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Abstract

Continuous transistor scaling has enabled computer architecture to integrate
increasing numbers of cores on a chip. As the number of cores on a chip and
application complexity has increased, the on-chip communication bandwidth
requirement increased as well. Packet-switched network on chip (NoC) is
envisioned as a scalable and cost-effective communication fabric for multi-core
architectures with tens and hundreds of cores. In this chapter we focus on on-chip
communication architecture design and introduce the reader to some essential
concepts of NoC architecture. This is followed by a discussion on the commonly
used power-saving techniques used for NoCs and the drawbacks and limitations
of these techniques. We then concentrate on performance optimization through
intelligent mapping of applications on multi-core architectures. We conclude the
chapter with a discussion of various application-specific on-chip interconnect
design methods.
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15.1 On-Chip Interconnect Architecture

Every multi-core chip has two major on-chip components: processing elements
(core) and other non-processing elements such as communication and memory
architecture (uncore) [27]. Although high transistor density enables computer archi-
tects to integrate tens to hundreds of cores in a chip, the main challenge is to enable
efficient communication between such a large number of on-chip components. The
on-chip communication architecture is responsible for all memory transactions and
I/O traffic and provides a dependable medium for inter-processor data sharing.
The performance of on-chip communication plays a pivotal role in the overall
performance of the multi-core architecture. The advantage of having multiple high-
performance on-chip processors can easily be overturned by an underperforming
on-chip communication medium. Hence, providing a scalable and high-performance
on-chip communication is a key research area for multi-core architecture
designers [17]. The main challenges faced by interconnect designers are:

• Scalable communication for tens of cores: It is fair to state that the performance of
processing elements in multi-core chips can be communication constrained [17].
Due to ever-increasing improvement in processing capabilities, it is quite pos-
sible to have a wide gap between the data communication rate and the data
consumption rate. With tens of on-chip components, it is not possible to have
single-cycle communication latency between components placed at the far ends
of a chip. Furthermore, with a large number of on-chip components, the on-chip
interconnect is expected to support multiple parallel communication streams.

• Limited power budget: In 1974, Dennard predicted that the power density of
transistor will remain constant as we move into lower node sizes. This is known
as Dennard’s scaling law [37]. However, in the last decade or so, researchers
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have observed that the transistor’s power cannot be reduced at the same rate as
the area. Therefore, we are facing a situation where we have an abundance of
on-chip transistors but do not have enough power to switch all these transistor at
the same time, due to power and thermal constraints. Therefore, increasing the
power efficiency of all on-chip components has become the main prerequisite to
continue Moore’s scaling. The on-chip communication architecture can consume
roughly 19% of total chip power in a modern multi-core chip [35]. Therefore, it
is a challenging task to design a power-efficient on-chip interconnect that can still
satisfy the latency and bandwidth requirements of current and future applications.

• Heterogeneous applications: A modern multi-core chip is expected to exe-
cute a large set of diverse applications. Each application can interact with
computing architecture in a unique way; hence, the communication latency
and bandwidth requirement can vary across different applications [32]. For
example, an application with a large memory footprint is expected to regularly
generate cache misses and can hence be classified as a communication-bound
application. The performance of such applications is highly correlated with the
efficiency of interconnect. On the other hand, an application with a smaller
memory footprint is expected to be processor bound and agnostic to on-chip
interconnect properties. Therefore, on-chip interconnects are often designed for
worst-case scenarios (memory-bound applications in this case) and can therefore
be inefficient for processor-bound applications. The situation is aggravated when
both memory- and processor-bound applications are executed at the same time.

• Selecting interconnect performance metrics: A major shortcoming in previ-
ous research is classifying the on-chip interconnect performance in terms of
application-agnostic metrics such as transaction latency and memory bandwidth,
instead of application-level performance metrics such as execution time and
throughout [31, 70]. Therefore a major challenge is extracting the correct metric
to evaluate different possible interconnect architecture design points for a given
set of applications.

• Chip design cost: The cost of designing a multi-core chip has been increasing
alarmingly due to high NRE cost (NRE Cost: Nonrecurring engineering cost.
The term is used to classify the cost associated with researching, prototyping,
and testing a new product.) associated with small node sizes. A major portion of
total chip cost is reserved for design verification and testing. Therefore, designers
are expected to reuse previously designed and verified on-chip interconnects for
new chip designs to reduce cost. With a multitude of interconnect architectures
available, it is important to incorporate time-efficient design space exploration
tools in research phase to select the most suitable interconnect for a given set of
target applications.

• Interconnect reliability: With reducing node size, the concerns about the relia-
bility of the digital circuits are on the rise. Any unexpected change in operating
conditions such as supply voltage fluctuation, temperature spikes, or a random
alpha particle collision can cause erratic behavior in the output of a circuit. A
soft error in on-chip interconnect can result in erroneous application output or
system deadlock if the control data is corrupted. Multi-core systems are finding
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their ways into reliability-critical applications such as autonomous driving cars
and medical equipment. Therefore designers are expected to integrate varying
levels of reliability features in on-chip interconnect under given power and area
constraints.

• Codesign of memory hierarchy and on-chip interconnect: In modern multi-
core architectures, on-chip memory hierarchy is closely coupled with on-chip
interconnect architecture. In fact, for shared memory architectures, on-chip
communication is the major factor in deciding the performance of memory
hierarchy (cache, Dynamic Random-Access Memory (DRAM) controllers, etc.).
Therefore interconnect designers are often faced with the challenge of exploring
the combined design space of memory hierarchy and on-chip interconnect.

15.1.1 Bus-Based SoC Architectures

Traditionally, system-on-chip (SoC) designs used a very simple on-chip intercon-
nect such as ad hoc point-to-point connections or buses. The bus-based architecture
is perhaps the oldest on-chip interconnect standard in the computer industry and
is still used in many System-on-Chip (SoC) applications [87]. The simplicity of
protocol and hence low gate cost are possibly the main reasons that bus-based
architectures have dominated all other available on-chip interconnect options. For
a small number of on-chip components, bus interconnect is easier to integrate
due to simple protocol design and is efficient in terms of both power and silicon
cost. In bus-based architectures, multiple components interact using a single data
and control bus, hence providing a simple master-slave connection. Arbitration is
required when multiple masters try to communicate with a single slave, giving rise
to resource contention. Hence the scalability of bus-based architecture in terms
of performance is questionable in large SoC-based designs [61]. Some classic
design techniques for bus-based SoCs proposed in [34, 41] use worst-case bus
traffic to design optimal architecture. Kumar et al. [57] have given a detailed
study of the scalability and performance of shared bus-based Chip Multi-Processor
(CMP) architectures. They concluded that a bus-based interconnect network can
significantly affect the performance of cache-coherent CMPs.

Several improvements to traditional bus-based interconnect architectures have
been proposed. ARM Ltd., AMBA Architecture [1], IBM CoreConnect Archi-
tecture [3], and Tensilica PIF Interface [5] are few examples of the widely used
advanced bus-based communication medium. All of these architectures provide
several advanced functionalities like burst-based data transfers, multi-master arbitra-
tion, multiple outstanding transactions, bus locking, and simultaneous asynchronous
and synchronous communication. However, Rashid et al. [91] have analytically
showed that even advanced bus-based architectures like AMBA are outperformed
by modern Network-on-Chip (NoC)-based communication architectures in terms of
performance. However, the same study shows that designers are still inclined toward
AMBA-based on-chip interconnects due to the area and energy overhead of modern
NoC designs. SoC designers have a keen interest in fair comparison of various
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Fig. 15.1 Evolution of on-chip interconnect

commercial bus architectures; however, the performance of on-chip interconnects
greatly depends on each application’s traffic pattern, bus microarchitecture, and
system parameters [67].

The simplicity of the bus-based architecture design, predictable access latency,
and low area overhead are the key selling points. However, beyond a small number
of cores, the performance of the bus interconnect degrades significantly [83].

15.1.2 Crossbar-on-Chip Interconnect

Single shared bus architecture is evidently slower in the case of multiple master-
slave data transactions. The prime bottleneck is the single shared medium and
latency due to arbitration among many master interfaces (Fig. 15.1). Therefore, the
first approach to design a scalable on-chip interconnect was adaption of crossbar
topology. A crossbar is a matrix switch fabric that connects all the inputs with all
the outputs enabling multiple communication connections (Fig. 15.1). The idea has
been borrowed from the telecommunication industry where such architectures have
been successfully used for four decades in telephony applications [82].

The same concept of multiple communication channels was implemented in the
SoC design industry by combining multiple shared buses to form an all-input-all-
output connection matrix. The concept is also known as hierarchal bus or multilayer
bus. STBus [53] is perhaps the best-known commercial bus architecture that
inherently supports crossbar architectures. A design methodology for AMBA-based
cascaded bus architecture is provided by Yoo [104]. Yoo et al. have experimented
with integrating 90 IP blocks in a single crossbar-based SoC design. Similarly,
authors in [72] have provided a complete design methodology for designing an
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application-specific crossbar architecture using the STBus protocol. They claim
significant performance improvements over standard single-bus architectures. The
most interesting crossbar implementation is the interconnect system for IBM
Cyclops64 architecture. Each Cyclops64 crossbar connects 80 custom processors
and about 160 memory banks. With single transaction latency of seven cycles and
bandwidth comparable to state-of-the-art NoC architecture, Cyclops64 intercon-
nects is perhaps the most advanced practical crossbar design for the SoC domain.

Researchers have been arguing over the scalability of crossbar-based intercon-
nect architecture due to the nonlinear relation between the number of the ports and
latency and wire cost [107]. However, recent experiments from [82] show that a
128�128 port crossbar in a 90 nm technology is feasible. They have benchmarked
their crossbar design against state-of-the-art mesh-based NoC design and concluded
that the crossbar design matched NoC architectures in terms of latency, bandwidth,
and power consumption. However, the design complexity is prohibitively high due
to complex wire layouts.

15.1.3 Network-on-Chip Interconnect

Following Moore’s law of available on-chip transistor resources, we are looking
beyond having thousands of cores on a single chip. It has been predicted that
the performance of such kilo-core Multi-Processor System-on-Chip (MPSoC) will
be communication architecture dependent [16]. Traditional bus-based architectures
cannot scale beyond a few tens of IP blocks, and there is a need to provide a more
scalable and protocol invariant communication architecture.

The solution to the scalability problem of bus-based architectures was found in
the form of network-on-chip architectures [29, 58]. NoC inherently supports the
general trend of highly integrated SoC design and provides a new de facto standard
of on-chip communication design. The basic idea of NoC has been adapted from the
well established structure of computer networks. In particular, the layered service
architecture of computer networks has been well adapted in NoC to provide a
scalable solution. In a NoC architecture, data is converted into packets, and these
packets traverse number of hops (switches or routers) based on a predefined routing
technique. The key advantages of using NoC as the on-chip interconnect are:

• NoCs inherently support multiple communication paths through a combination
of physically distributed routers and links, which greatly increases the available
on-chip data bandwidth. This enables different cores to exchange data in parallel
without any central arbitration. This makes NoC an ideal candidate interconnect
for supporting increasing communication needs of multi-core chips with tens
and hundreds of cores. Multiple communication paths between given source and
destination cores give NoC an inherent fault tolerance. In case of permanent error
in the router or link on a given path, data can be rerouted through an alternate path
between source and destination cores.
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• NoC architectures use short electric wires that have highly predictable electric
properties. Compared to bus interconnect, smaller drive transistors are required
to switch short wires between routers. This helps to improve the energy/bit metric
of interconnects. Moreover, due to shorter wire delays, NoCs can be switched
at higher frequencies than buses and crossbars without any significant increase
in power. Deep sub-micron semiconductor manufacturing introduces integrity
issues in wires. Having shorter wires reduces the probability of manufacturing
faults and hence improve the production yield. The predictable electric properties
of short wires also help in reducing design verification cost.

• NoCs follow a modular design paradigm by allowing reuse of existing hardware
Intellectual Property (IP) blocks. For most designs, NoCs can be easily scaled
for different number of cores and applications by simply instantiating multiple
copies of existing designed and verified router IPs. This reduces the overall
complexity of the chip design process.

• NoCs provide a clear boundary between computation and communication. On-
chip components (memory controllers, processing cores, hardware IPs, etc.) can
have different communication protocols (AXI, AHB, etc.) which are converted
to a standard packet format through the help of protocol convertors. Therefore,
data communication between on-chip components is agnostic of communication
protocol used by different components. This is a useful feature for designing
heterogeneous SoCs with hardware components selected from different IP
vendors.

15.2 Defining Features of Network on Chip

NoC-based MPSoC designs have attracted attention of researchers for the last
decade. The defining features of NoC design are router design, routing algorithms,
buffer sizing, flow control, and network topology. We will discuss them in more
detail.

15.2.1 Topology

A NoC consists of routers and communication channels. NoC topology defines
the physical layout of the routers and how these routers are connected with each
other using the communication channels. The selection of NoC topology can have a
significant effect on multi-core performance, power budget, reliability, and overall
design complexity. For example, if the average number of hops between nodes is
high, packets have to travel longer and hence network latency will be high. Similarly,
if a topology requires very long physical links, designers have to make an effort to
ensure timing closure for longer links. Moreover, topologies that allow diverse paths
between nodes can potentially provide higher bandwidth and also prove to be more
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reliable in the case of faulty links. Therefore, when designing NoC-based multi-core
systems, the first decision is to choose the NoC topology [83].

NoC topologies can be classified as direct and indirect topologies [83]. In direct
topologies, each on-chip component such as core or memory, is connected with a
router, and therefore each router is used to inject or eject traffic from the network. In
indirect topologies, the on-chip components are connected only to terminal routers,
whereas the other routers only forward the traffic [83]. The degree parameter of a
router defines the number of neighboring routers and on-chip component to which
the router has links. The degree parameter defines the number of input/output ports
in each router. Note that the complexity of router microarchitecture increases with
an increase in the degree of router.

Figure 15.2 shows three commonly used direct topologies ring, mesh, and torus.
The ring is the simplest topology to implement in terms of silicon area and design
complexity. The degree of each router in ring interconnect is 3 (two neighbor
router + one local resource (core, memory, etc.)). The drawback of ring topology
is performance scalability. The number of hops between two nodes in worst-case
scenarios is proportional to N: the number of nodes in the topology. Furthermore,
rings provide limited bandwidth and are less reliable due to poor path diversity.
Therefore, rings become impractical for multi-core chips with more than 8–16
nodes [8].

Mesh and torus topologies solve the scalability problems of ring topology, albeit
at a cost of higher degree routers and possibly more complex VLSI layout. Each
router in a mesh topology has a degree of 5, except for the routers on the border.
Torus can be classified as an enhanced form of mesh with wrap around links between
border routers. These links use router ports that are not required to implement mesh
topology. The wraparound links in torus reduce the average number of hops and

a

b c

Fig. 15.2 Well known direct topologies. (a) Ring. (b) Mesh. (c) Torus
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Fig. 15.3 2-ary 3-fly Butterfly topology

Fig. 15.4 3 Tier Fat Tree topology

provide better bisection bandwidth. The worst-case number of hops is
p

N C 1 for
torus and 2

p
N �1 for mesh. In mesh, all communication links are short and equal in

size. However, for torus wraparound links are considerably longer and need special
attention for timing closure.

Two classical examples of indirect networks, butterfly and fat tree are shown
in Figs. 15.3 and 15.4, respectively. The important feature of butterfly topology is
that the hop distance between any source-destination node pair is fixed (three in the
topology shown in Fig. 15.3). The router has degree 2 (two input and two output
ports), resulting in low-cost routers. However, the number of routers is greater than
the number of SoC components. The two main disadvantages of butterfly topologies
are single communication path between a given source-destination pair resulting in
low bandwidth and low link fault tolerance and more complex wire layout due to
uneven link lengths. The fat tree topology provides higher bandwidth and excellent
diversity of possible routing paths. However, these qualities come at a cost of silicon
area (more routers) and complex wire layout.

In addition to these regular topologies, application-specific MPSoCs are often
designed on top of NoCs with customized topologies [20]. The data traffic patterns
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are often known at design time, and therefore a communication graph can be
extracted from the application specifications [12, 89]. The communication graph
combined with knowledge of the physical mapping of SoC components can be
used to create a topology that meets certain performance, energy, or area constraints
[13, 20, 95].

15.2.2 Routing

The routing algorithm defines the sequence of routers between source and destina-
tion nodes that a data packet will traverse. The quality of the routing algorithm is
determined by the average packet latency and power consumption. A good routing
algorithm evenly distributes the traffic across all the routers and maximizes the
saturation throughput of the network. Power can be optimized by keeping the
routing circuit simple and keeping the number of hops traveled by data packets
low [83].

Deterministic routing is the simplest routing scheme and is widely used in
NoCs. For a given source and destination pair, data packets always travel through a
predefined set of routers. Dimension Ordered Routing (DOR) for mesh is a common
example of deterministic routing. In XY routing for mesh, depending on the physical
location of the source and destination pair, the packet always travels first in the X
(horizontal) direction and then in the Y (vertical) direction. However, deterministic
routing can cause traffic hotspots in the case of an asymmetrical communication
pattern between nodes [63, 83].

Oblivious routing is superior to deterministic routing in terms of path selection.
For a given source-destination pair, oblivious routing can select one of many possi-
ble routes. However, this decision is taken without any knowledge of the network’s
current traffic condition. One example for oblivious routing is ROMM [76]. In the
ROMM routing scheme for mesh, an intermediate node is selected at random on
minimal paths between source and destination, and the data packet is first sent to
the intermediate node and from there to the destination using a deterministic routing
algorithm.

Adaptive routing is the most robust routing scheme, as it uses global knowledge
about the current network traffic state to select the optimal path [63]. Adaptive
routing distributes the traffic node across different network routers and hence
maximally utilize the network bandwidth. However, implementing adaptive routing
increases the design complexity of the routers [83]. Moreover, there is always a
limitation on how much global knowledge can be forwarded to each router, hence
limiting the effectiveness of the routing scheme [63].

In addition to standard routing schemes, MPSoC designers often use application-
specific routing schemes for NoCs [22, 28, 79]. Application communication graphs
can be analyzed to extract information about data volume and criticality. This infor-
mation can be used to design routing algorithms that minimize the communication
latency [79].
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15.2.3 Flow Control

Flow control determines how data is transferred between different routers in a
NoC. Specifically, flow control dictates the buffer and link allocation schemes. The
design objective for flow control architecture is to minimize the buffer size and
hence silicon area and power of routers and to keep the network latency low. In
packet-switched NoCs, a data message is broken into a predefined packet format.
A network packet size can be further broken and serialized into multiple flits. The
size of flit normally equals physical channel width [83]. Additional information is
added to each flit to indicate header, body, and tail flit. The routing and other control
information can either be added only to the header flit or it can be added to each flit
depending on implementation.

In store-and-forward flow control [30], before forwarding the packet to the next
node, the router waits until the whole packet has been transmitted into its local
buffer. This means that the input buffer must have enough space to store the whole
packet, which can increase router area and power consumption. This scheme also
increases the communication latency, as packets spend a long time at each node just
waiting for buffering, although the output port might be free.

Virtual cut-through [54] improves on store-and-forward flow control by allowing
a packet to be routed to the next router even before the whole packet arrives at
the current router. However, the packet is only forwarded if the downstream router
has enough buffer space to store the complete packet. This means that buffer size
remains the same as in the case of store-and-forward flow control with improvement
in per-hop latency.

Wormhole routing [90] is a more robust scheme, as it allocates buffer space at the
granularity of flit, opposed to the virtual cut-through and store-and-forward scheme
which allocates buffers at the granularity of packet. As soon as flit of a packet arrives
at an input port, it can be forwarded even if only one flit space is available in the
input port of the next router (and output channel is not allocated). The wormhole
flow control scheme results in low-area routers, and it is therefore widely used in
most on-chip networks [83]. The term wormhole implies that a single packet can
span multiple routers at the same time. The main downside of this scheme is that
the multiple links can be blocked at the same time in case the header flit of a multiple
flit packet is blocked in one of the routers on the communication path.

15.2.4 Router Microarchitecture

The key building block of NoC is the router. The router’s microarchitecture
dictates the silicon area, the power, and, most importantly, the performance of
the NoC. The maximum frequency at which a router can operate depends on the
complexity of the logic used in the router microarchitecture, which in turn translates
into higher-level performance metrics such as network latency and maximum
achievable bandwidth. The complexity of the router’s microarchitecture depends
on the network topology (degree), flow control method, and routing algorithms. For
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Fig. 15.5 Wormhole router architecture

example, a complex adaptive routing algorithm can be used to improve the worst-
case network bandwidth, but it will result in increased area and power.

Figure 15.5 shows the overall architecture of a packet switch wormhole
router [38]. The basic building blocks of a wormhole router are input buffer, route
computation, switch allocators, and crossbar switch. Input buffers store flits when
they arrive in the router and keep them stored until they are forwarded to the next
router. The route computation unit calculates the output port for the header flit
stored at the head of each input buffer, depending on the routing algorithm. The
switch allocator arbitrates between different packets contending for the same output
ports. The crossbar switch is logically a set of muxes that route flits from the input
port to the output port. The data from the crossbar is stored in output buffers which
can be as simple as flip-flops. The input buffers also propagate the buffer occupancy
status to neighboring routers to implement flow control [38].

15.2.4.1 Progress of a Packet in a Wormhole Router
The incoming flit is first stored in the input buffer (Buffer Write (BW) stage). If
the flit at the front of the input buffer is the header flit, the route computation unit
calculates the output port required to send the packet to its destination and asserts
the port request signal to the switch allocator (route computation (RC) stage). In
modern routers, the switch allocator consists of multiple port arbiters, one for each
output port. Each output arbiter chooses one of the multiple input requests for a
given output port. When an output port is allocated to an input port, the specific
output port is locked until the whole packet (tail flit) has crossed the crossbar switch.
Before doing anything further, the switch allocator checks if the downstream router
has enough space to store the outgoing flit. If the buffers are full at the downstream
routers, the switch allocator blocks the packet transmission. However, if buffer space
is available, switch allocator sets the proper select lines for the crossbar switch and
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also instructs the input buffer to remove the flit at the front. This whole process is
called the switch allocation (SA) stage. On getting a valid signal and output port
selection from the switch allocator, the crossbar switch transfers the flit from the
input port to the output port (switch traversal ST stage). The flit from the output
port of the router then travels over wire links to get latched in the input buffer of the
downstream router (link traversal (LT) stage). Note that the header flit of a packet
goes through all stages discussed here. The body and tail flit, however, skip the RC
and SA stages, as the output had already been reserved by the header flit.

15.2.4.2 Optimization and Logic Synthesis of Routers
Executing all router stages in a single cycle can be achieved at a lower frequency
because the cumulative logic delay of stages can be long. Single-cycle operation
might require a higher supply voltage depending on the target frequency which can
increase the power consumption. Therefore, most of the high-performance routers
are often pipelined [30, 38]. However, increasing the number of pipeline stages
increases the per-hop latency and hence the overall network latency. The number of
pipeline stages also depends on the sophistication of the RC, SA, and ST stages.

In commonly used pipelined routers, the LT and BW are done in one cycle,
and RC, SA, and ST are executed in the next cycle. However in the case of more
complex router architectures, the second pipeline stage can be further divided into
RCCSA and ST pipeline stages. The pipeline stages can affect the area and power
consumption [11]. Using fewer pipeline stages results in more stringent latency
constraints for logic synthesis, and hence the synthesis tool has to insert larger
gates with lower delays. Larger logic gates have higher dynamic and leakage power.
Pipeline stages on the other hand can reduce the gate sizes; however, the overall
area may increase due to addition of the pipeline flip-flops [11]. Therefore, the
logic synthesis of routers is a classic power-performance-area tradeoff problem
[11, 38, 81].

15.2.5 Network Interface

Router is the main building block of NoC and carries the burden of routing
the packets across network. Network Interface (NI) on the other hand acts as a
bridge between hardware IP blocks and NoC. Figure 15.6 shows an example of
NI signaling scheme. NI converts IP block’s communication protocol to NoC’s
packet format and performs associated housekeeping operations. The communi-
cation protocol can vary across IP vendors. For example, most of the ARM IPs
normally support AXI protocol [6], whereas Xtensa processors use PIF protocol [5].
Therefore, NIs actually enable the modular property of NoC by letting different IP
communicate seamlessly irrespective of their communication protocol. An example
MPSoC that contains IPs from different vendors is shown in Fig. 15.7. To enable
maximum flexibility to system designers, commercial NoC vendors provide support
for multiple communication protocols. For example, Sonics [4] supports AXI and
OCP protocols, and Arteris [7] supports AMBA, PIF, BVCI, and OCP protocols.
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Fig. 15.6 Network interface (NI)

Fig. 15.7 Heterogeneous
MPSoC with IPs from
different vendors

Microarchitecture of the NI depends on the programming model selected for
SoC [36]. For example, Tilera iMesh on-chip interconnect network [103] supports
both MPI [62] and shared memory [105] programming models. iMesh enables
parallel operation of these programming models by integrating separate NIs and
NoCs for both of these programming models.

Researchers have proposed integrating various advance features in NI design
with primary focus on quality-of-service (QoS) services. Radulescu et al. [85]
proposed a NI design that integrates QoS services for shared memory MPSoCs, with
support for both guaranteed and best-effort services. Mishra et al. [70] proposed
keeping track of vital application information such as cache miss rate and executed
instructions in NI to support fair QoS among heterogeneous applications. Similarly
Chen et al. [25] monitor application cache miss rate and other processing core’s
information in NI logic to implement NoC power optimization.
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15.2.6 Performance Metrics

As described earlier in chapter, there are number of possible customizable features
in a NoC. Therefore, it is important to discuss metrics that are often used to assess
the NoC’s performance.

NoC performance is often evaluated using network latency and throughput [30].
An example latency versus traffic injection rate is shown in Fig. 15.8. The latency
is defined as average time it takes for packets to travel between source-destination
pairs in NoC. Network latency can calculated as sum of latency experienced at each
hop (router). The zero-load latency metric defines the lower bound on latency when
there are no other traffic in the network. However, as traffic is introduced in the
NoC at a higher rate, packets travel slower in the network due to channel contention.
The saturation throughput point is defined as injection rate at which packet latency
becomes prohibitively large. Some research also define saturation throughput as
the injection rate at which the average network latency is roughly three times the
zero-load latency [50]. As a rule of thumb, designers aim to minimize the zero-load
latency and maximize the saturation throughput. In the absence of real applications,
latency and throughput are commonly used to evaluate different NoC architecture
using different synthetic traffic patterns [64].

Although latency and throughput are easier to evaluate, researchers argue that
these metrics may be misleading for assessing impact of NoC on overall system
performance. Mishra et al. [70] showed that some applications are network latency
sensitive, whereas some applications are bandwidth sensitive. Therefore, using
application-level metrics such as execution time and average memory access latency
is a better way to evaluate NoC performance. Similarly Chen et al. [25] showed
that the impact of NoC latency on application’s performance depends on other

Fig. 15.8 Latency and throughput metrics for NoC
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application-level metrics such as cache miss rate. This is the reason that recent works
on NoC power optimization consider application-level metrics instead of network-
level metrics [23, 25, 44].

15.3 Overview of Recent Academic and Commercial NoCs

Tilera iMesh on-chip interconnect network [103] is an example of NoC designed
for homogeneous multi-core chips. The iMesh interconnect architecture has been
used in the commercial TilePro64 multi-core chip. The latest 72-core Tilera GX
chip [2] also uses the same NoC design. The proposed NoC architecture is different
from other academic and commercially available on-chip architectures in terms of
the number of physical NoC. iMesh provides five different physical NoC channels:
two of these networks are used for memory access and management tasks, while the
rest are user accessible. The motivation is that future integrated circuits will have
enough silicon resources to integrate more than one NoC per chip.

The next-generation SPARC M7 processor combines three different NoC topolo-
gies for the on-chip interconnect [84], ring-based request network, point-to-point
network for response messages, and mesh for data packets. The M7 processor uses
a shared distributed cache model. The request ring network is used to broadcast the
cache requests to all cores in the system. The point-to-point network is only used
when adjacent cores share data. The mesh data network is built using ten port routers
and is used primarily to stream data from memory controllers to local cache.

Anton2 is a special-purpose supercomputer for performing molecular dynamic
simulations. The building block of the supercomputer is Anton ASIC which contains
a number of special-purpose hardware units for numerical calculations [101].
Anton2 ASIC uses a 4 � 4 2D mesh for connecting on-chip components, whereas
the chips are connected with each other using a 3D torus. The novel feature of the
communication architecture is that the same set of routers are used for both intra-
and inter-chip communication. About 10% of the total ASIC area is dedicated to
on-chip communication.

SMART (single-cycle multi-hop asynchronous repeated traversal) NoC from
MIT is another interesting low-latency on-chip communication architecture [56].
Authors observed that a data bit can travel 9–11 hops in a single clock cycle at
1 GHz for 45 nm silicon technology. Based on this observation, they propose a NoC
architecture where data can be transferred across physically distant mesh nodes in
a single cycle by bypassing multiple routers. This reduces the latency of multi-hop
mesh NoC. The proposed architecture is reported to improve the performance of
PARSEC and SPLASH-2 benchmarks by an average of 26% for private L2 cache
and 49% for shared L2 cache architectures.

Æthereal [42] is probably one of the best-known academic NoC architecture.
Even at the time of conception, Æthereal supported different IP communication
protocols such as AXI and OCP. In addition to baseline best-effort NoC ser-
vices, Æthereal also supports building predictable on-chip communication though
time-division multiplexed circuits [43]. This enables building SoCs for system
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with hard real-time performance requirements such as braking system in an
automobile. A more comprehensive discussion on real-time NoCs is presented
in �Chap. 16, “NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality
Applications”.

Intel used a mesh-based NoC for an 80-core TeraFlop experimental chip [46].
The mesh NoC uses five stage pipelined routers designed for 5 GHz frequency. This
results in 1 ns per-hop latency. According to experiments conducted on the research
chip, the NoC consumed about 28% of total chip power although it consumed 17%
of total chip area.

Intel has also introduced a 48-core mesh NoC-based multi-core chip called
single-chip cloud computer (SCC) [47]. The target frequency for the NoC was set at
2 GHz with 1:1 V supply voltage. The router is four-stage pipelined and uses virtual
cut-through flow control. To mitigate the problem with higher NoC power from
the previous 80-core chip, Intel opted for a DVFS scheme for NoC. The NoC was
organized as a 6 � 6 mesh so that two compute cores share a single router. These
techniques helped to reduce the share of NoC power to 10%.

There are two well-known commercial NoC IP providers, Sonics [4] and
Arteris [7]. Both Sonics and Arteris provide various predesigned NoC IPs for
commonly used processor IPs such as ARM and Xtensa. Furthermore, both of
them provide design tools that can be used to optimize the NoC IP for various
design objectives such as power, area, performance, quality of service (QoS), and
reliability. It is anticipated that hardware developers will be using third-party NoCs
to reduce both design cost and development time [20].

15.4 NoC Power Optimization

As more cores are integrated on a chip, the on-chip interconnect’s complexity
increases and so does its power. Computer architects always want to keep the
on-chip interconnect’s power low so that processing elements and memory hier-
archy can use a larger share of power [17]. Although NoC provides the scalable
communication for multi-core chips, it can consume valuable power. For example,
Daya et al. [35] report that NoC in their 36-core SCORPIO experimental chip
consumes 19% of the total chip power. Similarly NoC consumes 28% of total power
in Intel’s TeraFlop chip [46]. With limited power budgets constraining multi-core
scaling [39], employing power-saving techniques for NoCs is an active research
topic.

Over the years, various voltage-scaling-based solutions have been investigated
for reducing NoC dynamic power. Shang et al. [92] presented the pioneering
work on Dynamic Voltage and Frequency Scaling (DVFS) for on-chip links. The
scheme uses usage history of links to predict their future utilization. Based on this
prediction, a certain voltage and frequency (VF) level is selected for each link.
Bogdan et al. [14] proposed a DVFS scheme for spatially and temporally varying
workloads. The proposed DVFS scheme worked at the granularity of individual
routers. Based on fractal modeling of workloads, the scheme selected an appropriate

http://dx.doi.org/10.1007/978-94-017-7267-9_17
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VF level for each router. Mishra et al. [69] proposed per-router frequency tuning in
response to changes in network workload to manage power and performance. Based
on the optimization goal, the frequency of the routers is increased to relieve network
congestions and improve performance, or the frequency is decreased to meet certain
network power constraints. Ogras et al. [78] described a framework for fine-grain
VF selection for VF-island-based NoCs. The scheme first statically allocates VF
level to each NoC router and then uses the run-time network information for fine-
tuning the assigned VF level. All these works base their DVFS schemes on network
metrics such as packet latency, injection rate, queue occupancy, and network
throughput. Researchers [26,44] argue that by neglecting higher-level performance
metrics such as application execution time, these schemes can result in nonoptimal
results. Therefore, work by Chen et al. [44] and Hesse and Enright [44] based their
DVFS schemes on the actual execution delay faced by applications due to DVFS
for NoCs. Zhan et al. [106] explored the problem of per-router DVFS schemes for
streaming applications. They developed an analytical model to statically predict
the effect of VF scaling on application throughput. Depending on application to
core mapping, routers on the critical communication path are operated at lower
frequency.

Since the ratio of leakage power to total chip power is increasing with transis-
tor scaling, researchers have been exploring leakage power techniques. Through
experiments with realistic benchmarks, Chen [23] reported that the router’s static
power share is 17.9% at 65 nm, 35.4% at 45 nm, and 47.7% at 32 nm. As discussed
earlier in this chapter, power gating is often used to save the static power of on-chip
components [48]. Soteriou and Peh [94] proposed power gating at the link level.
They used the channel utilization history to select links that can be switched off with
minimal impact on performance. As switching off some links results in irregular
topologies, they proposed an adaptive routing algorithm to avoid the switched off
links. Matsutani et al. [66] proposed adding low-frequency virtual channel buffers
that can be power gated at run time to save leakage power. An ultra fine-grain power
gating for NoC routers is proposed in [65]. They used special cell libraries where
each Complementary Metal-Oxide-Semiconductor (CMOS) gate has a power gate
signal. Therefore, the power for each router component such as input buffer, switch
allocator, and crossbar can be individually turned on or off, based on the network
activity. This helped to save leakage power by 78.9%. However, the main drawback
of this technique is the complexity of including special power gate circuitry in
each CMOS gate. The additional power circuitry also increases the router area.
Kim et al. [55] proposed a fine-grain buffer management scheme for NoC routers.
In the scheme, depending on network traffic load, the size of the input buffers was
increased or decreased at run time. The unused buffer slots were power gated to
save leakage power. However, this scheme only targeted buffer leakage power and
neglected other router components. Parikh et al. [80] proposed performing power
gating at the granularity of the data-path segment which consists of an input buffer,
crossbar mux, and output link. In the router parking [88] scheme, routers for cores
that are not under use are switched off, and the traffic is routed around the switched
off routers through new routing paths that are calculated at run time.
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The main problem with the previous proposals for power gating is the per-
formance overhead due to wakeup latency. Chen and Pinkston [24] proposed
overlaying a standard mesh NoC with a low-cost ring network. If a packet arrives at
a router and the router is switched off, the packet is routed through the ring network
which is always switched on. Das et al. [33] proposed to divide wider mesh NoCs
into four smaller NoCs for efficiency. Additional NoCs are only switched on if the
network load exceeds a certain limit and the unused NoC planes remain switched
off. In this network connectivity is ensured.

As buffers in routers consume a considerable share of dynamic and leakage
power, researchers have also explored using bufferless NoCs. The first effort in this
direction was the BLESS router [71]. The idea is that instead of storing the flit in
router, the flit is routed even in a direction that does not result in a minimal path. This
means that even with some misrouting, the flit will eventually reach its destination.
Therefore this scheme is applicable for routers with the number of output ports
equal or higher than the number of input ports. The deadlock and livelock condition
is avoided by allocating a channel to the oldest flit first. To improve some of
the shortcomings of BLESS router, CHIPPER [40] was introduced. Both BLESS
and CHIPPER show potential in reducing network power. However there are two
concerns with bufferless NoCs. First, the deflection routing causes packets to take
non-minimal routes resulting in longer packet delays. The effect of network delays is
more significant for memory-intensive applications. Secondly, the bufferless routing
results in out-of-order arrival of the flits which increases the complexity of the NI.

15.5 Communication-Aware Mapping

While designing an MPSoC-based system, it is not uncommon to have fixed
specifications for the underlying hardware. Therefore, in such cases, it is the
responsibility of the system programmer to use the available hardware resources
efficiently. The situation is even more complex in the case of heterogeneous
MPSoC architecture with NoC interconnect. Over the years, many techniques have
been proposed for effectively mapping a given application on a target MPSoC
architecture. Studying the mapping problem for NoC-based MPSoC architectures
has been a key area of research. The unique data communication capabilities of
NoC-based architectures demand a smart communication-aware mapping strategy
[19, 28, 59, 73]. It is important to analyze both NoC’s architectural properties and
run-time network contention while estimating the run time of a given application.
Embedded system designers are expected to tweak the application mapping to
maximize the performance while meeting the hard time-to-market limits [99, 100].
There is no single technique to map applications on a given MPSoC. The mapping
problem is further complicated due to the presence of many different MPSoC
architectures. Therefore, the common practice is to rebuild the mapping strategy
for every application-architecture combination [68, 74, 75, 97].

Application mapping was an area of interest for researchers working in parallel
computing and supercomputing [15]. Their idea was to map the applications that
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share the data as close as possible to reduce the network latency. This naive idea
is also applicable in the case of CMPs where mapping the application has to take
into account the underlying on-chip interconnect architecture. Similarly, the choice
of shared memory architecture and message passing interface heavily influences the
mapping algorithms.

The mapping solutions proposed in the literature can be broadly divided into
two categories (1) static mapping and (2) dynamic run-time mapping. Each class of
mapping algorithm has its advantages and disadvantages. Static mapping is useful
when applications to be executed are known at design time [18,77,98,108]. System
designers can formulate an optimal or near-optimal solution for such scenarios.
On the other hand, run-time mapping algorithms allocate resources to application
on the fly. These algorithms give a better mapping solution in cases where the
application behavior is unknown at design time or system characteristics such as
network congestion can change rapidly [9, 10, 45].

In the case of embedded systems, applications to be executed are known at design
time. Therefore, static mapping techniques result in better system performance [86].
Unfortunately, most of the mapping problems prove to be NP-hard problems with
only near-optimal solution [93]. However, heuristic-based algorithms have also
been proposed, which reduce the time required to solve these NP-hard problems
[93, 97]. TDMA-based NoCs are used for predictable systems. The expected
traffic for a given link can be estimated using analytical modeling or simulations.
Through proposed algorithms, it is then possible to map a given processor-processor
communication in an allotted time slot. This not only improves the network
congestion but also makes the system predictable [102, 109].

Some researchers have provided solutions where the mapping and partitioning
problem of NoC-based embedded systems are dealt with as a combined problem.
Although these solutions require a very strict analytical model for application, the
final software and hardware are highly optimized in area footprint, power, and
performance [59, 60]. It has been observed that a generalized MPSoC architecture
might eventually fail to cover the design requirements of a particular real-time
embedded system. Therefore, the option of highly customized hardware for a
particular set of applications has also been widely explored.

15.6 Application Specific Communication Architecture
for MPSoCs

Over the years, researchers have analyzed that flat communication and memory
architectures are not sufficient for designing high-performance application-specific
MPSoC architectures. Moreover, the quest for low-power, low-cost embedded
system has forced designers to optimize the system. Therefore, it is anticipated that
highly optimized hardware and software designs will include customized memory
and on-chip network designs in the future [99].

Customizing the communication architectures at system level and gate level
not only improves the system performance; it also results in energy-efficient
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design. By eliminating the logic overhead, the leakage and static power loss
of the system can be significantly reduced [72]. It has been shown that some
MPSoC applications actually do not need highly complex network architectures
like NoC, and simple bus-based architecture can essentially meet the performance
requirements. Therefore, it is important to avoid overkill by intelligently designing
communication architectures that give optimal solutions without incurring area
overhead [51].

The idea of application-specific communication architectures is more interesting
in the case of NoC. Inherently, NoC architectures are highly customizable, and
designers can tweak a variety of parameters of the architecture to meet performance,
cost, and energy constraints. �-pipes is perhaps the first project that provided
a library-based approach to NoC design [96]. The selection of optimal on-chip
communication architectures is nontrivial. Therefore, an effort has been made
to introduce library-oriented design space exploration where the designer has
several configurations to choose from. Designers can then use analytical modeling
or simulations to select the best communication architectures [49]. The same
idea has also been explored by Jeremy and Parameswaran [21] by developing a
library of NoC components with the help of analytical power and performance
modeling. Another interesting project that was targeted toward low-power NoC-
based embedded MPSoC was AEthereal network on chip [42]. The significance of
these projects is the flexibility provided to the designer to quickly explore the various
possible optimizations for a given application. These optimizations can provide up
to 12 times improvement in performance while reducing the area cost by 25 times
when compared with flat communication architectures [51].

Bertozzi et al. [13] have proposed a NoC synthesis tools called NetChip based
on �-pipes [96] NoC library. Figure 15.9 shows an example on how applica-
tion specifications are translated into NoC architecture. The first step is collect
application and map it on multiple components (cores, memory, etc.). The next
step is extract data bandwidth requirement from the application to core mapping.
Based on communication requirement, tool automatically explores different NoC
topologies and other associated architecture parameters such as routing scheme. In
the final step, the tool automatically generates SystemC models for selected NoC
components for simulations and synthesis.

Similarly, the option to integrate different communication architectures in a
single design has also been studied extensively. Murali et al. [72] proposed a
complete design method for application-specific crossbar synthesis. They use the
traffic pattern of the application to design a communication architecture that is
a combination of packet-oriented crossbars and bus. Bus-based architectures are
simple but offer less performance. The crossbar-based architectures are more
complex but provide better throughput. Therefore, Murali et al. combined the two
communication architectures while keeping the gate cost low and fulfilling the
performance requirements.

All the techniques referred to above improve the performance of on-chip
communication in terms of aggregate on-chip bandwidth and average data latency,
which are not suitable metrics for streaming applications executing on MPSoCs. In
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the case of streaming MPSoCs, application-level throughput or latency of the system
is the most important performance metric [52]. Thus, it is important to incorporate
system-level performance constraints in the design flow for an application-specific
on-chip network [12].

15.7 Conclusion

In this chapter we introduced readers to some basic concepts of NoC architecture
and motivated the use of NoC architecture for large-scale SoC designs. We presented
examples of NoC designs from commercial chips and academia to show the current
trends in NoC design. Given the increasing interest in reducing power consumption
of SoC components, we presented various power optimization techniques proposed
over the recent years. We then discussed some of the recent research work on
optimizing performance using intelligent application mapping on MPSoCs. In the
end, we explored how on-chip interconnect can be designed for application-specific
MPSoCs.
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