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Abstract

In this chapter we discuss the topic of memory organization in embedded
systems and Systems-on-Chips (SoCs). We start with the simplest hardware-
based systems needing registers for storage and proceed to hardware/software
codesigned systems with several standard structures such as Static Random-
Access Memory (SRAM) and Dynamic Random-Access Memory (DRAM). In
the process, we touch upon concepts such as caches and Scratchpad Memories
(SPMs). In general, the emphasis is on concepts that are more generally found in
SoCs and less on general-purpose computing systems, although this distinction is
not very clearly defined with respect to the memory subsystem. We touch upon
implementations of these ideas in modern research and commercial scenarios.
In this chapter, we also point out issues arising in the context of the memory
architectures that become exported as problems to be addressed by the compiler
and system designer.
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SoC System-on-Chip
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13.1 Motivating the Significance of Memory

The concept of memory and storage is of fundamental importance in hardware/-
software codesign; it exhibits itself in the earliest stages of system design. Let us
illustrate the ideas starting with the simplest examples and then proceed to more
complex systems. With increasing system complexity, we go on to understand some
of the larger trade-offs and decision-making processes involved.

Figure 13.1a shows a simple specification involving arrays and loops written in
a programming language or Hardware Description Language (HDL), with some
details such as type declaration omitted. Figure 13.1b shows a possible fully
parallel implementation when the statement is synthesized into hardware, with four
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Fig. 13.1 (a) Code with loop and array (b) Hardware implementation

Arithmetic-Logic Units (ALUs). Such a specification may represent combinational
logic without sequential/memory elements, as it does not involve the storage of
the operands or result. Thus, in its simplest form, system implementation need not
involve any memory. Note that an equivalent software implementation could consist
of a sequence of addition and branch instructions, whose execution does involve
registers and memory.

13.1.1 Discrete Registers

Memory elements are inferenced if we slightly modify the implementation scenario.
Let us assume that there is a resource constraint of only two ALUs for implementing
the specification of Fig. 13.1a. Now, we need to sequentialize the ALU computations
over time so that the ALUs can be reused. This leads to registers being required
in the implementation, with the computation being spread out over multiple clock
cycles: aŒ0�CbŒ0� and aŒ2�CbŒ2� are performed in the first cycle, and aŒ1�CbŒ1� and
aŒ3�CbŒ3� are performed in the second cycle. Since the ALU outputs have different
values at different times, a more appropriate interface consists of registers connected
to the ALU outputs. The select signals of the multiplexers, and load signals of the
registers, would have to be generated by a small controller/FSM that asserts the right
values in each cycle.

13.1.2 Organizing Registers into Register Files

The example of Fig. 13.1 was a simple instance of a specification requiring memory
elements in its hardware translation. Discrete registers were sufficient for the
small example. However, such an implementation does not scale well as we deal
with larger amounts of data in applications. The interconnections become large
and unstructured, with hard to predict area and delay behavior. For simplicity of
implementation, the discrete registers are usually grouped into register files (RFs).

Figure 13.3 shows an alternative hardware arrangement with registers grouped
into one common structure. The multiplexers, select lines, and load lines of Fig. 13.2
are now replaced with an addressing mechanism consisting of an address buses, data
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Fig. 13.2 Discrete registers in hardware implementations. Load lines are load0 to load3. Mux
select lines are s0 to s3

Fig. 13.3 Architecture with
registers grouped into register
files

buses, and an internal address decoder structure that connects the data bus to the
appropriate internal register. The ALU is now connected to the data buses instead
of being directly connected to the registers [12]. The multiplexer and decoder
structures highlighted as ports in Fig. 13.3 represent the peripheral hardware that
is necessary to make the register file structure work. In other words, the register file
does not consist of merely the storage cells; the multiplexing and decoding circuits
do represent an area and power overhead here also, but the structure is more regular
than in the discrete register case.

This abstraction of individual registers into a larger register file structure repre-
sents a fundamental trade-off involving memories in system design. The aggregation
into register files is necessary for handling the complexity involving the storage and
retrieval of large amounts of data in applications. One drawback of arranging the
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Fig. 13.4 Parallel access to register files (a) 6-port register file (b) 12-port register file

data in this way is that we have lost the ability to simultaneously access all the
data, since the data bus can carry only one piece of data at any time. This leads to
sequentialization of data accesses, which could impact performance severely.

To work around the sequential access problem, register files are organized to have
multiple ports, each port consisting of an independent set of address and data buses,
and control signals to indicate the operation (read, write, etc.). Figure 13.4a shows
an architecture with two ALUs and a register file. In order to keep the ALUs busy,
we should be able to read four operands simultaneously and also write two results
back to the register file. This imposes a requirement for a total of six register file
ports.

Extending the architecture to permit four simultaneous ALU operations, we
observe from Fig. 13.4b that twelve ports are needed in the register file. Larger
number of ports has the associated overhead of larger area, access times, and power
dissipation in the register file. The peripheral multiplexing and decoding circuit
increases correspondingly with the increased ports, leading to larger area and power
overheads. Since the increased delays affect all register file accesses, the architecture
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should be carefully chosen to reflect the requirements of the application. Alternative
architectures that could be considered include splitting the register file into multiple
banks, with each bank supporting a smaller number of ports. This has the advantage
of faster and lower power access from the individual register file banks, while
compromising on connectivity – all ALUs can no longer directly access data from all
storage locations. Such trade-offs have been investigated in the context of clustered
VLIW processors in general-purpose computing and also influence on-chip memory
architecture choices in System-on-Chip (SoC) design. Simultaneous memory access
through multiple ports also raises the possibility of access conflicts: a write request
to a location through one port may be issued simultaneously with a write or read
request to the same location through a different port. Such conflicts need to be
resolved externally through an appropriate scheduling of access requests.

13.1.3 Packing Data into On-Chip SRAM

Registers and register files are the closest memory elements to computation
hardware, making them the most quickly accessible storage. Fast access also implies
an inherent constraint on their sizes – typical register files can store 16, 32, or
64 data words, which can sometimes extend to a few hundreds. When we need
to process larger amounts of data, we have to incorporate other structures such as
Static Random-Access Memory (SRAM). Register files and SRAMs are usually
distinguished by the relative sizes and number of ports. SRAMs can accommodate
hundreds of kilobytes of on-chip storage. Large SRAMs also have correspondingly
fewer ports because the basic cell circuit for providing connectivity to a large
number of ports does not scale well for large sizes, and the memory would incur
large area, performance, and power overheads.

Figure 13.5 shows possible configurations where SRAM is integrated into SoC.
In Fig. 13.5a the data bus of the SRAM is directly connected to ALUs, while in
Fig. 13.5b the ALU is connected only to the register file, with the register file serving
as the interface to the SRAM; data is first transferred from the SRAM to the register
file before being operated upon by the ALUs. It is possible to consider discrete
registers also here, instead of register files. Being denser, the SRAMs can store more
data per unit area than the register files. However, the larger SRAMs also exhibit
longer access times, which leads to a memory hierarchy as a natural architectural
choice.

13.1.4 Denser Memories: Main Memory and Disk

The need for larger capacities in data storage leads to the incorporation of other
memory structures as part of the hierarchy. Main memory and disks are the
next architectural components that complete the hierarchy, with higher capacity
and correspondingly higher access times. Modern main memories are usually
implemented using Dynamic Random-Access Memory (DRAM), although other
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Fig. 13.5 (a) Data in SRAM
(b) Hierarchically arranged
register file and SRAM

memory technologies such as Phase Change Memory (PCM) and Spin-Transfer
Torque Random-Access Memory (STT-RAM) have appeared on the horizon re-
cently [14, 19, 21, 36].

The essential difference between register files and SRAM on one hand, and
DRAM on the other, is that in the former, data is stored as long as the cells are
powered on, whereas in DRAM the data, which is stored in the form of charge on
capacitors, is lost over a period of time due to leakage of charge from the capacitors.
To ensure storage for longer periods, the DRAM cells need to be refreshed at
intervals. Note that nonvolatile memory technologies such as PCM and STT-RAM,
referred to above, do not need to be refreshed in this way. However, they have other
associated issues, which are discussed in more detail in �Chap. 14, “Emerging and
Nonvolatile Memory”.

Figure 13.6 shows a simplified DRAM architecture highlighting some of the
major features. The address is divided into a row address consisting of the higher-
order bits and a column address consisting of the lower-order bits. A row decoder
uses the row address to select a page from the core storage array and copy it to
a buffer. A column decoder uses the column address to select the word at the
right offset within the buffer and send it to the output data bus. If subsequent
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Fig. 13.6 DRAM architecture

Fig. 13.7 Memory hierarchy may include disk

accesses occur to data within the same page, then we could skip the row decode
stage and retrieve data directly from the buffer using only the column decode stage
[30], employing what is referred to as an open-page policy. DRAMs have been
architected around this central principle over the decades, although a large number
of other structural details and management policies (including a close-page policy
where the page is closed right after an access – a strategy that is useful when
locality is weak) have been added. DRAM is generally incorporated as an off-chip
component, although sometimes integrated on-chip with logic.

The final memory level in SoCs could include some form of nonvolatile storage
such as solid-state disk (SSD, shown in Fig. 13.7). Occurring at a level beyond main
memory, disk storage is often necessary when larger amounts of data need to be
stored, for longer periods of time. The underlying technology is often flash-memory-
based SSD.

13.1.5 Memory Hierarchy

System designers have to make a choice between the different types of memories
discussed above, with the general trend being that smaller memories are faster,
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whereas larger memories are slower. The common solution is to architect the
memory system as a hierarchy of memories with increasing capacities, with the
smallest memory (registers and register files) located closest to the processing units
and the largest memory (DRAM and disk) lying farthest. This way, the processing
units fetch the data from the closest memory very fast. There is also the requirement
that the performance should not be overwhelmed by excessive accesses to the large
memories.

Fortunately, the important concept of locality of reference, an important property
exhibited by normal computing algorithms, plays an important role in this decision.
Spatial locality refers to the observation that if a memory location is accessed,
locations nearby are likely to be also accessed. This derives, for example, from (non-
branch) instructions being executed as sequences, located in consecutive memory
locations. Similarly, arrays accessed in loops also exhibit this property. Temporal
locality refers to the observation that if a memory location is accessed, it is
likely to be accessed again in the near future. This property can be related to
instruction sequences executed multiple times in a loop and also data variables such
as loop indices referenced multiple times within a short span of time, once in each
iteration.

The locality property provides compelling motivation to organize the memory
system as a hierarchy. If frequently accessed data and instructions can be stored/-
found in levels of the memory located closer to the processor, then the average
memory access times would decrease, which improves performance (and also power
and energy). Within this general philosophy, a large number of combinations and
configurations exist, making the overall memory architecture decision a complex
and challenging process in hardware/software codesign.

13.2 Memory Architectures in SoCs

In Sect. 13.1 we reviewed the major technologies used in memory subsystems.
These components are used to evolve different architectural blocks that are com-
monly used, depending on the requirements of the application. On-chip memories
are dominated by different configurations of caches and scratchpad memories.

13.2.1 Cache Memory

Cache memory is a standard architectural block in the on-chip memory hierarchy.
Designed to exploit the temporal and spatial locality properties exhibited by
programs and data in typical applications, caches are SRAM-based structures that
attempt to retain a copy of recently accessed information so that when it is required,
the data is delivered from the cache instead of further levels of the hierarchy, thereby
saving time and energy. Spatial locality is exploited by prefetching a block or line
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Fig. 13.8 Read operation in
direct-mapped cache

of data when a single word is accessed, so that when adjacent words are accessed,
they can be found in the cache. Temporal locality is exploited by implementing an
appropriate replacement policy that attempts to retain relatively recently accessed
data in the cache [12]. Caches are usually implemented using SRAM technology,
but other technologies such as embedded DRAM and STT-RAM have also been
explored for implementing caches [17].

Figure 13.8 shows a high-level block diagram of a direct-mapped cache. In this
design, each address of the next memory level is mapped to one location in the
cache. Since each cache level is smaller than the next level, a simple mapping
function consisting of a subset of the address bits is used for determining the cache
location from a given memory location. Consequently, several memory locations
could map to the same cache location. When memory data is accessed, a cache line
(consisting of four words from the Data memory shown in Fig. 13.8) is fetched and
stored in the cache location to which the memory address maps. The higher-order
address bits are also stored in the tag field of the cache to identify where the line
came from. When a new address is presented to the cache, the higher-order address
bits are compared with those stored at the corresponding location in the tag memory,
and if there is a match (causing a cache hit), the data is delivered from the cache line
itself. If there is no match (causing a cache miss), then the data has to be fetched
from the next memory level.

The cache structure can be generalized to permit the same data to possibly reside
in one of several cache locations. This permits some flexibility in the mapping
and helps overcome limitations of the direct-mapped cache arising out of multiple
memory addresses conflicting at the same cache location. The standard architecture
for implementing this is a set-associative cache, with each line mapping to any of a
set of locations. Figure 13.9 outlines the block diagram of a four-way set-associative
cache, in which a cache line fetched from the memory can reside in one out of four
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Fig. 13.9 Read operation in four-way set-associative cache

cache ways. The higher-order address bits are compared simultaneously with four
tags, and if there is a match, a word from the corresponding way is delivered by the
cache. If none of the tags match, then we have a cache miss, and a line is fetched
from the next memory level. The decision of which line should be replaced in the
set is taken by the replacement policy that might usually favor replacing the line that
was accessed furthest in the past.

13.2.2 Scratchpad Memory

Scratchpad Memory (SPM) refers to simple on-chip memory, usually implemented
with SRAM, that is directly addressable and where decisions of transfer to and from
the next memory level are explicitly taken in software instead of implicitly through
hardware replacement policies, as in caches [29]. Figure 13.10 shows a logical
picture of the memory address map involving both SPM and cache. The caches are
not visible in the address map because the cache storage decisions are not explicitly
made in software. The SPM physically resides at roughly the same level as the
cache, and its data is not accessed through the cache [28,32]. Although traditionally
implemented in SRAM technology, other technologies such as STT-RAM are being
considered for denser SPM implementation [37].

Scratchpad memory is actually simpler than caches because there is no need
to include tags, comparators, implementation of replacement policies, and other
control information. This makes it smaller, lower power, and more predictable,
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Fig. 13.10 Scratchpad memory address map

which makes it suitable for use in real-time and low-power systems. However, it
does increase the work done in software (either by the developer, if done manually,
or the compiler, if automated) because data transfers have to be explicitly performed
in software.

Scratchpad memory could be integrated into system designs in a variety of ways,
either independently or in conjunction with other memory structures. Figure 13.11
illustrates some such configurations. In the architecture of Fig. 13.11a, the local first-
level memory consists of only SPM, which holds both instructions and data. The
concept of a cache could still be useful, however, and a cache could be emulated
within the SPM (Sect. 13.2.3). A Direct Memory Access (DMA) engine acts as
the interface between the SPM and external memory. The DMA is responsible for
transferring a range of memory data between different memories – in this case,
between SPM and the next level. In Fig. 13.11b, the architecture supports both local
SPM and hardware cache. In such systems, decisions have to be made for mapping
code and data to either SPM or cache. Other variations are possible – for example,
in Fig. 13.11c the local memory could be dynamically partitioned between SPM and
cache.

13.2.3 Software Cache

Software Cache (SWC) refers to cache functionality being emulated in software
using an SPM with no hardware cache support as the underlying structure. The tag
structures discussed in Sect. 13.2.1 are still conceptually present, so they need to be
separately stored in the same memory, and comparisons have to be implemented in
software.

The working of a software cache is illustrated in Fig. 13.12. The SWC imple-
mentation consists of a cache line data storage and tag storage area.
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Fig. 13.11 Different architectural configurations for scratchpad memory (a) Local memory
consists of only SPM. No hardware cache. (b) Local memory with both hardware cache and SPM
(c) Dynamically configurable partition between local cache and SPM
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Fig. 13.12 Software caches: emulating caches in software

1. In Step 1, the index bits are extracted from the address to generate the address of
the relevant tag within the SPM.

2. In Step 2, the tag is from the memory, with the four words corresponding to the
four tag fields of the four-way set-associative cache.

3. In Step 3, the tags are compared against the tag bits of the address to determine
a cache hit.

4. If a hit results, then the SPM address of the cache line is computed in Step 4.
5. As the final step, the data is fetched and delivered.

The emulation is relatively slow and energy inefficient compared to the hardware
cache and, hence, should be judiciously used, for those data for which it is
difficult to perform the static analysis required for SPM mapping [5, 7]. Efficient
implementation of the software cache routines – such as a cache read resulting in a
hit – used in the CELL library cause a roughly 5X performance overhead (six cycles
for SPM access vs. 32 cycles for software cache access) (Sect. 13.3.2).

13.2.4 Memory in CGRA Architectures

We examine some of the on-chip memory architectures in some commercial
and research SoCs and processors. Some of the designs are application
specific or domain specific, while others are designed for broader applicability
but still under restricted thread organization structures that do not apply to
general-purpose software applications with random control structures. Such
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Fig. 13.13 Multiple SPMs in CGRA architecture

applications are more relevant to systems-on-a-chip rather than general-purpose
computing.

The ADRES architecture [1] is a CGRA of processor cores and memories where
the number of cores and memories is customizable for a specific application domain.
The architecture is vector oriented, with a register file being connected to both the
configurable array of vector processors (four in Fig. 13.13) and a VLIW processor
that handles the control flow. In the instance of Fig. 13.13, there are two SPM
blocks with wide vector interfaces to the register file. A significant responsibility
lies on the system designer for utilizing such systems efficiently, which translates
to challenging new problems for the compiler. The number of Central Processing
Unit (CPU) cores and SPM instances has to be decided after a careful evaluation of
the system throughput requirements and energy constraints. The compiler support
also needs to accommodate the specialized architectures so that the application can
benefit from it.

13.2.5 Hierarchical SPM

Figure 13.14 shows another instance of a processor system where a large number
of independent SPMs are organized hierarchically into different memory levels [3].
Each individual core contains, apart from an ALU and register file, a level-1 SPM as
well as hardware cache. Each block contains several such cores, along with a control
processor with a level-2 SPM. Several such blocks exchange data through a shared
memory in the form of a level-3 SPM. Finally, the entire chip is connected to a global
shared memory implemented as a level-4 SPM. Such memory organizations have
the ability to tremendously simplify multiprocessor architecture by not requiring
complex cache coherence protocols but also need to rely on extensive support of
sophisticated parallel programming environments and compiler analysis.
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Fig. 13.14 Hierarchically organized SPM

13.3 Commercial SPM-Based Architectures

In this section we examine a few commercial architectures with interesting on-
chip memory structures including scratchpad memory, in addition to conventional
caches. These architectures have been used in a wide variety of applications with
diverse requirements and constraints, ranging from low-power embedded systems to
high-end gaming platforms and high-performance machines. We exclude general-
purpose processors with conventional cache hierarchies.

13.3.1 ARM-11 Memory System

The Advanced Risc Machines (ARM) processor architecture family has been
extensively used in embedded systems-on-chip. Figure 13.15 shows the local
memory architecture of the ARM-11 processor, consisting of both hardware cache
and SPM [2]. Data delivered from the memory subsystem could be routed from one
of several sources: one of four memory banks corresponding to the four-way cache,
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Fig. 13.15 The ARM-11 local memory architecture

Fig. 13.16 Memory
organization in the CELL
processor

the SPM, and the write buffer associated with the cache. The selection of the data
source is done by examining the address range, the write buffer locations, and the
cache tags.

13.3.2 Local SPMs in CELL

The CELL processor [20], shown in Fig. 13.16, is a multiprocessor system consist-
ing of eight digital signal processing engines connected over a ring network, each
with a large local SPM storage intended for both instructions and data. There is no
local hardware cache, and there is library support for software caches. At a higher
level, a PowerPC [22] processor is used for control functions, with a regular level-2
hardware cache, which, in turn, interfaces with external DRAM.
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Fig. 13.17 Memory in the Fermi processor

13.3.3 Programmable First-Level Memory in Fermi

In the Fermi architecture [25] which represents the Graphics Processing Unit
(GPU) class of designs (Fig. 13.17), each streaming multiprocessor consists of
several processing cores with a shared data memory consisting of both SPM
and hardware cache. The second-level cache is common to all the processors
and interfaces with external DRAM. The architecture also supports the dynamic
reconfiguration of the local memory into partitions of different SPM vs. cache sizes,
depending on the requirements of the application. Although originally targeted at the
graphics rendering application, architectures in this family have also been used for
other applications with similar data-parallel properties, known as General-Purpose
computing on Graphics Processing Units (GPGPU) applications [26].

13.4 Data Mapping and Run-Time Memory Management

The presence of advanced memory-related features requires a corresponding au-
tomated analysis functionality for exploiting the features efficiently. Conventional
cache-oriented compiler analysis is sometimes applicable for these scenarios,
but new mechanisms are typically necessary targeting the specialized memory
structures. When data transfers are no longer automatically managed in hardware,
the most fundamental problem that arises is the decision of where to map the
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data from among all the memory structure choices available. Techniques have
been developed to intelligently map data and instructions in SPM-based systems
[6, 9, 15, 16, 38].

A major advantage of caches, from a methodology point of view, is the simplicity
of their usage. Application executables that are compiled for one architecture with
a given cache hierarchy also perform well for an architecture with a different cache
structure. In principle, applications do not need to be recompiled and reanalyzed
when the cache configuration changes in a future processor generation, although
several cache-oriented analyses indeed rely on the knowledge of cache parameters.
However, the other memory structures such as SPM would need a careful reanalysis
of the application when the configuration is modified.

13.4.1 Tiling/Blocking

The conventional tiling or blocking optimization refers to the loop transformation
where the standard iteration space covering array data is rearranged into tiles or
blocks, to improve cache performance – this usually results in better temporal
locality [8, 18, 33].

Figure 13.18 illustrates the tiling concept on a simple one-dimensional array,
where the data is stored in main memory and needs to be fetched first into SPM
for processing. Assuming no cache, the fetching and writing back of data have to
be explicitly managed in software. For the code in Fig. 13.18a, the tiled version
shown in Fig. 13.18b divides the array into tiles of size 100 and copies the tiles
into array AA located in SPM (using the MoveToSPM routine). The inner loop now
operates on the data in the SPM. If the data were modified, the tile would also need
to be written back before proceeding to the next tile. The process is illustrated in
Fig. 13.18c.

A generalization of the simple tiling concept is illustrated in Fig. 13.19a. Here, a
two-dimensional array is divided into 2D tiles. In the classical tiling optimization,

Fig. 13.18 The tiling/blocking transformation (a) original code (b) tiled code (c) tiling and SPM
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Fig. 13.19 Tiling multidimensional data (a) in data caches and (b) in scratchpad memory

the loop iteration space is modified so that the computation is first performed in
one tile before proceeding to another. The tile height and width are carefully chosen
such that the tile size is less than the data cache size, and also, elements within a tile
exhibit minimal cache conflicts between themselves.

The tiling idea can be extended to SPM, where each tile is first fetched into the
SPM for processing (Fig. 13.19b). All processing then takes place on SPM data,
leading to a lower power solution because each access to the SPM is more energy
efficient than the corresponding access to a hardware cache of similar capacity.
Figure 13.20 shows an example of a tiled matrix multiplication targeted at SPM
storage. Tiles of data are moved into the SPM using the READ_TILE routine before
being processed. The iteration space is divided into a six-deep nested loop. This
general principle is followed in SPM-based storage, where data is first fetched into
the relatively small SPM, and actual processing is then performed on SPM data. The
overhead of fetching data into the SPM is usually overcome by the energy-efficient
accesses to the SPM.

13.4.2 Reducing Conflicts

A slightly different example of data mapping and partitioning is shown in Fig. 13.21.
The array access pattern for the code shown in Fig. 13.21 is illustrated in Fig. 13.21b
for the first two iterations of the j -loop. We observe that the mask array is small and
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Fig. 13.20 Tiled matrix multiplication

Fig. 13.21 (a) Convolution code (b) Data accesses in the first two iterations (c) SPM mapping

is accessed a large number of times. In comparison, the source array is large with
the accesses exhibiting good spatial locality. It is possible that the two arrays would
conflict in the cache if the cache is small. A good data mapping decision would be
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to store the mask array in SPM and access source through the cache [31]. Another
strategy illustrated in Fig. 13.21c is to fetch tiles from source and dest arrays into
SPM for processing.

13.5 Comparing Cache and Scratchpad Memory

The quality of memory mapping decisions is closely related to the appropriate
modeling of the cache and SPM parameters. Suitable high-level abstractions are
necessary so that the impact of mapping decisions can be quickly evaluated. In this
section we present a comparison of caches and SPM with respect to the area and
energy parameters. There is no explicit access time comparison because these are
similar for both; cache access times are dominated by the data array access time,
which is also present in SPM.

13.5.1 Area Comparison

Caches are associated with an area overhead compared to SPM because of the tag
array that is used for managing the cache. Figure 13.22 shows a comparison of the
areas of SPM and a direct-mapped cache, for different memory capacities ranging
from 8 to 128 KB, assuming a 32-byte line size and 32 nm process technology using
the popular CACTI cache modeling tool [23]. For the same capacity, we observe a
10–32% additional area for the cache, compared to SPM.

13.5.2 Energy Comparison

We compare the energy dissipation of caches and SPM by first outlining a simple
energy model of the memories expressed in terms of the different components. Since

Fig. 13.22 Comparison of
SPM and cache areas for
different memory capacities
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the mapping process may also result in conflict misses in the cache, we also study the
variation of the memory energy with the conflict miss ratio, in addition to standard
parameters such as memory capacity.

13.5.2.1 Energy Model for Tiled Execution
Table 13.1 shows a simplified model of the dynamic energy dissipation components
of cache-based and SPM-based systems, when an O.n3/ algorithm such as matrix
multiplication is executed with an n � n tile. Column 1 lists the energy components
in the memories.

• The computation remains identical in both cases, so the associated energy EComp

is assumed to be equal.
• The dynamic energy dissipated during each memory accesses is higher in caches

because of the additional energy EDyn�Tag dissipated in the tag array, apart from
that in the data array (EDyn�Data). The SPM’s dynamic memory energy is limited
to the data array energy EDyn�Data. To generate the total dynamic memory
energy, the per-access energy values are multiplied by n3, which is assumed to
be the number of memory accesses required for the tile’s processing.

• When the memories are idle, leakage energy is dissipated. The common data
array causes a leakage energy ELeak�Data in both SPM and cache. The cache
dissipates an additional ELeak�Tag due to the tag array.

• Finally, the data transfer overheads need to be carefully considered; they are
sensitive to specific processor and memory architectures. The simple energy
expressions for these overheads given in Table 13.1 highlight an important
consideration: it is usually more energy efficient to fetch larger chunks of
consecutive data from the main memory, instead of smaller chunks (the chunk
size is also called burst length for main memory accesses). For the SPM, we
assume a DMA architecture in which the n � n tile is fetched into the SPM by
n DMA transfers of length n each. Each DMA transfer, fetching n elements,
dissipates EDMA.n/. In contrast, the data transfers triggered by cache misses are
of size L, the cache line size, which is expected to be much smaller than n.

Table 13.1 Data cache vs. scratchpad memory energy comparison for computing an O.n3/

algorithm on an n � n tile. Cache line size = L. f is the conflict miss ratio

Energy
component SPM Data cache Description

Computation EComp EComp Computation stays fixed

Dynamic energy
EDyn�Data �
n3 .EDyn�Data C EDyn�Tag/ � n3

Tag access causes extra dy-
namic energy in cache

Leakage energy ELeak�Data ELeak�Data C ELeak�Tag

Tag array causes extra leak-
age energy in cache when idle

Data transfer
overheads EDMA.n/ � n EMiss.L/ � . n2

L
C n3f /

Longer burst in DMA is
more energy efficient. Con-
flicts cause extra cache misses
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Since all the tile data has to be fetched to the cache, there would be an estimated
n2

L
compulsory misses, each leading to an energy dissipation of EMiss.L/.

EDMA.n/ for transferring a tile row of n elements is expected to be smaller than
EMiss.L/ � n

L
, the corresponding cache energy.

Capacity misses in the cache (occurring due to insufficient cache size) are
avoided by choosing an appropriate tile size, but conflict misses (occurring due
to limitations of the mapping function, in spite of sufficient space) may not be
completely avoided and lead to an additional n3f misses, where f is the conflict
miss ratio (defined as the number of conflict misses per access).

13.5.2.2 Sensitivity to Memory Capacity
Figure 13.23 shows a comparison of the per-access read energy for SPM and a
direct-mapped cache, for different memory capacities ranging from 8 to 128 KB,
assuming a 32-byte line size and 32nm process technology [23]. For the same
capacity, we observe a 5–10% additional access energy for the cache, compared
to SPM.

13.5.2.3 Sensitivity to Conflict Misses
Let us study the impact of one of the parameters identified in Table 13.1 – the
conflict misses in tiling. As observed in Table 13.1, tiling may cause overheads in
the cache if the memory accesses are subject to conflict misses. What is the extent
of this overhead?

Figure 13.24 plots a comparison between the dynamic energy of the SPM and
data cache for different miss ratios between 0 and 7% in a 50 � 50 tile (i.e.,
n D 50). We have ignored leakage and computation energy values and have
assumed a 10% extra energy due to the tag array (EDyn�Tag D 0:1 � EDyn�Data); a
2X and 4X overhead for DMA (per-word) and cache miss (per word), respectively.
That is, EDMA.n/ D 2n�EDyn�Data and EMiss.L/ D 4L�EDyn�Data. We notice
that the memory energy overhead rises significantly as the miss ratio increases and
amounts to an increase of 40% over the SPM energy for a 7% conflict miss ratio.

Fig. 13.23 Comparison of
SPM and cache dynamic
energy for different memory
capacities
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Fig. 13.24 Comparison of SPM and cache dynamic energy for different conflict miss ratios for
50 � 50 tile

This illustrates the importance of the appropriate mapping decision, which should
ideally be implemented through a systematic procedure that estimates the benefits
and cost overheads for different data mapping possibilities.

13.6 Memory Customization and Exploration

In addition to the diverse memory structures in SoC architectures, there is often
the opportunity to customize the architecture for a single application or domain
of applications. For example, the size and number of caches, register files, and
SPMs could be customized. This process requires an exploration phase that involves
iterating between architectural possibilities and compiler analysis to extract the best
performance and power from each architectural instance [4, 11, 32, 35, 39]. Fast
estimators are necessary to help converge on the final architecture.

13.6.1 Register File Partitioning

The register file could be an early candidate for application specific customization.
The RF size could be determined based on application requirements. Further, from
the application behavior, we could determine that a small set of registers need to be
frequently accessed, whereas other data in the register file might not be accessed as
frequently. This knowledge could be exploited by dividing the RF into two physical
partitions, one smaller than the other (Fig. 13.25). If most accesses are routed to
the smaller RF partition, the overall energy consumption could be smaller than
the standard RF architecture where a larger RF is accessed for every register data
access [24].
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Fig. 13.25 Partitioning the register file. Uneven partitioning can lead to energy efficiency if the
majority of accesses are to the smaller partition

13.6.2 Inferring Custom Memory Structures

Generalizing the register imbalance observed above, we could have a small range
of memory addresses being relatively heavily accessed, leading to an analogous
situation where the small range could be mapped to a small physical memory,
which could lead to overall energy efficiency. Such a situation could be detected
either by a compiler analysis or an execution profile of the application. This is
illustrated in Fig. 13.26. The graph in Fig. 13.26a shows that a small range dominates
the memory accesses. This could lead to an architectural possibility indicated in
Fig. 13.26b, where this range of addresses is stored in a separate small memory.
Memory accesses lying in this range could be more energy efficient because the
access is made to a much smaller physical memory module [27]. The overhead of
the range detection needs to be factored here. Custom memory structures could
also be inferred by a data locality compiler analysis in loop nests, leading to
relatively heavily accessed arrays being mapped to separate memory structures so
as to improve overall energy efficiency [28].

13.6.3 Cache Customization and Reconfiguration

The presence of caches sometimes leads to opportunities for configuring the local
memory in several ways. Caches themselves have a large number of parameters that



13 Memory Architectures 437

Fig. 13.26 (a) Profile of memory accesses (b) Memory architecture derived from profile

Fig. 13.27 Partitioning local
memory between SPM and
cache

could be tuned to the requirements of an application. Further, the coexistence of
caches with other structures such as SPM expands the scope for such customization.

One exploration problem that comes up in this context is to divide a given
amount of local memory space into cache and SPM. The best partitioning would be
application dependent, and a compiler analysis of the application behavior would
help determine the best partition. As Fig. 13.27 indicates [31], both extremes of
all cache and all SPM may not be the best because different application data
access patterns are suitable for different memory types. The best partition may lie
somewhere in between [5, 31].

With processors such as Fermi permitting dynamic local memory reconfiguration
(Sect. 13.3.3), the partitioning between cache and SPM could also be performed
during the application execution, with different partitions effected during differ-
ent application phases. Apart from size, possibilities also exist for dynamically
reconfiguring other cache parameters such as associativity and management policy.
Dynamic adjustment of cache associativity may help identify program phases where
some ways can be turned off to save power. In Fig. 13.28a, the four-way cache has
all four banks active at time t1, but two ways are turned off at t2 [40]. When a
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Fig. 13.28 Cache way configuration. (a) Ways shut down to save power (b) Dynamic allocation
of ways to cores

cache is shared among several processor cores, an active management policy could
exclusively allocate different sets of ways to different cores, with the objective of
maximizing overall throughput. In Fig. 13.28b each core is allocated one exclusive
way at time t1, but at t2, three ways are allocated to core c1, while the other way is
shared among the remaining three cores [13, 34]. Such a decision could result from
an analysis of the loads presented to the shared cache by the four cores. Application-
specific analysis could also reveal possibilities for improving the cache mapping
function [10].

13.7 Conclusions

In this chapter we reviewed some of the basics of memory architectures used in
hardware/software codesign. While the principles of memory hierarchies used in
general-purpose processors are relatively well defined, systems-on-chip tend to use
a wide variety of different memory organizations according to the requirements
of the application. Nevertheless, the architectures can be classified into a few
conceptual classes such as registers, register files, caches, and scratchpad memories,
instanced and networked in various ways. Codesign environments give rise to the
possibility of integrating both the memory architecture as well as the application
data mapping into the memory, leading to exciting technical challenges that require
a fast exploration of the large number of configurations and mapping possibilities.
As memory technologies continue to evolve, the problem of selecting and exploiting
memory architectures continues to be relevant and expands in scope because of the
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different trade-offs associated with memories with very different properties. As the
technology marches forward, the integration of nonvolatile memories into system
design poses very interesting new and exciting problems for the designer. This topic
is discussed further in �Chap. 14, “Emerging and Nonvolatile Memory”.
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