
Processor Design Basics:

Datapath

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Block Diagram of a Generic Processor

◼ Example of a Simple Processor

◼ Introduction to Datapath

◼ Register File
◼ Accessing the Register File

◼ Register File for Our Simple Processor

◼ Arithmetic and Logic Unit (ALU)
◼ ALU for our Simple Processor

◼ ALU Operation

◼ Initial Datapath for Our Processor

◼ Refinement of the Initial Datapath
◼ To allow access to the RAM Data Memory

◼ To allow load/store of Constant Values

◼ Summary
2

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Block Diagram of a Generic Processor

◼ We can divide the design of a processor into three
parts:
◼ An Instruction Set is the programmer’s interface to the

processor.

◼ The Datapath does all of the actual data processing.

◼ A Control unit uses the programmer’s instructions to tell
the datapath what to do.

◼ In this lecture we will discuss the design of a
Datapath.

Control

Unit
Datapath

Control signals

Status signals

Program Data

3

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple Processor

Control Unit Datapath

Control

Signals

Status

Signals

Data MemoryPC

R0

ALU

R1

R3
R2

Z
C

V

N

Instruction

Decoder

Instruction

Memory Branch

Control

Load

S
R

◼ This processor and its Instruction Set Architecture have been discussed
in Lecture 13.

◼ Here we will look in detail at the processor’s datapath, which is

responsible for doing all of the “dirty” work.

◼ An ALU does arithmetic, logic, and shift operations.

◼ A limited set of registers serves as fast temporary storage.

◼ A larger, but slower, random-access memory is also available.

4

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Datapath

◼ We can look at the datapath as a sequential circuit.
◼ Registers are used to store values, which form the state.

◼ ALU performs various operations on the data stored in the
registers.

◼ Fundamentally, the processor is just transferring
data between the registers using the datapath
possibly with some ALU computations.

◼ ALU is used to perform arithmetic, logic, and shift
operations on the data while the data is being
transferred.

ALU

Registers File

5

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File

◼ Modern processors have a
datapath with a number of
registers grouped together
in a register file.

◼ Individual registers are
identified by an address
◼ Much like words stored in a

RAM

◼ Here is a block symbol for a

 2
k
 x n register file.

◼ There are 2
k
 registers, so

register addresses are k bits
long.

◼ Each register holds an n-bit
word, so the data inputs and
outputs are n bits wide.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

6

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Accessing the Register File

◼ You can read two registers at
once by supplying the AA
and BA inputs. The data
appears on the A and B
outputs.

◼ You can write to a register by
using the DA and D inputs,
and setting WR = 1.

◼ These are registers so there
must be a clock and reset
signals, even though we
usually do not show it in
diagrams.
◼ We can read from the register

file at any time.

◼ Data is written only on the
positive edge of the clock.

nn

n

k k

k

D data
Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

7

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Register File for our Processor

◼ We have to design a 4 x 8 register file because the Instruction Set
Architecture of our processor specifies four 8-bit registers (R0 to R3).

8 8

8

DEC

MUX MUX

8

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Explaining Our Register File

◼ The 2-to-4 decoder DEC selects one of the four

registers for writing using the inputs DA0 and DA1.

If WR = 1, the decoder will be enabled and one of

the Load signals will be active.

◼ The 8-bit 4-to-1 multiplexers MUXs select two

registers from the file and connects them to outputs

A and B, based on the inputs AA0,AA1 and

BA0,BA1.

◼ We need to be able to read two registers at once

because most of the instructions of our processor

require two registers. See the next slide.

9

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj  Ri’ Z, N

SHL Rj, Ri Rj  Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj  Ri >> 1 NO effect

Memory write
(from registers)

ST (Rj), Ri Mem[R0|Rj]  Ri NO effect

Memory read

 (to registers)
LD Rj, (Ri) Rj Mem[R0|Ri] NO effect

LDI Rj, #const8 Rj  const8 NO effect

Data Movement
Instructions

 Immediate
transfer

operations
STI (Rj), #const8 Mem[R0|Rj]  const8 NO effect

BZ #offset11 PC  PC + offset11 NO effect

BNZ #offset11 PC  PC + offset11 NO effect

BC #offset11 PC  PC + offset11 NO effect

BNC #offset11 PC  PC + offset11 NO effect

BV #offset11 PC  PC + offset11 NO effect

BNV #offset11 PC  PC + offset11 NO effect

BN #offset11 PC  PC + offset11 NO effect

 Branches

BNN #offset11 PC  PC + offset11 NO effect

Control Flow
Instructions

Jump JMP Rj, Ri PC  Rj|Ri NO effect

Recall the Instructions of Our Processor

10

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

◼ The ALU has to perform all arithmetic, logic, and shift
operations specified by the Instruction Set Architecture of a
processor.

◼ To design the ALU of our simple processor we have to
analyze the relevant part of the instruction set.

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj  Ri’ Z, N

SHL Rj, Ri Rj  Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj  Ri >> 1 NO effect

◼ Conclusion1: The ALU must perform 12 operations therefore

◼ we need at least 4 control inputs to select one of the 12
operations.

11

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description

Data Manipulation
Instructions

Register-format
Arithmetic &

Logic
Operations

LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

NOT Rj, Ri Rj  Ri’ Z, N

Register-format
Shift Operations

SHL Rj, Ri Rj  Ri << 1 NO effect

SHR Rj, Ri Rj  Ri >> 1 NO effect

◼ Conclusion2: The operations require 1 or 2 operands
therefore

◼ The ALU must have 2 data inputs.

◼ The operands are 8-bit binary numbers.

12

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj  Ri’ Z, N

SHL Rj, Ri Rj  Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj  Ri >> 1 NO effect

◼ Conclusion3: Each operation returns 1 result,
therefore

◼ The ALU must have 1 data output.

◼ The result is 8-bit binary number.

13

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Arithmetic & Logic Unit (ALU)

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj  Ri Z, N

INC Rj, Ri Rj  Ri + 1 Z, N

DEC Rj, Ri Rj  Ri - 1 Z, N

ADD Rj, Ri Rj  Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj  Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj  Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj  Rj  Ri Z, N

OR Rj, Ri Rj  Rj  Ri Z, N

XOR Rj,Ri Rj  Rj  Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj  Ri’ Z, N

SHL Rj, Ri Rj  Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj  Ri >> 1 NO effect

◼ Conclusion4: Some of the operations must modify
status bits therefore

◼ The ALU must have 4 status outputs to indicate

◼ if Carry and/or oVerflow has occurred

◼ if the result of an operation is Zero or Negative

14

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

The ALU for Our Processor

◼ We will use the following block symbol for the ALU.
◼ A and B are two 8-bit data inputs for operands.

◼ FS is a 5-bit control input to select an operation.

◼ The 8-bit result is called F .

◼ Several status bits provide more
information about the output F:
◼ V = 1 in case of signed overflow.

◼ C is the carry out.

◼ N = 1 if the result is negative.

◼ Z = 1 if the result is 0.

◼ Carry-in input is needed for
instruction ADDC (ADD with carry-in).

◼ This block should look familiar to you from your
design project!

A B

ALU

FZ
N

C
V

FS

88

8

5

Carry-in

15

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

ALU Operations (Functions)

◼ Each ALU operation is uniquely
encoded – see the function
selection code FS in the table.

◼ The function select code FS is 5
bits long, but there are only 12
different operations here. Why?

◼ The FS code has a structure:
◼ FS(5) = ‘0’ indicates data

manipulation

◼ FS(4:3) =
◼ “00” indicates arithmetic operations

◼ “01” indicates propagate or shift
operations (except F = B - 1)

◼ “10” indicates logic operations

◼ Structuring the FS code helps to
design simpler decoder structure
for the ALU.

INSTR FS Operation

INC 00000 F = B + 1
ADD 00001 F = A + B
ADDC 00010 F = A + B + Carry-in
SUB 00011 F = A + B’ + 1
DEC 00100 F = B - 1
LDR 00101 F = B
SHR 00110 F = sr B (shift right)
SHL 00111 F = sl B (shift left)
AND 01000 F = A  B (AND)
OR 01001 F = A  B (OR)
XOR 01010 F = A  B
NOT 01011 F = B’

16

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Initial Datapath for Our Processor

◼ Here is the most basic datapath.
◼ The ALU’s two data inputs come

from the register file.

◼ The ALU computes a result, which is
saved back to the registers.

◼ The status bits are stored in the
status register SR.

◼ WR, DA, AA, BA, FS and Load
are control signals.
◼ Their values determine the exact

actions taken by the datapath,

◼ That is, which registers are used
and for what operation.

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

17

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

An Example Computation

◼ Let us look at the proper control signals
for executing the processor instruction
below:

ADD R1, R3 R1  R1 + R3

◼ Set all control signals simultaneously
as explained below.

◼ Set AA = 01 and BA = 11. This causes
the contents of R1 to appear at A data,
and the contents of R3 to appear at B
data.

◼ Set the ALU’s function select input
FS = 00001 (A + B).

◼ Set DA = 01 and WR = 1. On the next
positive clock edge, the ALU result
(R1 + R3) will be stored in R1.

◼ Set Load = 1. On the next positive
clock edge, the ALU status bits (C, V,
N, Z) will be stored in SR.

D data

Write

D address

A address B address

A data B data

Register File

WR

1

DA

01

AA

01

BA

11

A B

ALU

FZ
N

C
V

FSFS

00001

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

1

18

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Two Issues with this Datapath

◼ Q1: Four registers is not a lot. What if
we need more storage?

◼ A1: Our processor has a Data RAM
Memory and supports data movement
between RAM and registers with
instructions ST and LD.

◼ Q2: What if we have to do operations
with constants?

◼ A2: Our processor has two
instructions: LDI (load an 8-bit
constant in a register), STI (storing an
8-bit constant in a memory location)

◼ Problem! Our initial datapaht on the
right does not support the answers A1
and A2. Why?

◼ Solution: We have to refine our initial
datapath. See next slides!

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FSFS

8 8 8

2

2

2

5

S
R

Z
N

C

V

Carry-in

Load

19

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Writing to RAM

◼ Here is a way to connect
RAM into our existing
datapath.

◼ To write to RAM, we must
give an address and a data
value.

◼ These will come from the
registers. We connect A data
and Register R0 to the
memory’s ADRS input, and B
data to the memory’s DATA
input.

◼ Set MW = 1 to write to the
RAM. (It’s called MW to
distinguish it from the WR
write signal on the register
file.)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

Carry-in

ADRS(14:8)

7

R0(6:0)

20

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Reading from RAM

◼ To read from RAM, A data
and register R0 must supply
the address.

◼ Set MW = 0 for reading.

◼ The incoming data will be
sent to the register file for
storage.

◼ This means that the register
file’s D data input could come
from either the ALU output or
the RAM.

◼ A MUX MD selects the
source for the register file.
◼ When MD = 0, the ALU output

can be stored in the register file.

◼ When MD = 1, the RAM output
is sent to the register file
instead.

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0)

21

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Notes About This Setup

◼ We now have a way to copy data
between our register file and the RAM.

◼ Notice that there is no way for the ALU
to directly access the memory - RAM
contents must go through the register
file first.

◼ Here the size of the memory is limited
by the size of the registers:

◼ With 8-bit registers, we use a 2
15

x 8
RAM.

◼ Address bits 14 down to 8 are always
taken from register R0.

◼ Address bits 7 down to 0 can be taken
from any register.

◼ For simplicity we assume the RAM is
at least as fast as the processor clock.
(This is definitely not the case in real
processors these days!)

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0)

22

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example Sequence of Instructions

◼ The RAM memory access in our processor is supported by two
instructions:

◼ LD Rj, (Ri) -- load register Rj with the content of a RAM memory cell at
address given by register Ri;

◼ ST (Rj), Ri -- store the content of register Ri in a RAM memory cell at
address given by register Rj;

◼ Here is a simple series of memory/register transfer instructions:

 LD R3, (R2) R3  Mem[R0|R2]
 DEC R3, R3 R3  R3 - 1
 ST (R2), R3 Mem[R0|R2]  R3

◼ This just decrements the content of RAM memory cell at address R0|R2 .

◼ Again, our ALU only operates on registers, so the RAM contents must first be
loaded into a register, and then saved back to RAM.

◼ We will assume that R0 and R2 contain a valid memory address.

◼ How would these instructions execute in our datapath?

23

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“LD R3, (R2)” is R3  Mem[R0|R2]

◼ AA should be set to 10, to read
register R2.

◼ The value in R2 will be sent to
the RAM address inputs, so
Mem[R0|R2] appears as the
RAM output OUT.

◼ MD must be 1, so the RAM
output goes to the register file.

◼ To store something into R3, we
will need to set DA = 11 and
WR = 1.

◼ MW should be 0, so nothing is
accidentally changed in RAM.

◼ We do not use the ALU, thus FS
value can be arbitrary)

◼ We do not use the second
register file output, thus BA also
can be arbitrary.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

10

BA

xx

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

1

0

Carry-in

ADRS(14:8)

7

R0(6:0)

24

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“DEC R3, R3” is R3  R3 - 1

◼ BA = 11, so R3 is read
from the register file and
sent to the ALU’s B input.

◼ FS needs to be 00100 for
the operation B - 1. Then,
R3 - 1 appears as the ALU
output F.

◼ If MD is set to 0, this output
will go back to the register
file.

◼ To write to R3, we need to
make DA = 11 and
WR = 1.

◼ Again, MW should be 0 so
the RAM is not changed.

◼ We do not use AA.

D data
Write

D address

A address B address

A data B data

Register File

WR

1

DA

11

AA

xx

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

00100

8

MD

0

0

Carry-in

ADRS(14:8)

7

R0(6:0)

25

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

“ST (R2), R3” is Mem[R0|R2]  R3

◼ Finally, we want to store the
contents of R3 into RAM
address R0|R2.

◼ Remember the RAM address
comes from “A data,” and the
contents come from “B data.”

◼ So, we have to set AA = 10 and
BA = 11. This sends R2 to
ADRS(7:0), and R3 to DATA.

◼ MW must be 1 to write to
memory.

◼ No register updates are needed,
so WR should be 0, and MD and
DA are unused.

◼ We also do not use the ALU, so
FS was ignored.

D data
Write

D address

A address B address

A data B data

Register File

WR

0

DA

xx

AA

10

BA

11

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

xxxxx

8

MD

x

1

Carry-in

ADRS(14:8)

7

R0(6:0)

26

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Constant In

◼ One last refinement is the addition
of a Constant input.

◼ The modified datapath is shown on
the right,

◼ One extra MUX is added.

◼ With one extra control signal MB.

◼ Intuitively, it provides an easy way
to initialize a register or memory
location with some arbitrary
number (8-bit constant).

◼ The constant comes from the
instructions LDI and STI (see
instruction format 2!).

◼ At home try to set the control
signals of the datapath on the right
for the following instructions:

◼ LDI R2, #0xc8

◼ STI (R1), #0x3f

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

FZ
N

C
V

FS

8

Q D1
D0

S

RAM

215 X 8

ADRS(7:0)
DATA
CS
WR

OUT

MW
+5V

8
8

8

FS

8

MD

Carry-in

ADRS(14:8)

7

R0(6:0)

S D1 D0
 Q

Constant
MB

27

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Who is Configuring the Datapath?

◼ The datapath on the previous slide is a complete datapath

for our simple processor, i.e.,

◼ the datapath supports all Data Manipulation instructions

◼ the datapath supports all Data Movement instructions

◼ Different actions are performed when we provide different

values for the datapath control signals

◼ See the instruction examples on previous slides

◼ In processors, the datapath actions are determined by the

program that is loaded and running

◼ The Control Unit is responsible for generating the correct

control signals for a datapath, based on the program code

◼ We will talk about the control unit next week.

28

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ The datapath is the part of a processor where
computation is done
◼ The basic components are an ALU, a register file and

some RAM

◼ The ALU does all of the computations

◼ The register file and RAM provide storage for the ALU’s
operands and results.

◼ Various control signals in the datapath govern its
behavior.

◼ Next week, we will see
◼ how programmers can give commands to the processor

◼ how these commands are translated in control signals for
the datapath.

29

	Slide 1: Processor Design Basics: Datapath
	Slide 2: Overview
	Slide 3: Block Diagram of a Generic Processor
	Slide 4: Example of a Simple Processor
	Slide 5: Datapath
	Slide 6: Register File
	Slide 7: Accessing the Register File
	Slide 8: Register File for our Processor
	Slide 9: Explaining Our Register File
	Slide 10: Recall the Instructions of Our Processor
	Slide 11: Arithmetic & Logic Unit (ALU)
	Slide 12: Arithmetic & Logic Unit (ALU)
	Slide 13: Arithmetic & Logic Unit (ALU)
	Slide 14: Arithmetic & Logic Unit (ALU)
	Slide 15: The ALU for Our Processor
	Slide 16: ALU Operations (Functions)
	Slide 17: Initial Datapath for Our Processor
	Slide 18: An Example Computation
	Slide 19: Two Issues with this Datapath
	Slide 20: Writing to RAM
	Slide 21: Reading from RAM
	Slide 22: Notes About This Setup
	Slide 23: Example Sequence of Instructions
	Slide 24: “LD R3, (R2)” is R3  Mem[R0|R2]
	Slide 25: “DEC R3, R3” is R3  R3 - 1
	Slide 26: “ST (R2), R3” is Mem[R0|R2]  R3
	Slide 27: Constant In
	Slide 28: Who is Configuring the Datapath?
	Slide 29: Summary

