
Processor Design Basics:

Control Unit

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ From Assembly to Machine Language

◼ Instruction Formats for our Processor

◼ Register Format

◼ Immediate Format

◼ Branch Format

◼ Selecting Instruction Opcodes

◼ Complete Encoding of Instructions

◼ Control Unit Design

◼ Program Counter

◼ Instruction Decoder

◼ Branch Control

◼ Summary
2

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Block Diagram of a Generic Processor

◼ We have already seen some important aspects of processor

design.

◼ A Datapath contains an ALU, registers and memory.

◼ Programmers and compilers use instruction sets to issue commands

to the processor.

◼ What’s left to be discussed is the Control Unit that converts

assembly language instructions into datapath control signals.

◼ How assembly instructions can be represented in a binary format?

◼ How to design a control unit for our simple processor?

Control

Unit
Datapath

Control signals

Status signals

Program Data

3

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple Processor

Control Unit Datapath

Control

Signals

Status

Signals

Data MemoryPC

R0

ALU

R1

R3
R2

Z
C

V

N

Instruction

Decoder

Instruction

Memory Branch

Control

Load

S
R

◼ Here we will look at the control unit which connects
programs with the datapath.
◼ It converts program instructions into control signals for the datapath

◼ It executes program instructions in the correct sequence

◼ The datapath also sends information back to the control unit.
◼ ALU status bits V, C, N, Z can be inspected by branch instructions to

alter a program’s control flow.
4

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

The Instruction Set of our Processor

◼ The design of the control unit starts by analyzing the instruction set of a processor.

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj  Ri’ Z, N

SHL Rj, Ri Rj  Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj  Ri >> 1 NO effect

Memory write
(from registers)

ST (Rj), Ri Mem[R0|Rj]  Ri NO effect

Memory read

 (to registers)
LD Rj, (Ri) Rj  Mem[R0|Ri] NO effect

LDI Rj, #const8 Rj  const8 NO effect

Data Movement
Instructions

 Immediate
transfer

operations
STI (Rj), #const8 Mem[R0|Ri]  const8 NO effect

BZ #offset11 PC  PC + offset11 NO effect

BNZ #offset11 PC  PC + offset11 NO effect

BC #offset11 PC  PC + offset11 NO effect

BNC #offset11 PC  PC + offset11 NO effect

BV #offset11 PC  PC + offset11 NO effect

BNV #offset11 PC  PC + offset11 NO effect

BN #offset11 PC  PC + offset11 NO effect

 Branches

BNN #offset11 PC  PC + offset11 NO effect

Control Flow
Instructions

Jump JMP Rj, Ri PC  Rj|Ri NO effect

 5

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

From Assembly to Machine Language

◼ We must define a machine language
◼ binary representation of the assembly instructions for our processor

◼ The instructions of our processor can be divided into 3
groups, which have different operands and will need different
representations/formats.
◼ Register format instructions require two registers (Rj and Ri) from the

register file to be specified.

◼ Immediate format instructions require one register (Rj) from the
register file and one 8-bit constant operand (const).

◼ Branch format instructions require one 11-bit constant address
(offset) to be specified.

◼ For the three different instruction formats, it is best to make
their binary representations as similar as possible
◼ This will make the control unit hardware simpler

◼ We have briefly discussed the instruction formats when we
discussed the Instruction Set Architecture of our processor.

6

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Register format (Format1): for Arithmetic&Logic, Shift,
Memory, and Jump instructions:

◼ Immediate format (Format2): for Immediate Transfer
instructions:

◼ Branch format (Format3): for Branch instructions:

15 11 10 9 8 2 1 0

Instruction Formats for our Processor

Opcode
Source and/or

Destination (Rj)
Source(Ri)

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

Opcode Immediate Operand (offset11)

15 11 10 0

X

X X X X X X X

7

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Each instruction format contains 16 bits because
◼ The program memory is 16-bit wide

◼ Each program memory cell stores one instruction

◼ The 5-bit Opcode (bits 15 to 11) encodes the operation performed by each
instruction:
◼ We have 25 instructions, i.e., 25 distinct operations, therefore

◼ At least 5-bit Opcode needed to have a unique code for each operation

◼ The rest of the bits (10 to 0) specify registers and/or immediate operand.
◼ Opcode determines the exact meaning of the rest of the bits in the instruction

◼ Thus, the processor first “looks” at the Opcode to identify the instruction format
and the operation to be performed.

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

Opcode Immediate Operand (offset11)

15 11 10 0

X

X X X X X X X

Instruction Formats for our Processor (cont.)

8

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register Format

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)X X X X X X X

Instructions Operation Source/Destination
Register

Source
Register

LDR Rj Ri

INC Rj Ri

DEC Rj Ri

ADD Rj Ri

ADDC Rj Ri

SUB Rj Ri

AND Rj Ri

OR Rj Ri

XOR Rj Ri

Arithmetic
&

 Logic
Instructions

NOT Rj Ri

SHL Rj Ri Register-format
Shift Operations SHR Rj, Ri

Memory write
(from registers)

ST (Rj) Ri

Memory read

 (to registers)

LD Rj (Ri)

Jump JMP Rj Ri

NOTE: We encode the

registers with 2 bits

because we have only 4

registers (R0 to R3) in our

processor’s register file.

Encoded

with 5 bits

Encoded

with 2 bits
Encoded

with 2 bits

These bits are not used

for these instructions!

9

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Immediate Format

Instructions Operation Source/Destination
Register

Constant
Value

LDI Rj const8 Immediate
Transfer

Instructions STI (Rj) const8

NOTE: We have to use only 8-bit constants because the 4 registers (R0 to R3) in

our processor’s register file and the data memory are 8-bit wide, i.e., they can

store only 8-bit values.

Encoded

with 5 bits

Encoded

with 2 bits
8-bit constant value

is placed here

This bit is not used for

these instructions!

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

X

10

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Format

Instructions Operation Constant
Value

BZ offset11

BNZ offset11

BC offset11

BNC offset11

BV offset11

BNV offset11

BN offset11

Branch
Instructions

BNN offset11

Encoded

with 5 bits

Opcode Immediate Operand (offset11)

15 11 10 0

11-bit constant value

is placed here

◼ Two examples of branch
instructions:

◼ BZ # -578 PC  PC - 578

◼ BZ # +1022 PC  PC + 1022

◼ Branch format instructions include:

◼ A 5-bit instruction opcode.

◼ A 11-bit address field, for storing
branch offsets.

IMPORTANT: offset11 is treated as an 11-bit signed number, so you can branch up

to 1023 addresses forward (210-1), or up to 1024 addresses backward (-210) !!!

This is called Program Counter Relative Branch

11

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We will use PC-relative addressing for branches, where the operand
specifies the number of addresses (offset) to branch from the current
instruction.

◼ We can assume that each instruction occupies one word of memory.

◼ To branch “backwards” the offset operand L should be (-3) represented is
an 11-bit signed 2’s complement number → (-3) = 0x7FD

◼ It is possible to branch either “forwards” or “backwards.”

◼ Branches are often used to implement loops; see some of the examples from
previous lectures.

LDI R1, #0x35 0x1000: LDI R1, #0x35

 LDI R2, #0x9f 0x1001: LDI R2, #0x9f

L: DEC R2, R2 0x1002: DEC R2, R2

 INC R1, R1 0x1003: INC R1, R1

 SUB R2, R1 0x1004: SUB R2, R1

 BC L 0x1005: BC #0x7FD // PC  PC + (-3)

 ST (R3), R2 0x1006: ST (R3), R2

Example of PC-Relative Branch

12

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Selecting Instruction Opcodes

◼ How can we select binary opcodes for each possible instruction?

◼ In general, “similar” instructions should have similar opcodes.
◼ Again, this will lead to simpler control unit hardware.

◼ We can divide our instructions into 7 different categories
◼ Each category requires similar datapath control signals.

◼ We will assign opcodes so that all instructions in the same category will
have the same first three opcode bits (bits 15-13 of the instruction).

◼ What about the rest of the Opcode bits?

 Opcode bits
Instruction Category 15 14 13

Register-format ALU arithmetic operation 0 0 0

Register-format ALU propagate/shift operation 0 0 1

Register-format ALU logic operation 0 1 0

Data Movement operation 0 1 1

Conditional branch on flag = 0 1 0 0

Conditional branch on flag = 1 1 0 1

Jump 1 1 1

13

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register Format ALU Instructions

◼ For ALU instructions we select the
Opcode to be the same as the
ALU’s function selection code (FS)
discussed in previous lecture.

◼ The complete opcode is give in the
table on the right.

◼ For example, a register-based SUB
instruction has the opcode 00011.

◼ The first three bits 000 indicate a
register-based ALU arithmetic
instruction.

◼ 11 denotes the ALU arithmetic SUB
function.

◼ A shift right instruction SHR has the
opcode 00110.

◼ 001 indicates a register-based ALU
shift instruction.

◼ 10 denotes a shift right.

INSTR Opcode Operation

INC 00000 F = B + 1
ADD 00001 F = A + B
ADDC 00010 F = A + B + Carry-in
SUB 00011 F = A + B’ + 1
DEC 00100 F = B - 1
LDR 00101 F = B
SHR 00110 F = sr B (shift right)
SHL 00111 F = sl B (shift left)
AND 01000 F = A  B (AND)
OR 01001 F = A  B (OR)
XOR 01010 F = A  B
NOT 01011 F = B’

14

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Data Movement Instructions

◼ The complete opcode is give
in the table on the right.

◼ For example, a data
movement LD instruction has
the opcode 01101.
◼ The first three bits 011 indicate a

data movement instruction.

◼ The fourth bit 0 denotes
register/memory data movement.

◼ The fifth bit 1 denotes data is
moved/loaded to register from
memory.

INSTR Opcode Operation

ST 01100 Mem[R0|Rj]  Ri
LD 01101 Rj  Mem[R0|Rj]
STI 01110 Mem[R0|Rj]  const8
LDI 01111 Rj  const8

◼ A STI instruction has the opcode 01110.
◼ 011 indicates data movement.

◼ 1 denotes immediate data movement, i.e., constant is moved to
memory or register.

◼ 0 denotes constant is moved/stored to memory.

15

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch and Jump Instructions

◼ The complete opcode is given

in the tables on the right.

◼ The first 3 bits determine the

branch/jump category

◼ The last 2 bits determine the

branch condition

◼ The opcode of instruction JMP

has unused bits.

◼ There is only one kind of jump

◼ These unused bits allow for

future expansion of the

instruction set.

◼ For instance, we might add other

jump instructions with other

addressing modes.

INSTR Opcode Operation

BNZ 10000 Branch if non-zero
BNC 10001 Branch if carry clear
BNV 10010 Branch if no overflow
BNN 10011 Branch if positive

INSTR Opcode Operation

BZ 10100 Branch if zero
BC 10101 Branch if carry set
BV 10110 Branch if overflow
BN 10111 Branch if negative

INSTR Opcode Operation

JMP 111xx Jump

16

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Complete Encoding of Instructions

◼ Below we give the complete encoding of some of our processor instructions.

◼ ADD R3, R0

◼ ST (R1), R2

◼ LDI R0, #0x9c

◼ BNV # -3

◼ JMP R2, R1

15 11 10 9 8 2 1 0Opcode

xxxxxxx11 00001 00

Opcode15 11 10 9 8 7 0

x

15 11 10 0

15 11 10 9 8 2 1 0Opcode

xxxxxxx01 01100 10

1001110000 01111

15 11 10 9 8 2 1 0Opcode

xxxxxxx10 111xx 01

Opcode

11111111101 10010

17

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Encoding Summary

◼ So far, we have defined a binary machine language for the
instruction set of our simple processor.
◼ Different instructions have different operands and formats, but

keeping the formats uniform will help simplify our hardware.

◼ We also try to assign similar opcodes to “similar” instructions.

◼ The instruction encodings and datapath are closely related.

◼ Opcodes include ALU selection codes

◼ The number of available registers determines the size of the code
for register operands in instructions.

◼ This is just one example of how to define a machine
language.

◼ Next slides will show you how to build a control unit
corresponding to our datapath and instruction set. This will
complete our processor!

18

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Again This General Picture …

◼ The Control Unit converts binary instructions coming

from a program into Datapath control signals.

◼ Before, we start designing the control unit, let us see

once again the structure of our Datapath and recall

the Datapath control signals.

Control

Unit
Datapath

Control signals

Status signals

Program Data

19

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Datapath Review

◼ Structure and Control Signals of
our Datapath.

◼ Set WR = 1 to write one of the four
registers in the register file.

◼ DA selects the register to write to.

◼ AA and BA select the source
registers for the ALU.

◼ MB chooses a register or a
constant operand.

◼ FS selects an ALU operation.

◼ MW = 1 to write to memory.

◼ MD selects between the ALU
result and the RAM output.

◼ V, C, N and Z are status bits.

◼ SL = 1 loads the status bits in the
Status Register.

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

8

R0(6:0)

S D1 D0
 Q

Constant
MB

S
R

Z
N

C

V

SL

2

2

2

5

20

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ The control unit connects programs with the datapath.

◼ It converts program instructions into control words for the datapath, including
signals WR, DA, AA, BA, MB, FS, MW, MD, SL.

◼ It generates the “constant” input for the datapath (not shown in the picture).

◼ It executes program instructions in the correct sequence.

◼ The datapath also sends information back to the control unit.
◼ Status V, C, N, Z can be inspected by branch instructions to alter a program’s flow

◼ Registers’ content can be used to load Program Counter (not shown in the picture)

The Control Unit of Our Processor

Control Unit Datapath

Control

Signals

Status

Signals

Data MemoryPC

R0

ALU

R1

R3
R2

Z
C

V

N

Instruction

Decoder

Instruction

Memory Branch

Control

Load

S
R

21

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Program Counter

◼ A program counter or PC addresses the instruction memory,

to keep track of the instruction currently being executed.

◼ On each clock cycle, the counter does one of two things.

◼ If Load = 0, the PC increments, so the next instruction in memory will

be executed.

◼ If Load = 1, the PC is updated with Data, which represents some

address specified in a jump or branch instruction.

ADRS

Instruction

RAM

OUT

PCLoad

Data

22

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Decoder

◼ The instruction decoder is a

combinational logics circuit

◼ It takes a machine language

instruction

◼ It produces the matching

control signals for the datapath

◼ These signals tell the datapath

◼ which registers or memory

locations to access

◼ what ALU operations to perform

(to the datapath)

ADRS

Instruction

RAM

OUT

PCLoad

Data

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

23

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Control Unit

◼ Finally, the branch control
unit decides what the PC’s
next value should be.
◼ For jump instruction

◼ PC loaded with the target
address specified in two
registers of the register file

◼ For branch instructions
◼ PC loaded with the target

address taken from the
instruction only if the
corresponding status bit is true

◼ For all other instructions
◼ PC is incremented, i.e.,

PC = PC + 1

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

S D1 D0
 Q

MUX

ADDER

offset

24

(from the datapath’s register file)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

That’s it!

◼ This is the basic control unit.

On each clock cycle:

1. An instruction is read from the

instruction memory.

2. The instruction decoder

generates the matching

datapath control word.

3. Datapath registers are read

and sent to the ALU or the

data memory.

4. ALU or RAM outputs are

written back to the register file.

5. The PC is incremented, or

reloaded for branches and

jumps. (to the datapath)

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load

S D1 D0
 Q

MUX

ADDER

offset

(from the datapath’s register file)

V
C
N
Z

25

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

The Whole Processor

Control Unit Datapath

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

8

R0(6:0)

S D1 D0
 Q

Constant MB

S
R

Z
N

C

V

SL

2

2

2

5

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load

S D1 D0
 Q

MUX

ADDER

offset

V
C
N
Z

8

8

16 16

11

8

26

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Implementing the Instruction Decoder

◼ It is a combinational circuit

◼ Its input is a 16-bit binary instruction (I)
◼ comes from the instruction memory.

◼ Its output is a control word for the
datapath. This includes:
◼ WR, DA, AA, BA, and MD signals to control

the register file.

◼ FS for the ALU operation.

◼ MW for the data memory write enable.

◼ MB for selecting the second operand.

◼ SL for loading the status register.

◼ We will see how these signals are
generated for each of the three
instruction formats.

◼ Let us start with the following signals:
◼ MB, MD, WR, MW, and SL

ADRS

Instruction

RAM

OUT

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

I15 .. I0

27

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Generating MB, MD, WR, MW, and SL
Opcode bits Control Signals Instr

I15 I14 I13 I12 I11 MB MD WR MW SL
INC 0 0 0 0 0 0 0 1 0 1

ADD 0 0 0 0 1 0 0 1 0 1

ADDC 0 0 0 1 0 0 0 1 0 1

SUB 0 0 0 1 1 0 0 1 0 1

DEC 0 0 1 0 0 0 0 1 0 1

LDR 0 0 1 0 1 0 0 1 0 1

SHR 0 0 1 1 0 0 0 1 0 1

SHL 0 0 1 1 1 0 0 1 0 1

AND 0 1 0 0 0 0 0 1 0 1

OR 0 1 0 0 1 0 0 1 0 1

XOR 0 1 0 1 0 0 0 1 0 1

NOT 0 1 0 1 1 0 0 1 0 1

ST 0 1 1 0 0 0 x 0 1 0

LD 0 1 1 0 1 x 1 1 0 0

STI 0 1 1 1 0 1 x 0 1 0

LDI 0 1 1 1 1 1 0 1 0 0

BNZ 1 0 0 0 0 x x 0 0 0

BNC 1 0 0 0 1 x x 0 0 0

BNV 1 0 0 1 0 x x 0 0 0

BNN 1 0 0 1 1 x x 0 0 0

BZ 1 0 1 0 0 x x 0 0 0

BC 1 0 1 0 1 x x 0 0 0

BV 1 0 1 1 0 x x 0 0 0

BN 1 0 1 1 1 x x 0 0 0

 x x x x x x x x x x

JMP 1 1 1 1 1 x x 0 0 0

◼ The table shows the correct
control signals MB, MD, WR,
MW, and SL for each
instruction.

◼ There are several patterns
visible in this table.
◼ MW = 1 only for memory write

operations.

◼ MB = 1 only for immediate
instructions, which require a
constant.

◼ MD is unused when WR = 0.

◼ Jump and branches modify
neither registers nor main
memory.

◼ From the table we can derive
the Boolean equations for the
signals:
◼ MB = I15’ I14 I13 I12

◼ MD = I15’ I14 I13 I12’

◼ WR = I15’ (I14’ + I13’ + I11)

◼ MW = I15’ I14 I13 I11’

◼ SL = I15’ (I14’ + I13’)

28

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Generating FS

◼ The ALU function selection code (FS) is

the same as the operation code (Opcode)

for arithmetic, logic, and shift instructions

(see previous slides).

◼ Thus, the control unit can “generate” the

ALU’s FS control signal just by taking it

directly out of the instruction Opcode.

◼ For register-format ALU instructions:

5

FS
FS4 FS3 FS2 FS1 FS0 = I15 I14 I13 I12 I11

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)X X X X X X X

A B

ALU

FZ
N

C
V

FSFS

Carry-in

5

INSTR Opcode FS

INC 00000 00000

ADD 00001 00001
ADDC 00010 00010
SUB 00011 00011
DEC 00100 00100
LDR 00101 00101
SHR 00110 00110
SHL 00111 00111
AND 01000 01000
OR 01001 01001
XOR 01010 01010
NOT 01011 01011

29

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Generating DA, AA, BA

◼ The register file addresses DA, AA and BA can be taken
directly out of the 16-bit binary instructions.
◼ Instruction bits 10-9 are the destination register, DA.

◼ Bits 10-9 are fed directly to AA, the first register file source.

◼ Bits 1-0 are connected directly to BA, the second source.

◼ This clearly works for a register-format instruction where bits
10-9 and 1-0 were defined to hold the destination and source
registers.

◼ Notice, that the source register A is also the destination
register, thus AA = DA.

2

AA = DA

D

Register file

A B

WR

DA

AA BA

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)X X X X X X X

2

BA

30

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Don’t-care Conditions

◼ In immediate-format instructions, bits 7-0 store a constant

operand, not a second source register!

◼ However, immediate instructions only use one register, so the control

signal BA would be a don’t care condition anyway.

◼ Similarly, branch instructions require neither a destination

register nor a second source register.

◼ So, we can always take DA, AA and BA directly from the

instruction. DA1 DA0 = I10 I9

AA1 AA0 = I10I9

BA1 BA0 = I1 I0

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

Opcode Immediate Operand (offset11)

15 11 10 0

X

31

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

More About the Branch Control Unit

◼ The branch control unit

needs a lot of information

about the current instruction.

◼ Whether it is a jump, a branch,

or some other instruction.

◼ For branches, the specific

branch condition.

◼ All of this can be generated

by the instruction decoder,

which has to process the

instruction words anyway.

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

S D1 D0
 Q

MUX

ADDER

offset

32

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Control Unit Inputs and Outputs

◼ Branch control inputs:

◼ PL = 1 – PC Load may be

needed (jump or branch)

◼ JB = 1 – Jump instruction

◼ BC – Brach Condition

◼ Status bits V, C, N and Z come

from the Datapath.

◼ Branch control outputs:

◼ A Load signal for the PC.

◼ When Load = 1,

◼ If JB = 0 then the target

address to branch is loaded

from the instruction memory.

◼ If JB = 1 then the target

address to jump is loaded from

the register file.

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

PL JB BC

S D1 D0
 Q

JB

MUX

ADDER

offset

(from register file)

33

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Control Unit Inputs

◼ The decoder sends the
following data to the
branch control unit:
◼ PL and JB indicate the

type of instruction.

◼ BC encodes the kind of
branch.

PL JB Instruction

0 x Other
1 0 Branch
1 1 Jump

BC Condition

000 Branch if non-zero
001 Branch if carry clear
010 Branch if no overflow
011 Branch if positive

100 Branch if zero
101 Branch if carry set
110 Branch if overflow
111 Branch if negative

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

PL JB BC

S D1 D0
 Q

JB

MUX

ADDER

offset3

34

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Generating PL and JB
Opcode bits Signals Instr

I15 I14 I13 I12 I11 PL JB
INC 0 0 0 0 0 0 x

ADD 0 0 0 0 1 0 x

ADDC 0 0 0 1 0 0 x

SUB 0 0 0 1 1 0 x

DEC 0 0 1 0 0 0 x

LDR 0 0 1 0 1 0 x

SHR 0 0 1 1 0 0 x

SHL 0 0 1 1 1 0 x

AND 0 1 0 0 0 0 x

OR 0 1 0 0 1 0 x

XOR 0 1 0 1 0 0 x

NOT 0 1 0 1 1 0 x

ST 0 1 1 0 0 0 x

LD 0 1 1 0 1 0 x

STI 0 1 1 1 0 0 x

LDI 0 1 1 1 1 0 x

BNZ 1 0 0 0 0 1 0

BNC 1 0 0 0 1 1 0

BNV 1 0 0 1 0 1 0

BNN 1 0 0 1 1 1 0

BZ 1 0 1 0 0 1 0

BC 1 0 1 0 1 1 0

BV 1 0 1 1 0 1 0

BN 1 0 1 1 1 1 0

 x x x x x x x

JMP 1 1 1 1 1 1 1

◼ The instruction decoder
generates PL and JB from
instruction Opcodes.
◼ Note that if PL = 0, then the value

of JB does not matter.

◼ As expected, PL and JB only
matter for jumps and branches.

◼ From the table on the left we
can derive the Boolean
functions for the signals:
◼ PL = I15

◼ JB = I14

PL JB Instruction

0 x Other
1 0 Branch
1 1 Jump

35

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Generating BC

◼ We defined the branch

opcodes so that they already

contain the branch type, so

BC can come straight from

the instruction Opcode.

3

BC BC2 BC1 BC0 = I13 I12 I11

INSTR Opcode Operation

BNZ 10000 Branch if non-zero
BNC 10001 Branch if carry clear
BNV 10010 Branch if no overflow
BNN 10011 Branch if positive

INSTR Opcode Operation

BZ 10100 Branch if zero
BC 10101 Branch if carry set
BV 10110 Branch if overflow
BN 10111 Branch if negative

Opcode Immediate Operand (offset11)

15 11 10 0

36

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Control Unit and PC

◼ We have seen how the
instruction decoder generates
PL, JB, and BC. How does
the branch unit use these to
control the PC?

◼ There are three cases,
depending on the values of
PL and JB.

◼ If PL = 0, the current
instruction is not a jump or
branch

◼ So the branch control just
needs to make the program
counter increment, and
execute the next instruction,
i.e., Load = 0.

PL JB Instruction

0 x Other

1 0 Branch
1 1 Jump

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

PL JB BC

S D1 D0
 Q

JB

MUX

ADDER

offset3

37

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Jumps

◼ If PL = 1 and JB = 1, the current instruction must be a jump.

◼ In our processor the jump address is taken from the register file.

◼ JB = 1 will switch the multiplexer MUX to connect the PC with the register file.

◼ The Branch Control unit sets Load = 1 to allow the loading of the PC.

PL JB Instruction

0 x Other
1 0 Branch
1 1 Jump

(from register file of the datapath)

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

PL JB BC

S D1 D0
 Q

JB

MUX

ADDER

offset3

38

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branches

◼ If PL = 1 and JB = 0, the current
instruction is a conditional branch.

◼ The output of ADDER is connected to
the PC by MUX.

◼ The Branch Control unit first
determines if the branch should be
taken.
◼ It checks the type of branch (BC) and

the status bits (VCNZ).

◼ For example, if BC = 100 (branch if
zero) and Z = 1, then the branch
condition is true and the branch should
be taken.

◼ Then the Branch Control unit sets the
PC appropriately.
◼ If the branch should be taken, then

Load = 1 making PC = PC + offset

◼ Otherwise, Load = 0 and the PC is
incremented, just as for normal
instructions.

◼ Recall that offset is a signed number,
so we can branch forwards or
backwards.

ADRS

Instruction

RAM

OUT

PC
Branch

Control

Instruction Decoder

DA AA BA MB FS MD WR MW SL

52 22

Load
V
C
N
Z

PL JB BC

PL JB Instruction

0 x Other
1 0 Branch

1 1 Jump

S D1 D0
 Q

JB

MUX

ADDER

offset3

39

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ Today we have designed the control unit hardware.

◼ The program counter points into a special instruction memory, which

contains a machine language program.

◼ An instruction decoder looks at each instruction and generates the

correct control signals for the datapath and the branching unit.

◼ The branch control unit handles instruction sequencing.

◼ The control unit implementation depends on both the

Instruction Set Architecture and the Datapath.

◼ Careful selection of opcodes and instruction formats can make the

control unit simpler.

◼ We now have the whole processor! This is the culmination of

everything we did in the FDSD course, starting from those

tiny little primitive gates.

40

	Slide 1: Processor Design Basics: Control Unit
	Slide 2: Overview
	Slide 3: Block Diagram of a Generic Processor
	Slide 4: Example of a Simple Processor
	Slide 5: The Instruction Set of our Processor
	Slide 6: From Assembly to Machine Language
	Slide 7: Instruction Formats for our Processor
	Slide 8: Instruction Formats for our Processor (cont.)
	Slide 9: Register Format
	Slide 10: Immediate Format
	Slide 11: Branch Format
	Slide 12: Example of PC-Relative Branch
	Slide 13: Selecting Instruction Opcodes
	Slide 14: Register Format ALU Instructions
	Slide 15: Data Movement Instructions
	Slide 16: Branch and Jump Instructions
	Slide 17: Complete Encoding of Instructions
	Slide 18: Instruction Encoding Summary
	Slide 19: Again This General Picture …
	Slide 20: Datapath Review
	Slide 21: The Control Unit of Our Processor
	Slide 22: Program Counter
	Slide 23: Instruction Decoder
	Slide 24: Branch Control Unit
	Slide 25: That’s it!
	Slide 26: The Whole Processor
	Slide 27: Implementing the Instruction Decoder
	Slide 28: Generating MB, MD, WR, MW, and SL
	Slide 29: Generating FS
	Slide 30: Generating DA, AA, BA
	Slide 31: Don’t-care Conditions
	Slide 32: More About the Branch Control Unit
	Slide 33: Branch Control Unit Inputs and Outputs
	Slide 34: Branch Control Unit Inputs
	Slide 35: Generating PL and JB
	Slide 36: Generating BC
	Slide 37: Branch Control Unit and PC
	Slide 38: Jumps
	Slide 39: Branches
	Slide 40: Summary

