
Processor Design Basics:

Datapath

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Block Diagram of a Generic Processor

◼ Example of a Simple Processor

◼ Introduction to Datapath

◼ Register File
◼ Accessing the Register File

◼ Register File for Our Simple Processor

◼ Arithmetic and Logic Unit (ALU)
◼ ALU for our Simple Processor

◼ ALU Operation

◼ Initial Datapath for Our Processor

◼ Refinement of the Initial Datapath
◼ To allow access to the RAM Data Memory

◼ To allow load/store of Constant Values

◼ Summary
2

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Block Diagram of a Generic Processor

◼ We can divide the design of a processor into three
parts:
◼ An Instruction Set is the programmer’s interface to the

processor.

◼ The Datapath does all of the actual data processing.

◼ A Control unit uses the programmer’s instructions to tell
the datapath what to do.

◼ In this lecture we will discuss the design of a
Datapath.

Control

Unit
Datapath

Control signals

Status signals

Program Data

3

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple Processor

Control Unit Datapath

Control

Signals

Status

Signals

Data MemoryPC

R0

ALU

R1

R3
R2

Z
C

V

N

Instruction

Decoder

Instruction

Memory Branch

Control

Load

S
R

◼ This processor and its Instruction Set Architecture have been discussed
in Lecture 13.

◼ Here we will look in detail at the processor’s datapath, which is

responsible for doing all of the “dirty” work.

◼ An ALU does arithmetic, logic, and shift operations.

◼ A limited set of registers serves as fast temporary storage.

◼ A larger, but slower, random-access memory is also available.

4

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Datapath

◼ We can look at the datapath as a sequential circuit.
◼ Registers are used to store values, which form the state.

◼ ALU performs various operations on the data stored in the
registers.

◼ Fundamentally, the processor is just transferring
data between the registers using the datapath
possibly with some ALU computations.

◼ ALU is used to perform arithmetic, logic, and shift
operations on the data while the data is being
transferred.

ALU

Registers File

5

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File

◼ Modern processors have a
datapath with a number of
registers grouped together
in a register file.

◼ Individual registers are
identified by an address
◼ Much like words stored in a

RAM

◼ Here is a block symbol for a

 2
k
 x n register file.

◼ There are 2
k
 registers, so

register addresses are k bits
long.

◼ Each register holds an n-bit
word, so the data inputs and
outputs are n bits wide.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

6

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Accessing the Register File

◼ You can read two registers at
once by supplying the AA
and BA inputs. The data
appears on the A and B
outputs.

◼ You can write to a register by
using the DA and D inputs,
and setting WR = 1.

◼ These are registers so there
must be a clock and reset
signals, even though we
usually do not show it in
diagrams.
◼ We can read from the register

file at any time.

◼ Data is written only on the
positive edge of the clock.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

7

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File for our Processor

◼ We have to design a 4 x 8 register file because the Instruction Set
Architecture of our processor specifies four 8-bit registers (R0 to R3).

8 8

8

DEC

MUX MUX

8

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Explaining Our Register File

◼ The 2-to-4 decoder DEC selects one of the four

registers for writing using the inputs DA0 and DA1.

If WR = 1, the decoder will be enabled and one of

the Load signals will be active.

◼ The 8-bit 4-to-1 multiplexers MUXs select two

registers from the file and connects them to outputs

A and B, based on the inputs AA0,AA1 and

BA0,BA1.

◼ We need to be able to read two registers at once

because most of the instructions of our processor

require two registers. See the next slide.

9

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj Ri’ Z, N

SHL Rj, Ri Rj Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj Ri >> 1 NO effect

Memory write
(from registers)

ST (Rj), Ri Mem[R0|Rj] Ri NO effect

Memory read

 (to registers)
LD Rj, (Ri) Rj Mem[R0|Ri] NO effect

LDI Rj, #const8 Rj const8 NO effect

Data Movement
Instructions

 Immediate
transfer

operations
STI (Rj), #const8 Mem[R0|Rj] const8 NO effect

BZ #offset11 PC PC + offset11 NO effect

BNZ #offset11 PC PC + offset11 NO effect

BC #offset11 PC PC + offset11 NO effect

BNC #offset11 PC PC + offset11 NO effect

BV #offset11 PC PC + offset11 NO effect

BNV #offset11 PC PC + offset11 NO effect

BN #offset11 PC PC + offset11 NO effect

 Branches

BNN #offset11 PC PC + offset11 NO effect

Control Flow
Instructions

Jump JMP Rj, Ri PC Rj|Ri NO effect

Recall the Instructions of Our Processor

10

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

◼ The ALU has to perform all arithmetic, logic, and shift
operations specified by the Instruction Set Architecture of a
processor.

◼ To design the ALU of our simple processor we have to
analyze the relevant part of the instruction set.

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj Ri’ Z, N

SHL Rj, Ri Rj Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj Ri >> 1 NO effect

◼ Conclusion1: The ALU must perform 12 operations therefore

◼ we need at least 4 control inputs to select one of the 12
operations.

11

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description

Data Manipulation
Instructions

Register-format
Arithmetic &

Logic
Operations

LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

NOT Rj, Ri Rj Ri’ Z, N

Register-format
Shift Operations

SHL Rj, Ri Rj Ri << 1 NO effect

SHR Rj, Ri Rj Ri >> 1 NO effect

◼ Conclusion2: The operations require 1 or 2 operands
therefore

◼ The ALU must have 2 data inputs.

◼ The operands are 8-bit binary numbers.

12

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj Ri’ Z, N

SHL Rj, Ri Rj Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj Ri >> 1 NO effect

◼ Conclusion3: Each operation returns 1 result,
therefore

◼ The ALU must have 1 data output.

◼ The result is 8-bit binary number.

13

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj Ri’ Z, N

SHL Rj, Ri Rj Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj Ri >> 1 NO effect

◼ Conclusion4: Some of the operations must modify
status bits therefore

◼ The ALU must have 4 status outputs to indicate

◼ if Carry and/or oVerflow has occurred

◼ if the result of an operation is Zero or Negative

14

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

The ALU for Our Processor

◼ We will use the following block symbol for the ALU.
◼ A and B are two 8-bit data inputs for operands.

◼ FS is a 5-bit control input to select an operation.

◼ The 8-bit result is called F .

◼ Several status bits provide more
information about the output F:
◼ V = 1 in case of signed overflow.

◼ C is the carry out.

◼ N = 1 if the result is negative.

◼ Z = 1 if the result is 0.

◼ Carry-in input is needed for
instruction ADDC (ADD with carry-in).

◼ This block should look familiar to you from your
design project!

A B

ALU

FZ
N

C
V

FS

88

8

5

Carry-in

15

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

ALU Operations (Functions)

◼ Each ALU operation is uniquely
encoded – see the function
selection code FS in the table.

◼ The function select code FS is 5
bits long, but there are only 12
different operations here. Why?

◼ The FS code has a structure:
◼ FS(5) = ‘0’ indicates data

manipulation

◼ FS(4:3) =
◼ “00” indicates arithmetic operations

◼ “01” indicates propagate or shift
operations (except F = B - 1)

◼ “10” indicates logic operations

◼ Structuring the FS code helps to
design simpler decoder structure
for the ALU.

INSTR FS Operation

INC 00000 F = B + 1
ADD 00001 F = A + B
ADDC 00010 F = A + B + Carry-in
SUB 00011 F = A + B’ + 1
DEC 00100 F = B - 1
LDR 00101 F = B
SHR 00110 F = sr B (shift right)
SHL 00111 F = sl B (shift left)
AND 01000 F = A B (AND)
OR 01001 F = A B (OR)
XOR 01010 F = A B
NOT 01011 F = B’

16

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Initial Datapath for Our Processor

◼ Here is the most basic datapath.
◼ The ALU’s two data inputs come

from the register file.

◼ The ALU computes a result, which is
saved back to the registers.

◼ The status bits are stored in the
status register SR.

◼ WR, DA, AA, BA, FS and Load
are control signals.
◼ Their values determine the exact

actions taken by the datapath,

◼ That is, which registers are used
and for what operation.

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

17

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

An Example Computation

◼ Let us look at the proper control signals
for executing the processor instruction
below:

ADD R1, R3 R1 R1 + R3

◼ Set all control signals simultaneously
as explained below.

◼ Set AA = 01 and BA = 11. This causes
the contents of R1 to appear at A data,
and the contents of R3 to appear at B
data.

◼ Set the ALU’s function select input
FS = 00001 (A + B).

◼ Set DA = 01 and WR = 1. On the next
positive clock edge, the ALU result
(R1 + R3) will be stored in R1.

◼ Set Load = 1. On the next positive
clock edge, the ALU status bits (C, V,
N, Z) will be stored in SR.

D data

Write

D address

A address B address

A data B data

Register File

WR

1

DA

01

AA

01

BA

11

A B

ALU

FZ
N

C
V

FSFS

00001

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

1

18

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Two Issues with this Datapath

◼ Q1: Four registers is not a lot. What if
we need more storage?

◼ A1: Our processor has a Data RAM
Memory and supports data movement
between RAM and registers with
instructions ST and LD.

◼ Q2: What if we have to do operations
with constants?

◼ A2: Our processor has two
instructions: LDI (load an 8-bit
constant in a register), STI (storing an
8-bit constant in a memory location)

◼ Problem! Our initial datapaht on the
right does not support the answers A1
and A2. Why?

◼ Solution: We have to refine our initial
datapath. See next slides!

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

19

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Writing to RAM

◼ Here is a way to connect
RAM into our existing
datapath.

◼ To write to RAM, we must
give an address and a data
value.

◼ These will come from the
registers. We connect A data
and Register R0 to the
memory’s ADRS input, and B
data to the memory’s DATA
input.

◼ Set MW = 1 to write to the
RAM. (It’s called MW to
distinguish it from the WR
write signal on the register
file.)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

Carry-in

ADRS(14:8)

7

R0(6:0)

20

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Reading from RAM

◼ To read from RAM, A data
and register R0 must supply
the address.

◼ Set MW = 0 for reading.

◼ The incoming data will be
sent to the register file for
storage.

◼ This means that the register
file’s D data input could come
from either the ALU output or
the RAM.

◼ A MUX MD selects the
source for the register file.
◼ When MD = 0, the ALU output

can be stored in the register file.

◼ When MD = 1, the RAM output
is sent to the register file
instead.

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0)

21

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Notes About This Setup

◼ We now have a way to copy data
between our register file and the RAM.

◼ Notice that there is no way for the ALU
to directly access the memory - RAM
contents must go through the register
file first.

◼ Here the size of the memory is limited
by the size of the registers:

◼ With 8-bit registers, we use a 2
15

x 8
RAM.

◼ Address bits 14 down to 8 are always
taken from register R0.

◼ Address bits 7 down to 0 can be taken
from any register.

◼ For simplicity we assume the RAM is
at least as fast as the processor clock.
(This is definitely not the case in real
processors these days!)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0)

22

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example Sequence of Instructions

◼ The RAM memory access in our processor is supported by two
instructions:

◼ LD Rj, (Ri) -- load register Rj with the content of a RAM memory cell at
address given by register Ri;

◼ ST (Rj), Ri -- store the content of register Ri in a RAM memory cell at
address given by register Rj;

◼ Here is a simple series of memory/register transfer instructions:

 LD R3, (R2) R3 Mem[R0|R2]
 DEC R3, R3 R3 R3 - 1
 ST (R2), R3 Mem[R0|R2] R3

◼ This just decrements the content of RAM memory cell at address R0|R2 .

◼ Again, our ALU only operates on registers, so the RAM contents must first be
loaded into a register, and then saved back to RAM.

◼ We will assume that R0 and R2 contain a valid memory address.

◼ How would these instructions execute in our datapath?

23

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“LD R3, (R2)” is R3 Mem[R0|R2]

◼ AA should be set to 10, to read
register R2.

◼ The value in R2 will be sent to
the RAM address inputs, so
Mem[R0|R2] appears as the
RAM output OUT.

◼ MD must be 1, so the RAM
output goes to the register file.

◼ To store something into R3, we
will need to set DA = 11 and
WR = 1.

◼ MW should be 0, so nothing is
accidentally changed in RAM.

◼ We do not use the ALU, thus FS
value can be arbitrary)

◼ We do not use the second
register file output, thus BA also
can be arbitrary.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

10

BA

xx

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0)

24

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“DEC R3, R3” is R3 R3 - 1

◼ BA = 11, so R3 is read
from the register file and
sent to the ALU’s B input.

◼ FS needs to be 00100 for
the operation B - 1. Then,
R3 - 1 appears as the ALU
output F.

◼ If MD is set to 0, this output
will go back to the register
file.

◼ To write to R3, we need to
make DA = 11 and
WR = 1.

◼ Again, MW should be 0 so
the RAM is not changed.

◼ We do not use AA.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

xx

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

00100

8

MD

0

0

Carry-in

ADRS(14:8)

7

R0(6:0)

25

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“ST (R2), R3” is Mem[R0|R2] R3

◼ Finally, we want to store the
contents of R3 into RAM
address R0|R2.

◼ Remember the RAM address
comes from “A data,” and the
contents come from “B data.”

◼ So, we have to set AA = 10 and
BA = 11. This sends R2 to
ADRS(7:0), and R3 to DATA.

◼ MW must be 1 to write to
memory.

◼ No register updates are needed,
so WR should be 0, and MD and
DA are unused.

◼ We also do not use the ALU, so
FS was ignored.

D data
Write

D address

A address B address

A data B data

Register File

WR

0

DA

xx

AA

10

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

x

1

Carry-in

ADRS(14:8)

7

R0(6:0)

26

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Constant In

◼ One last refinement is the addition
of a Constant input.

◼ The modified datapath is shown on
the right,

◼ One extra MUX is added.

◼ With one extra control signal MB.

◼ Intuitively, it provides an easy way
to initialize a register or memory
location with some arbitrary
number (8-bit constant).

◼ The constant comes from the
instructions LDI and STI (see
instruction format 2!).

◼ At home try to set the control
signals of the datapath on the right
for the following instructions:

◼ LDI R2, #0xc8

◼ STI (R1), #0x3f

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0)

S D1 D0
 Q

Constant
MB

27

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Who is Configuring the Datapath?

◼ The datapath on the previous slide is a complete datapath

for our simple processor, i.e.,

◼ the datapath supports all Data Manipulation instructions

◼ the datapath supports all Data Movement instructions

◼ Different actions are performed when we provide different

values for the datapath control signals

◼ See the instruction examples on previous slides

◼ In processors, the datapath actions are determined by the

program that is loaded and running

◼ The Control Unit is responsible for generating the correct

control signals for a datapath, based on the program code

◼ We will talk about the control unit next week.

28

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ The datapath is the part of a processor where
computation is done
◼ The basic components are an ALU, a register file and

some RAM

◼ The ALU does all of the computations

◼ The register file and RAM provide storage for the ALU’s
operands and results.

◼ Various control signals in the datapath govern its
behavior.

◼ Next week, we will see
◼ how programmers can give commands to the processor

◼ how these commands are translated in control signals for
the datapath.

29

	Slide 1: Processor Design Basics: Datapath
	Slide 2: Overview
	Slide 3: Block Diagram of a Generic Processor
	Slide 4: Example of a Simple Processor
	Slide 5: Datapath
	Slide 6: Register File
	Slide 7: Accessing the Register File
	Slide 8: Register File for our Processor
	Slide 9: Explaining Our Register File
	Slide 10: Recall the Instructions of Our Processor
	Slide 11: Arithmetic & Logic Unit (ALU)
	Slide 12: Arithmetic & Logic Unit (ALU)
	Slide 13: Arithmetic & Logic Unit (ALU)
	Slide 14: Arithmetic & Logic Unit (ALU)
	Slide 15: The ALU for Our Processor
	Slide 16: ALU Operations (Functions)
	Slide 17: Initial Datapath for Our Processor
	Slide 18: An Example Computation
	Slide 19: Two Issues with this Datapath
	Slide 20: Writing to RAM
	Slide 21: Reading from RAM
	Slide 22: Notes About This Setup
	Slide 23: Example Sequence of Instructions
	Slide 24: “LD R3, (R2)” is R3 Mem[R0|R2]
	Slide 25: “DEC R3, R3” is R3 R3 - 1
	Slide 26: “ST (R2), R3” is Mem[R0|R2] R3
	Slide 27: Constant In
	Slide 28: Who is Configuring the Datapath?
	Slide 29: Summary

