
17Parallel Simulation

Rainer Dömer, Guantao Liu, and Tim Schmidt

Abstract

The SystemC standard is widely used in industry and academia to model and
simulate electronic system-level designs. However, despite the availability of
multi-core processor hosts, the reference SystemC simulator is still based on
sequential Discrete Event Simulation (DES) which executes only a single thread
at any time.

In recent years, parallel SystemC simulators have been proposed which
run multiple threads in parallel based on Parallel Discrete Event Simulation
(PDES) semantics. While this can improve the simulator run time by an order
of magnitude, synchronous PDES requires careful dependency analysis of the
model and still limits the parallel execution to threads that run at the same
simulation time.

In this chapter, we review the classic DES and PDES algorithms and then
present a state-of-the-art approach called Out-of-Order Parallel Discrete Event
Simulation (OOO PDES) which breaks the traditional time cycle barrier and
executes threads in parallel and out of order (ahead of time) while maintaining
the standard SystemC modeling semantics. Specifically, we present our Recoding
Infrastructure for SystemC (RISC) that consists of a dedicated SystemC compiler
and advanced parallel simulator. RISC provides an open-source reference imple-
mentation of OOO PDES and achieves fastest simulation speed for traditional
SystemC models without any loss of accuracy.

R. Dömer (�)
Center for Embedded and Cyber-physical Systems, Department of Electrical Engineering and
Computer Science, The Henry Samueli School of Engineering, University of California, Irvine,
CA, USA
e-mail: doemer@uci.edu

G. Liu • T. Schmidt
Center for Embedded and Cyber-physical Systems, University of California, Irvine, CA, USA
e-mail: guantaol@uci.edu; schmidtt@uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_19

533

mailto:doemer@uci.edu
mailto:guantaol@uci.edu
mailto:schmidtt@uci.edu

534 R. Dömer et al.

Acronyms

AST Abstract Syntax Tree
DE Discrete Event
DES Discrete Event Simulation
DUT Design Under Test
ESL Electronic System Level
OOO PDES Out-of-Order Parallel Discrete Event Simulation
PDES Parallel Discrete Event Simulation
RISC Recoding Infrastructure for SystemC
SG Segment Graph
SLDL System-Level Description Language

Contents

17.1 Introduction . 534
17.1.1 Exploiting Parallelism for Higher Simulation Speed . 535
17.1.2 Related Work on Accelerated Simulation . 536

17.2 Discrete Event Simulation (DES) . 537
17.2.1 Discrete Time and Discrete Event Model . 538
17.2.2 Scheduling Queues . 538
17.2.3 Sequential Discrete Event Scheduler . 539

17.3 Parallel Discrete Event Simulation (PDES) . 540
17.3.1 Parallel Discrete Event Scheduler . 541
17.3.2 Protection of the Parallel Simulation Kernel . 542
17.3.3 Preserving SystemC Execution Semantics in PDES . 542

17.4 Out-of-Order Parallel Discrete Event Simulation (OOO PDES) 543
17.4.1 Thread-Local Simulation Time . 543
17.4.2 Dynamically Evolving Scheduling Queues . 543
17.4.3 Out-of-Order Parallel Discrete Event Scheduler . 544
17.4.4 OOO PDES Scheduling Algorithm. 545

17.5 Recoding Infrastructure for SystemC (RISC) . 546
17.5.1 Segment Graph . 548
17.5.2 Segment Graph Construction . 549
17.5.3 Static Conflict Analysis . 551
17.5.4 Source Code Instrumentation . 557

17.6 Experimental Evaluation . 558
17.6.1 Conceptual DVD Player Example . 558
17.6.2 Mandelbrot Renderer Example . 559

17.7 Conclusion . 562
References . 562

17.1 Introduction

Electronic System Level (ESL) design space exploration in general and the val-
idation of ESL designs in particular typically rely on dynamic model simulation
in order to study and optimize a desired system or electronic device before it is
actually being built. For this simulation, an abstract model of the intended system
is first specified in a System-Level Description Language (SLDL) such as SpecC
[13] or SystemC [15]. This SLDL model is then compiled, executed, and evaluated

17 Parallel Simulation 535

on a host computer. In order to reflect causal ordering and provide abstract timing
information, SLDL simulation algorithms are usually based on the classic Discrete
Event (DE) semantics which drive the simulation process forward by use of events
and simulation time advances.

As an IEEE standard [18], the SystemC SLDL [15] is predominantly used in both
industry and academia. Under the umbrella of the Accellera Systems Initiative [1],
the SystemC Language Working Group [31] maintains not only the official SystemC
language definition but also provides an open-source proof-of-concept library [16]
that can be used free of charge to simulate SystemC design models within a standard
C++ programming environment. However, this reference implementation follows
the traditional scheme of sequential Discrete Event Simulation (DES) which is
much easier to implement than truly parallel approaches. Here, the discrete time
events generated during the simulation are processed strictly in sequential order. As
such, the SystemC reference simulator runs fully sequentially and cannot utilize any
parallel computing resources available on today’s multi- and many-core processor
hosts. This severely limits the simulation speed since a single processor core has to
perform all the work.

17.1.1 Exploiting Parallelism for Higher Simulation Speed

In order to provide faster simulation performance, parallel execution is highly desir-
able, especially since the SLDL model itself already contains clearly exposed paral-
lelism that is explicitly specified by the language constructs, such as SC_METHOD,
SC_THREAD, and SC_CTHREAD in the case of SystemC SLDL. Here, the topic
of Parallel Discrete Event Simulation (PDES) [12] has recently gained a lot of
attraction again. Generally, the PDES approach issues multiple threads concurrently
and runs these threads in parallel on the multiple available processor cores. In
turn, the simulation speed increases significantly. The naive assumption of a linear
speedup of factor nx for n available processor cores occurs very rarely due to the
usually quite limited amount of parallelism exposed in the model and the application
of Amdahl’s law [2]. Typically, a speedup of one order of magnitude can be expected
for embedded system applications with parallel modules [6].

With respect to PDES performance, it is very important to understand the
dependencies among the discrete time events and also to distinguish between the
dependencies present in the model and the (additional) dependencies imposed by
the simulation algorithm. In general, SLDL models assume a partial order of events
where certain events depend on others due to a causal relationship or occurrence
in sequence along the time line, and other events are independent and may be
performed in any order or in parallel. On top of this required partial ordering of
events in the model, a sequential simulator (described in Sect. 17.2) imposes a much
stronger total order on the event processing. This is acceptable as it observes the
weaker SLDL execution semantics but results in slow performance due to the overly
restrictive sequential execution.

In contrast, PDES follows a partial ordering of events. Here, we can distinguish
between regular synchronous PDES, which advances the (global) simulation time in

536 R. Dömer et al.

order and executes threads in lockstep parallel fashion, and aggressive asynchronous
PDES, where simulation time is effectively localized and independent threads can
execute out of order and run ahead of others. As we will explain in detail in
Sect. 17.3, the strict in-order execution imposed by synchronous PDES still limits
the opportunities for parallel execution. When a thread finishes its evaluation phase,
it has to wait until all other threads have completed their evaluation phases as
well. Threads finishing early must stop at the simulation cycle barrier, and available
processor cores are left idle until all runnable threads reach the cycle barrier.

This problem is overcome by the latest state-of-the-art approaches which im-
plement a novel technique called Out-of-Order Parallel Discrete Event Simulation
(OOO PDES) [6, 8]. By internally localizing the simulation time to individual
threads and carefully processing dependent events only at required times, an OOO
PDES simulator can issue threads in parallel and ahead of time, exploiting the
maximum available parallelism without loss of accuracy. Thus, the OOO PDES
presented in Sect. 17.4 minimizes the idle time of the available parallel processor
cores and results in highest simulation speed while fully maintaining the standard
SLDL and unmodified model semantics.

We should note that parallel simulation in general, and synchronous PDES
and OOO PDES in particular, can be implemented in different environments and
are not language dependent. In fact, the parallel simulation techniques discussed
in Sects. 17.3 and 17.4 have been originally designed using the SpecC language
[10, 13, 35] and integrated into the system-on-chip environment (see �Chap. 31,
“SCE: System-on-Chip Environment” and in particular Sect. 4.1, “Simulation”) but
can be equally well applied to other SLDLs with explicitly exposed parallelism.
Without loss of generality, and in order to present the state of the art, we describe
in this chapter the evolution from sequential DES over synchronous PDES to
asynchronous OOO PDES using the SystemC SLDL [15, 18] which is both the
de facto and official standard for ESL design today. In particular, we describe in
Sect. 17.5 our Recoding Infrastructure for SystemC (RISC) [21], which is open
source [20] and consists of a dedicated SystemC compiler and corresponding out-
of-order parallel simulator, and thus provides a reference implementation of OOO
PDES for SystemC.

Finally, we conclude this chapter in Sect. 17.6 with experimental results for em-
bedded application examples that demonstrate the significantly reduced simulator
run times due to parallel simulation.

17.1.2 Related Work on Accelerated Simulation

Parallel simulation is a well-studied subject in the literature [4, 12, 24]. Two major
synchronization paradigms can be distinguished, namely, conservative and opti-
mistic [12]. Conservative PDES typically involves dependency analysis and ensures
in-order execution for dependent threads. In contrast, the optimistic paradigm
assumes that threads are safe to execute and rolls back when this proves incorrect.
Often, the temporal barriers in the model prevent effective parallelism in conserva-
tive PDES while rollbacks in optimistic PDES are expensive in execution.

http://dx.doi.org/10.1007/978-94-017-7267-9_31

17 Parallel Simulation 537

The OOO PDES presented in Sect. 17.4 is conservative and can be seen as an
improvement over synchronous PDES (Sect. 17.3) approaches, such as [11, 27] for
SystemC and [7] for SpecC.

Distributed parallel simulation, including [4, 17], is a natural extension of PDES
where the system model is partitioned into sets of modules and distributed onto a
set of networked host computers. Here, the necessary model partitioning may create
extra work, and often the network speed becomes a bottleneck for synchronization
and communication among the multiple host simulators.

In a wider perspective, simulation performance can also be improved by clever
software modeling and utilizing specialized hardware. Software approaches include
the overall concept of transaction-level modeling (TLM) [3] and temporal decou-
pling [32, 33], which abstract communication from a pin-accurate level to entire
transactions with only approximate timing, and source-level [30] or host-compiled
simulation [14], which model computation and scheduling at a higher abstraction
level. Typically, these modeling techniques trade off higher simulation speed at the
cost of reduced timing accuracy.

Simulation acceleration can also be achieved by special purpose hardware, such
as field-programmable gate arrays (FPGA) and graphics processing units (GPU).
For example, [29] emulates SystemC code on FPGA boards and [23] proposes a
SystemC multi-threading model on GPUs. As a hybrid approach, [28] parallelizes
SystemC simulation across multiple CPUs and GPUs. Usually, special hardware
approaches pose limitations on the model partitioning across the heterogeneous
simulator units.

Parallel simulation can also be organized as multiple simulators which run inde-
pendently in parallel and synchronize regularly or when needed (i.e., when timing
differences grow beyond a given threshold). For instance, the Wisconsin Wind
Tunnel [22] uses a conservative time bucket synchronization scheme to coordinate
multiple simulators at predefined intervals. Another example [34] introduces a sim-
ulation backplane to handle the synchronization between wrapped simulators and
analyzes the system to optimize the period of synchronization message transfers.

From this discussion, we can see that parallel simulation is an important topic that
has been addressed and optimized with a multitude of approaches. For the remainder
of this book chapter, we will focus on the SystemC language and present two general
parallel simulation techniques, namely, synchronous PDES in Sect. 17.3 and an
advanced out-of-order PDES algorithm in Sect. 17.4. Both approaches are general in
the sense that they do not require any special setup or hardware, pose no limitations
on the simulation model, and do not sacrifice any timing accuracy in the result.

17.2 Discrete Event Simulation (DES)

Before we address the details of modern parallel simulation, we review in this
section the classic sequential simulation of models with discrete time. After the
description of this traditional DES algorithm, we then extend it incrementally to
synchronous PDES in Sect. 17.3 and finally to out-of-order PDES in Sect. 17.4.

538 R. Dömer et al.

17.2.1 Discrete Time and Discrete Event Model

SLDL simulation is driven by discrete events and simulation time advances. We will
use the term simulation time for the simulated time maintained by the simulator.
This must not be confused with simulator run time which is the actual wall-clock
time that measures how long it takes the simulator to perform the simulation
on the host. Simulation time consists of a tuple .t; ı/ where t represents an
integral amount of simulated time since the simulation start t D 0 and ı is a
positive integer that counts iterations at the same simulated time t due to event
notifications.

Formally, time tuples, often referred to as time stamps, form a partial order and
can be compared as follows [6]:

equal: .t1; ı1/ D .t2; ı2/ iff t1 D t2, ı1 D ı2

before: .t1; ı1/ < .t2; ı2/ iff t1 < t2, or t1 D t2, ı1 < ı2

after: .t1; ı1/ > .t2; ı2/ iff t1 > t2, or t1 D t2, ı1 > ı2

Events serve the purpose of synchronization among communicating or dependent
threads. Threads can notify events or wait for events. An event notification at time
.t; ı/ reaches a thread waiting for the event at the same time, or it expires without
any effect if no thread is waiting for the event. If a thread wakes up due to a notified
event, it resumes its execution at the next delta increment .t; ı C 1/ or immediately
at .t; ı/ in case of a SystemC immediate notification.

In other words, the SLDL semantics use an outer cycle in the simulation process
to model time advances so that thread execution can reflect estimated duration or
delays by adding to time t . In addition, there is an inner cycle in the simulator,
called delta cycle, that is used for event notifications which may in turn wake
waiting threads, in which case time is incremented by one ı count. In the case
of SystemC, yet another innermost cycle is available where so-called immediate
event notifications may take place without any time advance. Since immediate
notifications can easily lead to nondeterministic models with potential deadlocks
or lost events, these should generally be avoided.

17.2.2 Scheduling Queues

SLDLs use a set of parallel threads to execute the functionality in the
model. In SystemC, such threads are explicitly specified as SC_METHOD,
SC_THREAD, or SC_CTHREAD. These threads are then managed by a scheduler
in the simulator kernel which decides when threads are actually dispatched
to run.

To coordinate the execution of the threads according to the SLDL semantics,
the simulation scheduler typically maintains sorted lists or queues of threads where
each thread is a member of one queue at any time. For ease of understanding, we use
a simplified formal model here and ignore special cases in the SystemC language,

17 Parallel Simulation 539

such as suspended processes. Formally we define the following scheduling
sets [9]:

THREADS D READY [RUN [WAIT [WAITTIME
READY D { th | th is ready to run }
RUN D { th | th is currently running }
WAIT D { th | th is waiting for one or more events }
WAITTIME D { th | th is waiting for time advance }

At the beginning of simulation at time .0; 0/, all threads are placed into the
READY queue and the other sets are empty:

THREADS D READY
RUN D WAIT D WAITTIME D ¿

During simulation, the scheduler moves threads between the queues and sus-
pends or resumes their execution according to their state. In order to describe
the discrete event scheduling algorithms below, we formally define the following
scheduling operations on threads th maintained in queues A and B:

Run(th): thread th begins or resumes its execution
Stop(): the current thread stops running or suspends its execution
Yield(th): the current thread stops running and yields execution to thread th
th = Pick(A): pick one thread th out of set A
Move(th, A, B): move thread th from set A to set B

For inter-thread synchronization and communication, the SystemC language
provides events and channel primitives with special update semantics. Without
going into the details of event notifications and channel updates, we denote the set
of instantiated primitive channels in the model as CHANNEL.

17.2.3 Sequential Discrete Event Scheduler

Figure 17.1 shows the traditional DES scheduling algorithm as it is implemented
by the Accellera SystemC reference simulator [16]. Most notably, this algorithm is
fully sequential in the sense that only a single thread is made runnable at all times.
In SystemC specifically, the choice of the next thread to run is nondeterministic
by definition, so one thread is randomly picked from the READY queue and placed
into the RUN queue for execution. When the thread returns to the scheduler due to
execution of a wait statement, it yields control back to the scheduler which in turn
picks the next thread to run.

When the READY queue is empty, the scheduler performs requested channel
updates and event notifications which typically fills the READY queue again with
threads that wake up due to events they were waiting for. These are taken out of the
WAIT queue and a new delta cycle begins.

If no threads become ready after the update and notification phase, the current
time cycle is complete. Then the scheduler advances the simulation time, moves all

540 R. Dömer et al.

start

READY = Ø?

th ← Pick(READY)
Move(th, READY, RUN)

Yield(th)

∀ch ∈ CHANNEL where update is requested:
Update(ch)

∀th ∈ WAIT where event is triggered:
Move(th, WAIT, READY)

READY = Ø?

∀th ∈ WAITTIME where time(th) = tmin:
Move(th, WAITTIME, READY)

READY = Ø?

end

No

No

Yes

Yes

Yes

No

δ ← δ + 1

Immediate
Notification

Delta Cycle

Time Cycle

t ← t + tmin

Fig. 17.1 Traditional discrete event simulation (DES) scheduler for SystemC

threads with the earliest next time stamp from the WAITTIME queue into the READY
queue, and resumes execution with the next time cycle.

Finally, when both the READY and WAITTIME queues are empty, the simulation
terminates.

17.3 Parallel Discrete Event Simulation (PDES)

The sequential DES algorithm can be easily extended to support synchronous
parallel simulation. Instead of a single thread in DES, regular PDES manages
multiple threads at the same time in the RUN queue. These threads can then execute
truly in parallel on the parallel processors of the host.

17 Parallel Simulation 541

start

No
No

Yes

Yes

Yes

No

No

Yes

|RUN| < Cores
and READY ≠ Ø?

Stop()

Stop()RUN = Ø?
Run (th)

READY = Ø?

th ← Pick(READY)
Move(th, READY, RUN)

∀ch ∈ CHANNEL where update is requested:
Update(ch)

∀th ∈ WAIT where event is triggered:
Move(th, WAIT, READY)

∀th ∈ WAITTIME where time(th) = tmin:
Move(th, WAITTIME, READY)

READY = Ø?

δ ← δ + 1

Immediate
Notification

Delta Cycle

Time Cycle

READY = Ø?

end

No

Yes

t ← t + tmin

Fig. 17.2 Synchronous parallel discrete event simulation (PDES) scheduler for SystemC

17.3.1 Parallel Discrete Event Scheduler

The PDES scheduling algorithm, as shown in Fig. 17.2, operates the same way as the
traditional scheduler in Fig. 17.1, but with one exception: the synchronous parallel
scheduler picks multiple threads from the READY queue and runs them in parallel
on the available processor cores.

In the evaluation phase, as long as the READY queue is not empty and an idle
core is available, the PDES scheduler issues a new thread from the READY queue
in a loop. When a thread finishes earlier than the other threads in the same cycle, a
new ready thread is picked and assigned to the free processor core. Thus, within the
same delta cycle, PDES keeps as many processor cores as busy as possible.

However, we notice that only threads at the same time .t; ı/ run in parallel.
Synchronous PDES implies an absolute barrier at the end of each delta and time
cycle. All threads need to wait at the barrier until all other runnable threads finish

542 R. Dömer et al.

their current evaluation phase. Only then the synchronous scheduler performs the
channel update and event notification phase for the next delta or advances simulation
time for the next time cycle.

17.3.2 Protection of the Parallel Simulation Kernel

The benefit of PDES running more than a single thread at the same time comes
at a price. Explicit synchronization among the parallel threads becomes necessary
in critical sections. In particular, shared data structures in the simulation kernel,
including the global simulation time, event lists, and thread queues, need to be
properly protected for mutual exclusive access by the concurrent threads.

In order to protect the central scheduling resources, locks (binary semaphores)
and condition variables need to be introduced for proper thread synchronization.
For example, our RISC prototype implementation (see Sect. 17.5 below) uses one
dedicated kernel lock to protect the scheduling resources. This lock is acquired by
the threads at every kernel entry and released upon kernel exit. Each thread also
owns a condition variable c that is used in combination with the lock to put threads
to sleep (Stop() calls wait(c)) or wake them up (Run(th) calls signal(c)), as
determined by the scheduling kernel.

17.3.3 Preserving SystemC Execution Semantics in PDES

In contrast to the SpecC language, which allows preemptive parallel execution of
the threads in the model [10], the SystemC language poses strict rules on standard-
compliant simulation. This is a very important aspect to consider when applying
PDES to SystemC. For semantics-compliant SystemC simulation, complex inter-
dependency analysis over all threads and variables in the model is a prerequisite to
parallel execution [9]. The IEEE standard SystemC Language Reference Manual
(LRM) [18] clearly states that “process instances execute without interruption”
and presumably is meant to simplify the writing of SystemC models. Here, the
need to prevent parallel access conflicts to shared variables and to avoid potential
race conditions among the parallel threads becomes a burden for the simulation
environment (rather than for the model designer).

This requirement is also known as cooperative (or coroutine) multitasking which
is explicitly assumed by the SystemC execution semantics. As detailed in [9], the
particular problem of parallel simulation is also explicitly addressed in the SystemC
LRM [18]:

An implementation running on a machine that provides hardware support for concurrent
processes may permit two or more processes to run concurrently, provided that the behavior
appears identical to the coroutine semantics defined in this subclause. In other words,
the implementation would be obliged to analyze any dependencies between processes and
constrain their execution to match the coroutine semantics.

17 Parallel Simulation 543

Consequently, a standard-compliant PDES environment for SystemC must iden-
tify and resolve any dependencies among the threads in the model. We will describe
this required dependency analysis in detail in Sect. 17.5.3 because it is needed for
both synchronous and out-of-order PDES.

17.4 Out-of-Order Parallel Discrete Event Simulation
(OOO PDES)

In OOO PDES [6], we break the synchronous barrier in the simulator so that
independent threads can also run in parallel when they are at a different simulation
times (different t or different ı). In other words, threads are allowed to run ahead in
time and thus can execute out-of-order, unless a causal relationship prohibits it.

17.4.1 Thread-Local Simulation Time

For OOO PDES, we replace the global simulation time .t; ı/ with local time stamps
for each thread. Thus, each thread th maintains its own time .tth; ıth/.

Events get assigned their own time, too. Since events in the simulation model can
occur multiple times and at different simulation times, we note an event e notified
at time .t; ı/ as a triple .ide; te; ıe/. Thus, every event is managed with its own ID
and notification time attached.

Finally, we distinguish the sets of events that have been notified at a given time.
Formally, we define:

EVENTS D [EVENTSt;ı

EVENTSt;ı D f.ide; te; ıe/ j te D t; ıe D ı/g

17.4.2 Dynamically Evolving Scheduling Queues

Rather than the static DES queues which exist at all times, we define for OOO PDES
multiple sets ordered by their local time stamps and dynamically create and delete
these sets as needed. For efficiency reasons, these sets are typically implemented as
true queues where the threads are ordered by increasing time stamps. Formally, we
define the following queues:

QUEUES D fREADY; RUN; WAIT; WAITTIMEg

READY D [READYt;ı , where READYt;ı D fth j th is ready to run at .t; ı/g

RUN D [RUNt;ı , where RUNt;ı D fth j th is running at .t; ı/g

WAIT D [WAITt;ı , where WAITt;ı D fth j th is waiting since .t; ı/ for events
.ide; te; ıe/, .te; ıe/ � .t; ı/g

WAITTIME D [WAITTIMEt;ı , where ı D 0, WAITTIMEt;ı D fth j th is waiting for
simulation time advance to .t; 0/g

544 R. Dömer et al.

As in the regular DES case, the simulation starts at time .0; 0/ with all threads in
the READY0;0 queue. Then again the threads change state by transitioning between
the queues, as determined by the scheduler:

Move.th; READYt;ı; RUNt;ı/: thread th is issued and becomes runnable
Move.th; RUNt;ı; WAITt;ı/: thread th calls wait(e) for an event e

Move.th; RUNt;ı; WAITTIMEt 0;0/, where t < t 0 D t C d: thread th calls wait(d)
to wait for a time delay d

Move.th; WAITt;ı; READYt 0;ı00/, where .t; ı/ � .t 0; ı00/: thread th is waiting since
time .t; ı/ for event e D .ide; t 0e; ı0e/ which is notified at time .t 0; ı0/; in turn,
thread th becomes ready to run at .t 0; ı00/ where ı00 D ı0 (immediate notification)
or ı00 D ı0 C 1 (regular delta cycle notification)
Move.th; WAITTIMEt;ı; READYt;ı/, where ı D 0: simulation time advances to
time .t; 0/, making one or more threads th ready to run; the local time for these
threads th is set to .tth; ıth/ where tth D t and ıth D 0

Whenever the sets READYt;ı and RUNt;ı become empty and there are no WAITt 0;ı0

or WAITTIMEt 0;ı0 queues with earlier time stamps .t 0; ı0/ � .t; ı/, then the scheduler
can delete these sets as well as any expired events EVENTSt;ı .

17.4.3 Out-of-Order Parallel Discrete Event Scheduler

Figure 17.3 shows the OOO PDES scheduling algorithm. Since each thread
maintains its own local time, the scheduler can relax the nested loops structure of
synchronous PDES and deliver events and update simulation times individually,
providing more flexibility for threads to run in parallel. Overall, this results in a
higher degree of parallelism and thus higher simulation speed.

Note that the prior loops for explicit delta cycles and time cycles in the scheduler
control flow do not exist any more for OOO PDES. Instead, we only have one
main loop where both the notification phase and time updates are processed.
The READY queue is consequently filled with more threads which, however, are
now subject to possible conflicts. These conflicts are then taken into account
when threads are picked from the READY queue and issued for execution into the
RUN set.

Note also that the WAITTIME queue gets cleared in every scheduling step and all
the threads move into the timed READY queue. Then, when the scheduler picks ready
threads to run, it prefers earlier ones over threads with later time stamps. This order
prevents threads from starving in the READY queue and also minimizes conflicts
among the ready threads.

Potential conflicts are strictly averted by the NOCONFLICTS(th) condition in
Fig. 17.3 when runnable threads are picked. Here, detailed dependency analysis
is used to avoid potential data, event, and time advance hazards among the
set of threads in RUN that are executing in parallel. Only if a thread th has
NOCONFLICTS(th) it can be issued for parallel execution.

17 Parallel Simulation 545

start

No

No

NoYes

Yes

Yes

|RUN| < Cores
and READY ≠ Ø?

Stop()

Stop()

RUN = Ø?

RUNt, δ,

Run (th)

READY = Ø?

where NoConflicts(th) = true

∀th ∈ WAIT where event is triggered at (te', δe'):
Move(th, WAITt, δ, READYt', δ'')

Move(th, READYt, δ,

end

(tth, δth) ← (t', δ'')

∀th ∈ WAITTIMEt, 0:
Move(th, WAITTIMEt, 0, READYt, 0)

(tth, δth) ← (t, 0)

th ← Pick(READY)

Fig. 17.3 Out-of-order parallel discrete event simulation (OOO PDES) scheduler for SystemC

17.4.4 OOO PDES Scheduling Algorithm

Algorithm 3 formally defines the scheduling algorithm of OOO PDES. At each
scheduling step, the scheduler first evaluates notified events and wakes up corre-
sponding threads from WAIT. If a thread receives its event e with time stamp .t 0e; ı0e/,
it becomes ready to run and its local time advances to either .t 0e; ı0e/ for an immediate
notification or .t 0e; ı0e C 1/ for regular delta notifications.

After event notifications, the scheduler processes local time advances and moves
any threads in WAITTIME to the READYt;0 queue corresponding to their wait time.

Then the scheduler issues threads for parallel execution as long as idle CPU
cores and threads without conflicts are available. Finally, if no threads can run, that
is when RUN D READY D ;, the simulator terminates.

Note that Algorithm 3 allows to enable/disable the parallel out-of-order execution
at any time by setting the Cores parameter. For example, when in-order execution is

546 R. Dömer et al.

Algorithm 3 OOO PDES scheduling algorithm
1: procedure OOOPDES_SCHEDULER

2: for all th 2WAIT do F Process event notifications
3: if 9e D .ide; t 0

e; ı0

e/ where th awaits e and .t 0

e; ı0

e/ � .t; ı/ then
4: if e is an immediate notification then
5: Move(th, WAITt;ı , READYt 0

e ;ı0

e
/

6: tth t 0

e ; ıth ı0

e

7: else
8: Move(th, WAITt;ı , READYt 0

e ;ı0

eC1/

9: tth t 0

e ; ıth ı0

e C 1

10: end if
11: end if
12: end for
13: for all th 2WAITTIME do F Process local time advances
14: Move(th, WAITTIMEt;ı , READYt;ı)
15: tth t ; ıth 0

16: end for
17: for all th 2 READY do F Out-of-order evaluation phase
18: if jRUNj < Cores and NOCONFLICTS.th/ then
19: Run(th)
20: end if
21: end for
22: return F End of simulation
23: end procedure

needed for debugging purposes, we can set Cores to 1, and the algorithm will behave
the same way as the traditional DES where only one thread is running in order at all
times.

OOO PDES relies heavily on efficient conflict detection. At run time, the
scheduler calls the function NOCONFLICTS(th) listed in Algorithm 4. NOCON-
FLICTS(th) checks for potential conflicts with all concurrent threads in the RUN
and READY queues that run at an earlier time than the candidate thread th. For each
concurrent thread, function CONFLICT(th1; th2) checks for any data, time, and event
hazards. We will explain these hazards and their analysis in detail in Sect. 17.5.3
below, because we can rely on the compiler to carry the heavy burden of this
complex analysis and pass prepared conflict tables to the simulator. At run time,
the scheduler can then perform these checks in constant time (O(1)) by use of table
lookups.

17.5 Recoding Infrastructure for SystemC (RISC)

We have realized the OOO PDES approach for the SystemC language with
our RISC. This proof-of-concept prototype environment consists of a compiler
and simulator with examples and documentation. The RISC software package is
available as open source on our website [20] and can be installed on any regular
multi-core Linux host.

17 Parallel Simulation 547

Algorithm 4 Conflict detection in OOO PDES scheduler
1: function NOCONFLICTS(th)
2: for all th2 2 RUNt;ı [READYt;ı where .t; ı/ < .tth; ıth/ do
3: if CONFLICT(th, th2) then
4: return false
5: end if
6: end for
7: return true
8: end function

9: function CONFLICT(th1, th2)
10: if th2 has data conflicts with th1 then F check data hazards
11: return true
12: end if
13: if th2 may enter another segment before th1 then F check time hazards
14: return true
15: end if
16: if th2 may wake up another thread th3 to run before th1 then F check event hazards
17: return true
18: end if
19: return false
20: end function

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Fig. 17.4 RISC compiler and simulator for out-of-order PDES of SystemC

To perform semantics-compliant parallel SystemC simulation with out-of-order
scheduling, we introduce a dedicated SystemC compiler that works hand in hand
with a new simulator. This is in contrast to the traditional SystemC simulation flow
where a SystemC-agnostic C++ compiler includes the SystemC headers and links
the input model directly against the reference SystemC library.

As shown in Fig. 17.4, our RISC compiler acts as a frontend that processes the
input SystemC model and generates an intermediate model with special instrumen-
tation for OOO PDES. The instrumented parallel model is then linked against the
extended RISC SystemC library by the target compiler (a regular C++ compiler) to
produce the final executable output model. OOO PDES is then performed simply by
running the generated executable model.

From the user perspective, we simply replace the regular C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler).
Otherwise, the overall SystemC validation flow remains the same as before. It will
be just faster due to the parallel simulation.

548 R. Dömer et al.

Internally, the RISC compiler performs three major tasks, namely, segment graph
construction, conflict analysis, and source code instrumentation.

17.5.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an
Abstract Syntax Tree (AST). Since SystemC is syntactically regular C++ code,
RISC relies here on the ROSE compiler infrastructure [25]. The ROSE internal
representation (IR) provides RISC with a powerful C/C++ compiler foundation that
supports AST generation, traversal, analysis, and transformation.

As illustrated with the RISC software stack shown in Fig. 17.5a, the RISC
compiler then builds on top of the ROSE IR a SystemC internal representa-
tion which accurately reflects the SystemC structures, including the module and
channel hierarchy, port connectivity, and other SystemC-specific constructs. Up
until this layer, the RISC software stack is very similar to the SystemC-clang
framework [19].

On top of this, the RISC compiler then builds a segment graph data structure.
A Segment Graph (SG) [8] is a directed graph that represents the code segments
executed by the threads in the model. With respect to SystemC simulation, these
segments are separated by the scheduler entry points, i.e., the wait statements in
the SystemC code. In other words, the discrete events in the SystemC execution
semantics are explicitly reflected in the SG as segment boundaries.

Note that a general segment graph may be defined with different segment
boundaries. In fact, the RISC infrastructure takes the segment boundary as a flexible
parameter that may be set to any construct found in the code, including function
calls or control flow statements, such as if, while, or return. Here, we use
wait statements as boundary (specified as “segment graph Œwait�” in Fig. 17.5c)

Fig. 17.5 Recoding infrastructure for SystemC (RISC) and a segment graph (SG) example [26].
(a) RISC software stack. (b) Example source code. (c) Segment graph [wait]

17 Parallel Simulation 549

since for the purpose of parallel simulation we are interested in the segments of code
executed between two scheduling points.

Formally, a segment graph consists of nodes and edges [6]. While the nodes are
defined by the specified boundaries, the edges in the SG are defined by the possible
control flow transitions. A transition exists between two segment nodes S1 and S2 if
the flow of control starting from segment S1 can reach segment S2.

For example, the SystemC source code in Fig. 17.5b results in the SG shown
in Fig. 17.5c where the segment boundary is chosen as SystemC wait. Here, the
control flow from the start can reach the two wait statements in lines 2 and 6,
resulting in the two edges to segment “wait(line2)” and “wait(line6).” Note also
that source code lines may become part of multiple segments. Here, the assignment
z=z*z is part of both segments “wait(line2)” and “wait(line6)” because it can be
reached from both nodes.

17.5.2 Segment Graph Construction

The automatic construction of a segment graph is a complex process for the
compiler. In this section, we first outline the main aspects and then provide a formal
algorithm for the SG generation.

In contrast to the initial SpecC-based implementation [6, 8] (which is part
of �Chap. 31, “SCE: System-on-Chip Environment”) which has had several
limitations, the RISC SG generator can build a graph from any given scope
in a C/C++-based code and the user can freely choose the segment boundaries
(as stated above for a general SG). There are also no control flow limitations.
The RISC compiler fully supports recursive functions, jump statements break
and continue, as well as multiple return statements from functions. Finally,
expressions with an undefined evaluation order will be properly ordered to avoid
ambiguity.

Algorithm 5 formally defines the central function BUILDSG used in the RISC
SG generator. Function BUILDSG is recursive and builds the graph of segments by
traversing the AST of the design model. Here, the first parameter CurrStmt is the
current statement which is processed next. The set CurrSegs contains the current set
of segments that lead to CurrStmt and thus will incorporate the current statement.
For instance, while processing the assignment z=z*z in Fig. 17.5, CurrSegs is the
set {wait(line2), wait(line6)}, so the expression will be added to both segments.

If CurrStmt is a boundary statement (e.g., wait), a new segment is added to
CurrSegs with corresponding transition edges (lines 2–7 in Algorithm 5). Com-
pound statements are processed by recursively iterating over the enclosed statements
(lines 8–12), and conditional statements are processed recursively for each possible
flow of control (from line 13). For example, the break and continue statements
represent an unconditional jump in the program. For handling these keywords,
the segments in CurrSegs move into the associated set BreakSegs or ContSegs,
respectively. After completing the corresponding loop or switch statement, the
segments in BreakSegs or ContSegs will be moved back to the CurrSegs set.

http://dx.doi.org/10.1007/978-94-017-7267-9_31

550 R. Dömer et al.

Algorithm 5 Segment graph generation
1: function BUILDSG(CurrStmt, CurrSegs, BreakSegs, ContSegs)
2: if isBoundary(CurrStmt) then
3: NewSeg new segment
4: for Seg 2 CurrSegs do
5: AddEdge(Seg, NewSeg)
6: end for
7: return CurrSegs [{ NewSeg }
8: else if isCompoundStmt(CurrStmt) then
9: for Stmt 2 CurrStmt do

10: CurrSegs BUILDSG(Stmt, CurrSegs, BreakSegs, ContSegs)
11: end for
12: return CurrSegs
13: else if isIfStmt(CurrStmt) then
14: AddExpression(IfCondition, CurrSegs);
15: NewSegSet1 BUILDSG(IfBody, CurrSegs, BreakSegs, ContSegs)
16: NewSegSet2 BUILDSG(ElseBody, CurrSegs, BreakSegs, ContSegs)
17: return NewSegSet1 [NewSegSet2
18: else if isBreakStmt(CurrStmt) then
19: BreakSegs BreakSegs [CurrSegs
20: CurrSegs ;
21: return CurrSegs
22: else if isContinueStmt(CurrStmt) then
23: ContSegs ContSegs [CurrSegs
24: CurrSegs ;
25: return CurrSegs
26: else if isExpression(CurrStmt) then
27: if isFunctionCall(CurrStmt) then
28: return AddFunctionCall(CurrStmt, CurrSegs) F See Fig. 17.6a
29: else
30: AddExpression(CurrStmt, CurrSegs)
31: return CurrSegs
32: end if
33: else if isLoop(CurrStmt) then
34: return AddLoop(CurrStmt, CurrSegs) F See Fig. 17.6b
35: end if
36: end function

For brevity, we illustrate the processing of function calls and loops in Fig. 17.6.
The analysis of function calls is shown in Fig. 17.6a. In step 1 the dashed circle
represents the segment set CurrSegs. The RISC algorithm detects the function call
expression and checks if the function is already analyzed. If not and it is encountered
for the first time, the function is analyzed separately, as shown in step 2. Otherwise,
the algorithm reuses the cached SG for the particular function. Then in step 3, each
expression in segment 1 of the function is joined with each individual segment in
CurrSegs (set 0). Finally, segments 4 and 5 represent the new set CurrSegs.

Correspondingly, Fig. 17.6b illustrates the SG analysis for a while loop. Again
the dashed circle in step 1 represents the incoming set CurrSegs. The algorithm
detects the while statement and analyzes the loop body separately. The graph for

17 Parallel Simulation 551

1

2 3

4 5

0

func()

Graph for func()a b

2 3

4 5

(1) (2) (3) (1) (2) (3)

0+1 0 1

2 3

4 5

while(var){
//body
}

0+1

2 3

4 5

Graph for loop body

Fig. 17.6 Segment graph generation for functions and loops. (a) Function call processing. (b)
Loop processing

the body of the loop is shown in step 2. Then each expression in segment 1 is joined
into the segment set 0, and the new set CurrSegs becomes the joined set of 0+1, 4,
and 5. Note that we have to consider set 0+1 for the case that the loop is not taken.

17.5.3 Static Conflict Analysis

The segment graph data structure serves as the foundation for static (compile time)
conflict analysis. As outlined earlier, the OOO PDES scheduler must ensure that
every new running thread is conflict-free with respect to any other threads in the
READY and RUN queues. For this, we utilize the RISC compiler to detect any
possible conflicts already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing
hazards, all of which may exist among the current segments executed by the threads
considered for parallel execution [6].

17.5.3.1 Data Hazards
Data hazards are caused by parallel or out-of-order accesses to shared variables.
Three cases exist, namely, read after write (RAW), write after read (WAR), and
write after write (WAW).

In the example in Fig. 17.7, if the simulator would issue the threads th1 and
th2 in parallel, this would create a race condition, making the final value of s

nondeterministic. Thus, the scheduler must not run th1 and th2 out of order. Note,
however, that th1 and th2 can run in parallel in the segment after their second wait
statement if the functions f() and g() are independent.

Since, data hazards stem from the code in specific segments, RISC analyzes data
conflicts statically at compile time and creates a table where the scheduler can then
at run time quickly look up any potential conflicts between active segments.

Formally, we define a data conflict table CTŒN; N � where N is the total number
of segments in the application model: CTŒi; j � D true, iff there is a potential data
conflict between the segments segi and segj ; otherwise, CTŒi; j � D false.

To build the conflict table, the compiler generates for each segment a variable
access list which contains all variables accessed in the segment. Each entry is a

552 R. Dömer et al.

Fig. 17.7 Example of WAW
conflict: Two parallel threads
th1 and th2 start at the same
time but write to the shared
variable s at different times.
Simulation semantics require
that th1 executes first and sets
s to 0 at time .5; 0/, followed
by th2 setting s to its final
value 1 at time .10; 0/

1 int s;
2
3 thread1()
4 { wait(5, SC_MS);
5 s = 0;
6 wait(10, SC_MS);
7 f();
8 }
9

10 thread2()
11 { wait(10, SC_MS);
12 s = 1;
13 wait(10, SC_MS);
14 g();
15 }

tuple (Symbol, AccessType) where Symbol is the variable and AccessType specifies
read only (R), write only (W), read write (RW), or pointer access (Ptr).

Finally, the compiler produces the conflict table CTŒN; N � by comparing the
access lists for each segment pair. If two segments segi and segj share any variable
with access type (W) or (RW), or there is any pointer access by segi or segj , then
this is marked as a potential conflict.

Figure 17.8 shows an example SystemC model where two threads th1 and th2

which run in parallel in modules M1 and M2, respectively. Both threads write to
the global variable x, th1 in lines 14 and 27, and th2 in line 35 since reference p is
mapped to x. Before we can mark these WAW conflicts in the data conflict table, we
need to generate the segment graph for this example. The SG with corresponding
source code lines is shown in Fig. 17.9a, whereas Fig. 17.9b shows the variable
accesses by the segments. Note that segments 3 and 4 of thread th1 write to x,
as well as segment 8 of th2 which writes to x via the reference p. Thus, segments
3, 4, and 8 have a WAW conflict. This is marked properly in the corresponding data
conflict table shown in Fig. 17.10a.

In general, not all variables are straightforward to analyze statically. SystemC
models can contain variables at different scopes, as well as ports which are con-
nected by port maps. The RISC compiler distinguishes and supports the following
cases for the static variable access analysis.

1. Global variables, e.g., x, y in lines 2 and 3 of Fig. 17.8: This case is discussed
above and is handled directly as tuple (Symbol, AccessType).

2. Local variables, e.g., temp in line 10 for Module M1: Local variables are stored
on the stack and cannot be shared between different threads. Thus, they can be
ignored in the variable access analysis.

3. Instance member variables, e.g., i in line 2 for Module M2: Since classes can
be instantiated multiple times and then their variables are different, we need to
distinguish them by their complete instance path added to the variable name. For
example, the actual symbol used for the instance variable i in module M2 is
m:m2:i .

17 Parallel Simulation 553

1 #include "systemc.h"
2 int x = 0;
3 int y;
4 SC_MODULE(M1) { // Module M1
5 SC_HAS_PROCESS(M1);
6 sc_event &event;
7 M1(sc_module_name name, sc_event &e): event(e)
8 { SC_THREAD(main); }
9 void main() {

10 int temp = 0;
11 while(temp++<2) {
12 wait(1, SC_MS);
13 wait(event);
14 x = temp;
15 }
16 wait(3, SC_MS);
17 x = 27;
18 }
19 };
20 SC_MODULE(M2) { // Module M2
21 SC_HAS_PROCESS(M2);
22 int i;
23 int &p;
24 sc_event &event;
25 M2(sc_module_name name, int &pp, sc_event &e):
26 sc_module(name), p(pp), i(0), event(e)
27 { SC_THREAD(main); }
28 void main() {
29 do {
30 wait(2, SC_MS);
31 y = i;
32 event.notify(SC_ZERO_TIME);
33 } while(i++<2);
34 wait(4, SC_MS);
35 p = 42;
36 }
37 };
38 SC_MODULE(Main) { // Module Main
39 sc_event event;
40 M1 m1;
41 M2 m2;
42 Main(sc_module_name name):
43 sc_module(name), m1("m1", event), m2("m2", x, event)
44 { }
45 };
46 int sc_main(int argc, char **argv) {
47 Main m("main");
48 sc_start();
49 return 0;
50 }

Fig. 17.8 SystemC example with two parallel threads in modules M1 and M2

554 R. Dömer et al.

Se
gm

en
t I

D
: 0

 [
M

1:
:m

ai
n]

E
xa

m
pl

e.
cp

p:
10

 in
t t

em
p

=
 0

;

E
xa

m
pl

e.
cp

p:
11

 te
m

p+
+

 <
 2

Se
gm

en
t I

D
: 2

 (
E

xa
m

pl
e.

cp
p:

12
)

Se
gm

en
t I

D
: 4

 (
E

xa
m

pl
e.

cp
p:

16
)

E
xa

m
pl

e.
cp

p:
17

 x
 =

 2
7

Se
gm

en
t I

D
: 3

 (
E

xa
m

pl
e.

cp
p:

13
)

E
xa

m
pl

e.
cp

p:
14

 x
 =

 te
m

p

E
xa

m
pl

e.
cp

p:
11

 te
m

p+
+

 <
 2

Se
gm

en
t I

D
: 5

Se
gm

en
t I

D
: 7

 (
E

xa
m

pl
e.

cp
p:

30
)

E
xa

m
pl

e.
cp

p:
31

 y
 =

(t
hi

s)
 -

>
 i

E
xa

m
pl

e.
cp

p:
32

 (
th

is
)

->
 e

ve
nt

 .
no

tif
y(

SC
_Z

E
R

O
_T

IM
E

)

E
xa

m
pl

e.
cp

p:
33

 (
th

is
)

->
 i+

+
 <

 2

Se
gm

en
t I

D
: 8

 (
E

xa
m

pl
e.

cp
p:

34
)

E
xa

m
pl

e.
cp

p:
35

 (
th

is
)

->
 p

 =
 4

2

a

b
Se

gm
en

t I
D

: 0
 [

M
1:

:m
ai

n]

(W
)

te
m

p

(R
)

te
m

p

Se
gm

en
t I

D
: 2

 (
E

xa
m

pl
e.

cp
p:

12
)

Se
gm

en
t I

D
: 4

 (
E

xa
m

pl
e.

cp
p:

16
)

(W
)

x

Se
gm

en
t I

D
: 3

 (
E

xa
m

pl
e.

cp
p:

13
)

(W
)

x

(W
)

te
m

p

(R
)

te
m

p

Se
gm

en
t I

D
: 5

Se
gm

en
t I

D
: 7

 (
E

xa
m

pl
e.

cp
p:

30
)

(W
)

y

(W
)

i

(R
) S

C
_Z

E
R

O
_T

IM
E

(R
)

i

Se
gm

en
t I

D
: 8

 (
E

xa
m

pl
e.

cp
p:

34
)

(W
)

p

Fi
g

.
1

7
.9

Se
gm

en
tg

ra
ph

s
ge

ne
ra

te
d

by
R

IS
C

fo
r

th
e

ex
am

pl
e

in
Fi

g.
17

.8
.(

a)
So

ur
ce

co
de

SG
fo

r
Fi

g.
17

.8
.(

b)
V

ar
ia

bl
e

ac
ce

ss
SG

fo
r

Fi
g.

17
.8

17 Parallel Simulation 555

Fig. 17.10 Data conflict and
event notification tables for
the example in Fig. 17.8. (a)
Data conflict table. (b) Event
notification table

0a b2 3 54 7 8

0

2

3 T T T

4 T T T

5

7 T

8

0 2 3 54 7 8

0

2

3

4

5

7

8T T T

T

4. References, e.g., p in line 23 in module M2: RISC follows references through the
module hierarchy and determines the actual mapped target variable. For instance,
p is mapped to the global variable x via the mapping in line 43.

5. Pointers: RISC currently does not perform pointer analysis. This is planned as
future work. For now, RISC conservatively marks all segments with pointer
accesses as potential conflict with all other segments.

17.5.3.2 Event Hazards
Thread synchronization through event notification also poses hazards to out-of-order
execution. Specifically, thread segments are dependent when one is waiting for an
event notified by another.

We define an event notification table NTŒN; N � where N is the total number of
segments: NTŒi; j � D true, iff segment segi notifies an event that segj is waiting
for; otherwise, NTŒi; j � D false. Note that in contrast to the data conflict table, the
event notification table is not symmetric.

Figure 17.10b shows the event notification table for the SystemC example in
Fig. 17.8. For instance, NTŒ7; 3� D true since segment 7 notifies the event e in line
32, which segment 3 is waiting for in line 13.

Note that in order to identify event instances properly, RISC uses the
same scope and port map handling for events as described above for data
variables.

17.5.3.3 Timing Hazards
The local time for an individual thread in OOO PDES can pose a timing hazard when
the thread runs too far ahead of others. To prevent this, we analyze the minimum
time advances of threads at segment boundaries. For SystemC, there are three cases
with different time increments, as listed in Table 17.1.

In order for the scheduler to avoid timing hazards, we let the compiler prepare
two time advance tables, one for the segment a thread is currently in and one for the
next segment(s) that a thread can reach in the following scheduling step.

The current time advance table CTimeŒN � lists the time increment that a thread
will experience when it enters the given segment. For the SystemC example in
Figs. 17.8 and 17.11a shows the corresponding current time advance table. Here

556 R. Dömer et al.

Table 17.1 Time advances at wait segment boundaries

Segment boundary Time increment Add to .t 0; ı0/

wait(t) Increment by time t .t W 0/ .t 0 C t; 0/

wait(event) Increment by one delta count .0 W 1/ .t 0; ı0 C 1/

wait(immediate event) No increment .0 W 0/ .t 0; ı0/

0 2 3 54 7 8

(0:0)

a b

(1:0) (0:0) (0:0)(3:0) (2:0) (4:0)

0

(1:0) (0:0) (1:0) (2:0)∞ (2:0)

2 3 54 7 8

Fig. 17.11 Current and next time advance tables for the example in Fig. 17.8. (a) Current time
advance table. (b) Next time advance table

Table 17.2 Examples for direct and indirect timing hazards

Situation th1 th2 Hazard?

Direct timing hazard
.10 W 2/ .10 W 0/, next segment at .10 W 1/ Yes

.10 W 2/ .10 W 0/, next segment at .12 W 0/ No

Indirect timing hazard
.10 W 2/ .10 W 0/, wakes th3 at .10 W 1/ Yes

.10 W 2/ .10 W 1/, wakes th3 at .10 W 2/ No

for instance, the wait(2,SC_MS) in line 30 at the beginning of segment 7 defines
CTimeŒ7� D .2; 0/.

On the other hand, the next time advance table NTimeŒN � lists the time increment
that a thread will incur when it leaves the given and enters the next segment. Since
there may be more than one next segment, we list in the table the minimum of
the time advances, which is the earliest time the thread can become active again.
Formally: NTimeŒi � D minfCTimeŒj �; 8segj which follow segi g.

For example, Fig. 17.11b lists NTimeŒ0� D .1; 0/ since segment 0 is followed by
segment 2 with increment .1; 0/ and segment 4 with increment 1.

There are two types of timing hazards, namely, direct and indirect ones. For a
candidate thread th1 to be issued, a direct timing hazard exists when another thread
th2, that is safe to run, resumes its execution at a time earlier than the local time of
th1. In this case, the future of th2 is unknown and could potentially affect th1. Thus,
it is not safe to issue th1.

Table 17.2 shows an example where a thread th1 is considered for execution at
time .10 W 2/. If there is a thread th2 with local time .10 W 0/ whose next segment
runs at time .10 W 1/, i.e., before th1, then the execution of th1 is not safe. However,
if we know from the time advance tables that th2 will resume its execution later at
.12 W 0/, no timing hazard exists with respect to th2.

An indirect timing hazard exists, if a third thread th3 can wake up earlier than
th1 due to an event notified by th2. Again, Table 17.2 shows an example. If th2 at
t ime.10 W 0/ potentially wakes a thread th3 so that th3 runs in the next delta cycle
.10 W 1/, i.e., earlier than th1, then it is not safe to issue th1.

17 Parallel Simulation 557

17.5.4 Source Code Instrumentation

As shown above in Fig. 17.4 on page 547, the RISC compiler and parallel simulator
work closely together. The compiler performs the complex conservative static
analysis and passes the analysis results to the simulator which then can make safe
scheduling decisions quickly.

More specifically, the RISC compiler passes all the generated conflict tables to
the simulator, namely, the data conflict table, the event notification table, as well as
the current and next time advance tables. In addition, the compiler instruments the
model source code so that the simulator can properly identify each thread and each
segment by unique numeric IDs.

To pass information from the compiler to the simulator, RISC uses automatic
model instrumentation. That is, the intermediate model generated by the compiler
contains instrumented (automatically generated) source code which the simulator
then can rely on. At the same time, the RISC compiler also instruments user-
defined SystemC channels with automatic protection against race conditions among
communicating threads. The source code instrumentation with segment IDs, conflict
tables, and automatic channel protection is a part of model “recoding” (i.e., the “R”
in RISC). For the future, we envision additional recoding tasks performed by RISC,
such as model transformation, optimization, and refinement.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identified by a creator
instance ID and their current code location (segment ID). Both IDs are passed
into the simulator kernel as additional arguments to all scheduler entry functions,
including wait calls and thread creation.

2. Data and event conflict tables: Segment concurrency hazards due to potential
data conflicts, event conflicts, or timing conflicts are provided to the simulator
as two-dimensional tables indexed by a segment ID and instance ID pair. For
efficiency, these table entries are filtered for scope, instance path, and reference
and port mappings.

3. Current and next time advance tables: The simulator can make better scheduling
decisions by looking ahead in time if it can predict the possible future thread
states. This possible optimization is discussed in detail in [5] but remains as a
future work item for the current RISC prototype.

4. User-defined channel protection: SystemC allows the user to design channels for
custom inter-thread communication. To ensure that such user-defined communi-
cation remains safe also in the OOO PDES situation where threads execute truly
in parallel and out of order, the RISC compiler automatically inserts locks (binary
semaphores) into these user-defined channel instances (which are acquired at
entry and released upon leaving) so that mutually exclusive execution of the
channel methods is guaranteed. Otherwise, race conditions could exist when
communicating threads exchange data.

After this automatic source code instrumentation, the RISC compiler passes
the generated intermediate model to the underlying regular C++ compiler which

558 R. Dömer et al.

produces the final simulator executable by linking the instrumented code against the
RISC extended SystemC library.

17.6 Experimental Evaluation

We now present two SystemC application models as examples and evaluate the
performance of DES, PDES, and OOO PDES algorithms on modern multi-core
hosts. As DES representative and baseline reference, we will use the open-source
proof-of-concept library [16] provided by the SystemC Language Working Group
[31] of the Accellera Systems Initiative [1]. As OOO PDES representative, we will
use the RISC [21] which is also available as open source [20]. For synchronous
PDES, we will use an in-house version of RISC where the out-of-order scheduling
features are disabled. To ensure a fair comparison, all simulator packages are based
on Posix threads and compiled with the same optimization settings, and of course
run on the same host environment.

17.6.1 Conceptual DVD Player Example

Our first example is an abstract model of a DVD player, as shown in Fig. 17.12.
While this SystemC model is conceptual only, it is well-motivated and very
educational as it clearly demonstrates the differences between the DES, PDES, and
OOO PDES algorithms.

As listed in Fig. 17.12, the SystemC modules representing the video and audio
decoders operate in an infinite loop, reading a frame from the input stream,
decoding it, and sending it out to the corresponding monitor modules. Since the
video and audio frames are data independent, the decoders run in parallel and

Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4:
5: while(1){
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(33330, SC_US);
9: p2->send(outFrm);

10: }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4:
5: while(1){
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(26120, SC_US);
9: p2->send(outFrm);

10: }
11: };

Fig. 17.12 Conceptual DVD player example with a video and two audio stream decoders

17 Parallel Simulation 559

Video

Left
Right

0

76.6633.33

78.38

100

Frame 3Frame 1 Frame 2

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

Time [ms] 52.2526.12

LF 4

a

b

c

0 26.12

33.33 66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

52.25

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

Fig. 17.13 Time lines for the DVD player example during simulation. (a) DES schedule:
sequential execution, only one task at any time. (b) Synchronous PDES schedule: parallel
execution only at the same simulation times. (c) Out-of-order PDES schedule: fully parallel
execution (the same as in reality!)

output the decoded frames according to their channel rate, 30 frames per second
video (delay 33.33 ms) and 38.28 frames per second audio (delay 26.12 ms),
respectively.

Figure 17.13 depicts the time lines of simulating the DVD player according
to DES, PDES, and OOO PDES semantics. As expected, the DES schedule
in Fig. 17.13a executes only a single task at all times. Synchronous PDES in
Fig. 17.13b is able to parallelize the decoders for the left and right audio channels
but cannot exploit parallelism for decoding the video channel due to its different
frame rate. Only the OOO PDES schedule in Fig. 17.13c shows the fully parallel
execution that we also expect in reality. Note that the artificially discretized timing
in the model prevents PDES from full parallelization. In contrast, OOO PDES with
thread-local timing achieves the goal.

Our experimental measurements listed in Table 17.3 confirm the analysis of
Fig. 17.13. For both experiments, the synchronous PDES gains about 50% simu-
lation speed over the reference DES. However, the out-of-order PDES beats the
synchronous approach by another 100% improvement.

17.6.2 Mandelbrot Renderer Example

As a representative example of very computation intensive and highly parallel
applications, we have evaluated the three-simulation algorithms also on a graph-
ics pipeline model that renders a sequence of images of the Mandelbrot set.

560 R. Dömer et al.

Table 17.3 Experimental results for the DVD player example. RISC V0.2.1 simulator perfor-
mance (Posix-thread based) on a 8-core Intelr Xeonr host PC (E3-1240 CPU, 4 cores, 2
hyper-threads) at 3.4 GHz

Movie Simulator DES PDES OOO PDES

10 second stream
Run time 6.98 s 4.67 s 2.94 s

CPU load 97% 145% 238%

Speedup 1� 1.49� 2.37�

100 second stream
Run time 68.21 s 45.91 s 28.13 s

CPU load 100% 149% 251%

Speedup 1� 1.49� 2.42�

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

Fig. 17.14 Mandelbrot renderer example: Stimulus generates target coordinates in the complex
plane for which the DUT renders the corresponding Mandelbrot image and sends it to the
Monitor module. In the DUT, a Coordinator distributes slices of the target coordinates to parallel
Mandelbrot worker threads and synchronizes their progress

Figure 17.14 shows the block diagram of our Mandelbrot renderer model in
SystemC.

The number of Mandelbrot worker threads is user configurable as an exponent
of 2, for example, 4 as illustrated in Fig. 17.14. Each worker thread computes a
different horizontal slice of the image and works independently and in parallel to the
others. If enabled in the SystemC model, the progress of the workers’ computation
is displayed in a window, as shown in Fig. 17.15.

Table 17.4 shows the measured experimental results for the Mandelbrot renderer
with different numbers of worker threads, one per image slice, as indicated in
the first column. Since the example is “embarrassingly parallel” in the DUT
and otherwise contains only comparatively little sequential computation, both

17 Parallel Simulation 561

Fig. 17.15 Screenshot of the
Mandelbrot set renderer in
action: The progress of the
parallel threads, which
collaboratively compute a
Mandelbrot set image, can be
viewed live in a window on
screen. Here, eight SystemC
threads compute the eight
horizontal slices of the image
in parallel. Note that this
visualization clearly shows
the difference between the
sequential DES simulation
(which computes only one
slice at any time) and the
parallel PDES algorithms
(which are shown here)

Table 17.4 Experimental results for the Mandelbrot renderer example. RISC V0.2.1 simulator
performance (Posix-thread based) on a 32-core Intelr Xeonr host PC (2 E5-2680 CPUs, 8 cores,
2 hyper-threads) at 2.7 GHz

DES PDES OOO PDES

Slices Run time Load Run time Load Speedup Run time Load Speedup

1 162.13 s 99% 162.06 s 100% 1.0� 161.90 s 100% 1.0�

2 162.19 s 99% 96.50 s 168% 1.7� 96.48 s 168% 1.7�

4 162.56 s 99% 54.00 s 305% 3.0� 53.85 s 304% 3.0�

8 163.10 s 99% 29.89 s 592% 5.5� 30.05 s 589% 5.4�

16 164.01 s 99% 19.03 s 1050% 8.6� 20.08 s 997% 8.2�

32 165.89 s 99% 11.78 s 2082% 14.1� 11.99 s 2023% 13.8�

64 170.32 s 99% 9.79 s 2607% 17.4� 9.85 s 2608% 17.3�

128 174.55 s 99% 9.34 s 2793% 18.7� 9.39 s 2787% 18.6�

256 185.47 s 100% 8.91 s 2958% 20.8� 8.90 s 2964% 20.8�

parallel simulators respond with impressive performance speedups, more than
20� compared to the Accellera reference simulator. With growing parallelism, the
simulation speed increases almost linearly with respect to the number of parallel
workers, up until to the point where the number of software threads reaches the
number of available hardware threads (2 CPUs, 8 cores with 2 hyper-threads each,
so 32 in total).

We can also observe that, for this example, the synchronous PDES and the
OOO PDES perform the same since the differences are within the noise range of
the measurement accuracy. This matches the expectation, because the Mandelbrot
workers are all synchronized (locked in) due to their communication with the
coordinator thread and thus out-of-order execution cannot be exploited here.

As for scalability, PDES and OOO PDES approaches scale very well, if we base
our expectation on the host hardware capabilities and the amount of parallelism

562 R. Dömer et al.

exposed in the application model (which is the fundamental limitation of any
PDES). Overall, we observe that parallel simulation has the potential to improve
simulation speed by an order of magnitude or more. In this book chapter we do
not evaluate the overhead of the static analysis incurred at compile time because
our current compiler implementation does not produce meaningful results due
to its unoptimized ROSE foundation. Generally, compile time for OOO PDES
increases moderately, but is amortized by the typically longer and more frequent
simulations [6].

17.7 Conclusion

In the era of stagnant processor clock frequencies and the growing availability of
inexpensive multi- and many-core architectures, parallel simulation is a must-have
for the efficient validation and exploration of embedded system-level design models.
Consequently, the traditional purely sequential DES approach, as provided by the
open-source SystemC reference simulator, is inadequate for the future when the
system complexity keeps growing at its current exponential pace.

In this chapter, we have reviewed the classic discrete event-based simulation
techniques with a focus on state-of-the-art parallel solutions (synchronous and
out-of-order PDES) that are particularly suited for the de facto and official IEEE
standard SystemC. While many approaches have been proposed in the research
community, we have detailed the OOO PDES approach [6] being developed in
the Recoding Infrastructure for SystemC (RISC) [21]. The open-source RISC
project provides a dedicated SystemC compiler and corresponding out-of-order
parallel simulator as proof-of-concept implementation to the research community
and industry.

The OOO PDES technology stands out from other approaches as an aggressive
yet conservative modern simulation approach beyond traditional PDES, because
it can exploit parallel computing resources to the maximum extend and thus
achieves fastest simulation speed. At the same time, it can preserve compliance with
traditional SystemC semantics and support legacy models without modification or
loss of accuracy.

Acknowledgments This work has been supported in part by substantial funding from Intel Cor-
poration. The authors thank Intel Corporation for the valuable support and fruitful collaboration.
The authors also thank the anonymous reviewers for valuable suggestions to improve this chapter.

References

1. Accellera Systems Initiative. http://www.accellera.org
2. Amdahl GM (1967) Validity of the single processor approach to achieving large scale

computing capabilities. In: Proceedings of the spring joint computer conference, AFIPS’67
(Spring), 18–20 Apr 1967. ACM, New York, pp 483–485. doi:10.1145/1465482.1465560

http://www.accellera.org

17 Parallel Simulation 563

3. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the
international conference on hardware/software codesign and system synthesis, Newport Beach

4. Chandy K, Misra J (1979) Distributed simulation: a case study in design and verification of
distributed programs. IEEE Trans Softw Eng SE-5(5):440–452

5. Chen W, Dömer R (2013) Optimized out-of-order parallel discrete event simulation using
predictions. In: Proceedings of design, automation and test in Europe conference and exhibition
(DATE)

6. Chen W, Han X, Chang CW, Liu G, Dömer R (2014) Out-of-order parallel discrete event
simulation for transaction level models. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 33(12):1859–1872. doi:10.1109/TCAD.2014.2356469

7. Chen W, Han X, Dömer R (2011) Multi-core simulation of transaction level models using the
system-on-chip environment. IEEE Des Test Comput 28(3):20–31

8. Chen W, Han X, Dömer R (2012) Out-of-order parallel simulation for ESL design. In:
Proceedings of design, automation and test in Europe conference and exhibition (DATE)

9. Dömer R, Chen W, Han X, Gerstlauer A (2011) Multi-core parallel simulation of system-
level description languages. In: Proceedings of design automation conference. Asia and South
Pacific (ASPDAC), pp 311–316

10. Dömer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual, version 2.0. SpecC
technology open consortium. http://www.specc.org

11. Ezudheen P, Chandran P, Chandra J, Simon BP, Ravi D (2009) Parallelizing SystemC
kernel for fast hardware simulation on SMP machines. In: PADS’09: proceedings of the
2009 ACM/IEEE/SCS 23rd workshop on principles of advanced and distributed simulation,
pp 80–87

12. Fujimoto R (1990) Parallel discrete event simulation. Commun ACM 33(10):30–53
13. Gajski DD, Zhu J, Dömer R, Gerstlauer A, Zhao S (2000) SpecC: specification language and

design methodology. Kluwer Academic Publishers, Boston
14. Gerstlauer A (2010) Host-compiled simulation of multi-core platforms. In: Proceedings of the

international symposium on rapid system prototyping (RSP), Washington, DC
15. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic

Publishers, Dordrecht
16. Group SLW SystemC 2.3.1, core SystemC language and examples. http://accellera.org/

downloads/standards/systemc
17. Huang K, Bacivarov I, Hugelshofer F, Thiele L (2008) Scalably distributed SystemC simulation

for embedded applications. In: International symposium on industrial embedded systems, SIES
2008, pp 271–274

18. IEEE Computer Society (2011) IEEE standard 1666-2011 for standard SystemC language
reference manual. IEEE, New York

19. Kaushik A, Patel HD (2013) SystemC-clang: an open-source framework for analyzing mixed-
abstraction SystemC models. In: Proceedings of the forum on specification and design
languages (FDL), Paris

20. Liu G, Schmidt T, Doemer R Recoding infrastructure for SystemC (RISC) compiler and
simulator. http://www.cecs.uci.edu/~doemer/risc.html

21. Liu G, Schmidt T, Dömer R (2015) RISC compiler and simulator, alpha release V0.2.1: out-
of-order parallel simulatable SystemC subset. Technical Report CECS-TR-15-02, Center for
Embedded and Cyber-physical Systems, University of California, Irvine

22. Mukherjee S, Reinhardt S, Falsafi B, Litzkow M, Hill M, Wood D, Huss-Lederman S, Larus J
(2000) Wisconsin wind tunnel II: a fast, portable parallel architecture simulator. IEEE Concurr
8(4):12–20

23. Nanjundappa M, Patel HD, Jose BA, Shukla SK (2010) SCGPSim: a fast SystemC simulator
on GPUs. In: Proceedings of design automation conference. Asia and South Pacific
(ASPDAC)

24. Nicol D, Heidelberger P (1996) Parallel execution for serial simulators. ACM Trans Model
Comput Simul 6(3):210–242

http://www.specc.org
http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
http://www.cecs.uci.edu/~doemer/risc.html

564 R. Dömer et al.

25. Quinlan DJ (2000) ROSE: compiler support for object-oriented frameworks. Parallel Process
Lett 10(2/3):215–226

26. Schmidt T, Liu G, Dömer R (2016) Automatic generation of thread communication graphs
from SystemC source code. In: Proceedings of international workshop on software and
compilers for embedded systems (SCOPES)

27. Schumacher C, Leupers R, Petras D, Hoffmann A (2010) parSC: synchronous parallel SystemC
simulation on multi-core host architectures. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), pp 241–246

28. Sinha R, Prakash A, Patel HD (2012) Parallel simulation of mixed-abstraction SystemC models
on GPUs and multicore CPUs. In: Proceedings of design automation conference. Asia and
South Pacific (ASPDAC)

29. Sirowy S, Huang C, Vahid F (2010) Online SystemC emulation acceleration. In: Proceedings
of design automation conference (DAC)

30. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation of
software timing considering complex code optimizations. In: Proceedings of design automation
conference (DAC)

31. SystemC Language Working Group (LWG). http://accellera.org/activities/working-groups/
systemc-language

32. SystemC TLM-2.0. http://www.accellera.org/downloads/standards/systemc/tlm
33. Weinstock J, Schumacher C, Leupers R, Ascheid G, Tosoratto L (2014) Time-decoupled

parallel SystemC simulation. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Dresden

34. Yun D, Kim S, Ha S (2012) A parallel simulation technique for multicore embedded systems
and its performance analysis. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
31(1):121–131

35. Zhu J, Dömer R, Gajski DD (1997) Syntax and semantics of the SpecC language. In:
International symposium on system synthesis (ISSS), Osaka

http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/activities/working-groups/systemc-language
http://www.accellera.org/downloads/standards/systemc/tlm

	17 Parallel Simulation
	Contents
	17.1 Introduction
	17.1.1 Exploiting Parallelism for Higher Simulation Speed
	17.1.2 Related Work on Accelerated Simulation

	17.2 Discrete Event Simulation (DES)
	17.2.1 Discrete Time and Discrete Event Model
	17.2.2 Scheduling Queues
	17.2.3 Sequential Discrete Event Scheduler

	17.3 Parallel Discrete Event Simulation (PDES)
	17.3.1 Parallel Discrete Event Scheduler
	17.3.2 Protection of the Parallel Simulation Kernel
	17.3.3 Preserving SystemC Execution Semantics in PDES

	17.4 Out-of-Order Parallel Discrete Event Simulation (OOO PDES)
	17.4.1 Thread-Local Simulation Time
	17.4.2 Dynamically Evolving Scheduling Queues
	17.4.3 Out-of-Order Parallel Discrete Event Scheduler
	17.4.4 OOO PDES Scheduling Algorithm

	17.5 Recoding Infrastructure for SystemC (RISC)
	17.5.1 Segment Graph
	17.5.2 Segment Graph Construction
	17.5.3 Static Conflict Analysis
	17.5.3.1 Data Hazards
	17.5.3.2 Event Hazards
	17.5.3.3 Timing Hazards

	17.5.4 Source Code Instrumentation

	17.6 Experimental Evaluation
	17.6.1 Conceptual DVD Player Example
	17.6.2 Mandelbrot Renderer Example

	17.7 Conclusion
	References

