!'_ Processor Design Basics:

Datapath

Overview

= Block Diagram of a Generic Processor
= Example of a Simple Processor
= Introduction to Datapath

= Register File
= Accessing the Register File
= Register File for Our Simple Processor

= Arithmetic and Logic Unit (ALU)

= ALU for our Simple Processor
= ALU Operation

= Initial Datapath for Our Processor

= Refinement of the Initial Datapath
= To allow access to the RAM Data Memory
= To allow load/store of Constant Values

= Summary
Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

iBIock Diagram of a Generic Processor

Program Data

! !

Control signals
ﬁ

Control
Unit . Status signals Datapath

= We can divide the design of a processor into three

parts:

= An Instruction Set is the programmer’s interface to the
processor.

= The Datapath does all of the actual data processing.

= A Control unit uses the programmer’s instructions to tell
the datapath what to do.

= In this lecture we will discuss the design of a
Datapath.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple Processor

Control Unit Datiloath
RO
PC = E—% =+ Data Memory
= Load ‘ Status R3
Instruction . S"%\nals Z {
Memory Branch |t \C;
Control <
< N xle—| ALU
¥ n
® Instruction
Decoder Control

Signals

= This processor and its Instruction Set Architecture have been discussed
In Lecture 13.

= Here we will look in detail at the processor’s datapath, which is
responsible for doing all of the “dirty” work.
= An ALU does arithmetic, logic, and shift operations.
= Alimited set of registers serves as fast temporary storage.

= Alarger, but slower, random-access memory is also available.
Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 4

:L Datapath

= We can look at the datapath as a sequential circuit.
= Registers are used to store values, which form the state.
= ALU performs various operations on the data stored in the
registers.

= Fundamentally, the processor is just transferring
data between the registers using the datapath
possibly with some ALU computations.

= ALU is used to perform arithmetic, logic, and shift
operations on the data while the data is being
transferred.

ALU

Registers File

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File

= Modern processors have a

datapath with a number of D
registers grouped together gl/
In a register file. =
= Individual registers are WR ——— Write
identified by an address DA —X/— D address
= Much like words stored in a Register File
RAM AA—KL ol Aaddress B address

= Here is a block symbol for a

A data B data

2“xn register file.

= There are 2 registers, so
register addresses are k bits
long.

= Each register holds an n-bit
word, so the data inputs and
outputs are n bits wide.

T

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Accessing the Register File

= You can read two registers at
once by supplying the AA
and BA inputs. The data
appears on the A and B
outputs.

= YOou can write to a register by
using the DA and D inputs,
and setting WR = 1.

= These are registers so there
must be a clock and reset
signals, even though we
usually do not show it In
diagrams.

= We can read from the register
file at any time.

= Data is written only on the
positive edge of the clock.

D

T

WR ———

DA —K/—
AA—KL,

D data
Write

D address

Register File

A address B address
A data B data

T

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File for our Processor

= We have to design a 4 x 8 register file because the Instruction Set
Architecture of our processor specifies four 8-bit registers (RO to R3).

Dan =0 0 RO
pat —+ |81 Qf
: Q2 |— | .
WR EN 03—
DEC R1
| .
RZ
| . 2
]
E3
| 1
DO D1 D203 | | D3 D2 D1 DO
2RO — sa MUX MUX sop—— Ba0
ALl — 51 Q a 51 b——— BAl

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Explaining Our Register File

s The 2-t0-4 decoder DEC selects one of the four

registers for writing

using the inputs DAO and DAL.

If WR = 1, the decoder will be enabled and one of

the Load signals wi

= The 8-bit 4-to-1 mu
registers from the fi

| be active.
tiplexers MUXs select two

e and connects them to outputs

A and B, based on the inputs AAO,AA1 and

BAO,BAL.

= We need to be able to read two registers at once
because most of the instructions of our processor
require two registers. See the next slide.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Recall the Instructions of Our Processor

Instruction Type | Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj € Ri Z, N
INC R, Ri Rj € Ri+1 Z, N
DEC Rj, Ri Rj€Ri -1 Z, N
ADD Rj, Ri Rj € Rj + Ri C,V,Z N
Data Manipulation Register-format ADDC R}, Ri Rj€Rj+Ri+C C.V.Z N
Instructions Arithmetic & SUB R}, Ri Rj €< Rj+Ri’+1 C,V,Z,N
Logic AND Rj Ri Rj € RjARi Z,N
Operations ['GR ™ Rj, Ri Rj € Rj v Ri Z,N
XOR Rj,Ri Rj < Rj® Ri Z, N
NOT Rj, Ri Rj € Ri’ Z, N
Register-format | SHL Rj, Ri Rj <€ Ri<<1 NO effect
Shift Operations | SHR Rj, Ri Rj< Ri>>1 NO effect
Memory write | ST (Rj), Ri Mem[RO|R]] € Ri NO effect
(from registers)
Data Movement Memory read |LD Rj, (Ri) Rj€¢ Mem[RO|Ri] NO effect
Instructions (to registers)
Immediate LDl Rj, #const8 | Rj € const8 NO effect
o:)rjrr;?if (()errms STl (Rj), #const8 | Mem[RO|R]] € const8 | NO effect
Branches Bz #offsetll PC < PC + offsetll NO effect
BNZ #offsetll PC < PC + offsetll NO effect
BC #offsetll PC <& PC + offsetll NO effect
BNC #offsetll PC < PC + offsetll NO effect
Control Flow BV #offsetll | PC € PC + offsetll | NO effect
Instructions BNV #offsetll PC € PC + offsetll | NO effect
BN #offsetll PC < PC + offsetll NO effect
BNN #offsetll PC < PC + offsetll NO effect
Jump JMP Rj, Ri PC < Rj|RIi NO effect

Fall 2024

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

10

Arithmetic & Logic Unit (ALU)

= The ALU has to perform all arithmetic, logic, and shift
operations specified by the Instruction Set Architecture of a
processor.

= To design the ALU of our simple processor we have to
analyze the relevant part of the instruction set.

Instruction Type | Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj € Ri Z, N
INC Rj,Ri Rj < Ri +1 Z, N
DEC Rj Ri Ri€Ri -1 Z, N
ADD Rj, Ri Rj € Rj + Ri C.V,Z, N
Data Manipulation Register-format ADDC Rj, R RI€Rj+Ri+C C,V.Z N
Instructions Arithmetic & SUB Rj, Ri Rj < Rj+ Ri"+ 1 C,V,Z,N
Logic AND Rj Ri Rj € RjARi Z,N
Operations OR Rj, Ri Rj < Rj v Ri Z. N
XOR RjRi Rj € Rj® Ri Z,N
NOT Rj, Ri Rj € RV’ Z, N
Register-format | SHL Rj, Ri Rj € Ri<<1 NO effect
Shift Operations | SHR Rj, Ri Rj<€ Ri>1 NO effect

= Conclusionl: The ALU must perform 12 operations therefore

= we need at least 4 control inputs to select one of the 12
operations.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

11

Arithmetic & Logic Unit (ALU)

Instruction Type | Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj € Ri Z N
INC Rj,Ri Rj€Ri+1 Z, N
DEC Rj, Ri Rj€Ri -1 Z N
ADD Rj, Ri Rj € Rj + Ri C,V,Z N
Data Manipulation Register-format ADDC Rj, Ri Ri€Rj+Ri+C C.V.Z N
Instructions Arithmetic & SUB Rj|, Ri Rj < Rj+Ri"+ 1 C,V,Z N
Logic AND _Rj Ri Ri € RiARi Z N
Operations OR Rj,Ri Rj < Rj v Ri Z N
XOR RjRi Rj € Rj®Ri Z,N
NOT Rj, Ri Rj € RV’ Z N
Register-format | SHL Rj, Ri Rj € Ri<<1 NO effect
Shift Operations | SHR Rj, Ri Rj< Ri>1 NO effect

Fall 2024

= Conclusion2: The operations require 1 or 2 operands

therefore

= The ALU must have 2 data inputs.

= The operands are 8-bit binary numbers.

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

12

Arithmetic & Logic Unit (ALU)

Instruction Type | Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj € Ri Z, N
INC Rj, Ri Rj € Ri+1 Z,N
DEC Rj, Ri RI€Ri -1 Z, N
ADD Rj Ri Rj € Rj+Ri C,V,Z N
Data Manipulation Register-format ADDC Rj, Ri Ri€Rj+Ri+C C.V.Z N
Instructions Arithmetic & SUB Rj, Ri Rj€¢ Rj+Ri’+1 C,V,Z, N
Logic AND Rj, Ri Rj € RjARi Z,N
Operations OR Rj, Ri Rj € Rjv Ri Z N
XOR Rj,Ri Rj € Rj @ Ri Z,N
NOT Rj Ri Rj € RV’ Z, N
Register-format | SHL Rj, Ri Rj¢ Ri<<1 NO effect
Shift Operations | SHR Rj, Ri Rj€ Ri>>1 NO effect

= Conclusion3: Each operation returns 1 result,
therefore

= The ALU must have 1 data outpult.
= The result is 8-bit binary number.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type | Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj € Ri Z,N
INC Rj,Ri Rj€Ri+1 Z, N
DEC Rj,Ri Rj€Ri -1 Z,N
ADD R, Ri Rj € Rj + Ri C,V,Z N
Data Manipulation Register-format ADDC Rj, Ri RI€Rj+Ri+C C.V.ZN
Instructions Arithmetic & SUB Rj, Ri Rj < Rj+Ri’+ 1 C,V,Z, N
Logic AND _Rj, Ri Ri € RiARi Z,N
Operations 'or Rj, Ri Rj € Rj v Ri Z N
XOR RjRi Rj € Rj® Ri Z,N
NOT Rj, Ri Rj € RV’ Z,N
Register-format | SHL Rj, Ri Rj< Ri<<1 NO effect
Shift Operations | SHR Rj, Ri Rj< Ri>>1 NO effect

= Conclusion4:. Some of the operations must modify

status bits therefore
= The ALU must have 4 status outputs to indicate
= If Carry and/or oVerflow has occurred

Fall 2024

= If the result of an operation is Zero or Negative

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

14

The ALU for Our Processor

= We will use the following block symbol for the ALU.
= A and B are two 8-bit data inputs for operands.
= FSis a 5-bit control input to select an operation.

= Several status bits provide more

= The 8-bit result is called F . % #
A B
FS

iInformation about the output F: 5,
= V =1 in case of signed overflow.

« Cisthe carry out. —jcary-in - ALU
= N =1 if the result is negative. v
= Z =1if the resultis 0. 1’ F

= Carry-in input is needed for %

iInstruction ADDC (ADD with carry-in).

= This block should look familiar to you from your
design project!

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

15

ALU Operations (Functions)

Fall 2024

Each ALU operation is uniquely
encoded — see the function
selection code FS in the table.

The function select code FSis 5
bits long, but there are only 12
different operations here. Why?

The FS code has a structure:
= FS(5) = ‘0" indicates data
manipulation
n FS(43) =
= “00” indicates arithmetic operations
= ‘01" indicates propagate or shift
operations (except F=B - 1)

»= ‘10" indicates logic operations
Structuring the FS code helps to
design simpler decoder structure
for the ALU.

INSTR| FS Operation
INC 00000 |[F=B+1

ADD |00001 |[F=A+B

ADDC [00010 |F=A+B + Carry-in
SUB |00011 |[F=A+B +1

DEC |00100 |F=B -1

LDR |00101 |[F=B

SHR |00110 |F = sr B (shift right)
SHL [00111 |F = sl B (shift left)
AND (01000 |F=A AB (AND)
OR 01001 |[F=Av B (OR)
XOR [01010 |F=A®B

NOT |01011 |F=P

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 16

Initial Datapath for Our Processor

= Here is the most basic datapath.

D data
The ALU’s two data inputs come WR —{ Write

from the register file. DA 24| D address

The ALU computes a result, which is
saved back to the registers.

The status bits are stored in the AA Sl Aaddress B address
status register SR.

N

Register File

N

24 BA

A data B data
= WR, DA, AA, BA, FS and Load sl sl sl
are control signals. " -
= Their values determine the exact Fs 5| Fs
actions taken by the datapath, | ALL
= That is, which registers are used canmn
and for what operation. Y P b
N<—|WN|«<— N
7 — «—] Z F
Load—T
Fall 2024

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

17

An Example Computation

= Let us look at the proper control signals

for executing the processor instruction
below: WR

1 —» Write

ADD R1, R3 R1 <« R1+R3 DA %‘» D address

01

= Set all control signals simultaneously Register File
as explained below.

AA

= Set AA =01 and BA =11. This causes 01
the contents of R1 to appear at A data, A data B data

D data

A address B address

*N

and the contents of R3 to appear atB 8t 8L 8L
data.

= Set the ALU’s function select input 5
FS =00001 (A + B). 00001

= Set DA =01 and WR = 1. On the next carry-in ALU
positive clock edge, the ALU result c+t N
(R1 + R3) will be stored in R1. NP 75

A A A A

= Set Load = 1. On the next positive i
clock edge, the ALU status bits (C, V, Hoad
N, Z) will be stored in SR.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Two Issues with this Datapath

= Q1. Four registers is not a lot. What if
we need more storage?

= A1l: Our processor has a Data RAM
Memory and supports data movement
between RAM and registers with
Instructions ST and LD.

= Q2: What if we have to do operations
with constants?

= A2: Our processor has two
Instructions: LDI (load an 8-bit
constant in a register), STI (storing an
8-bit constant in a memory location)

= Problem! Our initial datapaht on the
right does not support the answers Al
and A2. Why?

= Solution: We have to refine our initial
datapath. See next slides!

\CIJ

D data

WR —» Write
DA 2/» D address
Register File
AA 2/» A address B address
A data B data
5 5
A B
5
FS =A| FS
Carry-in ALU
C « < C
vV X V
N<+—|Nj«— N
7 +— «— Z F
Load —T

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

19

Writing to RAM

= Here is a way to connect
RAM into our existing wr—wite 0 %%
datapath DA — D address ROG:0) .
= To write to RAM, we must Register File | 1
give an address and a data AA — A address B address |—BA ZIR;?)I\(/IS
Value A data B data | ADRS(14:8)
= These will come from the +8" " 7 ST
registers. We connect A data A 5 v v
and Register RO to the R FA '
memory’s ADRS input, and B 1™ AL
data to the memory’s DATA N
input. e
= Set MW = 1 to write to the ool)
RAM. (It's called MW to ° 7

distinguish it from the WR

write signal on the register
file.)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 20

Reading from RAM

= To read from RAM, A data ' l
and register RO must supply wr e 2422
the address. pA |Daddress)
.)) 7
= Set MW = O for reading. Register File [1
= The incoming data will be AA —[Aaddress Baddressi=BA| | SAT
sent to the regqister file for Adaa B daia | ADRS(14:8)
storage. + * o ro—" oy T
= This means that the register A 8| R
file’s D data input could come | ™ 2 °
from either the ALU output or ¢ ALU
the RAM. L
= AMUX MD selects the sl
source for the register file. ool .
= When MD = 0, the ALU output ° 5w ’
can be stored in the register file. 1

= When MD = 1, the RAM output
IS sent to the register file

Instead.
Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 21

Notes About This Setup

8,

= We now have a way to copy data
between our register file and the RAM. | wr | write DdataRo(G_o)
= Notice that there is no way for the ALU | PA —|Daddress)
to directly access the memory - RAM Register File 4
contents must go through the register | aa —Aaddress B address|-BA RAM
file first. Adata__ B data
: Co 5 = ADRS(14:8)
= Here the size of the memory is limited + # y "|ADRS(:0)
by the size of the registers: 7 —"cs
= With 8-bit registers, we use a 2*°x 8 s rs © ° b i
RAM. — Carry-in
= Address bits 14 down to 8 are always v ALU
taken from register RO. 175 =
= Address bits 7 down to O can be taken sl
from any register. DO :
= For simplicity we assume the RAM is N v ’

at least as fast as the processor clock.
(This is definitely not the case in real
processors these days!)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 22

Example Sequence of Instructions

= The RAM memory access in our processor is supported by two
Instructions:

= LD Rj, (Ri) --load register Rj with the content of a RAM memory cell at
address given by register Ri;

= ST (Rj), Ri --store the content of register Ri in a RAM memory cell at
address given by reqister Rj;

= Here is a simple series of memory/register transfer instructions:

LD R3, (R2) R3 « Mem[RO|R2]
DEC R3, R3 R3« R3-1
ST (R2), R3 Mem[RO|R2] < R3

= This just decrements the content of RAM memory cell at address RO|R2 .

= Again, our ALU only operates on registers, so the RAM contents must first be
loaded into a register, and then saved back to RAM.

= We will assume that RO and R2 contain a valid memory address.
= How would these instructions execute in our datapath?

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 23

“LD R3, (R2) is R3 « Mem[RO|R2]

8,

= AA should be setto 10, to read - —
register R2. w60
= The value in R2 will be sent to DA Poddress 1,
the RAM address inputs, so Register File ’
|\/|em[RO|R2] appears as the foA — A address B address }—BA 2F;A;\(/I8
RAM OUtpUt OUT. Adata B data o
= ADRS(14:8)
= MD must be 1, so the RAM + ” 5 [ADRS(0)
output goes to the register file. " ; . 5V CS
= To store something into R3, we e L 0
: — — Carry-in
Wll?n:eid to set DA =11 and e ALU
. — N
= MW should be 0, so nothing is L L
accidentally changed in RAM. i
= We do not use the ALU, thus FS Q b1 e 8
. S — MD
value can be arbitrary) 1

= We do not use the second
register file output, thus BA also

can be arbitrary.
Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 24

Fall 2024

"‘DECR3,R3"IsR3 <« R3-1

BA=11,so R3isread
from the register file and
sent to the ALU’s B input.

FS needs to be 00100 for
the operation B - 1. Then,
R3 - 1 appears as the ALU
output F.

If MD Is set to O, this output
will go back to the register
file.

To write to R3, we need to
make DA = 11 and
WR = 1.

Again, MW should be 0 so
the RAM is not changed.

We do not use AA.

8,
7/
WR _ D data
1 —{ Write RO(6:0)
DA — D address
11)) 18%
Register File 7
AA =4 A address B address}—=BA RAM
XX 11 215X 8
A data B data
. = ADRS(14:8)
+ = » ADRS(7:0)
—+ DATA OUT |~
+5V— CS
A B MW — WR
FS 1 Fs 0
00100)
— Carry-in
— C
¢ ALU
— N
— z F
i/
DO}«
Q D1le 8
S — MD

0

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

25

“ST (R2), R3” is Mem[RO|R2] « R3

8,

= Finally, we want to store the WR —
contents of R3 into RAM 0 —|Write RO(6:0)
address RO|R2. DA m|Poddress 1
= Remember the RAM address Register File [1
comes from “A data,” and the AA —Aaddress Baddress=BA| |
contents come from “B data.” Adatas B data | ADRS(14:8)
= SO0, we have to set AA =10 and + 7 > i N
BA = 11. This sends R2 to A S NV I
ADRS(7:0), and R3 to DATA. S 1
= MW must be 1 to write to 15" ALu
memory. Y
= No register updates are needed, L= SF/
so WR should be 0, and MD and — “
DA are unused. Q DLfe— %
= We also do not use the ALU, so X

FS was ignored.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 26

Constant In

Fall 2024

One last refinement is the addition
of a Constant input.
The modified datapath is shown on
the right,

= One extra MUX is added.

= With one extra control signal MB.
Intuitively, it provides an easy way
to initialize a register or memory

location with some arbitrary
number (8-bit constant).

The constant comes from the
Instructions LDI and STI (see
Instruction format 2!).

At home try to set the control
signals of the datapath on the right
for the following instructions:

= LDI R2, #0xc8

= STI (R1), #0x3f

_ D data
WR — Write RO(6:0)
DA — D address
Register File
AA — A address B address}—=BA
A data B data 71
y
Constant MB
| RAM
S D1 DO 215X 8
Q - ADRS(14:8)
¢ —0/——| ADRS(7:0)
¢ /A »] DATA OUT}-
+5V— CS
A B MW — WR
FS — FS
— Carry-in
— C
¢ ALU
— N
— Z F
g/
DO
Q D1 3
S I— MD

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

27

i Who iIs Configuring the Datapath?

= The datapath on the previous slide is a complete datapath
for our simple processor, i.e.,
= the datapath supports all Data Manipulation instructions
= the datapath supports all Data Movement instructions

= Different actions are performed when we provide different
values for the datapath control signals
= See the instruction examples on previous slides

= In processors, the datapath actions are determined by the
program that is loaded and running

= The Control Unit is responsible for generating the correct
control signals for a datapath, based on the program code

= We will talk about the control unit next week.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

i Summary

= The datapath is the part of a processor where
computation is done

= The basic components are an ALU, a register file and
some RAM

= The ALU does all of the computations

= The register file and RAM provide storage for the ALU’s
operands and results.

= Various control signals in the datapath govern its
behavior.
= Next week, we will see

= how programmers can give commands to the processor

= how these commands are translated in control signals for
the datapath.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

29

	Slide 1: Processor Design Basics: Datapath
	Slide 2: Overview
	Slide 3: Block Diagram of a Generic Processor
	Slide 4: Example of a Simple Processor
	Slide 5: Datapath
	Slide 6: Register File
	Slide 7: Accessing the Register File
	Slide 8: Register File for our Processor
	Slide 9: Explaining Our Register File
	Slide 10: Recall the Instructions of Our Processor
	Slide 11: Arithmetic & Logic Unit (ALU)
	Slide 12: Arithmetic & Logic Unit (ALU)
	Slide 13: Arithmetic & Logic Unit (ALU)
	Slide 14: Arithmetic & Logic Unit (ALU)
	Slide 15: The ALU for Our Processor
	Slide 16: ALU Operations (Functions)
	Slide 17: Initial Datapath for Our Processor
	Slide 18: An Example Computation
	Slide 19: Two Issues with this Datapath
	Slide 20: Writing to RAM
	Slide 21: Reading from RAM
	Slide 22: Notes About This Setup
	Slide 23: Example Sequence of Instructions
	Slide 24: “LD R3, (R2)” is R3  Mem[R0|R2]
	Slide 25: “DEC R3, R3” is R3  R3 - 1
	Slide 26: “ST (R2), R3” is Mem[R0|R2]  R3
	Slide 27: Constant In
	Slide 28: Who is Configuring the Datapath?
	Slide 29: Summary

