeling . 609

19.4 TLM Communication for Host-Compiled Simulation . 612
19.4.1 TD with No Conflict Handling . 612
19.4.2 TD with Conflict Handling at Transaction Boundaries 613
19.4.3 TD with Conflict Handling at Quantum Boundaries . 614
19.4.4 Abstract TLMC with Conflict Handling at SW Boundaries 616

19.5 Summary and Conclusions . 617
References . 617

19.1 Introduction

Due to increased complexity of modern embedded and integrated systems, more
and more design companies are adopting virtual prototyping methods. A Virtual
Prototype (VP), also known as a virtual platform, is a computer model of a HW/SW
system. In such a HW/SW system, tasks of an application are executed on one or
more target processors, e.g., ARM cores. Tasks usually run on top of an Operating
System (OS). The tasks can communicate and access memory and peripherals via
communication fabrics, e.g., on-chip busses. Next to obtaining correct hardware
with less iterations, VPs support early software development, performance analysis,
HW/SW coverification, and architecture exploration.

Modern Multi-Processor System-on-Chip (MPSoC) platforms feature multiple
hardware and software processors, where processors can each have multiple cores,

19 Host-Compiled Simulation 595

all communicating over an interconnection network, such as a hierarchy of busses.
The large amount of functionality and timing properties that need to be validated
for complex MPSoCs brings traditional VP approaches to their limits. New VPs are
required, which raise the abstraction to significantly increase simulation speed. This
is a challenging task, because high abstraction leads to a loss of timing information,
penalizing simulation accuracy.

This gives rise to next-generation VPs, which are centered around host-compiled
software models. Abstraction is applied at all layers of the system stack starting
from the software level, including operating system and processor models, down
to abstract communication models. Intelligent methods are applied to preserve
simulation accuracy at ulta-high simulation speeds. These methods are independent
of the used System-Level Description Language (SLDL). Yet, SystemC [1] has
nowadays emerged as a quasi-standard for system-level modeling. Therefore,
SystemC is used as the main SLDL to illustrate the modeling concepts throughout
this chapter.

Next to ultra-high simulation speed, VPs based on host-compiled simulation
also provide improved debug abilities. Both software and hardware events can
be traced jointly and transparently as the simulation model describes both in one
executable.

19.1.1 Traditional Virtual Prototype Simulation

The VP is simulated via an SLDL simulation kernel. The PC, which runs the
simulation, is referred to as the simulation host. Naturally, it can have a different
Instruction-Set Architecture (ISA) from the target processors. In discrete-event
(compound adjective) simulation, the simulation kernel on the host advances the
logical simulation time. To simulate concurrent behavior, simulation processes
are sequentially executed based on scheduling events and the simulation time.
Scheduling events suspend or resume simulation thread processes (threads) or
activate method processes. Suspending and resuming the thread processes requires
context switches, which can produce significant simulation overhead. This overhead
reduces simulation speed, which measures how fast the simulation is performed in
terms of the physical time.

Communication is usually modeled using abstract Transaction-Level Models
(TLMs). TLMs center around memory-mapped communication but omit the de-
tailed simulation of the bus protocol. In TLM, the bus interface is modeled by a
TLM socket. A transaction is invoked by an initiator (master) module when calling
a predefined transport function on its socket. The function is implemented at the
target (slave) module. During simulation the initiator socket is bound to the target
socket, and the respective transport function is called.

While TLMs have been successfully applied to model communication aspects,
today’s VPs usually model the computational part by emulating the software on
Instruction-Set Simulators (ISSs), which are either inaccurate or slow. As such, the
amount of functionality and timing properties that can be checked by traditional
VPs remains limited by their simulation speed. The low speed results from the

596 D. Mueller-Gritschneder and A. Gerstlauer

high number of scheduling events created by the traditional computation and
communication model.

19.1.2 Next-Generation Virtual Prototypes

Simulation speed can be increased by reducing the number of scheduling events.
One possibility is to raise the level of abstraction and thus lower the level of detail
in the simulation. Abstractions can increase simulation speed significantly but may
decrease accuracy due to loss of timing information or missing synchronization
events as discussed in Sect. 19.1.3.

Next-generation VPs are aimed at overcoming these challenges by using in-
telligent modeling approaches to preserve simulation accuracy. The abstraction is
raised by source-level simulation of software as an advanced method for software
performance analysis. Instead of emulating the software program with an ISS
of the target processor at the binary level, the source code of the software is
directly annotated with timing or other information. The annotated source code
can be directly compiled and executed on the simulation host machine, which
leads to a huge gain in simulation speed compared to ISS simulation. However,
this requires access to the source code by the user, which might not be available
especially for library functions. This is a limitation of such approaches, which can
be partly overcome, e.g., by profiling library functions beforehand. Additionally,
sophisticated methods are required to annotate potentially expensive and slow
cosimulation models for any dynamic low-level target behavior, such as stack or
cache behavior, that cannot be easily or accurately estimated through static analysis

Pure source-level simulation approaches focus on emulating stand-alone ap-
plication behavior only. However, interferences among multiple tasks running on
a processor as well as hardware/software interactions through interrupt handling
chains and memory and cache hierarchies can have a large influence on overall
software behavior. As such, OS and processor-level effects can contribute signifi-
cantly to overall model accuracy, while also carrying a large simulation overhead
in traditional solutions. So-called host-compiled simulation approaches therefore
extend pure source-level models to encapsulate back-annotated application code
with abstract, high-level, and lightweight models of OSs and processors. This is
aimed at providing a complete, fast, and accurate simulation of source-level software
running in its emulated execution environment.

Additionally, embedded and integrated systems are composed out of many
communicating components as we move toward embedded multi-core processors.
The simulation of communication events can quickly become the bottleneck in
system simulation. Next-generation VPs tackle this challenge by providing abstract
communication models. Special care must be taken in such abstract models to
capture the effect of conflicts due to concurrent accesses on shared resources.
Different methods are addressed, which can model the effect of arbitration, e.g., by
retroactive correction of the timing behavior. This correction is usually performed
by a central timing manager.

19 Host-Compiled Simulation 597

19.1.3 Temporal Decoupling

Overall, any discrete-event simulation of asynchronous interactions among con-
current system components will always come with a fundamental speed and
accuracy trade-off. Concurrency is simulated by switching between execution of
the simulation processes at scheduled simulation events. With increasing amount of
such scheduling events, simulation speed drops due to the overhead caused by the
involved context switches.

Naturally, simulation speed can be increased by reducing the number of schedul-
ing events. This can be achieved by raising the level of abstraction in the simulation
model. A less detailed simulation usually leads to fewer scheduling events. How-
ever, a simulation at coarser granularity also leads to timing information being
potentially lost. Maintaining a coarser timing granularity results in a Temporal
Decoupling (TD) of simulation processes. TD lets simulation processes run ahead
of the logical simulation time up to a given time quantum, which increases the
simulated timing granularity and decreases the number of scheduling events. The
logical simulation time of the kernel is referred to as global simulation time. By
contrast, components keep track of their time using a local simulation time, which
is usually defined as an offset to the global simulation time.

For HW/SW systems, TD increases simulation speed but may decrease accuracy
due to out-of-order accesses to or wrong prediction of conflicts on shared resources.
Specifically, TD may decrease accuracy due to incoming events being captured
too late, and also in terms of outgoing events being produced too early. This is
illustrated for a scenario with two concurrent active threads in Fig. 19.1. Without
TD, as shown in the upper half of the figure, Thread 2 writes the value of b to
the shared target before it is read by Thread 1. Additionally, the shared target can
arbitrate accesses. The writing process of b is ongoing when the read access is
performed, which adds additional delay on the read access of Thread 1. In contrast,
temporal decoupling leads to out-of-order accesses to b as shown in the lower half
of the figure. Additionally, the conflicting access by Thread 2 cannot be predicted
by the shared resource, and Thread 1 sees the write to b by Thread 2 only at a much
later (local) time. Similar problems of events being recognized too late arise when
modeling active threads that can be interrupted or preempted by external sources.

TD methods can be classified as optimistic or conservative. Optimistic ap-
proaches aggressively execute a model under temporal decoupling. Inaccuracies
due to out-of-order execution are either tolerated or corrected for at a later point
in simulation. Note that optimistic approaches do not guarantee an accurate order
of events and interactions unless correction using a full rollback is possible in
the simulator. As the name suggests, conservative approaches, by contrast, always
maintain the correct order of events and interactions. They only apply temporal
decoupling as long as it can be guaranteed that results do not depend on the order
of the respective events. Both methods can benefit from intelligent compile-time
or run-time usage of system knowledge. Accuracy of optimistic approaches can
be improved by using system knowledge to perform retroactive timing correc-
tions. Conservative approaches can increase their simulation speed by dynamically

598 D. Mueller-Gritschneder and A. Gerstlauer

100ns

Global Simulation Time

a=compute_a()

write(addr=0x00,value=a)

Thread 2Thread 1

100ns

Global Simulation Time

a=compute_a()
wait(10ns)

110ns
write(addr=0x00,value=a)
wait(10ns)

compute_cont()
wait(10ns)

Thread 2

b=compute_b()
wait(10ns)

write(addr=0x04,value=b)
wait(10ns)

b=read(addr=0x04)

wait(10ns+delay)

compute(b)
wait(10ns)

delay = 5ns

Thread 1 Shared Target

Shared Target

compute_cont()

b=read(addr=0x04)

compute(b)

compute_cont()
wait(10ns)

offset+=10ns

offset+=10ns
110ns

offset+=10ns

offset+=10ns

offset+=10ns

120ns

130ns

140ns

150ns
wait(50ns)

b=compute_b()

write(addr=0x04,value=b)
offset+=10ns

Local time

offset+=10ns

compute_cont()
offset+=10ns

115ns

125ns

135ns

145ns
wait(45ns)

115ns

120ns

125ns

130ns

135ns

145ns

Fig. 19.1 Simulation without/with Temporal Decoupling (TD)

adjusting their local time quantum using system knowledge to perform prediction of
possible future event interactions. In Sects. 19.2 and 19.4, we will show in detail how
accuracy and speed can be improved by such intelligent TD modeling approaches.

19.2 Source-Level Software Simulation

Traditional virtual platforms simulate software execution at a detailed instruction
level. This includes both a functional as well as, optionally, a timing model. Such
low-level ISSs can be very accurate, especially when combined with a cycle-level
microarchitecture model, but they also tend to be very slow, especially when cosim-
ulating multiple processor or cores in a full-system context. Functional simulation

19 Host-Compiled Simulation 599

speed can be significantly improved by statically translating instructions (and
caching translated results, see the �Chap. 18, “Multiprocessor System-on-Chip
Prototyping Using Dynamic Binary Translation”) instead of dynamically interpret-
ing them. Timing models can be accelerated by executing them in FPGAs or other
dedicated hardware platforms [6]. Nevertheless, simulation speed, particularly when
requiring accurate timing, remains a major concern.

Source-level approaches are aimed at improving the speed of both functional
and timing simulations. Computation is modeled at the source or Intermediate
Representation (IR) level, which allows a purely functional model to be natively
compiled and executed on a host without having to emulate the functionality of
a target ISA. For fast timing simulation, source-level methods employ a hybrid
approach that combines the functional simulation with an abstract, statically derived
timing model at much coarser program block granularity. This is similar to static
Worst-Case Execution Time (WCET) estimation. However, a key challenge is
enumeration of possible program paths when performing such static analysis at the
whole program level. Source-level approaches avoid or simplify this problem by
constructing a static timing model at finer block-level granularity and driving this
model with block sequences of program paths encountered in the actual functional
simulation. In practice, this is often done by simply back-annotating the timing
model directly into the functional source or IR code. Nevertheless, models can
be separated, and coarse-grain timing models can equally be combined with fast
functional ISS models instead (see also �Chaps. 20, “Precise Software Timing
Simulation Considering Execution Contexts” and � 21, “Timing Models for Fast
Embedded Software Performance Analysis”).

A remaining challenge is that due to pipeline, cache, and other effects, the timing
of a program block is not statically fixed but generally depends on the dynamic
machine state and hence previous program history. Traditional ISSs simulate
detailed interactions with machine state for each encountered instruction. WCET
approaches have to derive conservative bounds based on possible program history.
By contrast, source-level approaches operate at an intermediate level. The functional
simulation allows actual history and state-dependent effects to be accurately tracked.
At the same time, only the relevant state is dynamically simulated while statically
abstracting as many effects as possible. During static pre-characterization, blocks
are analyzed on a target reference model under different possible conditions. Static
timing numbers can then be selected based on the actual context encountered in
simulation. This can provide accurate timing without replaying the same instruction
sequence on the slow timing reference each time the block is executed. However,
this is only possible as long as the possible state space affecting block timing
is small. For dynamic structures with deep history, such as caches or branch
predictors, detailed simulation models that dynamically adjust pre-characterized
block timing can be included. Alternatively, a static average- or worst-case analysis
can be applied. Ultimately, the amount of static analysis versus dynamic simulation
overhead thereby determines the speed and accuracy trade-off in different source-
level models.

A typical flow for generating a source-level timing simulation model is shown
in Fig. 19.2. There are generally three stages in such a framework: (1) binary

http://dx.doi.org/10.1007/978-94-017-7267-9_20
http://dx.doi.org/10.1007/978-94-017-7267-9_21
http://dx.doi.org/10.1007/978-94-017-7267-9_22

600 D. Mueller-Gritschneder and A. Gerstlauer

C Source Code

Frontend
Optimizations

Intermediate Rep.
(IR)

Backend

Binary

Host-
Compiled
(HC) Model

Binary to
Source/IR
Mapping

Program Block
Timing

Characterization

Target
Metrics
Back-

Annotation

Low Level Timing
Reference

Timing Characterization and Annotation

Debugger

Fig. 19.2 Source-level timing characterization and back-annotation

to source/IR mapping, (2) program block timing characterization, and (3) target
metrics back-annotation. During the mapping stage, a relationship between source-
/IR-level code and binary need to be established. This usually includes an accurate
Control-Flow Graph (CFG) mapping to provide insertion points of target profiling
metrics. Additionally, memory accesses also need to be reconstructed in order to
account for cache effects. For timing characterization, target metrics are extracted at
the machine level at a certain granularity as a one-time effort. Finally, execution
statistics are back-annotated into the source/IR model based on the previously
determined relationship. The back-annotated source code can then be directly
compiled and executed on the simulation host machine for fast and accurate software
simulation.

19.2.1 Binary to Source Mapping

The first step in the timing back-annotation flow is to establish a matching between
the CFGs of the target binary and source-level code, which is aimed at ultimately
allowing target metrics to be annotated back into the source-level or IR code at
correct insertion points.

The earliest works estimate and annotate target performance metrics purely
based on source code analysis [4, 14]. Control flow and operation information are
extracted directly at source level, which are further fed into abstract performance
estimators to calculate the corresponding target metrics. These approaches avoid the
mapping issues and provide a fast and approximate profiling strategy for early stage
design space exploration. However, without consulting the corresponding target
binary, such techniques cannot provide precise estimations compared to detailed
characterization of binary blocks on a cycle-level reference model.

19 Host-Compiled Simulation 601

Source Code

22-24

24

Binary

25

26 27

24
29

0x8000

0x8010

0x8020 0x8028

0x802C

0x8034

Fig. 19.3 Matching between source- and binary-level control flow

The challenge when working at the binary level is that, due to aggressive
compiler optimization, CFGs can be significantly changed when source code is
transformed into a binary implementation (Fig. 19.3). Thus, target metrics obtained
for each binary block need to be annotated to a matching source code block such
that numbers are guaranteed to be accounted for correctly when accumulated during
subsequent source-level simulation. Early approaches relied on debug information
alone to perform such a mapping [45]. However, debug information provided
by standard compilers is often unreliable or ambiguous. For example, debug
information often contains no or several source references for the same binary block.
Each of these entries describes a potential relation between a binary and source-level
basic blocks from which a unique mapping still needs to be determined, i.e., the
debug information has to be subject to further analysis steps. These ambiguities and
CFG mismatches are the main issues to be resolved to establish a valid and accurate
mapping.

When targeting back-annotation at the source level, binary to source matching
typically relies on complex structural analysis combined with the use of IR level
and debug information to establish a mapping between the target binary and source
code [24]. Structural analysis is performed on both source level and binary code to
extract loop and control flow dependency characteristics. Along with debug infor-
mation, these structural properties are then used as matching criteria to establish a
tentative CFG mapping. In case of heavily optimized CFGs, advanced approaches
annotate an additional IR level [43] or binary path simulation model [39, 41] to
dynamically cosimulate, track, and reconstruct the actual binary execution flow and
its corresponding accumulated timing. Working at source level benefits from better
readability and convenience with respect to manual adjustments or analysis of the
simulation model. However, it is usually hard to systematically handle the full range
of compiler optimization for general CFG mapping.

602 D. Mueller-Gritschneder and A. Gerstlauer

Other works address these issues by performing back-annotation and simulation
at the IR level. Working at the IR allows typical front-end compiler optimizations
to be taken into account, where the IR provides a much closer representation of the
final control flow. This simplifies the matching problem, i.e., improves accuracy
with little to no penalty in execution speed. Early work [45] only used debug
information to perform the mapping, which is more reliable when working at the
IR level. Nevertheless, even IR and binary control flows do not always match
cleanly due to aggressive compiler backend optimizations. In these cases, similar
to advanced source-level approaches, a path tracking model that replicates the
CFG of the target binary can be extracted during backend code generation for
cosimulation with the IR [3]. However, this adds simulation overhead and requires
detailed backend compiler and/or target ISA information to be available, making
the approach dependent on the estimation target. Alternatively, a mapping can be
established by a simplified structural analysis of both IR and binary CFGs. A general
and fully retargetable approach is proposed in [5], where a synchronized depth-first
traversal of both CFG is performed to identify legal matches based on a control
flow representation using both loop and branch nesting levels. In addition, debug
information is consulted when multiple equally likely matches are possible.

19.2.2 Memory Trace Reconstruction

Caches can have a large effect on overall performance estimation. At the same time,
cache behavior is highly dynamic and strongly depends on the actual sequence
of memory accesses made by the application, which cannot be fully determined
statically during program block characterization. Some approaches employ an
approximate solution by annotating a statistically calculated average or statically
estimated worst-case delay for each memory access [14, 18]. Otherwise, memory
accesses need to be reconstructed during the back-annotation stage with information
from both binary and source code [21, 27, 44]. The source or IR code is thereby
annotated with accurate information about the type and address of each memory
access made by the binary code. Alternatively, approaches that already reconstruct
a binary cosimulation model for path tracking purposes can equally annotate
this model with memory access tracking code obtained from de-compiling the
binary [42]. In either case, back-annotated memory accesses can then feed an
abstract, dynamic cache simulation model that determines additional cache miss
and memory delay penalties to be included during source-level timing simulation
(see Sect. 19.3.3).

Memory access trace reconstruction can be generally decomposed into three
categories: (1) accesses to static and global variables, (2) accesses to stack data,
and (3) accesses to the heap. To reconstruct the addresses of static and global data
accesses, their base addresses and, in case of non-scalars, their access offsets are
required. Base address information of global data can easily be obtained from the
symbol table of the target binary, while access offsets are extracted from analysis of
IR or binary code. A key observation is that, with proper translation of primitive data
types, access offsets in the IR are the same as in the target binary, while only base

19 Host-Compiled Simulation 603

addresses differ. Hence, IR-based approaches can directly obtain such information.
By contrast, reconstructing accurate addresses at the source level requires falling
back to IR or binary analysis.

Different from the global data, stack and heap accesses are more complicated to
back-annotate. Their base addresses change dynamically depending on the local and
global execution context. Tracking such memory accesses requires reconstructing
the target stack/heap layout as well as the dynamic status of the stack pointer
and heap manager during program execution. Thus, abstracted models for stack
pointers and heap allocation are usually inserted into source or IR-level simulations
to capture and track such information dynamically. Together with access offsets
extracted from IR or source code, accurate target stack/heap accesses can then be
reconstructed during simulation time.

19.2.3 Block-Level Timing Characterization

The core step in the back-annotation process is the characterization of block-specific
target metrics. As mentioned above, accurate characterization is complicated by
the fact that target metrics of a program block can be significantly affected by the
dynamic machine state and previous program history. In general, the performance
metrics for a code block are determined by its internal execution paths as well as the
path history of code that has previously executed (Fig. 19.4).

Block_F

Block_G

Block_E

Path E_G_1
Path E_G_2

Path F_G_2
Path F_G_1

Block_C

Block_B

Path B_E
Path C_E

Fig. 19.4 Path dependency of block-level timing characterization

604 D. Mueller-Gritschneder and A. Gerstlauer

Overall speed and accuracy are determined by the granularity of code blocks at
which characterization (and ultimately back-annotation are performed). Approaches
that operate at a coarse function level [4] have to estimate average or worst-case
behavior across all dynamic execution paths taken within each function body as
determined, for example, by a previous profiling run. By contrast, solutions that
annotate timing at the individual statement level [22] suffer from unnecessary
characterization and simulation overhead. Most existing approaches instead work
at a basic block level. Since there is only a single path through a basic block, the
assumption is that its baseline timing can be accurately represented by a single,
statically characterized number.

Machine state and execution history can, however, still significantly affect a
block’s timing. Such effects can be estimated by employing a WCET analysis for
binary timing characterization, which provides an upper bound on the execution
time for each individual basic block either alone or within its larger execution
context [41]. In most cases, however, basic block timing is characterized through
cycle-accurate simulation on a detailed microarchitecture reference model. Pipeline
history effects are taken into account by characterizing each block in sequence
with possible predecessors, such that variations in execution context are accurately
accounted for. The characterization overhead thereby exponentially increases with
the number of possible predecessors and depth of considered execution path history.
Depending on the binary block length and machine pipeline depth, a maximum
number of predecessors that can possibly affect dependencies until they are
guaranteed to have percolated through the pipeline can be dynamically determined
for each block and path [18]. Alternatively, blocks can simply be characterized
through pairwise execution with all of their immediate predecessors, which has been
shown to provide a good trade-off between accuracy and estimation complexity [5].

19.2.4 Back-Annotation

The final step in generating a source-level software simulation model is back-
annotation of characterized timing metrics using previously obtained mapping
information. Metrics gathered during the characterization step are usually recorded
in a mapping table, which is then used for directing the annotation of target metrics
into the IR or source code at correct insertion points.

For a single annotation unit, there are often multiple performance metrics
accounting for path-dependent timing effects. In order to be able to pick up the
correct set of metrics during simulation, the back-annotation process will usually
insert extra data structures to record essential execution history, such as the dynamic
predecessor of currently executing basic block. In this way, the back-annotated
model can reconstruct the binary execution flow and properly accumulate block
execution time along with the annotated points.

To account for dynamic execution characteristics that depend on complex history
behavior, such as branch predictors [8] and caches (see Sect. 19.3.3), the source
code is further augmented with calls to dynamic simulation models of such (micro-)

19 Host-Compiled Simulation 605

architectural structures. In case of caches, this includes annotating the code with
previously reconstructed memory and cache access information. During simulation,
delays can be adjusted according to the corresponding outcomes from such models.
For this purpose, blocks are usually characterized assuming ideal conditions (such as
always-correct branch prediction or perfect caches), where dynamically determined
penalties are added during simulation. This approach is feasible for simpler in-
order processors. By contrast, dynamic tracking of complex interactions between
pipelines and other structures in out-of-order processors requires a significantly
more involved characterization and back-annotation [26]. In all cases, the choice of
annotating static estimates or dynamic simulation models, which incur additional,
in some cases, significant simulation overhead, enables generation of different
models with varying trade-off between simulation speed and accuracy. Furthermore,
such source-level simulation approaches can be extended beyond timing to back-
annotation of other performance, energy, reliability, power, and thermal (PERPT)
metrics [5, 9, 17, 47].

19.3 Host-Compiled OS and Processor Modeling

As described previously, host-compiled simulators extend pure source-level ap-
proaches with fast yet accurate models of the complete software execution en-
vironment. Figure 19.5 shows a typical layered organization of a host-compiled
simulation model [30, 35, 38]. Individual source-level application models that are
annotated with timing and other metrics as described in Sect. 19.2 are converted

OS

Scheduler

Dispatch

Ready
Queue

SLDL Simulation Kernel

Intr.
Handler

Ap
pl

ic
at

io
n

M
od

el

HAL

HW

T1

CH

Intr.
Handler

Intr.
Task

Intr.
Task

OS API

I/O
Drv

O
S

M
od

el
Pr

oc
es

so
r

M
od

el

Periph.

T3T2

I/O IF
Intr. IF

TLM
Communication

Channel

Fig. 19.5 Host-compiled simulation model

606 D. Mueller-Gritschneder and A. Gerstlauer

into tasks running on top of an abstract, canonical OS Application Programming
Interface (API). Tasks are grouped and encapsulated according to a given parti-
tioning to model the multi-threaded application mix running on each processor
of an overall MPSoC. Within each processor, an OS model then provides an
implementation of the OS API to manage tasks and replicate a specific single-
or multi-core scheduling strategy. The OS model itself sits on top of models
of the firmware and drivers forming a Hardware Abstraction Layer (HAL). An
underlying Hardware (HW) layer in turn provides interfaces to external TLMs
of the communication infrastructure (Sect. 19.4). Finally, the complete processor
model is integrated and cosimulated with other system components on top of an
SLDL. The SLDL simulation kernel thereby provides the basic concurrency and
synchronization services for OS, processor, and system modeling.

19.3.1 OS Modeling

An OS model generally emulates scheduling and interleaving of multiple tasks on
one or more cores [11, 12, 16, 23, 28, 31, 46]. It maintains and manages tasks in
a set of internal queues similar to real operating systems. In contrast to porting
and paravirtualizing a real OS to run on top of the modeled HAL, a lightweight
OS model can provide an accurate emulation of real OS behavior with little to
no overhead [35]. Tasks are modeled as parallel simulation threads on top of the
underlying SLDL kernel. The OS model then provides a thin wrapper around
basic SLDL event handling and time management primitives, where SLDL calls
for advancing simulation time, event notification, and wakeup in the application
model are replaced with calls to corresponding OS API methods. This allows the
OS model to suspend, dispatch, and release tasks as necessary on every possible
scheduling event, i.e., whenever there is a potential change in task states. An OS
model will typically also provide a library of higher-level channels built around
basic OS and SLDL primitives to emulate standard application-level Inter-Process
Communication (IPC) mechanisms.

Figure 19.6 shows an example trace of two tasks T0 and T1 running on top
of an OS model emulating a time slice-based round-robin scheduling policy on a
single core [30]. Source-level execution times of tasks are modeled as calls to wait-
for-time methods in the OS API. On each such call, the OS model will advance
the simulated time in the underlying SLDL kernel but will also check whether the
time slice is expired and switch tasks if this is the case. In order to simulate such
a context switch, the OS model suspends and releases tasks on events associated
with each task thread at the SLDL level. Overall, the OS model ensures that at any
simulated time, only one task is active in the simulation. Note that this is different
from scheduling performed in the SLDL kernel itself. Depending on available host
resources, the SLDL kernel may serialize simulation threads in physical time. By
contrast, the OS model serializes tasks in the simulated world, i.e., in logical time.

Within an isolated set of tasks on a core, this approach allows OS models
to accurately replicate software timing behavior for arbitrary scheduling policies.

19 Host-Compiled Simulation 607

5 ns

10 ns

os.wait(5 ns)

os.wait(5 ns)

os.wait(5 ns)

os.wait(5 ns)

...

...

...

..

0 ns
Advance

time

Simulation
Time

Simulation
kernel trace

OS
Model

15 ns

T0T1

Fig. 19.6 Example of OS model trace

Preemption Error

Time

τhigh

τ low

rh,1 h,1 h,2 h,2f r tn f

Response Time Error

Fig. 19.7 Inherent preemption inaccuracies in discrete OS models

However, the discrete nature of such models introduces inherent inaccuracies in
the presence of asynchronous scheduling events, such as task releases triggered
by external interrupts or by events originating on other cores. Since the OS model
advances (simulated) time only in discrete steps, it will not be able to react to such
events immediately. Figure 19.7 shows an example of a low-priority task �low being
preempted by a high-priority task �high triggered externally. In reality, the high-
priority task is released at time rh;2. In the simulation, however, the OS model is
not able to perform the corresponding task switch until the next simulation step is
reached at time tn. This results in a corresponding preemption and response time
error for both tasks (with �low potentially finishing too early).

As shown in the example of Fig. 19.7, the preemption error is generally upper
bounded by the maximum timing granularity. By contrast, it can be shown that
response time errors can potentially become much larger than the time steps
themselves [33]. This is, for example, the case if �low in Fig. 19.7 finishes too early
but should have been preempted and delayed by a very long running �high. This
can be a serious problem for evaluation of real-time system guarantees. Adjusting

608 D. Mueller-Gritschneder and A. Gerstlauer

the timing granularity does not generally help to improve the maximum simulation
error. Nevertheless, decreasing the granularity will reduce the likelihood of such
large errors occurring, i.e., will improve average simulation accuracy.

At the same time, the timing granularity also influences simulation speed. A
fine granularity allows the model to react quickly but increases the number of time
steps, context switches and hence overhead in the simulator. Several approaches
have been proposed to overcome this general trade-off and provide a fast coarse-
grain simulation while maintaining high accuracy. Existing approaches are either
optimistic [37] or conservative [32]. In optimistic solutions, a lower-priority task
is speculatively simulated at maximum granularity assuming no preemption will
occur. If a preemption occurs while the task is running, the higher-priority task
is released concurrently at its correct time. In parallel, all disturbing influences
are recorded and later used to correct the finish time of the low-priority task(s).
Such an approach has also been used to model preemptive behavior in other
contexts, such as in TLMs of busses with priority-based arbitration [36] (see also
Sect. 19.4.2). Note that unless a full rollback is possible in the simulator, optimistic
approaches cannot guarantee an accurate order of all task events and interactions,
such as shared variable accesses. By contrast, in conservative approaches, at any
scheduling event, the closest possible preemption point is predicted to select a
maximum granularity not larger than that. If no prediction is possible, the model
falls back onto a fine default granularity or a kernel mechanism that allows
for coarse time advances with asynchronous interruptions by known external
events. Conservative approaches, by their nature, always maintain the correct
task order. In both optimistic and conservative approaches, the OS model will
automatically, dynamically, and optimally accumulate or divide application-defined
task delays to match the desired granularity. This allows the model to internally
define a granularity that is independent from the granularity of the source-level
timing annotations. Furthermore, both types of approaches are able to completely
avoid preemption errors and associated issues with providing worst-case guaran-
tees.

19.3.2 Processor Modeling

Host-compiled processor models extend OS models with accurate representations
of drivers, interrupt handling chains, and integrated hardware components, such
as caches and TLM bus interfaces [2, 10, 15, 38]. Specifically, accurate models of
interrupt handling effects can contribute significantly to overall timing behavior and
hence accuracy [35].

The software side of interrupt handling chains is typically modeled as special,
high-priority interrupt handler tasks within the OS model [46]. On the hardware
side, models of external generic interrupt controllers (GICs) interact with interrupt
logic in the processor model’s hardware layer. The OS model is notified to suspend
the currently running task and switch to a handler whenever an interrupt for a
specific core is detected. At that point, the handler becomes a regular OS task,

19 Host-Compiled Simulation 609

which can in turn notify and release other interrupt or user tasks. By back-annotating
interrupt handlers and tasks with appropriate timing estimates, an accurate model of
interrupt handling delays and their performance impact can be constructed.

An example trace for a complete host-compiled simulation of two task sets with
three tasks each running on a dual-core platform is shown in Fig. 19.8 [30]. Task
sets are mapped to run on separate cores, and the highest priority tasks are modeled
as periodic. All interrupts are assigned to Core0. The trace shows a conservative
OS model using dynamic prediction of preemptions. The model is in a fine-grain
fallback mode whenever there is a higher-priority task or handler waiting for an
unpredictable external event. In all other cases, the model switches to a predictive
mode using accumulation of delays. Note that high-priority interrupt handlers and
tasks are only considered for determining the mode if any schedulable tasks is
waiting for the interrupt. This allows the model to remain in predictive mode for the
majority of time. Handlers and tasks themselves can experience large errors during
those times. However, under the assumption that they are generally short and given
that no regular task can be waiting, accuracy losses will be small.

When applied to simulation of multi-threaded, software-only Posix task sets on a
single-, dual-, and quad-core ARM-Linux platform, results show that host-compiled
OS and processor models can achieve average simulation speeds of 3,500 MIPS with
less than 0.5% error in task response times [35]. When integrating processor models
into a SystemC-based virtual platform of a complete audio/video MPSoC, more
than 99% accuracy in frame delays is maintained. For some cases, up to 50% of the
simulated delays and hence accuracy is attributed to accurately modeling the Linux
interrupt handling overhead. Simulation speeds, however, drop to 1,400 MIPS. This
is due to the additional overhead for cosimulation of HW/SW interactions through
the communication infrastructure. Methods for improving performance of such
communication models will be discussed in Sect. 19.4.

19.3.3 Cache Modeling

Next to external communication and synchronization interfaces, a host-compiled
processor simulator will generally incorporate timing models for other dynamic
aspects of the hardware architecture. Specifically, timing effects of caches and
memory hierarchies are hard to capture accurately as part of a static source-level
back-annotation. Hit/miss rates and associated delay penalties depend heavily on
the execution history and the specific task interactions seen by the processor.
To accurately model such dynamic effects, a behavioral cache simulation can be
included [25, 27, 42, 44].

As described in Sect. 19.2, the source level can be annotated to re-create accurate
memory access traces during simulation. Such task-by-task traces can in turn drive
an abstract cache model that tracks history and hit/miss behavior for each access.
Resulting penalties can then be used to dynamically update source-level timing
annotations. Note that cache models only need to track the cache state in terms
of line occupancy. The data itself is natively handled within the simulation host.

610 D. Mueller-Gritschneder and A. Gerstlauer

G
IC

G
IC

In
tr

B
In

tr
H

1

IR
Q

1

IF

O
S

La
ye

r
H

AL
La

ye
r

H
W

A

H
W

La
ye

r

IR
Q

0

t 1 t 3 t 5 t 6t 0 t 2 t 4

T h
In

tr
A

T m
T l

T h
T m

T l
In

tr
H

0

IR
Q

0

IF

Co
re

0
Co

re
1

Fa
llb

ac
k

m
od

e

Pr
ed

ic
tiv

e
m

od
e

Bl
oc

ke
d

by
an

ev
en

t

IN
T A

IN
T BH

W
B

IR
Q

0

Fi
g

.
1

9
.8

H
os

t-
co

m
pi

le
d

si
m

ul
at

io
n

tr
ac

e

19 Host-Compiled Simulation 611

When combined with an OS model, such an approach allows for accurate
modeling of cache pollution and interference among different tasks. A particular
challenge emerges, however, when multiple cores can interfere through a shared
cache. A cache model can accurately track shared state, including coherency effects
across multiple cache levels, as long as individual core models issue cache accesses
in the correct global order. As mentioned above (Sect. 19.3.2), this is generally not
the case in a coarse-grain, temporally decoupled simulation. Cores may produce
outgoing events ahead of each other, and, as a result, multiple cores may commit
their accesses to the cache globally out-of-order. At the same time, from a speed
perspective, it is not feasible to decrease granularity to a point where each memory
access is synchronized to the correct global time.

Several solutions have been proposed to tackle this issue and provide a fast
yet accurate multi-core out-of-order cache (MOOC) simulation in the presence of
temporal decoupling [34, 40]. The general approach is to first collect individual
accesses from each core including accurate local time stamps. Later, once a
certain threshold is reached, accesses are reordered and committed to the cache
in their globally correct sequence. Figure 19.9 illustrates this concept [34]. In
this approach, both cores first send accesses to a core-specific list maintained in
the cache model. After each time advance, cores notify the cache to synchronize
and commit all accesses collected up to the current time. It is thereby guaranteed
that all other cores have advanced and produced events up to at least the same
time.

An added complication are task preemptions [30]. Since cores and tasks can
run ahead of time, a task may generate accesses that would otherwise not have

Core2
Local Time

Core1
Local Time

Simulation
Time

1

10

Sync(20)

wait(12)

wait(20) 12

20

Core1
Accesses

Core2
Accesses

Cache
Channel

(Addr2, ts2)
(Addr1, ts1)

(Addr3, ts3)

Sync(12)

(Addr4, ts4)

(Addr5, ts5)

2

12

20

Reordering
& Commit

Reordering
& Commit

0

Fig. 19.9 Multi-core out-of-order cache simulation trace

612 D. Mueller-Gritschneder and A. Gerstlauer

been issued until after a possible preemption is completed. This requires access
reordering to be tightly integrated with the OS model. By maintaining task-specific
access lists in the OS model instead of the cache, the OS can adjust remaining
time stamps by the duration of the preemption whenever such a preemption occurs.
Overall, such an approach can maintain 100% accuracy of cache accesses at the
speed of a fully decoupled simulation.

In other approaches, the cache model is moved outside of the processor to
become part of the TLM backplane itself [40]. In this case, the cache is accessed via
regular bus transactions, and all of the reordering is relegated to a so-called quantum
giver within a temporally decoupled TLM simulation (see Sect. 19.4.3). Note that
this still requires OS model support to generate accurate transaction time stamps
in the presence of preemptions. Similar reordering techniques can then also be
applied to other shared resources, such as busses, as will be shown in the following
sections.

19.4 TLM Communication for Host-Compiled Simulation

Embedded and integrated systems are comprised of many communicating compo-
nents as we move toward embedded multi-core processors. Fast simulation requires
advanced communication models at transaction level. Usually, scheduling events of
the simulation kernel are closely coupled to the communication events. For high-
speed virtual prototyping, usually the blocking transaction style, called loosely-
timed TLM in SystemC [1], is applied. Blocking transactions can be synchronized
to the global simulation time at each accessed module. As many communication
resources such as busses or target (slave) modules are shared between initiator
(masters) modules, accurate models additionally schedule an arbitration event at
each arbitration cycle.

Novel works have shown that these requirements can be usually relaxed to
improve simulation speed. These works either raise the abstraction of the communi-
cation, e.g., a single simulated block transaction represents a set of bus transactions
performed by the HW/SW system, or apply TD. TD implies that initiators perform
accesses, which are located in the future with respect to the current global simulation
time. This leads to several challenges, as discussed in Sect. 19.1.3. An overview of
selected communication models is given in the following.

19.4.1 TD with No Conflict Handling

The TLM-2.0 standard offers the Quantum Keeper. The TLM-2.0 Quantum Keeper
provides a global upper bound to the local time offset. The Quantum Keeper is
easily applicable to realize temporal decoupling. It offers no standard way to handle
data dependencies or resource conflicts. Shared variables have to be protected
by additional synchronization methods. Figure 19.10a shows a message diagram
for an example. We assume blocking TLM communication style indicated by the

19 Host-Compiled Simulation 613

Shared Bus TargetInitiator I1 Global Simulation Time

Quantum = 100ns

Local time
b_transport(t,30ns)

Call b_transport(t,40ns)

Call

b_transport(t,50ns)

Returnb_transport(t,60ns)
120ns

Call

b_transport(t,10ns)

Call

b_transport(t,20ns)

b_transport(t,30ns)

Return

Return

b_transport(t,40ns)

140ns 170ns

130ns 160ns

200ns

wait(90ns)

130ns

140ns

150ns

210ns

220ns
wait(120ns)

Global Simulation Time

a

b

140ns

110ns

150ns

160ns

170ns

Initiator I2

160ns

I2

I1

Shared Bus

Shared Bus

Quantum boundaryQuantum boundary

210ns120ns

220ns100ns 110ns

Fig. 19.10 Temporal decoupling with Quantum Keeper

b_transport function. The b_transport function propagates as its argument of the
offset between the local simulation time and the global simulation time. Both
initiators are only executed once per quantum until their local time exceeds the next
quantum boundary. The communication is out-of-order. Transaction of initiator I1 to
the shared bus starts at 140 ns, yet it is executed before the transaction of I2 starting
at 130 ns. Additionally, the transactions concurently access the shared bus as shown
in Fig. 19.10b, which would lead to arbitration. Yet, I1 can finish its transaction
without conflict delay because the transaction of I2 was not yet known at the shared
bus. Simulation speed is highest, but communication timing is optimistic, and out-
of-order accesses may lead to incorrect simulation results. Thus, several methods
for using system knowledge for improving accuracy in TLM communication using
TD were proposed, which are presented in the following.

19.4.2 TD with Conflict Handling at Transaction Boundaries

In [29, 36], the additional delay due to resource conflicts are resolved at the
transaction boundaries. At the start of a transaction, the communication state is
inspected in [36]. If a higher-priority transaction is ongoing, the end time of the
considered transaction is computed accordingly. Yet, still an optimistic end time is
computed at the beginning of a transaction because future conflicting transactions
are not considered. When the end time of the transaction is reached, additional delay
due to other conflicting transaction is retroactively added. In the case of [36], another

614 D. Mueller-Gritschneder and A. Gerstlauer

Shared Bus TargetInitiator I1 Initiator I2

Call
b_transport(t,0ns)

Call Return

b_transport(t,30ns)

b_transport(t,20ns)

wait(40ns) b_transport(t,40ns)

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

wait(30ns)

100ns

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

wait(30ns)

Global Simulation Time

100ns

120ns

I1

I2

Shared BusShared Bus

130ns

160ns

a

b

Conflict: +30ns
wait(30ns)

Conflict: +10ns

Correct for ongoing accesses at transaction start
Correct for later high−priority accesses at transaction end

130ns
120ns 160ns 190ns

Shared Bus

Fig. 19.11 Handling conflicts at transaction boundaries

wait is issued to account for the additional delay, but intelligent event re-notification
could also be applied. The method needs minimally one context switch (single call
to wait()) per transaction. An example is shown in Fig. 19.11 with I1 having higher
priority on the shared bus. The transaction of I2 is delayed during execution due to
the conflict with the first transaction of I1. As I1 issues another transaction, the delay
for I2 is adapted with another call to wait to consider the second conflict. In [29], a
similar approach is presented that handles conflicts at the transaction boundaries. It
additionally combines several atomic transactions into block transactions. If these
block transactions get preempted, the transactions are split to assure that the order
of data accesses is preserved.

19.4.3 TD with Conflict Handling at Quantum Boundaries

With the Quantum Giver [40], each initiator can issue multiple transactions until
its individual local quantum is exceeded during the so-called simulation phase. All
transactions in one quantum are executed instantaneously but use time stamping
to record their start times. After the quantum is reached, the initiator informs
a central timing manager, the so-called Quantum Giver, and waits for an end
event. During the scheduling phase, the Quantum Giver retroactively orders all
transactions according to their time stamps. It computes the delays due resource

19 Host-Compiled Simulation 615

Shared Bus TargetInitiator I1 Initiator I2

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

Global Simulation Timea

b

100ns

Call
ReturnCall

Return

Call
b_transport(t,0ns)

Call Return

b_transport(t,30ns)

b_transport(t,20ns)

wait(40ns) b_transport(t,40ns)

120ns

b_transport(t,30ns)
b_transport(t,40ns)

b_transport(t,50ns)
b_transport(t,60ns)

Return

wait(60ns)

100ns
I1

I2

Shared BusShared Bus

130ns
120ns

160ns

Global Simulation Time

Scheduling Phase

Shared Bus

190ns100ns
I1

I2

Shared BusShared Bus

130ns
120ns

Shared Bus

160ns

Global Simulation Time

Simulation Phase

Fig. 19.12 Handling conflicts with Quantum Giver

conflicts and resolves all dependencies. According to the conflicts, the end event
of each initiator is notified at the correct time. Finally, the quantum of each
initiator is adjusted for the next simulation phase. The concept is illustrated in
Fig. 19.12. During the simulation phase, transaction on the shared bus still overlap.
The resulting delays are computed in the scheduling phase by traversing the list of
transaction ordered by their starting time. The method also considers that conflicts
on different shared resources might have impact on each other. This method targets
fast simulation with temporal decoupling. Only a single context switch is required
in each quantum, which may include several transactions. Yet, the transactions
are executed immediately; thus, out-of-order accesses to shared variables must
be avoided with additional synchronization guards. In [13], Advanced Temporal
Decoupling (ATD) is presented. It applies TD but is a conservative approach that
preserves access order. The initiators may advance their local time until they meet
an inbound data dependency, e.g., a read on a shared variable. All write transactions
performed on shared data are buffered by an additional communication layer. After
all initiators have completed execution, the transactions are ordered, and the write
transactions are completed according to their start time together with pending read
transactions. This preserves the correct access order. So-called Temporal Decoupled
Semaphores handle resource conflicts and compute arbitration delays. The ATD
communication model is implemented in a transparent TLM (TTLM) library, which
hides the implementation details from the model developer.

616 D. Mueller-Gritschneder and A. Gerstlauer

19.4.4 Abstract TLMC with Conflict Handling at SW Boundaries

TLM+ is a SW-centric communication model for processors, which can only be
applied for host-compiled SW simulation [7]. It not only applies TD but raises
the abstraction of communication. Usually a driver function does not transfer a
single data item but a range of control values together with a possible block of
data. Execution of a driver function involves a complete set of bus transactions
from the processor. This set of bus transactions is abstracted into a single TLM+
block transaction. The HW/SW interface is adapted in the host-compiled simulation.
The software could, thus, not simulate on an ISS. Conflicts at shared resources
are handled by a central timing manager, the so-called resource model. In order
to give good estimates on the delay due to conflicts, the resource model requires
to save a communication profile of the original driver function [19]. This profile
allows to extract a demand for communication resources. Usually, a driver function
would not block a shared bus completely. Accesses of different cores accessing
other modules would interleave, as driver functions are executed concurrently. Yet
both cores may suffer from additional delays due to arbitration conflicts. Analytic
demand-availability estimators inside the resource model can be used to estimate
these delays [20].

The scheduling is conducted by the resource model at the transaction boundaries.
These boundaries then correspond to the entry and exit to the respective software
driver function. The concept is illustrated in Fig. 19.13. Initiator I1 first executes a
block transaction trigged by the execution of a driver function. At a later point, I2
starts its block transaction. I1 has higher priority; therefore, I2 is scheduled to take
longer as it has not the full resource availability on the shared bus. When the block
transaction of I1 finishes, I2 is not subject to further high-priority traffic blocking
its bus accesses. Its end time is rescheduled to an earlier end time. This is done by
event re-notification, which leads to a single call to wait() for each block transaction.

Shared Bus TargetInitiator I1a

b

Global Simulation Time

110ns

100ns

I1

110ns

Shared Bus

Shared Bus

100ns

ev2

ev1

Rescheduling of event ev2

wait(ev2)

data block

data block

Initiator I2

I2

wait(ev1)
reschedule(ev2)

reschedule(ev2)

ev2

ev2

Global Simulation Time

Fig. 19.13 Handling conflicts in TLM+

19 Host-Compiled Simulation 617

TLM+ targets very high abstraction and faster simulation compared to the other
TLM communication methods. Yet, it does not execute the original SW because the
driver functions are replaced by abstract TLM+ counterparts.

19.5 Summary and Conclusions

With time to market shrinking day by day, developing fast and accurate models
is no more a luxury or good-to-have-methodology. It is essential for companies to
invest in making software models for meeting their time to market. However, the
fastest model is not a good model if it does not accurately match or predict the
final design reality. Therefore, new methods are required that enable efficient but
accurate simulation of HW/SW systems. Next-generation virtual prototypes based
on host-compiled software simulation can provide such ultra-fast yet highly accurate
modeling solutions.

Acknowledgments The authors acknowledge Oliver Bringmann, Wolfgang Müller, and Zhuoran
Zhao for their contributions in Sects. 19.2 and 19.3.

References

1. 1666–2011 – IEEE standard for standard SystemC language reference manual (2012)
2. Bouchhima A, Bacivarov I, Youssef W, Bonaciu M, Jerraya A (2005) Using abstract CPU

subsystem simulation model for high level HW/SW architecture exploration. In: Proceedings
of the Asia and South Pacific design automation conference (ASPDAC)

3. Bouchhima A, Gerin P, Petrot F (2009) Automatic instrumentation of embedded software for
high level hardware/software co-simulation. In: Proceedings of the Asia and South Pacific
design automation conference (ASPDAC)

4. Cai L, Gerstlauer A, Gajski D (2004) Retargetable profiling for rapid, early system-level design
space exploration. In: Proceedings of the 41st annual conference on design automation. ACM,
San Diego, pp 281–286. doi:10.1145/996566.996651. http://portal.acm.org/citation.cfm?id=
996566.996651

5. Chakravarty S, Zhao Z, Gerstlauer A (2013) Automated, retargetable back-annotation for host
compiled performance and power modeling. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS)

6. Chiou D, Sunwoo D, Kim J, Patil NA, Reinhart W, Johnson DE, Keefe J, Angepat H
(2007) FPGA-accelerated simulation technologies (FAST): fast, full-system, cycle-accurate
simulators. In: Proceedings of the international symposium on microarchitecture (MICRO)

7. Ecker W, Esen V, Schwencker R, Steininger T, Velten M (2010) TLM+ modeling of embedded
hw/sw systems. In: Design, automation test in Europe conference exhibition (DATE), pp 75–80

8. Faravelon A, Fournel N, Petrot F (2015) Fast and accurate branch predictor simulation. In:
Proceedings of the design automation and test in Europe conference. ACM, pp 317–320

9. Gandhi D, Gerstlauer A, John L (2014) FastSpot: host-compiled thermal estimation for early
design space exploration. In: Proceedings of the international symposium on quality electronic
design (ISQED)

10. Gerin P, Shen H, Chureau A, Bouchhima A, Jerraya A (2007) Flexible and executable
hardware/software interface modeling for multiprocessor SoC design using SystemC. In:
Proceedings of the Asia and South Pacific design automation conference (ASPDAC)

http://dx.doi.org/10.1145/996566.996651
http://portal.acm.org/citation.cfm?id=996566.996651
http://portal.acm.org/citation.cfm?id=996566.996651

618 D. Mueller-Gritschneder and A. Gerstlauer

11. Gerstlauer A, Yu H, Gajski D (2003) RTOS modeling for system level design. In: Proceedings
of the design, automation and test in Europe (DATE) conference

12. He Z, Mok A, Peng C (2005) Timed RTOS modeling for embedded system design. In:
Proceedings of the real time and embedded technology and applications symposium (RTAS)

13. Hufnagel S (2014) Towards the efficient creation of accurate and high-performance virtual
prototypes. Ph.D. thesis. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3892

14. Hwang Y, Abdi S, Gajski D (2008) Cycle-approximate retargetable performance estimation
at the transaction level. In: Proceedings of the design, automation and test in Europe (DATE)
conference

15. Kempf T, Dorper M, Leupers R, Ascheid G, Meyr H, Kogel T, Vanthournout B (2005) A
modular simulation framework for spatial and temporal task mapping onto multi-processor
SoC platforms. In: Proceedings of the design, automation and test in Europe (DATE)
conference

16. Le Moigne R, Pasquier O, Calvez JP (2004) A generic RTOS model for real-time systems
simulation with SystemC. In: Proceedings of the design, automation and test in Europe (DATE)
conference

17. Lee CM, Chen CK, Tsay RS (2013) A basic-block power annotation approach for fast and
accurate embedded software power estimation. In: Proceedings of the international conference
on very large scale integration (VLSI-SoC)

18. Lin KL, Lo CK, Tsay RS (2010) Source-level timing annotation for fast and accurate
TLM computation model generation. In: Proceedings of the Asia and South Pacific design
automation conference (ASPDAC)

19. Lu K, Muller-Gritschneder D, Schlichtmann U (2012) Accurately timed transaction level
models for virtual prototyping at high abstraction level. In: Design, automation test in Europe
conference exhibition (DATE), pp 135–140

20. Lu K, Muller-Gritschneder D, Schlichtmann U (2013) Analytical timing estimation for
temporally decoupled tlms considering resource conflicts. In: Design, automation test in
Europe conference exhibition (DATE), pp 1161–1166

21. Lu K, Muller-Gritschneder D, Schlichtmann U (2013) Memory access reconstruction based
on memory allocation mechanism for source-level simulation of embedded software. In:
Proceedings of the Asia and South Pacific design automation conference (ASP-DAC)

22. Meyerowitz T, Sangiovanni-Vincentelli A, Sauermann M, Langen D (2008) Source-level
timing annotation and simulation for a heterogeneous multiprocessor. In: Proceedings of the
design, automation and test in Europe (DATE) conference

23. Miramond B, Huck E, Verdier F, Benkhelifa MEA, Granado B, Aichouch M, Prevotet JC,
Chillet D, Pillement S, Lefebvre T, Oliva Y (2009) OveRSoC: a framework for the exploration
of RTOS for RSoC platforms. Int J Reconfig Comput 2009(450607):1–18

24. Mueller-Gritschneder D, Lu K, Schlichtmann U (2011) Control-flow-driven source level timing
annotation for embedded software models on transaction level. In: EUROMICRO conference
on digital system design (DSD)

25. Pedram A, Craven D, Gerstlauer A (2009) Modeling cache effects at the transaction level. In:
Proceedings of the international embedded systems symposium (IESS)

26. Plyaskin R, Wild T, Herkersdorf A (2012) System-level software performance simulation
considering out-of-order processor execution. In: 2012 international symposium on system on
chip (SoC)

27. Posadas H, Díaz L, Villar E (2011) Fast data-cache modeling for native co-simulation. In:
Proceeding of the Asia and South Pacific design automation conference (ASPDAC)

28. Posadas H, Damez JA, Villar E, Blasco F, Escuder F (2005) RTOS modeling in SystemC for
real-time embedded SW simulation: a POSIX model. Des Autom Embed Syst 10(4):209–227

29. Radetzki M, Khaligh R (2008) Accuracy-adaptive simulation of transaction level models. In:
Design, automation and test in Europe, DATE’08, pp 788–791

30. Razaghi P (2014) Dynamic time management for improved accuracy and speed in host-
compiled multi-core platform models. Ph.D. thesis, The University of Texas at Austin

https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3892

19 Host-Compiled Simulation 619

31. Razaghi P, Gerstlauer A (2011) Host-compiled multicore RTOS simulator for embedded real-
time software development. In: Proceedings of the design, automation test in Europe (DATE)
conference

32. Razaghi P, Gerstlauer A (2012) Automatic timing granularity adjustment for host-compiled
software simulation. In: Proceedings of the Asia and South Pacific design automation
conference (ASPDAC)

33. Razaghi P, Gerstlauer A (2012) Predictive OS modeling for host-compiled simulation of
periodic real-time task sets. IEEE Embed Syst Lett (ESL) 4(1):5–8

34. Razaghi P, Gerstlauer A (2013) Multi-core cache hierarchy modeling for host-compiled
performance simulation. In: Proceedings of the electronic system level synthesis conference
(ESLsyn)

35. Razaghi P, Gerstlauer A (2014) Host-compiled multi-core system simulation for early real-
time performance evaluation. ACM Trans Embed Comput Syst (TECS) 13(5s). http://dl.acm.
org/citation.cfm?id=2660459.2678020

36. Schirner G, Dömer R (2007) Result oriented modeling a novel technique for fast and accurate
TLM. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD) 26(9):1688–1699

37. Schirner G, Dömer R (2008) Introducing preemptive scheduling in abstract RTOS models
using result oriented modeling. In: Proceedings of the design, automation and test in Europe
(DATE) conference

38. Schirner G, Gerstlauer A, Dömer R (2010) Fast and accurate processor models for efficient
MPSoC design. ACM Trans Des Autom Electron Syst (TODAES) 15(2):10:1–10:26

39. Stattelmann S, Bringmann O, Rosenstiel W (2011) Dominator homomorphism based code
matching for source-level simulation of embedded software. In: Proceedings of the seventh
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis

40. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate resource conflict
simulation for performance analysis of multi-core systems. In: Design, automation test in
Europe conference exhibition (DATE), 2011

41. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation
of software timing considering complex code optimizations. In: 2011 48th ACM/EDAC/IEEE
design automation conference (DAC)

42. Stattelmann S, Gebhard G, Cullmann C, Bringmann O, Rosenstiel W (2012) Hybrid source-
level simulation of data caches using abstract cache models. In: Proceedings of the design,
automation test in Europe (DATE) conference

43. Wang Z, Henkel J (2012) Accurate source-level simulation of embedded software with respect
to compiler optimizations. In: Proceedings of the design, automation test in Europe (DATE)
conference

44. Wang Z, Henkel J (2013) Fast and accurate cache modeling in source-level simulation of
embedded software. In: Design, automation test in Europe conference exhibition (DATE),
pp 587–592. doi:10.7873/DATE.2013.129

45. Wang Z, Herkersdorf A (2009) An efficient approach for system-level timing simulation of
compiler-optimized embedded software. In: Proceedings of the design automation conference
(DAC)

46. Zabel H, Müller W, Gerstlauer A (2009) Accurate RTOS modeling and analysis with SystemC.
In: Ecker W, Müller W, Dömer R (eds) Hardware-dependent software: principles and practice.
Springer, Berlin

47. Zhao Z, Gerstlauer A, John LK (2017) Source-level performance, energy, reliability, power
and thermal (PERPT) simulation. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
36(2):299–312

http://dl.acm.org/citation.cfm?id=2660459.2678020
http://dl.acm.org/citation.cfm?id=2660459.2678020
http://dx.doi.org/10.7873/DATE.2013.129

	19 Host-Compiled Simulation
	Contents
	19.1 Introduction
	19.1.1 Traditional Virtual Prototype Simulation
	19.1.2 Next-Generation Virtual Prototypes
	19.1.3 Temporal Decoupling

	19.2 Source-Level Software Simulation
	19.2.1 Binary to Source Mapping
	19.2.2 Memory Trace Reconstruction
	19.2.3 Block-Level Timing Characterization
	19.2.4 Back-Annotation

	19.3 Host-Compiled OS and Processor Modeling
	19.3.1 OS Modeling
	19.3.2 Processor Modeling
	19.3.3 Cache Modeling

	19.4 TLM Communication for Host-Compiled Simulation
	19.4.1 TD with No Conflict Handling
	19.4.2 TD with Conflict Handling at Transaction Boundaries
	19.4.3 TD with Conflict Handling at Quantum Boundaries
	19.4.4 Abstract TLM+ with Conflict Handling at SW Boundaries

	19.5 Summary and Conclusions
	References

