
Embedded Systems:

Specification and Modeling (part II)

Todor Stefanov

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Embedded Systems and Software by Todor Stefanov 2025 2

Outline

◼ Why considering modeling and specification?

◼ Requirements for Specification Techniques

◼ Models of Computation
◼ State-based models (not considered in this course!)

◼ FSM (classical automata)

◼ Timed automata

◼ StateCharts

◼ Petri Nets (not considered in this course!)
◼ Condition/Event Nets

◼ Predicate/Transition Nets

◼ Place/Transition Nets

◼ Actor-based Dataflow models
◼ SDF, CSDF, PPN, PSDF, PCSDF, PPPN, KPN

◼ Specification Languages
◼ VHDL, SystemC, Others

Embedded Systems and Software by Todor Stefanov 2025 3

Cyclo-Static Dataflow (CSDF)

◼ Introduced by Lauwereins et al.,
KU Leuven, 1994

◼ Network of concurrent actors
◼ Passive actors

◼ Communication is buffered

◼ Useful generalization of SDF
◼ Variable production/consumption

◼ Variations form periodic pattern

◼ Characteristics of CSDF
◼ Compile time analyzable

◼ Static schedule

◼ Buffer sizes

◼ Optimization for memory/speed

◼ Usually uses less buffer memory
compared to SDF

Iteration: ABBCBCD

A

C

D

B

1
[1,0]

1 1

[2,1]

33

[2,1]

port

fire {

 …

 get();

 …

}port

Tokensfire {

 …

 send();

 …

}

Actor C has variable

production/consumption

rate with period of 2

Embedded Systems and Software by Todor Stefanov 2025 4

◼ CSDF actor is enabled if there is a certain

number of tokens on each of its input channels

◼ Enabled actor is fired by removing

◼ number of tokens from each of its input channels

◼ placing tokens on each of its output channels

◼ Iteration: sequence of actors firings that brings

CSDF to its initial state

◼ many possible sequences

as long as firing rules are obeyed

◼ actors can fire in parallel!

Iteration: ABBCBCD

A

C

D

B

1
[1,0]

1 1

[2,1]

33

[2,1]

CSDF Operational Semantics:
Firing Rule

Embedded Systems and Software by Todor Stefanov 2025 5

BBAA

Q

i

iB

P

i

iA

rQfrPf

MrNr

==

= 
−

=

−

=

;

1

0

1

0

],,[10 −PNN ],,[10 −QMM 

CSDF: Variable Production and
Consumption rate

◼ How can we exploit cyclic production/consumption for analysis?

◼ Define a Balance equations for each channel:

aggregated number of firings per iteration

number of tokens consumed per phase

fire B {

 …

 consume

 …

}

fire A {

 …

 produce

 …

}

channel
iN

iM

Cyclic production pattern with

P phases

actual number of firings per iteration

Embedded Systems and Software by Todor Stefanov 2025 6

CSDF: Scheduling

◼ Scheduling is much like SDF

◼ Balance equations establish relative

firing rates as for SDF

◼ Any scheduling algorithm that avoids

buffer underflow will produce a valid

schedule if one exists

◼ Advantage: even more schedule

flexibility

◼ Makes it easier to avoid large buffers

Embedded Systems and Software by Todor Stefanov 2025 7

CSDF vs. SDF

◼ SDF actors consume/produce the same number

of tokens at each firing!

◼ Usually this lead to larger buffer requirements in

SDF compared to CSDF

◼ Example: Model a distributor actor (i.e., actor B)

BA
1 2

C
1

D
1

1

1

SDF model of B

Schedule: AABCD

Requires: 4 units of buffer memory

2 for edge (AB) and 1 for (BC) and (BD)

BA
1 [1,1]

C

D

1

1

[1,0]

[0,1]

CSDF model of B

Schedule: ABCABD

Requires: 3 units of buffer memory

1 for each edge (AB), (BC), and (BD)

Embedded Systems and Software by Todor Stefanov 2025 8

Polyhedral Process Network
(PPN)

◼ Introduced at LIACS in 2000

◼ Network of concurrent processes

◼ Active actors (processes)

◼ Communicate over bounded FIFOs

◼ Processes:

◼ Perform some computation

◼ Communicate data (read/write)

◼ blocking read

◼ blocking write

◼ Process behaviour expressed as
parameterized polyhedral descriptions

◼ Characteristics of PPNs

◼ Compile time analyzable

◼ Deterministic execution

◼ Do not impose a particular schedule

A

C

D

B

Process

Stream channel

fire {

 while (1) {

 …

 read();

 …

 }

}

port port

Token
fire {

 while (1) {

 …

 write();

 …

 }

}

Embedded Systems and Software by Todor Stefanov 2025 9

PPN: Example

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

int M = 10, P = 3;

for(i=1; i <= M; i++) {

 out = F1();
 if(i < = P)

 write(p2, out);

 else

 write(p1, out);

}

int N = 10, P = 3;

for(j=1; j <= N; j++) {

 if(j < = P)

 in = read(p6);

 else

 in = read(p5);

 F3(in);
}

int P = 3;

for(j=1; j <= P; j++) {

 in = read(p3);

 out = F2(in);
 write(p4, out);

}

◼ Polyhedral Process Networks (PPN)

◼ Equivalent to Static Affine Nested-loop Programs

◼ Can be derived automatically

◼ Well defined structure of a process

◼ READ - EXECUTE - WRITE code sections

◼ Parameterized, static, and affine control in

◼ for-loop bounds

◼ if-conditions

◼ Parameters cannot change values at run-time!

Embedded Systems and Software by Todor Stefanov 2025 10

PPN: Some Definitions

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

int M = 10, P = 3;

for(i=1; i <= M; i++) {

 out = F1();
 if(i < = P)

 write(p2, out);

 else

 write(p1, out);

}

int N = 10, P = 3;

for(j=1; j <= N; j++) {

 if(j < = P)

 in = read(p6);

 else

 in = read(p5);

 F3(in);
}

int P = 3;

for(j=1; j <= P; j++) {

 in = read(p3);

 out = F2(in);
 write(p4, out);

}

◼ Node Domain (NDFi):

◼ Iterations for which function Fi is executed

◼ Example: NDF3 is 1 ≤ j ≤ N

◼ Input Port Domain (IPDPi):

◼ Iterations for which port Pi is read

◼ Example: IPDP5 is P < j ≤ N

◼ Output Port Domain (OPDPi):

◼ Iterations for which port Pi is written

◼ Example: OPDP2 is 1 ≤ i ≤ P

◼ Mapping (MPjPi):

◼ Relation between IPDPj and

OPDPi corresponding to

channel (PjPi)

◼ Example: MP5P1 : i = 1* j ,

where j  IPDP5

 i  OPDP1

Embedded Systems and Software by Todor Stefanov 2025 11

PPN: Polyhedral Description (1)
◼ Process behavior expressed as parameterized polyhedrons

◼ What is a parameterized polyhedron?

◼ Set of points x in the n-dimensional space satisfying some

constraints where

◼ is a vector of parameters

◼ A, B, C, D are integral matrixes

◼ b and d are an integral vectors

◼ Example

Embedded Systems and Software by Todor Stefanov 2025 12

ED_0
ND_1 OP2

IP2 OP1

ED_1

ND_2ND_0 OP1 IP1IP1
ED_2

PPN: Polyhedral Description (2)

,2

02j

Mi

=−

,

2j

2

=

≥i

,M≥ −-i ,2

,2

02j

Nj

Mi

=−





()    
















+

















−


















−
+








=








=

0

2
*

01

00
*

01

01
2*00*10|,),(2

N

M

j

i

N

M

j

i
jiNMP

◼ Example: IPDIP1 as polyhedron

,0*j ≥1*i +

,0*j ≥-1*i +

1*j =0*i + 2+0*M 0*N+

2+0*M 0*N+

0+-1*M 0*N+

CONTROL

WRITE

EXECUTE

READ

1 // process ND_1

2 void main() {

3 for(int i=2; i<=M; i++)

4 for(int j=2; j<=N; j++) {

5 if(j-2 == 0)
6 read(IP1, in_0);

7 if(j-3 >= 0)

8 read(IP2, in_0);

9 Transformer(in_0, out_0);

10 if(-j+N-1 >= 0)

11 write(OP1, out_0);

12 if(j-N == 0) {

13 write(OP2, out_0);
14 } // for j

15 } // main

Every Node, Input and Output

Port Domain can be represented

as Parameterized Polyhedron

Embedded Systems and Software by Todor Stefanov 2025 13

PPN: Some Remarks

◼ PPNs allow to perform formal

algebraic transformations, i.e.,

◼ Affine (linear) transformations on polyhedrons

◼ PPNs allow to set and solve optimization

problems (such as FIFO size calculations, etc.)

◼ Expressed as Integer Linear Programing (ILPs)

◼ PPNs can be converted to CSDFs

◼ PPNs are very compact

representation of some class of CSDF

◼ Example:

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

int M = 5, P = 3;

for(i=1; i <= M; i++) {

 out = F1();
 if(i < = P)

 write(p2, out);

 else

 write(p1, out);

}

int N = 5, P = 3;

for(j=1; j <= N; j++) {

 if(j < = P)

 in = read(p6);

 else

 in = read(p5);

 F3(in);
}

int P = 3;

for(j=1; j <= P; j++) {

 in = read(p3);

 out = F2(in);
 write(p4, out);

}

F2

F3F1

[1,1,1,0,0]

[0,0,0,1,1] [0,0,0,1,1]

[1,1,1,0,0]1 1

Embedded Systems and Software by Todor Stefanov 2025 14

Decidable Dataflow Models

◼ SDF, CSDF, PPN are Decidable Models
◼ have limited expressive power

◼ they can model only applications with static behavior

◼ However, there are many applications that
employ high-level dynamics in their behavior

◼ User interface functionality

◼ Mode changes

◼ Adaptive algorithms

◼ Behavior changes depending on available
processing resources, etc…

◼ How to solve this problem?

Embedded Systems and Software by Todor Stefanov 2025 15

Partly Decidable Dataflow Models

◼ Observation: Key subsystems of dynamic
applications still
◼ exhibit large amounts of “quasi-static” structure

◼ stay fixed across significant windows of time

◼ Dynamic dataflow models have been proposed
◼ address the limitation of decidable models by

◼ abandoning most restrictions related to decidable dataflow

◼ However, these models are limited
◼ in their ability to exploit the quasi-static structures

◼ almost NO analysis can be done at design time

◼ Therefore, Partly Decidable Models are proposed!

◼ The Key is the Dynamic Parameterization of actors!

Embedded Systems and Software by Todor Stefanov 2025 16

Dynamic Parametrization of Actors

The Key concept is:

• Introduce Dynamic Parameters (global and/or local)

• Do Structured Control of Dynamic Parameters

Embedded Systems and Software by Todor Stefanov 2025 17

Parameterized Dataflow Concept
◼ Hierarchical modeling

subsystem

parent graph

subinit init

body

parameter n, ...

writes n

reads n

◼ Subsystem is composed of

3 parmeterized DF graphs:

◼ init, subinit, body

◼ Subsystem parameters

◼ configured in init/subinit

◼ used in body

◼ Dynamically reconfigurable

◼ init invoked at the beginning

of each invocation of parent

graph

◼ subinit invoked at the

beginning of each invocation

of the associated subsystem

◼ body invoked after each

invocation of subinit

Embedded Systems and Software by Todor Stefanov 2025 18

Meta-modeling with
parameterized dataflow concept

◼ Parameterized dataflow concept can be applied

to any dataflow MoC denoted with X

◼ Parameterized dataflow + X → “Parameterized X”

◼ Examples of parameterized dataflow MoC that we

will look at are:

◼ Parameterized Synchronous Dataflow (PSDF)

◼ Parameterized Cyclo-Static Dataflow (PCSDF)

◼ Parameterized Polyhedral Process Network (PPPN)

Embedded Systems and Software by Todor Stefanov 2025 19

PSDF Example: Speech Compression

Embedded Systems and Software by Todor Stefanov 2025 20

PCSDF Example: Speech Compression

Embedded Systems and Software by Todor Stefanov 2025 21

Parameterized PPN (P3N)

◼ Extends the PPN model by allowing parameters to

change values at run-time

◼ Special control channels are added to set the values of

the parameters

◼ Global parameters - values are changed by the

environment

◼ Local parameters - values are changed by

nodes in the network

◼ Semantics defined to allow some

compile time analysis (for buffer sizes)

◼ Parameter values are changed

in a way that preserves consistency

(exec. with bounded buff memory)

F3F1

F2

FIFO
p1 p5

p6

p4

p2

p3

M N

P
P

Embedded Systems and Software by Todor Stefanov 2025 22

P3N Example:
Low Speed Obstacle Detection

for(ever) {

 extract frame(X, Y) // 2 frames from the captured image

 . . . // detect targets

 // for each frame of resolution (x1,y1) or (x2,y2)

 N = getNumTargets(…);

 for(n=0..N) { // for each found Target

 Height, Width, TargetData = getTarget(…);

 for(j=1..Height) { //

 for(i=1..Width) { // for each found Target

 Result = ProcessTarget(TargetData[j][i]);

} } } }

Height, Width

A4A3
TargetData Result

X,Y

A2

A1

N

X,Y

A0

E
x
tr

a
c
te

d
 f

ra
m

e

Embedded Systems and Software by Todor Stefanov 2025 23

Undecidable Dataflow Models

◼ Models for which the following questions cannot

be answered at compile time:

◼ Is the model deadlock free?

◼ Can the model execute with bounded buffer memory?

◼ Does a schedule exist?

◼ Undecidable models in this sense are

◼ Boolean/Integer Data Flow (BDF, IDF)

◼ Dynamic Data Flow (DDF)

◼ Kahn Process Network

Embedded Systems and Software by Todor Stefanov 2025 26

Kahn Process Network (KPN)

◼ Proposed by Kahn in 1974
as a scheme for parallel
programming
◼ Laid the theoretical

foundation for dataflow

◼ Network of concurrent
processes
◼ Active actors

◼ Communicate over
unbounded FIFOs

◼ Synchronization
◼ Blocking read on an empty

channel

A

C

D

B

Process

Stream channel

fire {

 while (1) {

 …

 read();

 …

 }

}

port port

Token
fire {

 while (1) {

 …

 write();

 …

 }

}

Embedded Systems and Software by Todor Stefanov 2025 27

KPN: Operational Semantics
◼ Processes either perform computation or communicate

◼ Reading an empty channel blocks until data is available
◼ Process can not wait for data on multiple channels at the same time

◼ Writing to a channel is non-blocking

◼ There is only one producer and one consumer per channel

◼ Characteristics of KPN
◼ Deterministic

◼ Distributed Control

◼ no global schedule needed

◼ Distributed Memory

◼ no shared memory used

◼ no memory contention

B

FIFO

A

get

Exec(A)

put

put

C

get

get

Exec(B)

put

get

Exec(C)

put

Embedded Systems and Software by Todor Stefanov 2025 29

KPN: Some Remarks

◼ Well suited for specifying streaming application

◼ signal and image processing

◼ Whether a KPN can execute in bounded

memory is undecidable

◼ In general, KPNs are difficult to impossible to

analyze at compile time

◼ BUT KPNs are very useful because

◼ they are deterministic

◼ dynamic streaming application can be modeled

efficiently

Embedded Systems and Software by Todor Stefanov 2025 30

Specification Languages

◼ Models of Computation describe system behavior
◼ Conceptual notion, e.g., sequential execution, dataflow, FSM

◼ Specification Languages capture Models of Computation
◼ Concrete syntax (textual or graphical) form, e.g., C, C++, Java

◼ Variety of languages can capture one model
◼ E.g., C, C++, Java → sequential execution model

◼ One language can capture variety of models
◼ E.g., C++ → sequential execution model, dataflow model, state

machine model

◼ Certain languages are better at capturing certain model
of computation

Do not confuse

Specification Languages with

Models of Computation!!!

Sequent.

program

C++C Java

State

machine

Data-

flow

Embedded Systems and Software by Todor Stefanov 2025 31

Hardware Description
Languages

◼ HDL = hardware description language

◼ Textual HDLs replaced graphical HDLs in the
1980s (better for complex behavior)

◼ Example of HDL is VHDL language:
◼ VHDL = VHSIC hardware description language

◼ VHSIC = very high speed integrated circuit

◼ 1980: Definition started

◼ 1984: first version of the language defined, based on
ADA, PASCAL

◼ 1987: IEEE standard 1076; 1992 revision;

◼ Extention: VHDL-AMS models analog

◼ Another example is Verilog
◼ Preferred in US

Embedded Systems and Software by Todor Stefanov 2025 32

VHDL: Entities and Architectures

◼ Each design unit is called an entity

◼ Entities are comprised of entity declarations and one or
several architectures

◼ Each architecture includes a model of the entity

◼ The used architecture specified in a configuration

Embedded Systems and Software by Todor Stefanov 2025 33

VHDL: Entity Declaration

entity full_adder is

 port(a, b, carry_in: in Bit; -- input ports

 sum,carry_out: out Bit); --output ports

end full_adder;

Embedded Systems and Software by Todor Stefanov 2025 34

VHDL: Architecture

architecture behavior of full_adder is

 begin

 sum <= (a xor b) xor carry_in after 10 ns;

 carry_out <= (a and b) or (a and carry_in) or

 (b and carry_in) after 10 ns;

 end behavior;

Architectural bodies can include:

• behavioral model

• structural model

Bodies not referring to hardware components are called

behavioral bodies

Embedded Systems and Software by Todor Stefanov 2025 35

VHDL: Structural Body

architecture structure of full_adder is
component half_adder
 port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
 end component;
component or_gate
 port (in1, in2:in Bit; o:out Bit);
 end component;
 signal x, y, z: Bit; -- local signals
 begin -- port map section
 i1: half_adder port map (a, b, x, y);
 i2: half_adder port map (y, carry_in, z, sum);
 i3: or_gate port map (x, z, carry_out);
 end structure;

Embedded Systems and Software by Todor Stefanov 2025 36

VHDL: Processes

Processes model parallelism in hardware

General syntax:
label: --optional
process
 declarations --optional
begin
 statements --optional
end process

Example:
process
begin
 a <= b after 10 ns
end process;

Embedded Systems and Software by Todor Stefanov 2025 37

VHDL: Wait Statements

Processes synchronize via WAIT-statements

Four possible kinds of wait-statements:

◼ wait on signal list;
◼ wait until signal changes;

◼ Example: wait on a;

◼ wait until condition;
◼ wait until condition is met;

◼ Example: wait until c='1';

◼ wait for duration;
◼ wait for specified amount of time;

◼ Example: wait for 10 ns;

◼ wait;
◼ suspend indefinitely

process

begin

 prod <= x and y ;

 wait on x,y;

end process;

Embedded Systems and Software by Todor Stefanov 2025 38

VHDL: Sensitivity List

Sensivity lists are a shorthand for wait on signal list at the

end of the process body:

process (x, y)

begin

 prod <= x and y ;

end process;

is equivalent to

process

begin

 prod <= x and y ;

 wait on x,y;

end process;

Embedded Systems and Software by Todor Stefanov 2025 39

VHDL Summary

◼ Behavioral hierarchy (procedures & functions)

◼ Structural hierarchy but no nested processes

◼ No object-orientation

◼ Static number of processes

◼ Complicated simulation semantics

◼ Too low level for initial specification

◼ Good as intermediate language for hardware

generation

Embedded Systems and Software by Todor Stefanov 2025 40

SystemC language

◼ Why SystemC if we have VHDL or Verilog?

◼ Many standards (e.g. the GSM and MPEG-
standards) are published in C
◼ Using special HDLs require translation from C

◼ The functionalities of systems are provided by a mix
of HW (in HDL) and SW (in C) components

◼ If different languages are used for the description of
HW and SW

◼ Simulations require an interface between HW and SW
simulators

◼ Aims at describe SW and HW in same language

◼ SW and HW developers are very familiar with C/C++

Embedded Systems and Software by Todor Stefanov 2025 41

SystemC: Features

◼ C++ class library: including required objects for

modeling HW components in a SW language

◼ Concurrency: via processes, controlled by

sensitivity lists and calls to wait primitives

◼ Time: Units ps, ns, µs, etc …

◼ Support of bit-datatypes: bitvectors of different

lengths; multiple-valued logic (2 and 4

resolution, i.e., ‘0’, ‘1’, ‘u’-undefined, and ‘z’-high

impedance)

◼ Communication: plug-and-play channel models,

allowing easy composition of IP components

Embedded Systems and Software by Todor Stefanov 2025 42

SystemC: Language Architecture

C++ Language Standard

Core Language
Module

Ports

Processes

Events

Interfaces

Channels

Event-driven simulation kernel

Data types

Bits and bit-vectors

Arbitrary precision integers

Fixed-point numbers

4-valued logic types, logic-vectors

C++ user defined types

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Channels for MoCs
Kahn process networks, SDF, etc

Methodology-specific Channels
Master/Slave library

	Slide 1: Embedded Systems: Specification and Modeling (part II)
	Slide 2: Outline
	Slide 3: Cyclo-Static Dataflow (CSDF)
	Slide 4: CSDF Operational Semantics: Firing Rule
	Slide 5: CSDF: Variable Production and Consumption rate
	Slide 6: CSDF: Scheduling
	Slide 7: CSDF vs. SDF
	Slide 8: Polyhedral Process Network (PPN)
	Slide 9: PPN: Example
	Slide 10: PPN: Some Definitions
	Slide 11: PPN: Polyhedral Description (1)
	Slide 12: PPN: Polyhedral Description (2)
	Slide 13: PPN: Some Remarks
	Slide 14: Decidable Dataflow Models
	Slide 15: Partly Decidable Dataflow Models
	Slide 16: Dynamic Parametrization of Actors
	Slide 17: Parameterized Dataflow Concept
	Slide 18: Meta-modeling with parameterized dataflow concept
	Slide 19: PSDF Example: Speech Compression
	Slide 20: PCSDF Example: Speech Compression
	Slide 21: Parameterized PPN (P3N)
	Slide 22: P3N Example: Low Speed Obstacle Detection
	Slide 23: Undecidable Dataflow Models
	Slide 26: Kahn Process Network (KPN)
	Slide 27: KPN: Operational Semantics
	Slide 29: KPN: Some Remarks
	Slide 30: Specification Languages
	Slide 31: Hardware Description Languages
	Slide 32: VHDL: Entities and Architectures
	Slide 33: VHDL: Entity Declaration
	Slide 34: VHDL: Architecture
	Slide 35: VHDL: Structural Body
	Slide 36: VHDL: Processes
	Slide 37: VHDL: Wait Statements
	Slide 38: VHDL: Sensitivity List
	Slide 39: VHDL Summary
	Slide 40: SystemC language
	Slide 41: SystemC: Features
	Slide 42: SystemC: Language Architecture

