
18Multiprocessor System-on-Chip
Prototyping Using Dynamic Binary
Translation

Frédéric Pétrot, Luc Michel, and Clément Deschamps

Abstract

Dynamic binary translation is a processor emulation technology that allows
to execute in a very efficient manner a binary program for an instruction-set
architecture A on a processor having instruction-set architecture B . This chapter
starts by giving a rapid overview of the dynamic binary translation process and
its peculiarities. Then, it focuses on the support for SIMD instruction and the
translation for VLIW architectures, which bring upfront new challenges for this
technology. Next, it shows how the translation process can be enhanced by the
insertion of instructions to monitor nonfunctional metrics, with the aim of giving,
for instance, timing or power consumption estimations. Finally, it details how it
can be integrated within virtual prototyping platforms, looking in particular at
the synchronization issues.

Acronyms

DBT Dynamic Binary Translation
ILP Instruction-Level Parallelism
ISA Instruction-Set Architecture
ISS Instruction-Set Simulator
MMU Memory Management Unit
MPSoC Multi-Processor System-on-Chip
OS Operating System
RTL Register Transfer Level
SIMD Single Instruction, Multiple Data
SMP Symmetric Multi-Processing
SSA Static Single Assignment

F. Pétrot (�)
Université de Grenoble Alpes, Grenoble, France
e-mail: frederic.petrot@univ-grenoble-alpes.fr

L. Michel • C. Deschamps
Antfield SAS, Grenoble, France
e-mail: luc.michel@antfield.fr; clement.deschamps@antfield.fr

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_20

565

mailto:frederic.petrot@univ-grenoble-alpes.fr
mailto:luc.michel@antfield.fr
mailto:clement.deschamps@antfield.fr

566 F. Pétrot et al.

TB Translation Block
TLM Transaction-Level Model
VLIW Very Long Instruction Word
VP Virtual Prototype
WAR Write-After-Read

Contents

18.1 Introduction . 566
18.2 Dynamic Binary Translation Basics . 568
18.3 Support for Non-scalar Architectures . 573

18.3.1 Support for SIMD Instructions . 573
18.3.2 Support for VLIW Architectures . 576

18.4 Annotations in Dynamic Binary Translation . 579
18.4.1 Cache Modeling Strategies . 581
18.4.2 Modeling Branch Predictors . 583

18.5 Integration with TLM Simulations . 584
18.5.1 Precision Levels . 586
18.5.2 TLM Synchronization Points . 587

18.6 Concluding Remarks . 589
References . 590

18.1 Introduction

Virtual Prototype (VP) serve different purposes, and depending on these purposes,
the acceptable “accuracy vs speed of simulation” trade-off is very different. More
than two decades ago, Transaction-Level Model (TLM) was introduced as a way
to abstract time and data and clearly decouple computations from communications.
Compared to Register Transfer Level (RTL) which focuses on implementation and
targets on accuracy, TLM aims at giving a high-level view of the system so that it is
possible to quickly take design decisions. What has been intuited at that time is now
recognized as an actual solution for early software development and design space
exploration of hardware/software systems [5]. The system-on-chip industry has seen
the value of having models sitting in between RTL and fully analytical formulas and
has adopted this kind of modeling strategy quite rapidly [15].

In the context of an ever-increasing number of programmable cores in integrated
devices, the simulation of the software part of a system becomes a critical issue.
Even though TLM is well suited for hardware design, it says nothing about the way
the software that runs on the hardware part of the system should be executed. Several
strategies can be thought of, ranging from interpretive instruction-set simulation of
the cross-compiled target binary code to the native execution of host compiled code
using the Operating System (OS) calls as simulation callbacks [24]. Figure 18.1
summarizes the main strategies used for software execution on top of transaction-
level hardware.

The three first software execution approaches can be classified as interpretive
ones.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 567

Fig. 18.1 Major software execution strategies in TLM environments

Instruction accurate interpretation (Fig. 18.1a) is the textbook method for exe-
cuting cross-compiled code. Each instruction is read from memory, decoded, and
executed. Decoding can be done using a big switch-like control structure or a
functions pointer table [4].

Predecode (Fig. 18.1b) is based on the same principle, but the instructions are
fetched and decoded, and placed in a cache in which they are identified by their
program counter (pc) [22]. Then, if the pc matches a cache entry, the instruction
is directly executed through a function call. Using a decode cache brings up new
issues as it must be kept up to date when some code region is modified. Some
applications heavily rely on dynamic compilation, so it is necessary to handle it
with efficiency. Incidentally, this cache can be the actual simulation model of the
processor instruction cache, as the high hit rate it usually has ensures that few
fetch/decode will be redone without necessity. Furthermore, provided the simulated
instruction caches ensure coherency, multiprocessor systems work out of the box
with this approach.

Dynamic Binary Translation (DBT) pushes the limits further by fetching and
decoding an entire sequence of code ended by a branch at once, translating it into
host code with identical behavior, and caching the result [11]. The whole sequence
is then executed atomically, avoiding to check per instruction the presence of the pc
in the cache. As a translation cache is used, the same issues as predecode arise, but
then using the model of an instruction cache is not possible as there is no such thing
as a single target instruction in DBT.

The last approach, introduced here only for completeness, takes a fully different
angle, as the high-level code to be executed is directly compiled for the host. Many

568 F. Pétrot et al.

different approaches have been proposed, as detailed in �Chap. 19, “Host-Com-
piled Simulation” of this book. Anyhow, these native or host-compiled approaches
need to access the hardware and, at some point, rely on an operating system or
hardware abstraction layer API to implicitly let the simulator execute the hardware
models. A clear limitation of these strategies is that it is hardly possible to handle
self-modifying code or dynamic code generation; however, not all applications
need it.

A current trend in system-level simulation is to use DBT to execute target code
and TLM to model hardware [1, 16, 23]. Indeed, a desirable goal is to define a
framework which provides a way to virtually prototype full hardware/software
multiprocessor systems with an entire software stack, including the operating
systems and the device drivers. As this requires to execute the cross-compiled binary
code of all software layers at high speed, dynamic binary translation is the more
suitable software execution technique.

On the one hand, modern DBT engines take their root in virtualization, an effort
that took place in computer science to make possible the execution of several OS
in isolation concurrently on the same processor [28], based on the virtual machine
technology developed in the early 1960s [7].

On the other hand, due to the constraints of consumer system integration (form
factor, packaging, power, heat, etc.), each application or class of application still
calls for a specific circuit in order to fit into the performance/power budget. The
Multi-Processor System-on-Chip (MPSoC) design approaches aim firstly at clearly
separating computation from communication, using interfaces that are standardized,
allowing to quickly exchange one IP, including processors, by another. Secondly,
they aim at producing figures of merits, such as code sequence run times and
interrupt latencies, used bandwidth on an interconnect, even energy or power
information, depending of the architectural choices. Due to the increase in number
of programmable cores and software in the near to come SoCs, the availability of
virtual platforms providing a structural view of the system and fast application and
OS code execution with a reliable accuracy is an important issue.

If modularity is of primary importance in MPSoC design, it is not the case for
virtualization which targets a single one-shot hardware platform with an as high as
possible execution speed. Although the goals of the hardware/software cosimulation
and virtualization may seem very different, at the end of the day the way to achieve
these different goals are similar.

The rest of the chapter is devoted to clarifying the necessary points to build
an operational optimized MPSoC simulator which makes use of DBT as software
execution engine.

18.2 Dynamic Binary Translation Basics

Full virtualization allows the execution of an operating system, called guest, on
top of another operation system, called host, without any modification. One of
the main issues in virtualization is the execution of the privileged guest operating

http://dx.doi.org/10.1007/978-94-017-7267-9_18

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 569

Fig. 18.2 Trap and emulate
based virtualization

Other
Applications

OS

CPUMemNICDisk

Hardware

OS

Application

Virtual Machine

VMM

traps

system instructions since the simulator in running on the host operating system
as an unprivileged application. Another delicate issue is the interception of I/O
operations of guest operating system. The classical solution for full virtualization,
called trap-and-emulate, is presented Fig. 18.2. It assumes the direct execution of the
simulated machine binary code on the host processor; therefore, the host processor
and the target processor (the one on which the guest operating system is run) must
be identical. This solution is based on a virtual machine monitor (VMM) which
takes control whenever a trap caused by a privileged operation executed in the
unprivileged context of the virtual machine occurs. However, not all processors
are fully virtualizable [25], typically because some privileged instructions executed
in user mode do not trap. To work around this problem, the binary translation
approach using DBT, as depicted Fig. 18.3, can be used. This approach has no
constraints concerning the host and target processor types, as all instructions of the
guest operating system binary code, including the privileged ones, are replaced by
unprivileged instructions and/or system calls.

Apart from virtualization, historically DBT has also been used for transparently
running legacy software compiled for a processor on either a new version of this
processor or an entirely different processor. Apple used this technology when
transitioning from the PowerPC architecture to the x86 one (Rosetta by Transitive
Technologies, now acquired by IBM). When Intel introduced the IA64, DBT from
x86 code was also applied [2]. While the former case translates from scalar to scalar
architectures, the latter one does a scalar to Very Long Instruction Word (VLIW)
architecture translation, which requires a more complex process.

Figure 18.4 presents the general principle of binary-translation-based simulators.
The simulator starts by verifying if the current pc of the simulated processor has
already been encountered. If not, the binary translation stage begins.

570 F. Pétrot et al.

Fig. 18.3 Dynamic binary
translation based
virtualization

Other
Applications

OS

CPUMemNICDisk

Hardware

OS

Application

Virtual Machine

VMM

DBT

Fig. 18.4 Binary translation principle

The instruction corresponding to the program counter of the simulated processor
is fetched from the target binary code. The fetched instruction is then translated
into several host instructions. If the current instruction is not a branch instruction,
the next target instruction is fetched and decoded. Otherwise, the binary translation
stage ends. The sequence of instructions treated by the binary translation stage
at once forms a Translation Block (TB). The host instructions generated for a
translation block are grouped together and stored into the translation cache and
are ready to be executed to simulate the corresponding target instructions behavior.
Once executed, the simulator has stepped forward by one TB, and the simulated
pc has evolved accordingly. The simulator then verifies the existence of the
translation corresponding to this new program counter value. If it already exists
in the translation cache, it is directly executed. The idea is that the price paid for
host code generation will be amortized as the translated code sequences are usually
executed many times.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 571

The notion of translation block is similar in spirit to the notion of basic block
used by compilers, but they are not identical. Even though translation blocks and
basic blocks end after a branch instruction, there are other conditions that end
only the translation blocks or only the basic blocks. As an example, a translation
block is also ended at the page boundary of the target processor, because the
DBT engine must ensure that the page is mapped in memory. Other conditions
for ending a translation block include instructions generating exceptions (e.g.,
undefined instruction), change of the execution mode of the target processor, etc.
By definition, the basic blocks are also ended before the instructions which are the
target of jump or branch instructions.

A binary translation simulator would generate in this case a new translation block
starting at the jumping address. So, an instruction can be part of several translation
blocks, but only of a single basic block.

Given the simulation context we are interested in, it is required to be able
to support different types of target processor architectures on different types of
host architecture, even though simulation will very likely take place on a x86_64
machine. Given t target processor types and h host processor types, the approach
just described leads to the development of t � h translators to allow all target
processors to run on all the host processors.

Due to the complexity of writing a translator, the principle of retargetable DBT
has been proposed [28, 29]. Instead of being translated directly to host code, each
target instructions is first translated to a bytecode (also often called intermediate
representation or IR) common to all targets. The virtual instructions of the bytecode,
that we call microoperations, are then translated to host code. This way, target and
host translations are independent. Adding a new target processor requires “only”
a translator of the instruction set of that processor to the bytecode, no matter the
number of hosts on which the new target processor can be simulated. By adding
a translator from the bytecode to a new host processor, all target processors can
be simulated on the new host processor. So, the number of translators is now t C

h. The principle of these simulators, given Fig. 18.5, is close to that presented in
Fig. 18.4. The target instruction decoder generates the bytecode corresponding to

Fig. 18.5 Retargetable binary translation principle

572 F. Pétrot et al.

Fig. 18.6 Microoperations and host code generated while translating a target instruction

the translation block under consideration. Then, the host code generator produces
the host code corresponding to that translation block for the host processor.

Figure 18.6 is a simplified illustration of the translation process on a MIPS
instruction, the intermediate bytecode is a 3-address Instruction-Set Architecture
(ISA) close to the one of QEMU [12], and the target is x86_64. The generated
bytecode uses a mix of processor architectural registers, e.g. v1, and of temporaries,
here tmp0 and tmp1. The architectural registers represent a part of the processor
state and belong to a larger structure called the environment in QEMU. Their value
survives between translation blocks, while temporaries live only inside a TB. Once
translated as host code, these elements become offsets within the environment,
pointed to by the host register %r14 in QEMU for x86_64.

When performing translation, some instructions require complex operations that
can hardly be produced by generating host instructions at run time. For example,
when doing a load instruction, it is necessary to access the Memory Management
Unit (MMU) model to determine whether the addressed page is mapped in memory.
If not, a page fault exception must be raised. This leads to complex operations, like
traversing the page table, which are done using a lot of code. Therefore, instead of
generating the whole code dynamically (which is hardly possible and an overkill),
the DBT engines generate calls to specific functions (called helpers) to handle these
instructions.

Even though instruction interpretation is the core of dynamic binary translation,
quite a lot of housekeeping is necessary to actually obtain a running simulator.

• First and foremost, as the guest OS expects a memory management unit, it is
necessary to simulate it. It is also necessary to produce the expected page faults
including the protection flags, etc. Page boundaries are handled at translation
time; flags are handled on memory accesses.

• Second, self-modifying code must be supported. This is especially true as now,
even in embedded environments, many just-in-time compilers are used (just
think of Javascript in a browser or of Android). The performance issue related
to supporting dynamic code generation in DBT is considered as of primary
importance [17].

• Third, the translation cache has to be managed. A cache, by nature, has a
finite size. The placement of the newly generated translation blocks and the
replacement policy in case of overflow have to be determined.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 573

• Fourth, multiprocessor systems must be supported. A basic implementation
simply simulates the processors one after other in a predefined order by calling
their execution function. The simulation of a processor is suspended, and the
simulation of the next one (e.g. round-robin algorithm) resumed when an
interrupt or an exception occurs. However these events can only occur at the
border of a translation block. Other solutions can be thought of to better mimic
parallelism, as explained in Sect. 18.5.

• Finally, many optimizations are possible. Chaining is a classical optimization
which links a block to its successor using a jump instruction without going back
to the DBT engine when possible. The identification of the mostly used paths,
called hot paths, and the optimized retranslation of these paths can be beneficial.
It can also be counterproductive, as it requires accounting in the translation
blocks and time for optimized retranslations. Finding the right balance is known
to be hard [12].

18.3 Support for Non-scalar Architectures

Dynamic binary translation is usually used for running target code for a scalar
architecture on a scalar host. However, MPSoCs target specific markets with tight
power and area constraints and therefore embed specialized processor extensions or
processors with unusual architectures. The goal of this section is to briefly present
how such features can be efficiently supported by DBT.

18.3.1 Support for SIMD Instructions

Single Instruction, Multiple Data (SIMD) instructions perform parallel operations
on multiple data (Single Instruction, Multiple Data (SIMD)). There are today
multiple ISA extensions providing SIMD instructions to general purpose CPUs. For
performing parallel operations on multiple data, an SIMD instruction performs the
operation (or sequence of operations) on registers interpreted as array of values. This
array of data can have a variable number of values of various size, for example, a 128
bits wide register can be viewed as two 64 bits, four 32 bits, eight 16 bits, or sixteen
8 bits values. On top of that, the variety of the operations applied to the data is huge.
It ranges from the classical arithmetic operation (add, sub, shift, . . .) to saturated or
rounding arithmetic. Among this large range of instructions, each SIMD instruction
set represents a unique subset choice made by the processor architects. SIMD exten-
sions can also integrate some exotic instructions such as polynomial multiplication
or pixel distance computation that have no equivalent in other SIMD ISA.

DBT engines focus on efficiency for the most often used instructions, following
the adage “make the common case fast and the uncommon case correct.” As the
SIMD extensions are rarely relevant in general purpose computing, most translators
use helpers to execute their behavior even though all host processors include SIMD
instructions.

574 F. Pétrot et al.

People in companies developing processors [20] have looked at this issue
as the number of different SIMD extensions for different processor generations
(e.g., MMX, 3DNow!, SSE1, . . . , AVX for Intel) is huge, so having legacy code
being able to benefit from the most efficient version available on the actually running
processor has a clear value for some applications [26].

Replacing the helpers by dynamically generated code which uses the host SIMD
instructions opens the interesting question of the appropriate intermediate bytecode
for representing SIMD instructions [21]. The main two constraints to which one
may think for this bytecode are:

• limiting the number of new IR microoperations in order to limit the burden on
the code generator and the overall performances of the binary translator,

• adding enough microoperations in the IR to allow a wide coverage of both target
and host SIMD instruction sets.

Indeed, adding too many microoperations will tend to the addition of one
microoperation per SIMD instruction. This will not solve the problem since the
code generator (the second phase of DBT) will have a heavy work to do to produce
the inlined optimized code for each of the SIMD microoperations. Conversely, if
not enough microoperations are added, the semantic of all SIMD instructions will
not be expressed, and the translator will have to perform this translation using many
non-SIMD microinstructions. A simple way to extend the IR is to choose a set of
microoperations which is close to the intersections of the more widely available
SIMD instruction sets. The IR microoperations will be 3-address operations since
it is the most general case and allows to represent the 2-address versions easily,
whereas the reverse is not true.

As opposed to scalar DBT, finding instruction equivalence in SIMD DBT has
to take care of the SIMD specificities: parallelism and register interpretation. The
following section illustrates these peculiarities with concrete examples of translation
from ARM NEON instruction set to Intel MMX/SSE.

Direct mapping between instructions: in the presence of an exact equivalence
between a target SIMD instruction and an host SIMD instruction, the behavior of the
SIMD DBT is quite similar to the one of the scalar DBT. This case can be called a
direct mapping. The main difference between scalar and SIMD direct mappings lies
in the fact that it is necessary to guaranty that there is the same level of parallelism
between the two instructions, i.e. the same interpretation of registers (couple of
number and size of the values).

This case is widely applicable on arithmetic operations of SIMD instruction
sets. Figure 18.7 illustrates the DBT of an ARM Neon vadd.i16 into an Intel
MMX/SSE paddw. The IR microoperation used to propagate the parallelism is
named simd_128_add_i16 and represents the SIMD instruction performing 8
parallel adds on 16-bit values in 128-bit registers.

Table 18.1 gives some examples of direct mappings between the ARM Neon
add instructions and the Intel SSE ones. These examples are only 128-bit adds, but
equivalent mapping can also be found for 64-bit instructions and for other arithmetic
instructions such as sub, and, or, and xor.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 575

Fig. 18.7 Direct mapping between vadd.i16 Neon instruction and paddw MMX/SSE instruc-
tion

Table 18.1 Mapping between addition instructions

Operation Neon instruction MMX/SSE instruction

Add 8 bits vadd.i8 Qd, Qn, Qm paddb xmm1, xmm2

Add 16 bits vadd.i16 Qd, Qn, Qm paddw xmm1, xmm2

Add 32 bits vadd.i32 Qd, Qn, Qm paddd xmm1, xmm2

Add 64 bits vadd.i64 Qd, Qn, Qm paddq xmm1, xmm2

Fig. 18.8 The vsra Neon instruction is translated into two IR microoperations

No direct mapping: in a less favorable case, there exists no direct mapping
between instructions of the instruction sets. Most of the cases, this lack of mapping
is due to a lack of generality of the operations performed by the target SIMD
instruction. In that case it is only of little interest to have a microoperation in
the IR for that instruction. The strategy in such cases is to split the target SIMD
instruction in more elementary operations already present in the IR. This technique
is once more identical to the one used in scalar DBT, but more parameters have
to be taken into account during the process, i.e. parallelism level and registers
interpretation.

Figure 18.8 gives an example of this situation with the translation of the
ARM Neon vsra.u32 instruction which performs a right shift on operands
and accumulate the shifted results in the output register. This SIMD instruction
is translated into two elementary IR microoperations simd_128_shr_i32 and
simd_128_add_i32. The code generator can then find an equivalent for each
microoperation, i.e. psrld and paddd.

Exceptional case: a third and least favorable case is finally possible. This
situation occurs quite rarely, but due to the way instructions have been chosen
for integration in the SIMD instruction sets, it can be encountered. It happens
when an SIMD instruction of the target can be translated into a corresponding
IR microoperation, but no equivalent is available in the host SIMD instruction
set. As shown Table 18.2, all versions of the shift are available in ARM Neon

576 F. Pétrot et al.

Table 18.2 Mapping between left shift instructions

Operation Neon instruction MMX/SSE instruction

shl 8 bits vshl.i8 Qd, Qm, #imm N/A

shl 16 bits vshl.i16 Qd, Qm, #imm psllw xmm1, xmm2

shl 32 bits vshl.i32 Qd, Qm, #imm pslld xmm1, xmm2

shl 64 bits vshl.i64 Qd, Qm, #imm psllq xmm1, xmm2

Fig. 18.9 The left shift microoperation is translated into multiple MMX/SSE instructions

SIMD instruction set. This is even true for all SIMD instruction sets that have been
analyzed for this study, except for the Intel SSE SIMD instruction set. As it can be
realized from this table, there exists no instruction for shifting 8-bit values. As this
operation is present in all other instruction sets, it is present in the IR.

The code generator has then to solve this situation by generating multiple
host instructions, as shown Fig. 18.9. The example given in this figure is for the
translation of a 8-bit logical left shift emulated by a 16-bit version.

Comparison instructions: as far as comparisons are concerned, PowerPC Altivec,
Sparc VIS, MMX/SSE, and Neon instruction sets provide the result for each element
in the output operand, whereas the MIPS DSPASE sets flags. Because of this
unbalanced distribution, a reasonable choice is to define microoperations producing
their results in the output operand.

18.3.2 Support for VLIW Architectures

VLIW are not uncommon in the embedded space; indeed several recent many-core
architectures are VLIW based [10, 14, 18], as they provide a high computing vs.
power efficiency. The VLIW idea is to make a processor simple yet powerful by
having the compiler provide the Instruction-Level Parallelism (ILP) explicitly in the
execute packet, i.e., the set of instructions to be executed concurrently. The VLIW
implementation choices are mainly trade-offs regarding simplicity of the design
against compiler complexity, the major one being bypasses and stalls against register
update latencies (also called delay slots).

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 577

18.3.2.1 VLIW Specificities
VLIW have specificities which render the VLIW to scalar DBT process particularly
hard. The main characteristic of the execute packet is that multiple member
instructions are meant to be executed in parallel. Some may use a register as input
operand, while another one might use it as an output operand. The correct behavior
is to feed the input operands with values the register had before the execute packet
begin, which is not trivial in the DBT context.

The next characteristic concerns the latency of arithmetic and logic instructions,
which may be greater than one cycle. Instead of stalling the pipeline until the avail-
ability of the result in the destination register, the compiler has the responsibility to
ensure that an instruction depending on this result will not be scheduled before the
end of the delay. It also means that all instructions executed in between can read
this register to get its old value, and it is even possible to write it, as the actions will
occur after the corresponding latency, as long as there is no multiple writers on the
same destination register at the same cycle (otherwise, the result is undefined).

The last specificity is related to branches. Branch instructions have also delay
slots, which means that instructions following a branch will be executed irrespective
of the branch outcome.

18.3.2.2 VLIW DBT Extension Principles
The DBT has to handle the fact that multiple instructions are executed in parallel
which may have destination registers being source registers of others in the same
execute packet. The Write-After-Read (WAR) dependencies must be fulfilled to
obtain correct behavior against execute packet semantic. The systematic solution
to this problem is to introduce a new copy of a register each time it is overwritten.
This strategy is similar to the Static Single Assignment (SSA) [9] form used in
compilation when considering target registers as variables.

Applied to the intra-execute packet WAR dependency, this leads to at most two
living versions of the register in each execute packet, one corresponding to the old
value and one corresponding to the updated value.

Although this solution clearly solves the WAR problem, it does not solve the
issue of instructions delay slots. The solution is again relatively simple: the old
version of a register must be kept and used in case of a read until all delay slots
of the instruction have been consumed. This results in keeping possibly alive more
than two versions of the same register at the same moment, which is clearly not the
case in conventional SSA.

The number of living versions of the registers increases, but fortunately, this
number is bounded to a reasonable amount, which is the maximum instruction
latency among all instructions plus 1. Indeed, the worst case is a sequence of largest
latency instructions writing to the same register. In that case, one living version must
exist for each instruction executed between the execution of the first occurrence and
the availability of its result, plus one version for the previous value.

Finally, the branches have to be handled in two phases. Firstly, the code
responsible for the computation of the branch target address is generated when

578 F. Pétrot et al.

a b

Fig. 18.10 Reading and writing registers replicates

encountering the branch instruction. Secondly, a TB ending instruction is produced
after the delayed instructions and pc is updated accordingly.

18.3.2.3 TB Entry and Exit States
Using the above-described techniques (plus others not described here but similar
in spirit, to handle, e.g., predicated instructions), the DBT translation phase can
produce a sequential bytecode using registers replicates accomplishing the exact
functional behavior of the source VLIW code.

For implementation purposes, each register points to the head of a queue.
Reading the register value is done accessing the head, while the registers replicates
(created when an instruction writes the register) are inserted in the position
representing their latency. Figure 18.10 illustrates the idea. At first, replicates 0 are
created in case a read occurs. Then, depending on the execute packet instructions,
two 0 cycle latency instructions writing registers 0 and 2 and a 3 cycle latency
instruction writing register 2 Fig. 18.10a, the replicates are created. After the
translation of an execute packet, the queues are shifted left one position (see
Fig. 18.10b), the leftmost replicate being kept if no value overwrites it, and the
useless replicates are freed.

Due to this translation time renaming strategy, the working version (currently
used versions) of the registers, although known, is unpredictable. More precisely,
as TB are translated independently, the working versions when leaving a TB
are unknown to the newly entered TB. Indeed, when a TB has several different
predecessors, there is no way to guaranty that the working version will be identical
at the exit of all the preceding TBs, and the translator does not even know if a TB
has more than one predecessor when performing the translation.

The solution for handling this need of TB independence is to define a canonical
entry and exit working register set for TBs. In that way, once translated, the TB will
be reusable from all TBs pointing to it. The canonical state will be composed of the
first replicate of each register, in which are mapped the first version of each register
at the beginning of TB translation.

A further, this time dynamic, complication may arrive: in some cases, the delay
slots cross the border of a TB. In that case, an external mechanism needs to be
set up to handle these delay slots. This mechanism needs to be external to the
translator because of the TB independence requirements. Indeed, the translator loses

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 579

the information about delay slots when exiting a TB, and thus only a run-time
mechanism can manage the delay slots in that case.

This mechanism records the pending delayed registers with their current cycle
delay when exiting the current TB at run time. The next TB executed consults
the recorded data during its first execution cycles (bounded by the maximum
possible latency) to check if there are some registers needing to be updated as
they reach their latency. This can be done through helper calls inserted by the
translator.

18.3.2.4 Complexity of the Modifications
From a pure functional point of view, all modifications needed to implement the
VLIW DBT are part of the translator. The code generator does not strictly need to
be modified to handle these new features.

The modifications needed are first a change from a simple array of registers in
which each cell represents a target register to an array of these registers in which
a line represents all the replicates of one target register. This change requires to
modify all mechanisms at translation time to allocate the correct replicate each time
an assignment to a target register occurs.

The delay slot handling, delaying use of a newer replicate, can be modeled
using a simple queue, in which future versions of registers can be inserted at the
corresponding delay. At the end of each cycle, all delayed register versions progress
of one cycle in the delay queue. All these computations occur at translation time.
Complexity is once again limited.

The handling of the canonical state implies a modification of the translator but
impacts the generated code. Indeed, the easiest way to return to the canonical state at
the end of a translation block is to generate instructions that move current working
replicates of registers to the ones defined in the canonical state. This solution has a
limited complexity on the translator but has the unfortunate side effect of increasing
the TB size and thus its execution time.

Finally, the handling of delay slots crossing TB edges is a pure run-time
mechanism. This mechanism has to be identical for all TB to be valid for all
sequences of TB. The amount of generated code for this purpose is not huge, as it
consists of generating helper calls to propagate correctly the register updates. Even
though the functions themselves are quite straightforward since they only handle
registers updates through a run-time delay queue similar to the one described before,
the run-time overheads necessary to set up and perform these calls are quite large
compared to a simple sequence of generated host instructions.

18.4 Annotations in Dynamic Binary Translation

Although DBT is a very efficient technique for instruction interpretation, it is
not, in its usual form, suited to performance evaluation of software, making
the virtual platforms built on top of it unsuited to design space exploration of
hardware/software systems. Indeed, the translation process produces host code

580 F. Pétrot et al.

Fig. 18.11 Generation of annotated code

whose behavior must reproduce the one of the target code, and there is no provision
to estimate any kind of information (time, power, etc.) related to the execution
of a translated block. However, as translation generates code, it is possible to
produce nonfunctional code which aim at doing, during execution, some specific
activity [6,30]. These nonfunctional pieces of code are called annotations. The first
goal of these annotations is to make the simulated processors accurate from the point
of view of the time internally required for instructions execution.

The place at which these annotations are exactly placed depends on the overall
virtual prototyping approach, but it can be either before the first functional
instruction of a translation block, before or after a specific instruction, or after the
last functional instruction of a translation block.

Assuming the annotation targets a rough estimation of the software execution
time (excluding cache and memory effects), a first approach consist of generating,
before the translation of the instruction, an addition on a global variable, as illus-
trated Fig. 18.11, which can be compared with Fig. 18.6 to measure the overhead
due to annotation.

In this case, the number of cycles is a field at offset 0x48c in the environment.
The value of the field is incremented by the number of cycles associated to

the instruction, quantity typically found using a look-up table that contains the
information copied from the processor datasheet. Sometimes the number of cycles
required by an instruction depends on values available only when the instruction is
executed. For instance, the number of cycles required by a multiplication instruction
may depend on the values of the operands, which may differ from an execution to
another. In that case, specific code has to be generated to add the corresponding
difference to the preceding value. Since entering a translation block guarantees
that all instructions it contains will be executed, a wiser way, that does more at
translation time but less at execution time, consists of generating code at the end
of the translation block that adds to a variable the value accumulated during the
translation of the whole translation block.

Annotations can also be used for power estimation, or for totally different
purposes, such as fault injection for code analysis [3] or generation of traces for
analysis [8].

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 581

18.4.1 Cache Modeling Strategies

A modification which greatly improves the time accuracy (at the cost of execution
speed) consists of modeling the instruction and data caches. This section deals with
level-1 (L1) caches, as the situation with upper-level caches depends on the structure
of the memory hierarchy. Indeed, if the level-2 (L2) caches are private, then the
same approach as for L1 cache, described below, should be used. However, if they
are shared, then a global state must be visible, so that correct updates take place.
The simulation of the L2 cache can either be a component at TLM level or a shared
structure within the DBT engine. In the former case, it takes benefit from the event-
driven nature of the TLM simulator to synchronize with the rest of the system as
any other component would do, at the cost of more synchronizations within the
simulator. In the latter case, the relative progression of all hardware models must be
considered carefully.

For the instruction cache, the access to the models occurs thanks to a helper
called through a microoperation inserted at the beginning of each translated
translation block and, inside a translation block, before the first instruction from
each instruction cache block. As exact target instruction addresses are known at
translation time (even for dynamically generated code since it is translated at run
time), this can always be done at relatively low cost.

Data caches using write-through or write-back policies can also be modeled for
main memory read/write data accesses. Each time a main memory location is read
or written, its presence in the data cache is checked and the proper action (return
value, fetch block, write-allocate or write update) taken. Here also the addresses are
exact, so the modeling in terms of hits and misses by a simple array of addresses
can be faithful.

For set associative caches, the replacement policy may be difficult to re-
produce exactly, e.g., when a set is chosen at random with a generation of
the random number depending on a free-running counter, but this is not DBT
specific.

Figure 18.12 shows how the annotations are inserted to handle the computation
of cache misses. To limit the code size, pseudo-code instead of actual code is used.
In this figure, the first column is the instruction address, the second column the
generated code without annotations, and the third column the generated code with
annotations. Assuming a 4 32-bit words long cache block, it is necessary to check
the presence of the instruction in the cache only when the 4 lower bits of the
address are equal to zero, which is done by a call to the insn_cache_verify()
helper when the program counter has this property. Read and write accesses,
even though handled specifically by the translator back-end to simulate the MMU
and actually access the memory and peripherals, are simple microoperations in
the front-end. To model the L1 data cache, helper calls (read_access() and
write_access()) are added.

When modeling shared memory processor subsystems, a further issue is cache
coherency. Two solutions can be thought of for maintaining coherent data or

582 F. Pétrot et al.

Fig. 18.12 Cache modeling through annotation

instruction (necessary to support dynamically generated code) within the caches.
The brute force one simply ignores the cache protocol and traverses all cache
models when a write occur to check for the presence or absence of the written
address in the cache. When the number of processor is small, this traversal is quick
enough to be acceptable. To do so, the run time of the DBT engine simply needs
to maintain a list of caches accessible by all CPUs. However, when the number of
processor increases, the traversal time becomes unacceptable, and the solution is
then to implement (even in a simplified form) a cache coherence protocol. Indeed,
assuming n is the number of writes and p the number of processors, traversing all
caches is in O.p � n/, while a hardware cache coherence protocol would lead to
performance in O.k � p/, with k � 10 in average since the number of sharers
of a data is usually low. This behavior can be mimicked efficiently by accessing
a hash table indexed by the hashed address whose entries contain the address as
key and a pointer to the array representing the cache which caches the address
as data. The tipping point between both solutions depends on the implementation
details, but it seems clear that for many-core architectures, the latter one is more
efficient.

As can be seen, adding cache models increases the size of the generated code and
requires more complex handling of the memory accesses at execution time, which
leads in any case to an important degradation in simulation speed. Given the fact
that is it possible to count load and store, higher, typically analytical, models can
also be used when accuracy can be trade-off for speed.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 583

18.4.2 Modeling Branch Predictors

Even though not that many embedded processors today include branch predictors,
it is worth taking a look at how it can be modeled in DBT-based simulation as the
influence of this microarchitectural feature on out-of-order execution performance
is major. At first, modeling a branch predictor seems easy: the branch outcomes are
known, so updating a set of branch history tables (as in the TAGE [27] predictor
or its descendants, current state-of-the-art predictors) to predict a future branch
outcome is straightforward. However, branch predictors use large global tables,
shared by all branches in the execution flow. As opposed to caches, these tables
are accessed one after the other at what looks like random indexes (computed as
hashes of branch history and branch instruction address). As far as simulation is
concerned, repeated accesses to random places lead to poor program locality and,
in consequence, poor simulation performance. Experiments have shown slowdowns
of 1:5� to 15� as compared to raw DBT execution [13]. To limit this overhead, a
performance/accuracy trade-off can be made by defining models which predict the
behavior of the branch predictor. The principle consists of transforming the tables
of the reference architecture, which are global, i.e., shared between all branches,
into information local to each branch. This leads to allocating the table entries only
when needed and enhances locality, thus limiting the number of cache misses when
simulating the predictor model.

Taking TAGE as an example, the bimodal table, as can be seen Fig. 18.13, is
reduced to a 2 bit counter which can be stored in the local data of each branch.
Then, for the tagged tables, two parts are distinguished, the tables themselves and
the way they are indexed. Concerning the tables, a simple solution is to use a single
tagged table, ignoring history length. In the same way as for the bimodal table, only

3 bits counter
3 bits counter

.

.

.

Outcome

if not
weak

prediction

Points to
global history

Simulator
metadata

2 bit counter

Translation
block (local)

Simplified ModelReference model h[0:L(4)]h[0:L(3)]h[0:L(2)]h[0:L(1)]

hash

=?

hash hash

=?

hash hash

=?

hash hash

=?

hash

tag u tag u pred tag u pred tag upred pred

prediction

pc pc pc pc

pc

base predictor

T0 T1 T2 T3 T4

a b

Fig. 18.13 (a) Reference [27] and (b) simplified models for a TAGE branch predictor

584 F. Pétrot et al.

the potentially reachable entries, i.e., the ones concerning already seen branches, can
be allocated locally for each branch. This results in a local table that is indexed by
the global history, which, in the reference architecture, was hashed with the program
counter (PC) of the branch.

The choice of the entry is then naturally simplified as there is only one, local,
tagged table to choose from.

The confidence state of the entry in the tagged table is used to select between the
tagged table and the bimodal table. If it is “weak,” the prediction will be given by the
bimodal table; otherwise it will be given by the tagged one. This should ensure that,
as in the reference architecture, tagged prediction is chosen only when the tagged
entry is “sure” of its prediction. The tag of the tagged table is not useful anymore,
as entries concerning one branch are now specific to it. In other words, aliasing, i.e.,
multiple branches pointing to the same entry, already very unlikely thanks to tags,
is impossible in the simplified model.

The resulting model uses memory local to the current basic block, which tends to
enhance locality, but it also uses more memory, as information shared due to aliasing
is now duplicated. The information used by the simplified predictor is similar to
that of the reference architecture: the outcome of the current branch, its own data, a
global history of branch outcomes, and, finally, the structure of the already executed
code (to store data per branch). This model produces identical predictions to the
TAGE architecture in average 95% of the time for a 5% execution time overhead.
Even though 95% identical predictions may seem a good achievement, the impact
on the execution time may be of importance, so finer models can also be of interest.

As for caches, a wide range of models can be used for taking into account branch
prediction, and it boils down to produce annotations at the end of the basic blocks,
as shown Fig. 18.14. The bp_model helper is called with the address of the branch
instruction (PC) and the outcome of the branch (bcond).

18.5 Integration with TLM Simulations

Integrating DBT-based Instruction-Set Simulator (ISS) in a TLM simulation en-
vironment can be done in two steps, as depicted Fig. 18.15. First, all processors
belonging to a Symmetric Multi-Processing (SMP) subsystem are grouped together

Fig. 18.14 Annotation to model branch prediction

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 585

Fig. 18.15 Binary translation based simulator – SystemC simulation platform

in a module that can be instantiated by the TLM simulator (platform_wrapper). It
is assumed that all processors are identical and have identical cache geometries and
that they have a shared view of the memory. This allows to share the translation
cache between them, avoiding retranslation on one processor of code migrating
from another processor in SMP systems and an efficient implementation of cache
coherency.

Second, the platform wrapper instantiates a module wrapper for each processor
(iss_wrapper). The execution of each processor is performed in the context of
the process of its wrapper. This way, the processors are simulated concurrently
by the TLM simulator time-sharing scheduler. The platform wrapper is useful
for managing the common aspects shared by the processors (e.g., inter-processor
interrupt management, platform specific registers, interrupt controllers etc.).

The platform wrapper is connected to an interconnect, through which it can
communicate with other hardware components (memory, timers, DMA engines,
frame buffer, etc.) also connected to it. All hardware components are implemented
as TLM modules.

From the initial DBT platform, the platform uses only the processor models with,
if required, their MMUs. All other devices are externalized and implemented as
TLM modules. This allows to enforce the notion of IP and reuse, thanks to the
TLM principles, whereas devices in DBT are described in very ad hoc manner
and use shortcuts hardly acceptable when the simulation is also used for design
space exploration purposes. The main memory is also implemented as one or more
TLM modules. For accessing TLM models other than the main memory, a few
ranges of the simulated processor physical addresses are mapped as I/O addresses
in the processor wrapper. The I/O requests from the simulated processors are then
transformed by the processor wrappers into TLM requests, using the protocol
understood by the interconnect. Memory, on the other hand, is accessed through

586 F. Pétrot et al.

a direct memory interface. This avoids relinquishing the CPU to the TLM part of
the simulation and thus saves a lot of time.

18.5.1 Precision Levels

Depending upon the accuracy one expects from the simulation, four trade-offs can
be made regarding memory accesses.

The first approach does not implement caches and uses the main memory
internally allocated by the DBT engine. The time required for executing the number
of cycles corresponding to the instructions simulated is consumed using the wait
function of the simulator. In this configuration, it is considered that the memory
is always available for all processors, without any cycle cost for accessing it.
The communication with other peripherals is performed by sending requests over
the interconnect. The time consumed for these accesses is composed of the time
consumed by each TLM components involved in the transmission and the reception
of the request packets. In this case, a simulated processor synchronizes with the
rest of the TLM platform only when an I/O operation is executed and when that
processor is unscheduled by the DBT simulator. Due to the reduced number of
synchronizations, large pieces of translated code are executed without interruption.
As a result, the simulation will be very fast (close to the DBT alone). The accuracy
in this case will be low as the cache effects and the time required to communicate
with the main memory over the interconnect are not accounted for. Since all memory
accesses are done without going through the interconnect, there is no need for an
explicit support for cache coherent mechanisms.

The second approach relies on the caches being implemented only from the
hit/miss point of view, while the main memory of the initial DBT engine is still used.
As opposed to native simulation or compiled simulation presented in �Chap. 19,
“Host-Compiled Simulation”, dynamic binary translation uses the exact addresses
for instructions fetch and data accesses. However, the target instructions are fetched
from memory only once, for translation, before their first execution. The simulator
always executes the generated binary host code stored in the translation cache. So,
to accurately account for these accesses, a model of the cache is needed. Both data
and instruction caches can be modeled as pure directories, so that an array access
(with the proper tag, index, and offset) indicates if the instruction would in reality be
in the cache. A cache miss issues a TLM wait for a time precomputed to be required
to load a cache line, without actually sending the request over interconnect. As for
the previous approach, the I/O operations involve the interconnect and other TLM
hardware models. The time corresponding to the simulated cycles is consumed at the
beginning of the next synchronization. In this case, the processors are synchronized
with the TLM simulator when a cache miss occurs, an I/O is executed or when they
are unscheduled by the DBT engine. The simulation speed for this configuration
is reduced a lot because of the large number of synchronizations produced by the
cache misses. As the precomputed time is consumed directly in the cache model, a
single timed event is generated for each cache miss. This is not much, considering

http://dx.doi.org/10.1007/978-94-017-7267-9_18

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 587

that the transfer of a single byte over the interconnect requires more than 10 timed
and untimed events. The accuracy increases by using a precomputed average value
for the time required for a memory transfer over the interconnect. However, the
interconnect load, hardly guessable as it is highly nonlinear when congested, is not
taken into account.

The third approach is an extension of the second one, in which, instead of
consuming the precomputed time when the cache misses occur, the consumption
of time is postponed until the next synchronization produced by an I/O operation or
by the normal unscheduling of a processor. At the synchronization moment, the sum
of the precomputed times required by all write accesses and cache misses that have
occurred since the previous synchronization is consumed. This way, the number of
synchronizations is reduced, increasing simulation speed. The chances of preventing
other processors to modify a variable waited on by the current simulated processor
are higher in this configuration compared to the previous one because of the small
number of synchronizations. This may have a negative impact on simulation speed
as more cycles have to be simulated by a polling processor and has a negative impact
on simulation accuracy.

The fourth and most accurate approach fully implements the caches and uses
an external TLM memory module as main memory. In this case, in addition to the
directory, the caches also have their data part. However, the data of the instruction
cache is ignored. The instructions needed for translation are searched directly in the
memory module, without issuing a TLM wait. The loading price will be paid by the
instruction cache when the generated code is executed from the translation cache, as
explained Fig. 18.12. In all cases, a cache miss issues a request over the interconnect.
The simulation speed for this configuration will be even slower, because the requests
and responses pass through all the components that are required for the transfer.

18.5.2 TLM Synchronization Points

In this DBT+TLM integration approach, a processor is simulated as long as it does
not communicate with the world behind its caches and the DBT engine does not
stop it. When an instruction/data cache misses or an I/O occurs, the processor
simulation stops, and the processor wrapper synchronizes itself with the rest of
the platform by consuming the estimated time required by the real processor to
execute the instructions simulated since the last synchronization. In case no such
event occurs, in order to limit the divergence between the different processors’
execution, a synchronization can be forced after a predefined period of time without
synchronization. For the target processor instructions designed for synchronization
of the software running on a SMP architecture (e.g., exclusive load and store,
compare, and swap), a synchronization should also be generated.

The processors’ simulation order depends on the time consumed by the proces-
sors at synchronizations. A synchronization condition may occur at any time during
the execution of a translation block (e.g., cache miss); thus unscheduling does not
anymore always occur at the boundary of a translation block. As the DBT engine

588 F. Pétrot et al.

unschedules the processors only at the translation block border, it is necessary to
save their “execution context” before synchronization and restore it afterward.

18.5.2.1 TLM Synchronization After Long Intervals Lacking in
Synchronization

Due to the fact that simulated processors do not synchronize at each memory access,
if two or more simulated processors read/write from/to the same memory address,
the instructions executed by these processors may differ from those executed on a
cycle accurate platform. A write to an address should invalidate the corresponding
cache line in all caches but the one of the writing processor, and these other
processors should see the new value at their next read from that address. Because
of the direct access to memory, the write is visible by the rest of processors before
it happens in the simulated timeline, if the writing processor is simulated before the
reading one. If the processors’ simulation order is inverted, the reading processor
does not see the effect of writing until it synchronizes and the writing processor
executes the writing code.

Processor unscheduling after a predefined time without synchronization is
needed even for cases when a processor waits in a loop for a simple variable to
be changed by another processor or any initiator of the system or even by an
interrupt handler on the same processor. This kind of loops would also prevent
the interrupts to occur for that processor because the interrupt pending flag is set
during synchronization. For example, for computing the processor speed, Linux
waits in a loop for the jiffies variable to be incremented by the timer interrupt
handler. The condition of unscheduling due to lack of synchronization is verified
at the beginning of each translation block. The time period for this unscheduling
condition determines the maximum lag of the interrupts.

18.5.2.2 TLM Synchronizations Caused by Target Synchronization
Instructions

The threads of a software application usually synchronize together. A spin lock is an
example of a software synchronization mechanism. The lock and unlock function of
the spinlocks are usually implemented using exclusive load and store instructions.

Figure 18.16 presents an example of software running on two processors and
using a spinlock for the software synchronization. This figure shows what would
happen if the simulator would not generate a synchronization for this type of target
instructions or if the spinlock functions would not be implemented using exclusive
access instructions.

Figure 18.16a presents the execution on a real hardware. The first processor (P 1)
locks a spinlock at t1, at t2 a cache miss occurs, at t4 P 1 releases the spinlock, and
at t6 it executes an I/O operation. The second processor tries to lock the spinlock
(t3) just before t4; it actually obtains the lock at t40 and releases the spinlock at t5.

The execution on our platform in the case when the simulator would not generate
synchronization for the exclusive accesses is depicted in Fig. 18.16b. Considering
that P 1 is first scheduled for simulation, it locks the spinlock at t1 without being
unscheduled (the spinlock is placed in the main memory), but at t2 it is unscheduled

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 589

a

b

c

Fig. 18.16 Simulation behaviors based on the spinlock implementation

for synchronization before loading the cache line. P 2 is now scheduled and at t3 it
begins trying to take the lock. P 2 reads in an infinite loop the spinlock locked value
from the main memory.

After the predefined time without synchronization, P 2 would be however
unscheduled at time t4 C N . Then, P 1 is scheduled, it unlocks the spinlock, and
then it is unscheduled for synchronization before the I/O operation. P 1 will be able
now to take the spinlock, but it has oversimulated by time N .

The simulation behavior when spinlocks functions use exclusive access functions
and the synchronizations that are generated for them are presented in Fig. 18.16c. In
this case, the processors synchronize before each lock and unlock. P 1 synchronize
at t1 and P 2 is scheduled. P 2 is unscheduled before its first lock attempt. P 1

synchronizes at t2, but it is rescheduled because P 1 is more advanced in simulation
time (t3 > t2). At t4, before releasing the lock, P 1 synchronizes and it is
unscheduled (t4 > t3). Between t3 and t4 (the simulation time of P 1), P 2

synchronizes and it is rescheduled at each attempt to lock the spinlock. After t4,
P 1 is scheduled and it releases the lock and it is simulated until t6. P 2 gets the lock
at t40 (immediately after P 1 has released it) and release it at t5.

18.6 Concluding Remarks

Dynamic binary translation provides a real increase in performance as compared to
instruction accurate instruction-set simulators. This enhancement comes at the price
of a much greater implementation complexity and, intrinsically, less capabilities to

590 F. Pétrot et al.

monitor precisely nonfunctional properties of the software. The progress toward the
integration of more and more cores on SoC makes it however a must for achieving
hardware/software simulation at acceptable speed.

To act as an independent processor simulator, DBT must be integrated into
standard event-driven simulation environments, e.g., SystemC. Then, it must sup-
port processors with non-scalar architectures and possibly more efficiently scalar
processors [19], by resorting to run-time optimizations including dynamic recompi-
lation. And finally, it should be capable of integrating models of processor specific
microarchitectural details so that software performance evaluations (mainly timing
and power) can be done.

References

1. Aarno D, Engblom J (2014) Software and system development using virtual platforms: full-
system simulation with wind river simics. Morgan Kaufmann, Waltham

2. Baraz L, Devor T, Etzion O, Goldenberg S, Skaletsky A, Wang Y, Zemach Y (2003) Ia-
32 execution layer: a two-phase dynamic translator designed to support IA-32 applications
on itaniumr-based systems. In: Proceedings of the 36th annual IEEE/ACM international
symposium on microarchitecture, pp 191–201

3. Becker M, Baldin D, Kuznik C, Joy MM, Xie T, Mueller W (2012) Xemu: an efficient qemu
based binary mutation testing framework for embedded software. In: Proceedings of the tenth
ACM international conference on Embedded software. ACM, pp 33–42

4. Bell JR (1973) Threaded code. Commun ACM 16(6):370–372
5. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the

1st IEEE/ACM/IFIP international conference on hardware/software codesign and system
synthesis. ACM, pp 19–24

6. Cmelik B, Keppel D (1994) Shade: a fast instruction-set simulator for execution profiling. In:
Proceedings of the 1994 ACM SIGMETRICS conference on measurement and modeling of
computer systems, pp 128–137

7. Creasy RJ (1981) The origin of the VM/370 time-sharing system. IBM J Res Dev 25(5):
483–490

8. Cunha M, Fournel N, Pétrot F (2015) Collecting traces in dynamic binary translation based
virtual prototyping platforms. In: Proceedings of the 2015 workshop on rapid simulation and
performance evaluation: methods and tools. ACM, p 4

9. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1991) Efficiently computing static
single assignment form and the control dependence graph. ACM Trans Program Lang Syst
13:451–490

10. de Dinechin BD, Ayrignac R, Beaucamps PE, Couvert P, Ganne B, de Massas PG, Jacquet
F, Jones S, Chaisemartin NM, Riss F, Strudel T (2013) A clustered manycore processor
architecture for embedded and accelerated applications. In: IEEE high performance extreme
computing conference. IEEE, pp 1–6

11. Deutsch LP, Schiffman AM (1984) Efficient implementation of the smalltalk-80 system.
In: 11th ACM SIGACT-SIGPLAN symposium on principles of programming languages,
pp 297–302

12. Duesterwald E, Bala V (2000) Software profiling for hot path prediction: less is more. ACM
SIGARCH Comput Archit News 28(5):202–211

13. Faravelon A, Fournel N, Pétrot F (2015) Fast and accurate branch predictor simulation. In:
Proceedings of the design automation and test in Europe conference. ACM, pp 317–320

14. Flamand E (2009) Strategic directions towards multicore application specific computing. In:
IEEE/ACM conference on design, automation & test in Europe, pp 1266–1266

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 591

15. Ghenassia F, Clouard A (2005) TLM: an overview and brief history. In: Ghenassia F (ed)
Transaction level modeling with SystemC: TLM concepts and applications for embedded
systems. Springer, Dordrecht

16. Gligor M, Fournel N, Pétrot F (2009) Using binary translation in event driven simulation for
fast and flexible MPSoC simulation. In: Proceedings of the 7th IEEE/ACM/IFIP international
conference on hardware/software codesign and system synthesis, Grenoble, pp 71–80

17. Hawkins B, Demsky B, Bruening D, Zhao Q (2015) Optimizing binary translation of
dynamically generated code. In: Proceedings of the 13th annual IEEE/ACM international
symposium on code generation and optimization. IEEE Computer Society, pp 68–78

18. Lethin R (2009) How vliw almost disappeared-and then proliferated. IEEE Solid-State Circuits
Mag 1(3):15–23

19. Leupers R, Eeckhout L, Martin G, Schirrmeister F, Topham N, Chen X (2011) Virtual
manycore platforms: moving towards 100C processor cores. In: Design, automation & test
in Europe conference & exhibition (DATE), 2011. IEEE, pp 1–6

20. Li J, Zhang Q, Xu S, Huang B (2006) Optimizing dynamic binary translation for simd instruc-
tions. In: Proceedings of the international symposium on code generation and optimization,
pp 269–280

21. Michel L, Fournel N, Pétrot F (2011) Speeding-up simd instructions dynamic binary translation
in embedded processor simulation. In: Proceedings of the design, automation & test in Europe
conference, pp 277–280

22. Mitchell JG (1970) The design and construction of flexible and efficient interactive program-
ming systems. PhD thesis, Carnegie-Mellon University, Pittsburgh

23. Monton M, Carrabina J, Burton M (2009) Mixed simulation kernels for high performance
virtual platforms. In: Forum on specification & design languages, pp 1–6

24. Pétrot F, Fournel N, Gerin P, Gligor M, Hamayun MM, Shen H (2011) On mpsoc software
execution at the transaction level. IEEE Des Test Comput 28(3):32–43

25. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation archi-
tectures. Commun ACM 17(7):412–421

26. Rohou E, Williams K, Yuste D (2013) Vectorization technology to improve interpreter
performance. ACM Trans Archit Code Optim (TACO) 9(4):1–22

27. Seznec A, Michaud P (2006) A case for (partially) tagged geometric history length branch
prediction. J Instr Lev Parall 8:1–23

28. Sites RL, Chernoff A, Kirk MB, Marks MP, Robinson SG (1993) Binary translation. Commun
ACM 36(2):69–81. doi:10.1145/151220.151227

29. Ung D, Cifuentes C (2000) Machine-adaptable dynamic binary translation. ACM SIGPLAN
Not 35(7):41–51

30. Witchel E, Rosenblum M (1996) Embra: fast and flexible machine simulation. ACM SIGMET-
RICS Perform Eval Rev 24(1):68–79

	18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation
	Contents
	18.1 Introduction
	18.2 Dynamic Binary Translation Basics
	18.3 Support for Non-scalar Architectures
	18.3.1 Support for SIMD Instructions
	18.3.2 Support for VLIW Architectures
	18.3.2.1 VLIW Specificities
	18.3.2.2 VLIW DBT Extension Principles
	18.3.2.3 TB Entry and Exit States
	18.3.2.4 Complexity of the Modifications

	18.4 Annotations in Dynamic Binary Translation
	18.4.1 Cache Modeling Strategies
	18.4.2 Modeling Branch Predictors

	18.5 Integration with TLM Simulations
	18.5.1 Precision Levels
	18.5.2 TLM Synchronization Points
	18.5.2.1 TLM Synchronization After Long Intervals Lacking in Synchronization
	18.5.2.2 TLM Synchronizations Caused by Target Synchronization Instructions

	18.6 Concluding Remarks
	References

