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Overview

◼ Block Diagram of a Generic Processor

◼ Example of a Simple Processor

◼ Introduction to Datapath

◼ Register File
◼ Accessing the Register File

◼ Register File for Our Simple Processor

◼ Arithmetic and Logic Unit (ALU)
◼ ALU for our Simple Processor

◼ ALU Operation

◼ Initial Datapath for Our Processor

◼ Refinement of the Initial Datapath
◼ To allow access to the RAM Data Memory

◼ To allow load/store of Constant Values 

◼ Summary
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Block Diagram of a Generic Processor

◼ We can divide the design of a processor into three 
parts:
◼ An Instruction Set is the programmer’s interface to the 

processor.

◼ The Datapath does all of the actual data processing.

◼ A Control unit uses the programmer’s instructions to tell 
the datapath what to do.

◼ In this lecture we will discuss the design of a 
Datapath.

Control

Unit
Datapath

Control signals

Status signals

Program Data
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Example of a Simple Processor

Control Unit Datapath

Control 

Signals

Status 

Signals

Data MemoryPC

R0

ALU

R1

R3
R2

Z
C
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N

Instruction

Decoder

Instruction 

Memory Branch

Control

Load

S
R

◼ This processor and its Instruction Set Architecture have been discussed 
in Lecture 13.

◼ Here we will look in detail at the processor’s datapath, which is 

responsible for doing all of the “dirty” work.

◼ An ALU does arithmetic, logic, and shift operations.

◼ A limited set of registers serves as fast temporary storage. 

◼ A larger, but slower, random-access memory is also available.
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Datapath

◼ We can look at the datapath as a sequential circuit.
◼ Registers are used to store values, which form the state.

◼ ALU performs various operations on the data stored in the 
registers.

◼ Fundamentally, the processor is just transferring 
data between the registers using the datapath 
possibly with some ALU computations.

◼ ALU is used to perform arithmetic, logic, and shift 
operations on the data while the data is being 
transferred.

ALU

Registers File
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Register File

◼ Modern processors have a 
datapath with a number of 
registers grouped together 
in a register file.

◼ Individual registers are 
identified by an address
◼ Much like words stored in a 

RAM

◼ Here is a block symbol for a

 2
k
 x n register file.

◼ There are 2
k
 registers, so 

register addresses are k bits 
long.

◼ Each register holds an n-bit 
word, so the data inputs and 
outputs are n bits wide.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA
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Accessing the Register File

◼ You can read two registers at 
once by supplying the AA 
and BA inputs. The data 
appears on the A and B 
outputs.

◼ You can write to a register by 
using the DA and D inputs, 
and setting WR = 1.

◼ These are registers so there 
must be a clock and reset 
signals, even though we 
usually do not show it in 
diagrams.
◼ We can read from the register 

file at any time. 

◼ Data is written only on the 
positive edge of the clock.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA
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Register File for our Processor 

◼ We have to design a 4 x 8 register file because the Instruction Set 
Architecture of our processor specifies four 8-bit registers (R0 to R3).

8 8

8

DEC

MUX MUX
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Explaining Our Register File

◼ The 2-to-4 decoder DEC selects one of the four 

registers for writing using the inputs DA0 and DA1. 

If WR = 1, the decoder will be enabled and one of 

the Load signals will be active.

◼ The 8-bit 4-to-1 multiplexers MUXs select two 

registers from the file and connects them to outputs 

A and B, based on the inputs AA0,AA1 and 

BA0,BA1.

◼ We need to be able to read two registers at once 

because most of the instructions of our processor 

require two registers. See the next slide.
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Instruction Type Operation Mnemonic Operation Status Bits Description 
LDR    Rj, Ri Rj  Ri Z, N  

INC     Rj, Ri Rj  Ri + 1 Z, N  

DEC    Rj, Ri  Rj  Ri  - 1 Z, N  

ADD    Rj, Ri  Rj  Rj + Ri C, V, Z, N  

ADDC Rj, Ri  Rj  Rj + Ri + C C, V, Z, N  

SUB    Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N  

AND    Rj, Ri Rj  Rj  Ri Z, N  

OR      Rj, Ri Rj  Rj  Ri Z, N  

XOR    Rj,Ri Rj  Rj  Ri Z, N  

 
 
 
 
 

Register-format 
Arithmetic & 

Logic 
Operations 

NOT    Rj, Ri Rj  Ri’ Z, N  

SHL    Rj, Ri Rj  Ri << 1 NO effect  

 
 
 
 
 

Data Manipulation 
Instructions 

 

Register-format 
Shift Operations SHR    Rj, Ri Rj  Ri >> 1 NO effect  

Memory write 
(from registers) 

ST     (Rj), Ri Mem[R0|Rj]  Ri NO effect  

Memory read 

 (to registers) 
LD      Rj, (Ri) Rj Mem[R0|Ri] NO effect  

LDI     Rj,  #const8 Rj  const8 NO effect  

 
 

Data Movement 
Instructions 

 Immediate 
transfer 

operations 
STI    (Rj), #const8  Mem[R0|Rj]  const8 NO effect  

BZ       #offset11 PC  PC + offset11 NO effect  

BNZ    #offset11 PC  PC + offset11 NO effect  

BC      #offset11 PC  PC + offset11 NO effect  

BNC   #offset11 PC  PC + offset11 NO effect  

BV      #offset11 PC  PC + offset11 NO effect  

BNV   #offset11 PC  PC + offset11 NO effect  

BN      #offset11 PC  PC + offset11 NO effect  

 Branches 

BNN   #offset11 PC  PC + offset11 NO effect  

 
 
 
 

Control Flow 
Instructions 

Jump JMP   Rj, Ri PC  Rj|Ri NO effect  

 

Recall the Instructions of Our Processor 

10



Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

◼ The ALU has to perform all arithmetic, logic, and shift 
operations specified by the Instruction Set Architecture of a 
processor. 

◼ To design the ALU of our simple processor we have to 
analyze the relevant part of the instruction set. 

Instruction Type Operation Mnemonic Operation Status Bits Description 
LDR    Rj, Ri Rj  Ri Z, N  

INC     Rj, Ri Rj  Ri + 1 Z, N  

DEC    Rj, Ri  Rj  Ri  - 1 Z, N  

ADD    Rj, Ri  Rj  Rj + Ri C, V, Z, N  

ADDC Rj, Ri  Rj  Rj + Ri + C C, V, Z, N  

SUB    Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N  

AND    Rj, Ri Rj  Rj  Ri Z, N  

OR      Rj, Ri Rj  Rj  Ri Z, N  

XOR    Rj,Ri Rj  Rj  Ri Z, N  

 
 
 
 
 

Register-format 
Arithmetic & 

Logic 
Operations 

NOT    Rj, Ri Rj  Ri’ Z, N  

SHL    Rj, Ri Rj  Ri << 1 NO effect  

 
 
 
 
 

Data Manipulation 
Instructions 

 

Register-format 
Shift Operations SHR    Rj, Ri Rj  Ri >> 1 NO effect  

 

◼ Conclusion1: The ALU must perform 12 operations therefore

◼ we need at least 4 control inputs to select one of the 12 
operations.
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Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description 
 
 
 
 
 

Data Manipulation 
Instructions 

 

 
 
 
 
 

Register-format 
Arithmetic & 

Logic 
Operations 

LDR    Rj, Ri Rj  Ri Z, N  

INC     Rj, Ri Rj  Ri + 1 Z, N  

DEC    Rj, Ri  Rj  Ri  - 1 Z, N  

ADD    Rj, Ri  Rj  Rj + Ri C, V, Z, N  

ADDC Rj, Ri  Rj  Rj + Ri + C C, V, Z, N  

SUB    Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N  

AND    Rj, Ri Rj  Rj  Ri Z, N  

OR      Rj, Ri Rj  Rj  Ri Z, N  

XOR    Rj,Ri Rj  Rj  Ri Z, N  

NOT    Rj, Ri Rj  Ri’ Z, N  

Register-format 
Shift Operations 

SHL    Rj, Ri Rj  Ri << 1 NO effect  

SHR    Rj, Ri Rj  Ri >> 1 NO effect  

 

◼ Conclusion2: The operations require 1 or 2 operands 
therefore

◼ The ALU must have 2 data inputs. 

◼ The operands are 8-bit binary numbers.
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Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description 
LDR    Rj, Ri Rj  Ri Z, N  

INC     Rj, Ri Rj  Ri + 1 Z, N  

DEC    Rj, Ri  Rj  Ri  - 1 Z, N  

ADD    Rj, Ri  Rj  Rj + Ri C, V, Z, N  

ADDC Rj, Ri  Rj  Rj + Ri + C C, V, Z, N  

SUB    Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N  

AND    Rj, Ri Rj  Rj  Ri Z, N  

OR      Rj, Ri Rj  Rj  Ri Z, N  

XOR    Rj,Ri Rj  Rj  Ri Z, N  

 
 
 
 
 

Register-format 
Arithmetic & 

Logic 
Operations 

NOT    Rj, Ri Rj  Ri’ Z, N  

SHL    Rj, Ri Rj  Ri << 1 NO effect  

 
 
 
 
 

Data Manipulation 
Instructions 

 

Register-format 
Shift Operations SHR    Rj, Ri Rj  Ri >> 1 NO effect  

 

◼ Conclusion3: Each operation returns 1 result, 
therefore

◼ The ALU must have 1 data output. 

◼ The result is 8-bit binary number. 
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Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description 
LDR    Rj, Ri Rj  Ri Z, N  

INC     Rj, Ri Rj  Ri + 1 Z, N  

DEC    Rj, Ri  Rj  Ri  - 1 Z, N  

ADD    Rj, Ri  Rj  Rj + Ri C, V, Z, N  

ADDC Rj, Ri  Rj  Rj + Ri + C C, V, Z, N  

SUB    Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N  

AND    Rj, Ri Rj  Rj  Ri Z, N  

OR      Rj, Ri Rj  Rj  Ri Z, N  

XOR    Rj,Ri Rj  Rj  Ri Z, N  

 
 
 
 
 

Register-format 
Arithmetic & 

Logic 
Operations 

NOT    Rj, Ri Rj  Ri’ Z, N  

SHL    Rj, Ri Rj  Ri << 1 NO effect  

 
 
 
 
 

Data Manipulation 
Instructions 

 

Register-format 
Shift Operations SHR    Rj, Ri Rj  Ri >> 1 NO effect  

 

◼ Conclusion4: Some of the operations must modify 
status bits therefore 

◼ The ALU must have 4 status outputs to indicate

◼ if Carry and/or oVerflow has occurred

◼ if the result of an operation is Zero or Negative
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The ALU for Our Processor

◼ We will use the following block symbol for the ALU.
◼ A and B are two 8-bit data inputs for operands.

◼ FS is a 5-bit control input to select an operation.

◼ The 8-bit result is called F .

◼ Several status bits provide more 
information about the output F:
◼ V = 1 in case of signed overflow.

◼ C is the carry out.

◼ N = 1 if the result is negative.

◼ Z = 1 if the result is 0.

◼ Carry-in input is needed for 
instruction ADDC (ADD with carry-in).

◼ This block should look familiar to you from your 
design project!

A B

ALU

FZ
N

C
V

FS

88

8

5

Carry-in
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ALU Operations (Functions)

◼ Each ALU operation is uniquely 
encoded – see the function 
selection code FS in the table.

◼ The function select code FS is 5 
bits long, but there are only 12 
different operations here. Why?

◼ The FS code has a structure:
◼ FS(5) = ‘0’ indicates data 

manipulation

◼ FS(4:3) =  
◼ “00” indicates arithmetic operations

◼ “01” indicates propagate or shift 
operations (except F = B - 1)

◼ “10” indicates logic operations

◼ Structuring the FS code helps to 
design simpler decoder structure 
for the ALU.

INSTR FS Operation 

INC 00000 F = B + 1 
ADD 00001 F = A + B 
ADDC 00010 F = A + B + Carry-in 
SUB 00011 F = A + B’ + 1  
DEC 00100 F = B  - 1  
LDR 00101 F = B  
SHR 00110 F = sr B (shift right) 
SHL 00111 F = sl B (shift left) 
AND 01000 F = A  B (AND) 
OR 01001 F = A  B (OR) 
XOR 01010 F = A  B 
NOT 01011 F = B’ 
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Initial Datapath for Our Processor

◼ Here is the most basic datapath.
◼ The ALU’s two data inputs come 

from the register file.

◼ The ALU computes a result, which is 
saved back to the registers.

◼ The status bits are stored in the 
status register SR. 

◼ WR, DA, AA, BA, FS and Load 
are control signals. 
◼ Their values determine the exact 

actions taken by the datapath,

◼ That is, which registers are used 
and for what operation.

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load
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An Example Computation

◼ Let us look at the proper control signals 
for executing the processor instruction 
below:

ADD   R1, R3          R1  R1 + R3

◼ Set all control signals simultaneously 
as explained below. 

◼ Set AA = 01 and BA = 11. This causes 
the contents of R1 to appear at A data, 
and the contents of R3 to appear at B 
data.

◼ Set the ALU’s function select input 
FS = 00001 (A + B).

◼ Set DA = 01 and WR = 1. On the next 
positive clock edge, the ALU result 
(R1 + R3) will be stored in R1.

◼ Set Load = 1. On the next positive 
clock edge, the ALU status bits (C, V, 
N, Z ) will be stored in SR.

D data

Write

D address

A address B address

A data B data

Register File

WR

1

DA

01

AA

01

BA

11

A B

ALU

FZ
N

C
V

FSFS

00001

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

1
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Two Issues with this Datapath

◼ Q1: Four registers is not a lot. What if 
we need more storage?

◼ A1: Our processor has a Data RAM 
Memory and supports data movement 
between RAM and registers with 
instructions ST and LD.

◼ Q2: What if we have to do operations 
with constants?

◼ A2: Our processor has two 
instructions: LDI (load an 8-bit 
constant in a register), STI (storing an 
8-bit constant in a memory location)

◼ Problem! Our initial datapaht on the 
right does not support the answers A1 
and A2. Why?

◼ Solution: We have to refine our initial 
datapath. See next slides! 

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load
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Writing to RAM 

◼ Here is a way to connect 
RAM into our existing 
datapath.

◼ To write to RAM, we must 
give an address and a data 
value.

◼ These will come from the 
registers. We connect A data 
and Register R0 to the 
memory’s ADRS input, and B 
data to the memory’s DATA 
input.

◼ Set MW = 1 to write to the 
RAM. (It’s called MW to 
distinguish it from the WR 
write signal on the register 
file.)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

Carry-in

ADRS(14:8)

7

R0(6:0) 
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Reading from RAM

◼ To read from RAM, A data 
and register R0 must supply 
the address.

◼ Set MW = 0 for reading.

◼ The incoming data will be 
sent to the register file for 
storage.

◼ This means that the register 
file’s D data input could come 
from either the ALU output or 
the RAM.

◼ A MUX MD selects the 
source for the register file.
◼ When MD = 0, the ALU output 

can be stored in the register file.

◼ When MD = 1, the RAM output 
is sent to the register file 
instead.

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0) 
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Notes About This Setup

◼ We now have a way to copy data 
between our register file and the RAM.

◼ Notice that there is no way for the ALU 
to directly access the memory - RAM 
contents must go through the register 
file first.

◼ Here the size of the memory is limited 
by the size of the registers:

◼ With 8-bit registers, we use a 2
15 

x 8 
RAM.

◼ Address bits 14 down to 8 are always 
taken from register R0.

◼ Address bits 7 down to 0 can be taken 
from any register. 

◼ For simplicity we assume the RAM is 
at least as fast as the processor clock. 
(This is definitely not the case in real 
processors these days!)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0) 
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Example Sequence of Instructions

◼ The RAM memory access in our processor is supported by two 
instructions:

◼ LD   Rj, (Ri)  -- load register Rj with the content of a RAM memory cell at 
address given by register Ri;

◼ ST   (Rj), Ri  -- store the content of register Ri in a RAM memory cell at 
address given by register Rj; 

◼ Here is a simple series of memory/register transfer instructions:

                          LD     R3, (R2) R3  Mem[R0|R2]
                          DEC  R3,  R3 R3  R3 - 1
                          ST    (R2), R3  Mem[R0|R2]  R3

◼ This just decrements the content of RAM memory cell at address R0|R2 .

◼ Again, our ALU only operates on registers, so the RAM contents must first be 
loaded into a register, and then saved back to RAM.

◼ We will assume that R0 and R2 contain a valid memory address.

◼ How would these instructions execute in our datapath?
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“LD R3, (R2)” is R3  Mem[R0|R2]

◼ AA should be set to 10, to read 
register R2.

◼ The value in R2 will be sent to 
the RAM address inputs, so 
Mem[R0|R2] appears as the 
RAM output OUT.

◼ MD must be 1, so the RAM 
output goes to the register file.

◼ To store something into R3, we 
will need to set DA = 11 and 
WR = 1.

◼ MW should be 0, so nothing is 
accidentally changed in RAM.

◼ We do not use the ALU, thus FS 
value can be arbitrary)

◼ We do not use the second 
register file output, thus BA also 
can be arbitrary.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

10

BA

xx

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0) 
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“DEC R3, R3” is R3  R3 - 1

◼ BA = 11, so R3 is read 
from the register file and 
sent to the ALU’s B input.

◼ FS needs to be 00100 for 
the operation B - 1. Then, 
R3 - 1 appears as the ALU 
output F.

◼ If MD is set to 0, this output 
will go back to the register 
file.

◼ To write to R3, we need to 
make DA = 11 and 
WR = 1.

◼ Again, MW should be 0 so 
the RAM is not changed.

◼ We do not use AA.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

xx

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

00100

8

MD

0

0

Carry-in

ADRS(14:8)

7

R0(6:0) 
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“ST (R2), R3” is Mem[R0|R2]  R3

◼ Finally, we want to store the 
contents of R3 into RAM 
address R0|R2.

◼ Remember the RAM address 
comes from “A data,” and the 
contents come from “B data.”

◼ So, we have to set AA = 10 and 
BA = 11. This sends R2 to 
ADRS(7:0), and R3 to DATA. 

◼ MW must be 1 to write to 
memory.

◼ No register updates are needed, 
so WR should be 0, and MD and 
DA are unused.

◼ We also do not use the ALU, so 
FS was ignored.

D data
Write

D address

A address B address

A data B data

Register File

WR

0

DA

xx

AA

10

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

x

1

Carry-in

ADRS(14:8)

7

R0(6:0) 
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Constant In

◼ One last refinement is the addition 
of a Constant input.

◼ The modified datapath is shown on 
the right, 

◼ One extra MUX is added.

◼ With one extra control signal MB.

◼ Intuitively, it provides an easy way 
to initialize a register or memory 
location with some arbitrary 
number (8-bit constant).

◼ The constant comes from the 
instructions LDI and STI (see 
instruction format 2!).

◼ At home try to set the control 
signals of the datapath on the right  
for the following instructions:

◼ LDI   R2,  #0xc8

◼ STI  (R1), #0x3f

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q  D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0) 

S D1 D0
         Q

Constant
MB
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Who is Configuring the Datapath?

◼ The datapath on the previous slide is a complete datapath 

for our simple processor, i.e.,

◼ the datapath supports all Data Manipulation instructions

◼ the datapath supports all Data Movement instructions  

◼ Different actions are performed when we provide different 

values for the datapath control signals

◼ See the instruction examples on previous slides

◼ In processors, the datapath actions are determined by the 

program that is loaded and running 

◼ The Control Unit is responsible for generating the correct 

control signals for a datapath, based on the program code

◼ We will talk about the control unit next week.
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Summary

◼ The datapath is the part of a processor where 
computation is done
◼ The basic components are an ALU, a register file and 

some RAM

◼ The ALU does all of the computations

◼ The register file and RAM provide storage for the ALU’s 
operands and results.

◼ Various control signals in the datapath govern its 
behavior.

◼ Next week, we will see 
◼ how programmers can give commands to the processor

◼ how these commands are translated in control signals for 
the datapath. 
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