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Abstract

Reconfigurable architecture is a computer architecture combining some of the
flexibility of software with the high performance of hardware. It has configurable
fabric that performs a specific data-dominated task, such as image processing
or pattern matching, quickly as a dedicated piece of hardware. Once the task
has been executed, the hardware can be adjusted to do some other task. This
allows the reconfigurable architecture to provide the flexibility of software
with the speed of hardware. This chapter discusses two major streams of
reconfigurable architecture: Field-Programmable Gate Array (FPGA) and Coarse
Grained Reconfigurable Architecture (CGRA). It gives a brief explanation of the
merits and usage of reconfigurable architecture and explains basic FPGA and
CGRA architectures. It also explains techniques for mapping applications onto
FPGAs and CGRAs.

Acronyms

ALAP As Late As Possible
ALM Adaptive Logic Module
ALU Arithmetic-Logic Unit
ASAP As Soon as Possible
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
ASMBL Advanced Silicon Modular Block
CCE Configuration Cache Element
CDFG Control-/Data-Flow Graph
CGRA Coarse Grained Reconfigurable Architecture
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CLB Configurable Logic Block
DFG Data-Flow Graph
DPR Dynamic Partial Reconfiguration
DRAA Dynamically Reconfigurable ALU Array
DRESC Dynamically Reconfigurable Embedded System Compiler
DSP Digital Signal Processor
EGRA Expression Grained Reconfigurable Array
EMS Edge Centric Modulo Scheduling
ESL Electronic System Level
FDS Force-Directed Scheduling
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
GOPS Giga Operations Per Second
GPP General-Purpose Processor
HLS High-Level Synthesis
II Initiation Interval
ILP Integer Linear Program
IMS Iterative Modulo Scheduling
IOE I/O Element
I/O Input/Output
LAB Logic Array Block
LE Logic Element
LLVM Low-Level Virtual Machine
LS List Scheduling
LUT Look-Up Table
MRRG Modulo Resource Routing Graph
NoC Network-on-Chip
NRE Non-Recurring Engineering
PE Processing Element
PLL Phase Locked Loop
QEA Quantum-inspired Evolutionary Algorithm
RCM Reconfigurable Computing Module
RF Register File
RTL Register Transfer Level
SDF Synchronous Data Flow
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
SPKM Split & Push Kernel Mapping
SPMD Single Program, Multiple Data
SPM Scratchpad Memory
STMD Single Thread, Multiple Data
VLIW Very Long Instruction Word
VLSI Very-Large-Scale Integration
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11.1 Why Reconfigurable Architectures?

General-Purpose Processors (GPPs) are programmable but not good in terms of
performance (or execution time) when compared to Application-Specific Integrated
Circuits (ASICs). ASICs are specialized circuits providing large amount of paral-
lelism and thus allowing high performance implementation, but only for a specific
application. An ASIC can contain just the right mix of functional units for a
particular application and thus can be made fast and compact. They can make
a very dense chip, which typically translates to high scalability. As technology
has improved over the years, the maximum complexity (and hence functionality)
possible in an ASIC has grown from several thousand gates to over millions of
gates. But ASICS are not an economic choice for many embedded applications
due to higher Non-Recurring Engineering (NRE) cost and longer time to market,
except for very large volume applications. Reconfigurable computing systems like
FPGAs and CGRAs as an intermediate architecture can provide both performance
and flexibility. The performance is from the parallelism of the architecture, and
the flexibility is from the configurability of the architecture. While FPGAs provide
fine-grained (gate level) reconfigurability, CGRAs provide coarse-grained (register
transfer level) reconfigurability.

The world of multimedia processing and telecommunication stack is character-
ized by increasing speed and performance needs. The required raw compute power
has been fed by the ever increasing transistor densities enabled by innovations
in the Very-Large-Scale Integration (VLSI) domain. However, this growth has to
take into account increasing process/voltage/temperature variations, shorter time
to market, and higher NRE cost. That is, it is required to achieve both higher
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performance and more efficient design/manufacturing at the same time. These
two conflicting requirements have made reconfigurable architectures a popular
alternative implementation platform.

FPGA is the first successful reconfigurable architecture. The most popular
SRAM-based FPGAs contain many programmable logic blocks that can be repro-
grammed many times after manufacturing, although some FPGAs such as the one
using the antifuse technology can be programmed only once. It can be used as a test
bed to prototype a design before going for a final ASIC design. In this way, FPGAs
can be reprogrammed as needed until the design is finalized. The ASIC can then be
manufactured based on the FPGA design.

Since an FPGA is basically an array of gates, it also provides a large amount of
parallelism and thus allows high performance implementation. Actually, the design
phases of FPGAs and ASICs are quite similar except that ASICs lack post-silicon
flexibility. ASICs require new fabrication for a new application, and thus fail to
satisfy the market’s critical time-to-market needs, and are, by definition, unable
to satisfy the need for greater flexibility [96]. FPGAs are more flexible with the
ability to rapidly implement or reprogram the logic. The general flexibility of an
FPGA results in time-to-market advantages since it allows fast implementation of
new functions as well as easy bug fixes. One thing to note, however, is that an
ASIC is designed to be fully optimized to a specific application or a function.
Compared to ASICs, FPGAs consume more power, take more area, and provide
lower performance but have much lower NRE cost. Thus FPGAs are in general
much more cost-effective than ASICs for low production volumes.

The increase of logic in an FPGA has enabled larger and more complex
algorithms to be programmed into the FPGA. Furthermore, algorithms can be
parallelized and implemented on multiple FPGAs resulting in highly parallel
computing. The attachment of such an FPGA to a modern CPU over a high speed
bus, like PCI express, has enabled the configurable logic to act more like an
accelerator rather than a peripheral. This has brought reconfigurable computing
into the high-performance computing sphere. Of course, the use of FPGAs requires
creating the hardware design, which is a costly and labor-intensive task, although
the vendors typically provide IP cores for common processing functions [13].

The reconfiguration granularity of CGRAs is larger than that of FPGAs. CGRAs
typically have an array of simple Processing Elements (PEs), where the PEs are
connected with each other through programmable interconnects. The functionality
of each PE is also programmable. Compared to FPGAs, CGRAs have significant
reduction in area and energy consumption due to much less amount of configuration
memory, switches, and interconnects for programming. Furthermore, because of the
low overhead of reconfiguration, CGRAs offer dynamic reconfiguration capabilities,
which is not easy for FPGAs. That makes CGRAs attractive for area-constrained
designs.

Processors are considered to be most flexible in that any kind of application with
complicated control and data dependencies can be easily compiled and mapped onto
the architecture. However, realizing the flexibility requires a rich set of instructions
and the supporting hardware, which incurs a significant overhead in terms of area
cost and power consumption. Moreover, with a single GPP, it is difficult to exploit



11 Reconfigurable Architectures 339

the parallelism in the application because of the complexity in the architecture.
There have been abundant researches and developments to enhance the performance
of GPPs by exploiting parallelism; actually, there have been startling progresses in
architectures supporting instruction-level parallelism such as superscalar and Very
Long Instruction Word (VLIW) architectures. However, it seems no longer possible
to make such a progress in that direction due to the rapid growth of area cost and
power consumption (area cost or number of transistors is less a concern today,
but it still matters in many applications that consider cost, form factor, leakage
current, etc.). GPPs, Digital Signal Processors (DSPs), and Application-Specific
Instruction-set Processors (ASIPs) (For the details of ASIP, refer to �Chap. 12,
“Application-Specific Processors”.) belong to this category, although DSPs and
ASIPs are in general less flexible than GPPs.

On the other hand, a new architecture has come to importance, named as
multi-core or many-core architecture depending on the number of processor cores
integrated on a chip. The processor cores are connected by a bus, or by a Network-
on-Chip (NoC) when there are too many cores to be connected by a bus. Such an
architecture can exploit task-level parallelism through proper scheduling of tasks,
while exploiting instruction-level parallelism available in a task if the processor
cores are capable of doing it. Although such an architecture can better exploit
parallelism with a better scalability, the processor cores are still very expensive,
and the on-chip communications incur additional costs in terms of area and power
consumption.

Different applications place unique and distinct demands on computing re-
sources, and applications that work well on one processor architecture will not
necessarily map well to another; this is true even for different phases of a
single application. As yet another architecture, GPUs are inexpensive, commodity
parallel devices with huge market penetration. They have already been employed
as powerful accelerators for a large number of applications including games and
3D physics simulation. The main advantages of a GPU as an accelerator stem
from its high memory bandwidth and a large number of programmable cores with
thousands of hardware thread contexts executing programs in a Single Program,
Multiple Data (SPMD) (The model of GPUs executing the same kernel code on
multiple data is called differently in the literature. Examples other than SPMD
include Single Instruction, Multiple Data (SIMD), Single Instruction, Multiple
Threads (SIMT), and Single Thread, Multiple Data (STMD).) fashion. GPUs are
flexible and relatively easy to program using high-level languages and APIs which
abstract away hardware details. Changing functions in GPUs can be done simply
via rewriting and recompiling code. However, this flexibility comes at a cost. For
the flexibility, GPUs rely on the traditional von Neumann architecture that fetches
instructions from memory, although the SPMD model can execute many threads
in parallel to process many different data with a single-thread program fetch.
Thus, when the application cannot generate many threads having the same program
sequence, the architecture may result in waste of resources and inefficiency in terms
of area cost and power consumption. Figure 11.1 briefly expresses the positioning
of reconfigurable architectures in terms of efficiency versus flexibility compared to
other technologies/architectures including ASIC, GPP, and others.

http://dx.doi.org/10.1007/978-94-017-7267-9_13
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Fig. 11.1 Comparison between implementation platforms [20]

11.2 FPGA Architecture

Field-Programmable Gate Arrays (FPGAs) went far beyond the peripheral position
in early days and are now occupying central positions in highly complex systems.
Over the 30 years, FPGAs have increased capacity by more than a factor of 10,000
and increased speed by a factor of 100. Cost and energy consumption per unit
function have also decreased by more than a factor of 1,000 [105]. An FPGA device
provides millions of logic cells, megabytes of block memory, thousands of DSP
blocks, and gigahertz of clock speed [72]. FPGAs are getting more complex with
the advances in semiconductor technology and are now found in various systems,
such as network, television, automobiles, etc., due to their merits compared to
other state-of-the-art architectures. For example, an Altera Arria 10 FPGA [2] with
DSP blocks that support both fixed and floating-point arithmetic can perform up
to 1 TFLOPS [57]. An FPGA platform with four Virtex-5 FPGAs [114] offers
performance comparable to a CPU or a GPU with 2.7–293 times better energy
efficiency on the BLAS benchmark [46].

Also, since FPGAs have the capability of reconfiguration, multiple applications
can be implemented on a small device, and thus the gap between FPGAs and ASIC
designs in terms of area and power can be reduced [28]. FPGA has also established
a large area of research on self-adaptive hardware systems. Self-adaptive hardware
systems are capable of exchanging, updating, or extending hardware functionality
during run time.
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11.2.1 Building Blocks

FPGAs contain a large amount of logic elements and interconnects among them.
There are also interconnects for clock distribution. The bitstream of configuration
data is downloaded into an FPGA to configure the logic elements and the intercon-
nects to implement a required behavior on the FPGA.

11.2.1.1 Logic Elements
The types of Logic Elements (LEs) are different depending on the manufacturing
companies. Most common LE types are registers, Look-Up Table (LUT), block
RAMs, and DSP units. Modern FPGAs combine such logic elements into a
customized building block for architectural scalability. For example, the LUTs
in Xilinx 7 series FPGA [113] can be configured as either a 6-input LUT with
one output or two 5-input LUTs with separate outputs but common addresses or
logic inputs. Each 5-input LUT output can optionally be registered in a flip-flop.
Figure 11.2 shows a simplified diagram of a sub-block (dotted box) consisting of
an LUT, two flip-flops, and several multiplexers. The logic circuit from Cin to Cout
in the diagram is used to build a carry chain for an efficient implementation of an
adder/subtracter. Four copies of such a sub-block form a slice (dashed box); thus a
slice contains four LUTs and eight flip-flops in total together with multiplexers and
carry logic. Among the eight flip-flops in a slice, four (one per LUT) can optionally
be configured as latches. Two slices form a Configurable Logic Block (CLB); each
slice in a CLB is connected to a switch matrix as shown in Fig. 11.3. One of the
reasons for this specific CLB structure, which is common to Spartan-6 and Virtex-6,
is to simplify design migration from the Spartan-6 and Virtex-6 families to the 7
series devices [115].

As shown in Fig. 11.4, the CLBs are arranged in columns in the 7 series
FPGAs (see Fig. 11.3) to form the Advanced Silicon Modular Block (ASMBL)
architecture, which uses flip-chip packaging to place pins anywhere (not only along
the periphery). With the architecture, the number of I/O pins can be increased
arbitrarily without increasing the array size as shown in Fig. 11.5 [112]. It also
enhances on-chip power and ground distribution by allowing power and ground
lines to be placed at proper locations in the chip as shown in Fig. 11.6. The ASMBL
architecture enables an FPGA platform to optimize the mixture of resource columns
to an application domain. In Fig. 11.4, for example, applications in domain A require
lots of logic, some memory blocks, and small number of DSP blocks, and thus
they fit well with platform A since it has a mixture of columns optimized to such
applications. Each CLB block can be configured as a look-up table, distributed
RAM, or a shift register.

Altera Stratix V FPGA [4] devices use a building block called enhanced Adaptive
Logic Module (ALM) to implement logic functions more efficiently. The enhanced
ALM has a fracturable LUT with eight inputs, two dedicated embedded adders, and
four dedicated registers as shown in Fig. 11.7. The ALM in Stratix V packs 6% more
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logic compared to the previous-generation ALM found in Stratix IV devices. An
ALM can implement some 7-input LUT-based function, any 6-input logic function,
two independent functions with a smaller-sized LUT (such as two independent 4-
input LUT-based functions), and two independent functions that share some inputs
as shown in Fig. 11.8; this is the reason for calling LUT as a fracturable LUT.
This enables Stratix V devices to maximize core performance at higher core logic
utilization and provide easier timing closure for register-rich and heavily pipelined
designs.

11.2.1.2 Interconnects
In Xilinx UltraScale architecture [72], extra connectivity (bypass connections shown
in Fig. 11.9) eliminates the need to route through an LUT to gain access to the
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Fig. 11.3 CLB block diagram

associated flip-flops. The flip-flops in the CLB of the architecture benefit from
several flexibility enhancements such as inversion attributes. The inversion attributes
are used to change the active polarity of each pin. When set to 1, it changes the
pin to behave active-low rather than active-high. Having more control signals with
increased flexibility provides the software with additional flexibility to use all the
resources within each CLB in the architecture.

Old FPGA generations have used central clock spine to distribute the various
clocks throughout the FPGA. As a result, clock skew always grows larger when
clock sources are away from the center of the device. In Xilinx UltraScale
architecture, segmented clock networks allow the center of clock network of a logic
block to be placed at the geometric center of the logic block. This technique reduces
the clock skew and also improves the performance. The clock segments can also
switch on and off when needed. This scheme eliminates unnecessary transistor
switchings and reduces the amount of power required to run the on-chip clock
networks.

The high-performance Altera Stratix architecture also consists of vertically
arranged LEs, memory blocks, DSP blocks, and Phase Locked Loops (PLLs) that
are surrounded by I/O Elements (IOEs) as depicted in Fig. 11.10. Speed-optimized
interconnects and low-skew clock networks provide connectivity between these
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Fig. 11.4 Xilinx ASMBL architecture

Fig. 11.5 Column-based I/O, enabled by flip-chip packaging technology
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Fig. 11.6 Power and ground distribution in traditional and ASMBL architecture

Fig. 11.7 Altera ALM block diagram

structures for data transfer and clock distribution. Stratix FPGAs are based on the
MultiTrack interconnect with DirectDrive technology [84]. The MultiTrack inter-
connect consists of continuous, performance-optimized routing lines of different
lengths used for communication within and between distinct design blocks. It also
gives more accessibility to any surrounding Logic Array Block (LAB) with much
fewer connections, thus improving performance and reducing power. MultiTrack
interconnect structure also provides accessing up to 22 clock domains per region.
Each Stratix device features up to 16 global clock networks. The DirectDrive
technology is a deterministic routing technology, which simplifies the system
integration stage of block-based designs by eliminating the often time-consuming
system re-optimization process that typically follows design changes and additions.
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Fig. 11.8 Fracturability of an Altera ALM
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Fig. 11.10 Stratix device architecture

Fig. 11.11 Static partial reconfiguration

11.2.2 Partial Reconfiguration in FPGA

Partial reconfiguration is a feature of modern FPGAs that allows reconfiguration
of only a part of the logic fabric of an FPGA. Normally, reconfiguring an FPGA
requires it to be held in reset while an external controller reloads a design onto it.
Partial reconfiguration allows for critical parts of the design to continue operating
while a controller either on the FPGA or off of it loads a partial design into a
reconfigurable module. Partial reconfiguration can also be used to save space for
multiple designs by only storing the partial designs that change between designs.
Partial reconfiguration of FPGAs is a compelling design concept for general purpose
reconfigurable systems for its flexibility and extensibility. Partial reconfiguration
can be divided into two groups: dynamic partial reconfiguration [68, 97] and static
partial reconfiguration.

In static partial reconfiguration, the device is not active during the reconfiguration
process. In other words, while the partial data is sent into the FPGA, the rest of the
device is stopped and brought up after the configuration is completed, as shown
in Fig. 11.11. Dynamic Partial Reconfiguration (DPR), also known as active partial
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Fig. 11.12 Dynamic partial reconfiguration

reconfiguration, permits to change a part of the device while the rest of an FPGA is
still running as illustrated in Fig. 11.12. Nowadays, Xilinx and Altera FPGA vendors
support DPR technique in their products [29,69]. The technique can be used to allow
the FPGA to adapt to changing hardware algorithms, improve fault tolerance, and
achieve better resource utilization. DPR is especially valuable where devices operate
in a mission critical environment that cannot be disrupted while some subsystems
are being redefined. Placing reconfigurable modules for the partial reconfiguration
can be done in different styles such as island, slot, or grid style [28]; depending on
the style, a different DPR technique is used. Not all the techniques are supported by
FPGA vendors such as Xilinx and Altera, but there are active researches on handling
such techniques.

11.2.2.1 Island-Style Reconfiguration
As shown in Fig. 11.13, there are different configuration styles depending on the
arrangement of the regions for partial reconfiguration. In the island-style approach,
the configurable region is capable of hosting one reconfigurable module exclusively
per island. A system might provide multiple islands, but if a module can only run on
a specific island, it is called single-island style [54]. If modules can be relocated to
different islands, it is called multiple-island style. While the island style can be ideal
for systems where only a few modules are swapped, it typically suffers from waste of
logic resources due to internal fragmentation in most applications. It happens when
modules with different resource requirements exclusively share the same island. For
example, if a large module taking a big island is replaced by a smaller one, there will
be a waste of logic resources in the reconfigurable region. To alleviate the problem,
one can reduce the size of each island, but in that case, a large module may not
fit into an island. However, hosting only one module per island makes it simple to
determine where to place a module.

11.2.2.2 Slot-Style Reconfiguration
The island-style reconfiguration suffers from a considerable level of internal
fragmentation. We can improve this by tiling reconfigurable regions into slots. This
results in a one-dimensional slot-style reconfiguration as shown in Fig. 11.13b. In
this approach, a module occupies a number of tiles according to its resource re-
quirements, and multiple modules can be hosted simultaneously in a reconfigurable
region. Figure 11.13 shows how the tiling influences the spatial packing of modules
into a reconfigurable region. In general, however, partial reconfiguration should also
consider packing of modules in the time domain. In order to improve the utilization
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Fig. 11.13 Different placement styles of reconfigurable modules. (a) Island style. (b) Slot style.
(c) Grid style

Fig. 11.14 Packing of modules into a system using slot-style reconfiguration. (a) Island style.
(b) Slot style

of the reconfigurable resources by the slot-style reconfiguration [55], modules
can be made relocatable to different slots. This is similar to the multiple-island
reconfiguration. Figure 11.14 gives an example of how module relocation helps to
better fit modules into a reconfigurable region over time. Tiling the reconfigurable
region is considerably more complex as the system has to provide communication to
and from the reconfigurable modules as well as the placement of the modules. The
placement should also consider that FPGA resources are in general heterogeneous.
For example, there are different primitives like logic, memory, and arithmetic blocks
on the fabric as we mentioned in the last section. Moreover, depending on the
present module layout, a tiled reconfigurable region might not provide all free tiles
as one contiguous area, which is called external fragmentation. Such an external
fragmentation can be removed by defragmenting the module layout which is called
compaction.

11.2.2.3 Grid-Style Reconfiguration
The internal fragmentation of a reconfigurable region that is tiled with one
dimensional slots can still be large. In particular, the dedicated multiplier and
memory resources can be affected much by this since a module typically needs
only a few among many resources arranged in columns on the FPGA fabric. Thus
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it is beneficial if another module can use the remaining resources by tiling the
vertical slots in Fig. 11.13b in horizontal direction. This results in a two-dimensional
grid-style reconfiguration [53] as shown in Fig. 11.15b. The implementation and
management of such a system is even more complex than the slot-style reconfigura-
tion approach. Note that it requires a communication architecture that can carry out
the communication of the modules with the static part of the system and also the
communication between reconfigurable modules, and the communication must be
established within a system at run time in the absence of sophisticated design tools.
Together with the time domain, the two-dimensional grid style placement becomes a
three-dimensional packing problem as visualized in Fig. 11.15. The packing should
perform scheduling while satisfying the constraints on resource availability and the
dependency between the modules. This packing, considering also fragmentation,
has to be managed at run time.

11.3 CGRA Architecture

Coarse Grained Reconfigurable Architectures (CGRAs), also known as coarse
grained reconfigurable arrays, emerged in 1990s targeting DSP applications [30].
Whereas FPGAs feature bitwise logic in the form of LUTs and switches, CGRAs
feature more energy-efficient and area-conscious wordwide PEs, Register Files
(RFs), and their interconnections. The cycle-by-cycle reconfigurability of CGRAs
along with multiple-bit data-paths has made them superior to FPGAs for repeti-
tive, computation-intensive tasks consisting of various word-level data-processing
operations. Wider data-paths in CGRAs allow more efficient implementation of
complex operators in silicon. Also the feature of cycle-by-cycle reconfigurability
allows customizing the PEs and their connections for every computation and
communication, making the performance closer to that of ASIC for word-level
operations. Compared to FPGAs, CGRAs have lower delay characteristics and less
power consumption. They have much shorter reconfiguration time (cycle level),
and thus much more flexible like a programmable processor. On the other hand,
gate-level reconfigurability is sacrificed, and thus they are less efficient for bit-level
operations.
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RaPiD [30], one of the first CGRAs, was developed in 1996. It is a linear array
of cells, where each cell comprises of two 16-bit integer ALUs, a 16-bit integer
multiplier, six registers, and three small local memories. The interconnections
between the functional units are made by segmented buses. It works on 16-bit
signed/unsigned fixed-point data. The two 16-bit ALUs in each cell can make a
pipelined 32-bit ALU. It runs at 100 MHZ frequency and can perform a sustained
rate of 1.6 Giga Operations Per Second (GOPS). Of course, more recent CGRAs can
operate at much higher clock frequencies, provide higher power efficiency, and have
more PEs in the array [102]. There are plenty of CGRAs designed and implemented
in the last two decades; RaPiD, MATRIX [78], Chimaera [41], Raw [110], Garp
[42], MorphoSys [100], REMARC [79], CHESS [70], HSRA [106], PipeRench
[34], DReAM [8], AVISPA [65], PACT XPP [98], ADRES [73], DAPDNA-2
[99], MORA [58], Chameleon [101], SmartCell [67], FLoRA [62], ReMAP [111],
SYSCORE [92], and EGRA [5] are some of THE well-known CGRAs reported to
date. A detailed review can be found in survey papers by Hartenstein [39], Todman
et al. [104], Choi [20], Tehre et al. [103], and Chattopadhyay [12]. One thing to
note is that, in some CGRAs such as ADRES or SRP [51], the architectures work in
two modes: CGRA mode and VLIW mode. In such architectures, the VLIW mode
executes the control intensive part of the application.

11.3.1 Building Blocks

The main part of CGRA is an array of PEs, RFs, and their interconnections. The
array is connected to data and configuration memories as well as a host processor.
A PE is basically a unit that performs ALU operations mostly for executing inner-
most loop kernels. Typically, a PE has its own registers to save temporary data.
The host processor may be a VLIW processor (e.g., ADRES), a DSP processor
(e.g., Montium), or a general-purpose microprocessor (e.g., MOLEN) to execute
non-loop or outer loop code. It also controls the reconfiguration of the array.
Data memory works as a communication medium between PE array and the host.
Reconfiguration bitstreams reside in the configuration memory and are fed to the
array for reconfiguration. The reconfiguration can be done every cycle if the required
array behavior changes cycle by cycle. Otherwise, the current configuration can stay
in the array for a while without any reconfiguration. Figure 11.16 shows the block
diagram of FloRA as a sample CGRA.

11.3.1.1 Processing Elements
CGRAs mostly consist of a 2D (e.g., 8�8) array of cells (PEs) although RaPiD has
a linear (1D) array of cells. A cell usually implements a single execution stage but
may also include an entire execution unit (RaPiD) or can even be a general-purpose
processor (Raw). Figure 11.17a, b show the difference in computing cells between
FPGA and CGRA; while a basic cell in FPGA can execute a bit-level operation, the
same in CGRA can execute a word-level operation.
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Fig. 11.16 FloRA block diagram
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Fig. 11.17 Operation granularity comparison among (a) FPGA, (b) CGRA and (c) EGRA [5]
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Fig. 11.18 Homogeneous vs. heterogeneous CGRAs

Although some CGRAs have different names for the computing cells, each
cell is commonly called a processing element or a PE in short. PEs in different
CGRAs support different set of operations (e.g., 16 instructions for CHESS). The
number of PEs in a CGRA array varies from 16 in SRP to 64 in FloRA and
even more to 24 rows of 16 cells in ReMAP. The PEs are either homogeneous
or heterogeneous. While the homogeneity provides a uniform architecture and thus
is easier to use, the heterogeneity targets better resource utilization and therefore
less power and area consumption. CGRAs such as MORA, MorphoSys, REMARC,
and SYSCORE are homogeneous as shown in Fig. 11.18a. Each PE has an ALU,
a multiplier, and a register file and is configured through a 16- or 32-bit context
word [100]. On the other hand, BilRC, MATRIX, XPP, and SRP are heterogeneous
(Fig. 11.18b). Some PEs in SRP support scalar operations while some other support
vector operations as well. Besides that, the type and number of operations are
not the same among different PEs in SRP. Another aspect of heterogeneity is in
accessing the data memory by using read and write operations; only a few PEs,
called load/store PEs have access to the data memory [49]. For example, a CGRA
array may have one load/store PE per row, while one or two PEs per row may
provide multiplications [38]. A heterogeneous architecture may allow normal PEs
to share expensive resources (like multipliers), which leads to less area and energy
consumption [90]. The sample heterogeneous CGRA illustrated in Fig. 11.18b has
three different kinds of PEs in the array. For example, PE0, PE1, PE2, and PE3
can be load/store PEs; PE4, PE7, PE12, and PE15 can contain expensive functional
units; other PEs are normal ones.

In architectures like FloRA [38], each PE contains its own RF. But in some other
CGRAs like SRP, a register file is shared among a number of PEs. PipeRench,
FloRA [44], and SRP are among a few CGRAs that their PEs support floating-
point operations besides the integer operations. MorphoSys is a CGRA architecture
that works in a SIMD format and is also appropriate for systolic array kind of
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Fig. 11.19 Branch predicate
techniques in FloRA
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operations. Predicated execution in some new CGRAs such as SRP and FLoRA
enables accelerated execution of control flows on a CGRA. Figure 11.19 shows the
implementation of predicated executions in FloRA [38].

Raw [110] is another architecture in this category. The main element in the array
is called a tile, which contains instruction and data memories, an arithmetic logic
unit, registers, configurable logic, and a programmable switch that supports both
dynamic and compiler-orchestrated static routing. On the other hand, Garp [42]
is something between FPGA and CGRA, having 2-bits wide operations for the
logic blocks. Template Expression Grained Reconfigurable Array (EGRA) [5] in
Fig. 11.17c is another example of a coarse-grained array. RAC, a complex cell at
the heart of the arithmetic in EGRA, supports efficient computation of an entire
sub-expression, as opposed to a single operation. In addition, RACs can generate
and evaluate branch conditions and be connected either in a combinational or
a sequential mode. Figure 11.17c illustrates how a complete expression can be
mapped to a cell in EGRA.

The processing element in the reMORPH array is a tile built using DSP and
RAM blocks which are already available in an FPGA platform for ALUs and local
data/code memories, respectively. Each tile can implement arithmetic and logic
operations along with direct and indirect addressing to the data in memory. This
enables complete C style loops to be executed on a PE. Memory locations are reused
to store the intermediate results. In each iteration, the same set of instructions can
be executed by updating the base addresses of the registers to read new data using
register indirect addressing. As the reconfiguration of reMORPH array is done at
the task level, it is sometimes considered as a many-core architecture rather than a
CGRA.

11.3.1.2 Interconnects
In general, CGRAs execute only loops; therefore, they need to be coupled to
a host processor. While the array executes the kernel loops, the host processor
can execute other parts of the application. Therefore, interconnections in CGRAs
can be discussed in two different levels: intra-connections and inter-connections.
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Inter-connections define the connections between the array and the host processor,
and intra-connections define connections among PEs in the array.

Figure 11.16 shows that a PEs array is connected to the host processor using a
common bus, which also connects the PEs array to the main memory. However, the
array is connected to its own data memory using direct connections. On the other
hand, in some other architectures like ADRES, there is no separate host processor,
but part of the array works in a VLIW mode for the role of the host processor.

As the intra-connection, which defines the connections inside a PE array,
segmented buses are used among the functional units in RapiD. The most common
connection topology in a 2D array of PEs is a mesh connecting a PE to its four
nearest neighbors (Fig. 11.20a). Such a mesh is the base interconnection topology
in architectures like MorphoSys and ADRES. Figure 11.20 illustrates some other
interconnection topologies among PEs including next hop (Fig. 11.20b), buses
(Fig. 11.20c), and extra (Fig. 11.20d). Some CGRAs combine mesh interconnects
with next-hope connections to provide more routing capabilities among PEs
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Fig. 11.20 Basic interconnects that can be combined [25]. (a) Nearest neighbor. (b) Next hop.
(c) Buses. (d) Extra
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Fig. 11.21 FloRA interconnect network [76]

(e.g., FloRA). Horizontal and/or vertical buses are other common interconnects
among PEs in some architectures as shown in Fig. 11.21 [25]. While Fig. 11.20
shows examples of flat interconnection, there are CGRAs with a hierarchical
structure supporting multi-level interconnects among PEs. As an example, the PE
array in SRP has a 2-level hierarchical interconnect topology. A cluster of PEs
form a minicore with a full connection between them. Besides that there is a full
connection between minicores [51].

In CGRAs with shared resources and heterogeneous PEs, the connections be-
tween PEs and shared resources can follow different topology than the connections
between PEs of same or different type. But in most CGRAs, PEs in a row or column
share the same resources. In heterogeneous architectures, The load/store PEs may
follow the same connection topology as other PEs but they have separate dedicated
connections to the ports of the data memory.

11.3.2 Reconfiguration in CGRAs

The reconfigurability of CGRA arrays can be categorized into static reconfiguration,
partially dynamic reconfiguration, and fully dynamic reconfiguration.

KressArray is a statically reconfigurable CGRA. In the architecture, the array is
configured before a loop is entered. So the mapping is spatial and no reconfiguration
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takes place during the loop execution. In such architectures each resource is assigned
a single task for executing the loop. Therefore, the associated compiler performs
task mapping and data routing, which is similar to the place & route process in
FPGA. The spatial mapping in such CGRAs leads to less power consumption, but a
large loop cannot be mapped onto the array.

ADRES, Silicon Hive, and MorphoSys support fully dynamic reconfiguration.
In such architectures, One full reconfiguration takes place for every execution
cycle. Therefore, more than one task can be assigned to a resource during the
loop execution lifetime and thus the loop size is not a problem. In this case, the
CGRA is treated as a 3D spatial-temporal array, with time (or cycles) as the third
dimension. The power consumption of the configuration memories is one drawback
for these architectures. SIMD structure of MorphoSys decreases power consumption
overhead by fetching one configuration code for all the PEs in a row (or a column).
Another technique to reduce power consumption overhead is to pipeline the current
configuration of a column to the next column for the next execution cycle [48].
Compressing configuration memory content is another solution to reducing power
consumption as well as required memory capacity [86].

PACT and RaPiD feature a partial dynamic reconfiguration, such that part of the
configuration bitstream is downloaded to the array statically while the other part is
invoked and downloaded onto the array dynamically by using a sequencer. PACT
CGRA can initiate events to invoke (partial) reconfiguration [25].

11.4 Mapping onto FPGAs

Traditional mapping of an application onto an FPGA is at the logic level mostly
involving technology mapping of logic operations to FPGA logic blocks. As the
systems become more complex, however, it is preferred to start the design process
at a higher abstraction level such as Electronic System Level (ESL), where high-
level programming languages such as C, C++, or SystemC are used to describe
the system behavior and then the High-Level Synthesis (HLS) technique is used to
automatically generate the Register Transfer Level (RTL) structure that implements
the behavior. Figure 11.22 describes the HLS flow.

The compilation, which is the first step of the flow, transforms the input
behavioral description into a formal representation. This first step may include
various code optimizations such as false data dependency elimination, dead-code
elimination, and constant folding. The formal model produced by the compilation
exhibits the data and control dependencies between the operations. Data depen-
dencies can be easily represented with a Data-Flow Graph (DFG) in which nodes
represent operations and the directed arcs between the nodes represent the input,
output, and temporary variables for data dependencies. Such a simple representation
does not support branches, loops, and function calls and thus it is extended by adding
control dependencies to obtain Control-/Data-Flow Graph (CDFG). There are
various ways of combining data flow and control flow into a CDFG. For example,
a CDFG can be a hierarchical graph where each node is a DFG that represents a
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Fig. 11.22 High-level
synthesis (HLS) procedures

basic block and edges between the nodes represent control dependencies. Once the
CDFG has been built, additional analyses or optimizations can be performed mostly
focusing on loop transformations including loop unrolling, loop pipelining, loop
fission/fusion, and loop tiling. These techniques are used to optimize the latency
or the throughput. To the optimized CDFG, a typical HLS process applies three
main steps, namely, allocation, scheduling, and binding. We will discuss those steps
in the following subsections. Several HLS tools have been developed for FPGAs
targeting specific applications. GAUT is a high-level synthesis tool that is designed
for DSP applications [24]. GAUT synthesizes a C program into an architecture with
a processing, communication, and memory unit. It requires the user supply specific
constraints, such as the pipeline initiation interval. ROCCC is an open-source HLS
tool that can create hardware accelerators from C [108]. ROCCC is designed to
accelerate kernels that perform repeated computation on streams of data such as
FIR filters in DSP applications. ROCCC supports advanced optimizations such as
systolic array generation, temporal common subexpression elimination, and it can
generate Xilinx PCore modules to be used with a Xilinx MicroBlaze processor [77].
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vo id FIR ( s h o r t ∗y , s h o r t c [N] , s h o r t x ) {
. . .
acc =0;
Shif t_Accum_Loop : f o r ( i =N−1; i >=0; i−− ){

i f ( i ==0){
s h i f t _ r e g [0 ]= x ;
d a t a = x ;

}
e l s e {

s h i f t _ r e g [ i ]= s h i f t _ r e g [ i − 1] ;
d a t a = s h i f t _ r e g [ i ] ;

}
acc += d a t a∗c [ i ] ; ;

}
∗y=acc ;

}

Fig. 11.23 FIR filter C code
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Fig. 11.24 FIR filter block diagram generated by Xilinx Vivado HLS tool

Xilinx developed the Vivado HLS tool [109] based on AutoPilot (a commercial
version of xPilot [17]), a product of AutoESL which was acquired by Xilinx. It
uses a Low-Level Virtual Machine (LLVM) [59] compilation infrastructure and
optimizes various parameters such as interconnect delays, memory configurations,
and I/O ports/types for different implementation platforms. It can automatically
generate RTL code from an untimed or partially timed C, C++, or SystemC
description. Figure 11.23 shows an example of C code for an FIR filter with a 16-
bit wide data path, and Fig. 11.24 shows the RTL block diagram generated by the
Vivado HLS tool from the C code.

The LegUp [11] is an open-source HLS framework that aims to provide the
performance and energy benefits of hardware, while retaining the ease-of-use
associated with software. LegUp automatically compiles a standard C program
to target a hybrid FPGA-based software/hardware system-on-chip, where some
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program segments execute on an FPGA-based 32-bit MIPS soft processor and other
program segments are automatically synthesized into FPGA circuits – hardware
accelerators – that communicate and work in tandem with the soft processor.
LegUp also uses LLVM compiler framework for high-level language parsing and
its standard compiler optimizations.

11.4.1 Allocation

Allocation defines the type and the number of hardware resources (functional
units, storage, or connectivity components) needed to implement the behavior while
satisfying the design constraints. Depending on the HLS tool, some components
may be added during scheduling or binding [23]. For example, functional units such
as adders or multipliers can be added during scheduling or binding if the given
performance constraint cannot be met with the allocated resources. The components
are selected from the RTL component library. It is important to select at least
one component for each operation type used in the behavioral specification. The
library must also include component characteristics such as area, delay, and power
consumption.

11.4.2 Scheduling

Scheduling algorithms automatically assign control steps to operations subject
to design constraints. These algorithms can be classified into two types: exact
algorithms and heuristics. Exact algorithms like the one based on Integer Linear
Program (ILP) [33, 43] provide an optimal schedule but take prohibitively long
execution time in most practical cases. To cater to the execution time issue, various
algorithms based on heuristics have been developed. For example, an algorithm
may make a series of local decisions, each time selecting the single best operation-
control step pairing without backtracking or look-ahead. So it may miss the globally
optimal solution, but can quickly produce a result that is sufficiently close to the
optimum and thus acceptable in practice. Examples of basic heuristic algorithms
for HLS include As Soon as Possible (ASAP), As Late As Possible (ALAP), List
Scheduling (LS), and Force-Directed Scheduling (FDS).

FDS and LS are constructive heuristic algorithms, and the quality of the results
may be limited in some cases. To further improve the quality, an iterative method
can be applied to the result of constructive method. In [87], for example, they adopt
the concept of Kernighan and Lin’s heuristic method for solving the graph-bisection
problem [45] to reschedule operations into an earlier or later step iteratively until
maximum gain is obtained. There are many other iterative algorithms for the
resource constrained problem including genetic algorithm [7], tabu search [6, 94],
simulated annealing [10, 19], and graph theoretic and computational geometry
approaches [3].
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11.4.3 Binding

Every operation in the specification or CDFG must be bound to one of the functional
units capable of executing the operation. If there are several units with such
capability, the binding algorithm must optimize this selection. Each variable that
carries values from an operation to another operation across cycles (or control steps)
must be bound to a storage unit. In addition, each data transfer from component
to component must be bound to a connection unit such as a bus or a multiplexer.
Ideally, high-level synthesis estimates the connectivity delay and area as early as
possible so that later steps of HLS can better optimize the design. An alternative
approach is to specify the complete architecture during allocation so that initial floor
planning results can be used during binding and scheduling.

There are many algorithms proposed, but some of the basic ones include clique
partitioning, left-edge algorithm, and iterative refinement. In the clique partitioning-
based binding [83], the operations and variables are modeled as a graph. Cong and
Smith [14] present a bottom-up clustering algorithm based on recursive collapsing
of small cliques in a graph. Kurdahi and Parker [56] solved the register binding
problem for a scheduled data-flow graph by using the left-edge algorithm. Chen
and Cong [18] propose the k-cofamily-based register binding algorithm targeting
multiplexer optimization problem.

11.4.4 Technology Mapping

Most modern FPGA devices contain programmable logic blocks that are based
on a K-input look-up table (K-LUT) where a K-LUT contains 2K truth table
configuration bits so it can implement any K-input function. Thus, any logic circuit
can be implemented with one K-LUT, provided that the circuit has only one output
and the number of inputs is not larger than K; the internal complexity of the circuit
does not matter.

The number of LUTs needed to implement a given circuit determines the size
and cost of the FPGA-based realization. Thus one of the most important phases of
the FPGA CAD flow is the technology mapping step that maps a circuit description
into a LUT network presented in the target FPGA architecture, while minimizing the
number of LUTs used for the mapping and the critical path delay. The process of
technology mapping is often treated as a covering problem. For example, consider
the process of mapping a circuit onto a network of LUTs as illustrated in Fig. 11.25.
Figure 11.25a illustrates the original gate-level circuit and a possible covering with
three 5-LUTs. Figure 11.25b illustrates a different mapping of the circuit through
overlapped covering. In the mapping, the gate labeled X is duplicated and covered
by both LUTs. Gate duplication like this example is often necessary to minimize the
number of LUTs used for the mapping [22].

There are several methods for technology mapping including graph-based and
LUT-based methods. Chen et al. [16] introduce graph-based FPGA technology
mapping for delay optimization. As a preprocessing phase of this work, a general
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algorithm called DMIG transforms an arbitrary n-node network into a network
consisting of at most two-input gates with only an O(1) factor increase in network
depth. A matching-based technique that minimizes area without increasing network
delay is used in the post-processing phase. Cong and Minkovich [21] present LUT-
based FPGA technology mapping for reliability. As device size shrinks to the
nanometer range, FPGAs are increasingly prone to manufacturing defects, and it
is important to have the ability to tolerate multiple defects. One common defect
point is in the LUT configuration bits, which are crucial to the correct operation of
FPGAs. This work presents an error analysis technique that efficiently calculates
the number of critical bits needed to implement each LUT. It allows the design to
function correctly when implemented on a faulty FPGA.

11.5 Mapping onto CGRAs

Despite the enormous computation power, the performance of CGRAs critically
hinges on a smart compiler and mapping algorithm. The target applications of
these architectures often spend most of their time executing a few time-critical loop
kernels. So the performance of the entire application may be improved considerably
by mapping these loop kernels onto an accelerator. Moreover, these computation-
intensive loops often exhibit a high degree of inherent parallelism. This makes it
possible to use the abundant computation resources available in CGRAs. The pro-
grammer or the compiler for a CGRA may find these computation-intensive loops
through profiling and/or analysis and directs the computation-intensive segments to
CGRA and control-intensive part to the host processor.

The first compilation attempts were focused on ILP but failed to better exploit
the parallelism than VLIW [74]. Success of software pipelining techniques encour-
aged researches to examine modulo scheduling. Modulo scheduling is a software
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pipelining technique used in VLIW to improve parallelism by executing different
loop iterations in parallel. The objective of modulo scheduling is to engineer a
schedule for one iteration of the loop such that the same schedule is repeated at
regular intervals with respect to intra- and inter-iteration dependencies and resource
constraints. This interval is termed Initiation Interval (II), essentially reflecting the
performance of the scheduled loop. It is determined by several parameters, and the
reader is directed to [95] for the details.

Modulo scheduling on coarse-grained architectures is a combination of three
subproblems: placement, routing, and scheduling. Placement determines on which
PE to place one operation. Scheduling determines in which cycle to execute that
operation. Routing connects the placed and scheduled operations according to their
data dependencies [25, 74]. In the worst case, II is equal to the schedule length
(iteration length), and in the best case, it is equal to one, which means that the entire
loop is mapped onto the CGRA at once (static mapping). In case of II�2, PEs need
to be reconfigured several times to execute the entire loop.

Dynamically Reconfigurable Embedded System Compiler (DRESC) [74] uses
a modulo scheduling algorithm based on simulated annealing [52]. It begins with
a random placement of operations on the PEs, which may not be a valid modulo
schedule. Operations are then moved between PEs until a valid schedule is achieved.
The random movement of operations in the simulated annealing technique can result
in a long convergence time for loops with modest numbers of operations [89]. SPR
[31] is a mapping tool that uses Iterative Modulo Scheduling (IMS), besides using
simulated annealing placement with a cooling schedule inspired by VPR [9] as well
as PathFinder [71] and QuickRoute [66] for pipelined routing.

To have a better mapping, it is required to consider scheduling, placement, and
routing at the same time. Graph-based algorithms [74, 75, 116, 117] are able to do
the job just by modeling CGRA as a graph including time as the third dimension.
Therefore, the mapping problem becomes mapping the loop kernel DFG onto the
CGRA Modulo Resource Routing Graph (MRRG). Figure 11.26 shows how a loop
kernel DFG is mapped onto the CGRA, where three subsequent iterations of the
DFG are mapped. As shown in this example, II is 2 while the schedule length is 4.
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Figure 11.26d shows that the same PE which is doing operation “b” in cycle “i,”
acts as routing PE in cycle “i+1,” to route operation “b” to cycle “i+2.” In this way,
assigning some PEs for routing provides more connectivity for the communications
between nodes of a DFG.

One of the parameters defining II is the recurrence-constrained lower bound. Oh
et al. [85] introduced a recurrence cycle-aware scheduling technique for CGRAs.
Their modulo scheduler groups operations belonging to a recurrence cycle into a
clustered node and then computes a scheduling order for those clustered nodes.
Deadlocks that arise when two or more recurrence cycles depend on each other
are resolved by using heuristics that favor recurrence cycles with long recurrence
delays. Whereas previous approaches had to sacrifice either compilation speed or
quality of the result, this is no longer necessary with the recurrence cycle-aware
scheduling technique. Traditional schedulers are node-centric in that the focus is
assigning operations to PEs. The straightforward adaptation of this approach is
operation placement followed by operand routing to determine if the assignment
is feasible. Park et al. [89] have shown that node-centric approaches are poor for
CGRA. They proposed an Edge Centric Modulo Scheduling (EMS) approach. This
approach focuses on mapping edges instead of nodes.

Shared resources [47], data memory limitation [26, 49], and register file dis-
tribution (REGIMap [36]) are also important constraints that must be considered
for the mapping of a DFG onto a CGRA. ILP can be used to obtain an optimal
solution to a mapping problem considering such constraints. However, since the ILP
approach is slow in general, it is used to obtain an optimal solution for problems of
small size; the solution is used to check the quality of other heuristic-based (non-
ILP) approaches. We briefly introduce some of the ILP-based and heuristic-based
mapping approaches in Sects. 11.5.1 and 11.5.2, respectively.

In cases that there is not enough space to map all the loop kernels of the
application, some decision has to be made to find more eligible kernels. Lee et al.
[64] have proposed a kernel selection algorithm. If the memory requirement of
the application is larger than the available Scratchpad Memory (SPM) size, kernel
selection is performed based on detailed statistics such as run-time and buffer-access
information of each kernel. Otherwise, all the kernels are mapped to the CGRA.

11.5.1 ILP-Based Mapping Approaches

There have been a few approaches to ILP formulation of the problem of mapping an
application to a CGRA. Ahn et al. [1] have formulated the mapping problem in ILP
for the first time. Their approach consists of three stages: covering, partitioning, and
laying-out. In the covering stage, a kernel tree is transformed to the configuration
tree such that each node of the configuration tree represents a configuration for each
PE and can cover and execute one or more operations. The partitioning stage splits
the configuration tree to clusters such that each cluster is mapped to one distinct
column of the CGRA in laying-out stage. The authors have targeted optimal vertical
mapping with the minimum total data transfer cost among the rows of PEs.
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Fig. 11.27 Split & Push heuristic in SPKM [116]

Yoon et al. [117] have developed a graph-based ILP formulation. Then they have
used Split & Push Kernel Mapping (SPKM) heuristic to solve the mapping problem
within a feasible time. Figure 11.27 shows how the Split & Push Kernel Mapping
Algorithm works. It assigns the entire DFG into one PE and then starts splitting it
horizontally and vertically. The link between the non-neighboring PEs is fulfilled by
using routing PEs. Their formulation takes into account many architectural details
of CGRA and leads to minimum number of rows.

Lee et al. [63] have proposed an approach that covers not only integer operations
but also floating-point operations implemented by simply using two neighboring
tiles. Besides their ILP formulation, they have developed a fast heuristic mapping
algorithm considering Steiner points. Details are given in Sect. 11.5.3.

As already mentioned, there are CGRAs like Raw [110] and reMORPH [80, 93]
that provide reconfigurations at the task level rather than instruction level. Moghad-
dam et al. [81, 82] have presented an ILP-based optimal framework to map an
application in the form of a task graph onto a tile-based CGRA. They have integrated
scheduling, placement, and routing into one mapping problem. The formulation
benefits from the reconfigurability feature of the target platform; a large application
having more tasks than the number of PEs or even multiple applications can be
mapped to the platform.

11.5.2 Heuristic-Based Approaches

There are many heuristic-based mapping approaches for CGRAs including EMS
[89], EPIMap [35], and graph-minor approach [15]. We review some of the most
referenced ones here.

Lee et al. [60] have developed a generic architecture template, called the
dynamically reconfigurable ALU array Dynamically Reconfigurable ALU Array
(DRAA). Their mapping approach goes through the following three levels: PE level,
line level, and plane level. In the PE level, a DFG is extracted. In the line level, nodes
of the DFG are grouped such that each group can be assigned to a distinct row of
PEs. And finally in the plane level, the lines are stitched together to form a plane.
They take into account the data reuse patterns in loops of DSP algorithms as part of
their approach.
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Park et al. [88] have presented their modulo graph embedding. Modulo graph
embedding is also a modulo scheduling technique for software pipelining. They
have modelled the architecture using an MRRG. Their MRRG has only II layers,
which makes the problem space smaller, and therefore the mapping algorithm
converges to the solution faster. They have later [89] presented an EMS approach,
which specifically targets routing of data instead of placement of operations.

Galanis et al. [32] have presented a priority-based mapping algorithm. This
algorithm assigns an initial priority to each operation of the DFG. This priority is
inversely proportional to the mobility, which is the difference between ALAP and
ASAP schedule times. The operations residing on the critical path will be scheduled
first.

Hanataka et al. [40] have presented a modulo scheduling algorithm that takes
into account “resource reservation” and “scheduling” separately. They have used
a resource usage aware relocation algorithm. Their approach uses a compact 3D
architecture graph similar to the MRRG used in [88]. This graph is only II times as
large as the original two-dimensional graph.

Dimitroulakos et al. [27] have presented an efficient mapping approach where
scheduling and register allocation phases are performed in one single step. They
have also incorporated modulo scheduling with back tracking in their approach.
Their mapping approach minimizes memory bandwidth bottleneck. They have tried
to maximize the ILP using a new priority scheme and few heuristics. Their solution
covers a large range of CGRAs. They have also developed a simulation framework.

Oh et al. [85] have proposed a scheduling technique that is aware of data
dependencies caused by inter-iteration recurrence cycles. Therefore, operations in
a recurrence cycle are clustered and considered as a single node. The operations in a
recurrence cycle are handled as soon as all predecessors of the clustered node have
been scheduled. They have also proposed a modification in the target architecture to
further improve the quality of their scheduling approach.

Lee et al. [61] have proposed a mapping approach based on high-level synthesis
techniques. They have used loop unrolling and pipelining techniques to generate
loop parallelized code to improve the performance drastically.

Patel et al. [91] benefit from systolic mapping techniques in their scheduler. They
prepare an Synchronous Data Flow (SDF) graph for the application; they rearrange
the graph for systolic mapping, schedule the SDF graph, and then prepare a CDFG
for each node of the SDF graph. As the last step, they generate topology matrix and
delay matrix which are used for the final systolic mapping.

Kim et al. [50] have proposed a memory-aware mapping technique for the first
time. They have also proposed efficient methods to handle dependent data on a
double-buffering local memory, which is necessary for recurrent loops.

11.5.3 FloRA Compilation Flow: Case Study

FloRA consists of a Reconfigurable Computing Module (RCM) for executing loop
kernel code segments and a general-purpose processor for controlling the RCM, and
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these units are connected with a shared bus. The RCM consists of an array of PEs,
several sets of data memories, and a configuration memory [47]. Figure 11.16 shows
FloRA containing a 8�8 reconfigurable array of PEs and internal structure of a PE.
Each PE is connected to the nearest neighboring PEs: top, bottom, left, and right.
The size of the array can be optimized to a specific application domain.

The area-critical resources (such as multipliers) are located outside the PEs and
shared among a set of PEs. Each area-critical resource is pipelined to curtail the
critical path delay, and its execution is initiated by scheduling the area-critical
operation on one of the PEs that share this area-critical resource. Thus, each PE
can be dynamically reconfigured either to perform arithmetic and logical operations
with its own Arithmetic-Logic Unit (ALU) in one clock cycle or to perform multiply
or division operations using the shared functional unit in several clock cycles
with pipelining. Resource pipelining further improves loop pipelining execution by
allowing multiple operations to execute simultaneously on one pipelined resource.
Furthermore, pipelining together with resource sharing increases the utilization of
these area-critical units. Data memory consists of three banks: one connected to the
write bus and the other two connected to the read buses. The connections can also
be reconfigured. Each PE has its local Configuration Cache Element (CCE). Each
CCE has several layers, so the corresponding PE can be reconfigured independently
with different contexts.

FloRA supports floating-point operations by allotting a pair of PEs: one for
mantissa and the other for exponent. Mapping a floating-point operation onto the
PE array with integer operations may take many layers of cache. If a kernel consists
of a multitude of floating-point operations, then mapping it onto the array easily
runs out of the cache layers, causing costly fetch of additional context words
from the main memory. Instead of using multiple cache layers to perform such a
complex operation, some control logic is added to the PEs so that the operation can
be completed in multiple cycles but without requiring multiple cache layers. The
control logic can be implemented with a small Finite-State Machine (FSM) that
controls the PE’s existing data path for a fixed number of cycles [44].

Lee et al. have presented two mapping approaches for FloRA: (1) an optimal
approach using ILP and (2) a fast heuristic approach using Quantum-inspired
Evolutionary Algorithm (QEA). Both approaches support integer-type applications
as well as floating-point-type applications. These mapping algorithms adopt HLS
techniques that handle loop-level parallelism by applying loop unrolling and loop
pipelining techniques. The overall compilation flow is given in Fig. 11.28. The first
step is partitioning, which generates two C codes one for the RISC processor and
the other for the CGRA.

The code segments for the RISC processor are statically scheduled and the
corresponding assembly code is generated with a conventional compiler. The code
segments for the RCM (generally loop kernels) are converted to a CDFG using the
SUIF2 [107] parser. During this process, loop unrolling maximizes the utilization
of the PEs. Then HLS techniques are used for the scheduling and binding on one
column of PEs. Each column of the CGRA executes its own iteration of the loop to
implement loop pipelining.
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Fig. 11.28 Overall design flow for application mapping onto FloRA [63]

The main objective of the mapping problem is to map a given loop kernel to the
CGRA such that the total latency is minimized while satisfying several constraints.
Lee et al. have formulated the problem using ILP. ILP-based application mapping
yields an optimal solution. However, it takes an unreasonably long execution time
to find a solution, making it unsuitable for large designs or for design space
exploration. Therefore, they defined a fast heuristic mapping algorithm considering
Steiner points. Their heuristic is based on a mixture of two algorithms: List
Scheduling and QEA.

11.5.3.1 List Scheduling
First, List Scheduling algorithm topologically sorts the vertices from the sink to
the source. If a vertex has a longer path to the sink, then it gets a higher priority.
From the sorted list, the algorithm selects and schedules the vertex with the highest
priority if all the predecessor vertices have been scheduled and the selected vertex is
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reachable from all the scheduled predecessor vertices through the interconnections
available in the CGRA. If the vertex is a floating-point vertex, the algorithm checks
to see if neighbor PEs are busy, since executing a floating-point operation requires
a pair of PEs for several cycles. Mapping a vertex onto a PE considers interconnect
constraint and shared resource constraint. If there is no direct connection available
for implementing a data dependency between two PEs, a shortest path consisting of
unused PEs which work as routers is searched. Another constraint to be considered
is the constraint set by sharing area-critical functional units. For example, if there is
only one multiplier shared among the PEs in a row, two multiply operations cannot
be scheduled successively but should wait for N (number of PEs in a row) cycles
after scheduling one multiply operation, since the multiplier must be used by other
PEs in the same row for loop pipelining. In this case, the second multiply operation
may need to wait with proper routing of the input data.

11.5.3.2 QEA
QEA is an evolutionary algorithm that is known to be very efficient compared to
other evolutionary algorithms [37]. The QEA starts from the List Scheduling result
as a seed and attempts to further reduce the total latency. Starting the QEA with a
relatively good initial solution tends to reach a better solution sooner than starting it
with a random seed. When the schedule and binding of all vertices are determined,
it tries to find the routing paths among the vertices – the routing may need to use
unused remaining PEs – to see if these schedule and binding results violate the
interconnect constraint. In this routing phase, the quality of the result depends on the
order of edges to be routed. Thus the priority of edges for the ordering is determined
as follows.

• Edges located in the critical path are assigned higher priority.
• Among the edges located in the critical path, edges that have smaller slack

(shorter distance) receive higher priority.
• If a set of edges have the same tail vertex, then the set of edges becomes a group

and the priority of this group is determined by the highest priority among the
group members.

According to the above priority, a list of candidate edges is made and a shortest
path for each edge is found in the order of priority with the Dijkstra’s algorithm. In
this routing phase, a Steiner tree (instead of a spanning tree) for multiple writes from
a single source is considered. The heuristic algorithm for finding a Steiner tree tries
to find a path individually for each outgoing edge from the source. If some paths
use the same routing PE, it becomes a Steiner point. Although this approach may
not always find an optimal path, it gives good solutions in most of the cases if not
all. Indeed, experimental results show that the approach finds optimal solutions for
97% of the randomly generated examples. Table 11.1 compares the result obtained
by the heuristic algorithm for the butterfly addition example with the optimum result
obtained by the ILP formulation.
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Table 11.1 Experimental
result of butterfly addition
example

Latency Mapping time
(cycle) (s)

ILP
Spanning tree 5 1022
Steiner tree 4 965

Heuristic
Spanning tree 5 13
Steiner tree 4 9

11.6 Conclusions

Reconfigurable architecture provides software-like flexibility as well as hardware-
like performance. Depending on the granularity of configuration, we can consider
two types of reconfigurable architecture: fine-grained reconfigurable architecture
like FPGA and CGRA. In this chapter, we have surveyed various architectures for
FPGAs and CGRAs. We have also surveyed various approaches to mapping appli-
cations to the architectures. Compared to pure hardware design or pure software
design, there are more opportunities in utilizing such reconfigurable architectures
since they support hardware reconfiguration which is controlled by software (For
general trade-offs between hardware and software, refer to �Chap. 1, “Introduction
to Hardware/Software Codesign”.). For example, FPGAs can be better utilized
by dynamic partial reconfiguration, which has been mentioned in this chapter.
However, such opportunities have not been very well investigated and still require
more researches together with the researches on better architectural supports.
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