
Memories



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Memory Classification

◼ Read-Only Memory (ROM)

◼ Types of ROM

◼ PROM, EPROM, E2PROM

◼ Flash ROMs (Compact Flash, Secure Digital, Memory Stick)

◼ Random Access Memory (RAM)

◼ Types of RAM

◼ Static RAM (SRAM) - ASRAM, SSRAM, ZBT

◼ Dynamic RAM (DRAM) - SDRAM, DDR RAM, RDRAM  

◼ Functional Behavior of RAM

◼ Introduction, Block Diagram, Memory Size

◼ Reading/Writing from/to RAM

◼ Implementing Static RAM

◼ Making Larger and Wider Memory from Smaller Memories

◼ Functional Behavior of ROM

◼ Memories and Boolean Functions

2



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of Memories

Memory

ROM RAM

PROM Flash ROM

EPROM

E2PROM

Compact

 Flash

Secure

 Digital

Memory

 Stick

SRAM DRAM

ASRAM

SSRAM

ZBT

3

ADRAM

SDRAM

DDR



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Read – Only Memory (ROM)

◼ A read-only memory, or ROM, is a special kind of memory 

whose contents cannot be easily modified.

◼ Writing (storing) data into a ROM chip is a relatively slow process.

◼ Data is stored onto a ROM chip using special hardware tools.

◼ ROMs can store data even without power!

◼ ROMs are useful for holding data that “almost never” 

changes.

◼ Arithmetic circuits might use tables to speed up computations of 

logarithms or divisions.

◼ Many computers use a ROM to store important programs that should 

not be modified, such as the system BIOS.

◼ PDAs, game machines, cell phones, vending machines and other 

electronic devices may also contain non-modifiable programs.

4



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ PROM (Programmable ROM)
◼ It can be programmed (written) only once.

◼ EPROM (Electrical Programmable ROM)
◼ It can be programmed a limited number of times.

◼ Before reprogramming the memory you must erase it with 
ultraviolet waves.

◼  E2PROM (Electrical Erasable Programmable ROM)
◼ The same as EPROM but

◼ You can erase it by applying electrical pulses on special 
pins.

◼ Programming (writing) and erasing the above 
memories is a very slow process. It may take 
seconds or minutes!

Types of ROMs 

5



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of ROMs (Flash ROMs)

◼ Some newer types of ROMs do allow for easier 

writing, although the speeds still do not compare 

with regular RAM memories.

◼ MP3 players, digital cameras and other toys use 

CompactFlash, Secure Digital, or MemoryStick cards for 

non-volatile storage.

◼ Many devices allow you to upgrade programs stored in 

“flash ROM.

6



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Random Access Memory (RAM)

◼ RAM is a kind of memory whose contents can be 

easily modified.

◼ Writing (storing) data into a RAM chip is as faster as 

reading data.

◼ No special hardware tools are needed to store the data in 

the RAM.

◼ RAMs cannot store data without power!

◼ RAMs are useful for storing temporary data that has 

to be modified very often.

◼ Many computers use RAM  for storing the currently 

executed program and/or intermediate data.

◼ The CPU cache memory is a RAM memory.

7



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of RAMs

◼ SRAM (Static RAM)
◼ It is build using Latches

◼ Expensive in terms of hardware

◼ For each bit of storage you need 6 transistors 

◼ Very fast memory

◼ DRAM (Dynamic RAM) 
◼ Dynamic memory is built with capacitors.

◼ A stored charge on the capacitor represents a logical 1.

◼ No charge represents a logic 0.

◼ However, capacitors lose their charge after a few milliseconds. The 
memory requires constant refreshing to recharge the capacitors. 
(That’s what’s “dynamic” about it.)

◼ Dynamic RAMs tend to be physically smaller than static RAMs.

◼ A single bit of data can be stored with just one capacitor and one 
transistor, while static RAM cells typically require 4-6 transistors.

◼ This means dynamic RAM is cheaper and denser—more bits can be 
stored in the same physical area.

8



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Dynamic vs. Static Memory

◼ In practice, dynamic RAM is used for a computer’s main 
memory, since it is cheap and you can pack a lot of storage 
into a small space
◼ These days you can buy 1 GB of memory for as little as $15

◼ You can have a system with 8 GB or more of memory (up to 128GB)

◼ The disadvantage of dynamic RAM is its speed
◼ Up to 1.2GHz, which can be slower than the processor itself

◼ You also have to consider latency, or the time it takes data to travel 
from RAM to the processor 

◼ Real systems augment dynamic memory with small but fast 
sections of static memory called caches.
◼ Typical processor caches range in size from 128KB to 4MB

◼ That is small compared to a 8 GB main memory, but it is enough to 
significantly increase a computer’s overall speed

9



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of SRAM

◼ ASRAM (Asynchronous Static RAM)

◼ no clock signal is used when reading/writing data

◼ SSRAM (Synchronous Static RAM)

◼ read and write from/to the memory is synchronized by a 

clock signal

◼ ZBT (Zero-Bus Turnaround) SSRAM

◼ Very fast memory

◼ See more details on Internet 

10



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Types of DRAM

◼ ADRAM (Asynchronous Dynamic RAM)

◼ older type of DRAM used in the early personal computers

◼ memory access is not synchronized with the system clock

◼ SDRAM (Synchronous Dynamic RAM)

◼ widely used nowadays 

◼ responds to read/write operations in synchrony with the 

signal of the system clock 

◼ DDR SDRAM (Double Data Rate SDRAM)  

11



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

SDRAM

◼ Synchronous DRAM, or SDRAM, is a 
very common type of PC memory

◼ Memory chips are organized into 
“modules” that are connected to the 
CPU via a 64-bit (8-byte) bus

◼ The bus speeds are rated in 
megahertz: PC66, PC100 and PC133 
memory bus run at 66MHz, 100MHz 
and 133MHz, respectively

◼ The memory bandwidth can be 
computed by multiplying the number 
of transfers per second (T/s) by the 
size of each transfer
◼ PC100 bus works at 100MHz => 100MT/s

◼ PC100 can transfer up to 800MB per 
second (100MT/s x 8 Bytes/Transfer)

12



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

DDR SDRAM

◼ A newer type of memory is Double Data Rate, or DDR-
SDRAM
◼ Several generations from DDR2 to DDR4 

◼ It is very similar to regular SDRAM, except data can be 
transferred on both the positive and negative clock edges

◼ DDR4 memory bus runs at 800-1600MHz but the effective 
data transfer rate is doubled, i.e., 1600-3200MT/s

◼ These memories are called PC4-12800 and PC4-25600 with 
bandwidth
◼ Up to 12800MB/s = 1600MT/s x 8 Bytes/Transfer

◼ Up to 25600MB/s = 3200MT/s x 8 Bytes/Transfer

◼ DDR-SDRAM has lower power consumption, using 1.2-2.5V 
instead of 3.3V like SDRAM. This makes it good for 
notebooks and other mobile devices

13



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

ROMs vs. RAMs

◼ There are some important differences between 

ROM and RAM.

◼ ROMs are “non-volatile” 

◼ data is preserved even without power 

◼ RAM contents disappear once power is lost.

◼ ROMs require special (and slower) techniques for writing, 

so they are considered to be “read-only” devices. 

14



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Random Access Memory (RAM)

◼ Sequential circuits all depend upon the presence of 

memory.

◼ A flip-flop can store one bit of information.

◼ A register can store a single “word,” typically 32-64 bits.

◼ Random access memory, or RAM, allows us to 

store even larger amounts of data. Today you will 

see:

◼ The basic interface to RAM memory.

◼ How you can implement static RAM chips hierarchically.

15



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Introduction to RAM

◼ Random-access memory, or RAM, provides large quantities 
of temporary storage in a computer system. 

◼ Remember the basic properties of a memory: 
◼ It should be able to store a value.

◼ You should be able to read the value that was stored.

◼ You should be able to change the stored value.

◼ A RAM is similar, except that it can store many values.
◼ An address will specify which memory value we are interested in.

◼ Each value can be a multiple-bit word (e.g., 32 bits).

◼ We will refine the memory properties as follows:

A RAM should be able to:

- Store many words (values), one per address

- Read the word that was stored at a particular address

- Change the word that was stored at a particular address

16



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Picture of Memory

◼ You can think of computer memory as 

being one big array of data.

◼ The address serves as an array index.

◼ Each address refers to one word of data.

◼ You can read or modify the data at any 

given memory address, just like you can 

read or modify the contents of an array 

at any given index.

◼ If you have worked with pointers in C or 

C++, then you have already worked with 

memory addresses.

  Address Data 

00000000  

00000001  

00000002  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

FFFFFFFD  

FFFFFFFE  

FFFFFFFF  
 

17



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Block Diagram of RAM

◼ This block diagram introduces the main interface to RAM. 

◼ A Chip Select, CS, enables or disables the RAM.

◼ ADRS specifies the address or location to read from or write to.

◼ WR selects between reading from or writing to the memory.

◼ To read from memory, WR should be set to 0.

OUT will be the n-bit value stored at ADRS.

◼ To write to memory, we set WR = 1.

DATA is the n-bit value to save in memory.

◼ This interface makes it easy to combine RAMs together, as 

you will see.

2k x n memory

ADRS OUT

DATA

CS

WR

k

n

n
CS WR Memory operation 

0 x None 
1 0 Read selected word 
1 1 Write selected word 

 

18



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Memory Sizes

◼ We refer to this as a 2k x n memory.
◼ There are k address lines, which can specify one of 2k addresses.

◼ Each address contains an n-bit word.

◼ For example, a 224 x 16 RAM contains 224 = 16M words, 
each 16 bits long.
◼ The total storage capacity is 224 x 16 = 228 bits.

2k x n memory

ADRS OUT

DATA

CS

WR

k

n

n

19



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Size Matters!

◼ Memory sizes are usually specified in numbers of bytes (8 
bits).

◼ The 228-bit memory on the previous page translates into:

228 bits / 8 bits per byte = 225 bytes

◼ With the abbreviations below, this is equivalent to 32 
megabytes.

◼ To confuse you, RAM size is measured in base 2 units, while 
hard drive size is measured in base 10 units.
◼ In this class, we’ll only concern ourselves with the base 2 units.

 Prefix Base 2 Base 10 

K Kilo 210 = 1,024 103 = 1,000 

M Mega 220 = 1,048,576 106 = 1,000,000 

G Giga 230 = 1,073,741,824 109 = 1,000,000,000 
 

 

20



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Typical Memory Sizes

◼ Some typical memory capacities:

◼ PCs usually come with 4-8 GB RAM.

◼ Digital cameras and MP3 players can have 

4 GB or more of storage.

◼ Many operating systems implement 

virtual memory, which makes the 

memory seem larger than it really is.

◼ Most systems allow up to 32-bit addresses. 

This works out to 232, or about four billion, 

different possible addresses.

◼ With a data size of one byte, the result is 

apparently a 4GB memory!

◼ The operating system uses hard disk space 

as a substitute for “real” memory.

  Address Data 

00000000  

00000001  

00000002  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

FFFFFFFD  

FFFFFFFE  

FFFFFFFF  
 

21



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Reading RAM

◼ To read from this RAM, the controlling circuit must:
◼ Enable the chip by ensuring CS = 1.

◼ Send the desired address to the ADRS input.

◼ Select the read operation, by setting WR = 0.

◼ The contents of that address appear on OUT after a little while.

◼ Notice that the DATA input is unused for read operations.

◼ Each memory has a specific timing diagram that specifies 
the correct time sequence of the events described above!
◼ The timing diagram depends on the memory implementation.

◼ It is given by the producer of the memory chip.

2k x n memory

ADRS OUT

DATA

CS

WR

k

n

n

22



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Writing RAM

◼ To write to this RAM, you need to:
◼ Enable the chip by setting CS = 1.

◼ Send the desired address to the ADRS input.

◼ Send the word to store to the DATA input.

◼ Select the write operation, by setting WR = 1.

◼ The output OUT is not needed for memory write operations.

◼ Again, each memory has a specific timing diagram that 
specifies the correct time sequence of the events described 
above!

2k x n memory

ADRS OUT

DATA

CS

WR

k

n

n

23



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of Read/Write Timing Diagrams

ASRAM

ADRS OUT

DATA

CS

Read/Write

ADRS

CS

Read/Write

DATA

55 ns

ADRS

CS

Read/Write

OUT

Here the data is 

stored in RAM

Here the data

can be read 

Writing data

takes 75 ns!

Reading data

takes 65 ns!

24



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Static Memory

◼ How can we implement the memory chip?

◼ There are many different kinds of RAM.
◼ We will discuss only static memory, which is most 

commonly used in caches and video cards.

◼ Static memory is modeled using one latch for each 
bit of storage.

◼ Why use latches instead of flip-flops?
◼ A latch can be made with only two NAND or two NOR 

gates, but a flip-flop requires at least twice that much 
hardware.

◼ In general, smaller is faster, cheaper and requires less 
power.

◼ The tradeoff is that getting the timing exactly right is a 
pain.

25



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Starting with Latches

◼ To start, we can use one latch to store each bit. A one-bit RAM cell is 
shown here.

◼ Since this is just a one-bit memory, an ADRS input is not needed.

◼ Writing to the RAM cell:

◼ When CS = 1 and WR = 1, the latch control input will be 1.

◼ The DATA input is thus saved in the D latch.

◼ Reading from the RAM cell and maintaining the current contents:

◼ When CS = 0 or when WR = 0, the latch control input is 0, so the latch just 
maintains its present state.

◼ When CS = 1 and when WR = 0, the latch control input is also 0 and the 
current latch contents will appear on OUT. 

26



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

My First RAM

◼ We can use these cells to 
make a 4 x 1 RAM. 

◼ Since there are four 
words, ADRS is two bits.

◼ Each word is only one bit, 
so DATA and OUT are 
one bit each.

◼ Word selection is done 
with a decoder attached 
to the CS inputs of the 
RAM cells. Only one cell 
can be read or written at 
a time.

◼ Notice that the outputs 
are connected together 
with a single line!

27



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ In normal practice, it is bad to connect outputs together. If the 
outputs have different values, then a conflict arises (short 
circuit).

◼ The standard way to “combine” outputs is to use OR gates or 
MUXs.

◼ This can get expensive, with many wires and gates with large 
Fan-INs.

Connecting Outputs Together

The “C”  means “conflict”, 
i.e., short circuit

28



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Those Funny Triangles

◼ The triangle represents a three-state buffer.

◼ Unlike regular logic gates, the output can be one of three 

different possibilities, as shown in the table.

◼ “Disconnected” means no output appears at all, in which 

case it is safe to connect OUT to another output signal.

◼ The disconnected value is also sometimes called high 

impedance or Hi-Z.

EN IN OUT 

0 x Disconnected 
1 0 0 
1 1 1 

 

29



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Connecting Three-State Buffs Together

◼ You can connect several three-state 
buffer outputs together if you can 
guarantee that only one of them is 
enabled at any time.

◼ The easiest way to do this is to use a 
decoder!

◼ If the decoder is disabled, then all the 
three-state buffers will appear to be 
disconnected, and OUT will also appear 
disconnected.

◼ If the decoder is enabled, then exactly 
one of its outputs will be true, so only one 
of the tri-state buffers will be connected 
and produce an output.

◼ The net result is we can save some wire 
and gate costs. We also get a little more 
flexibility in putting circuits together.

30



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Bigger and Better

◼ Here is the 4 x 1 

RAM once again.

◼ How can we make 

a “wider” memory 

with more bits per 

word, like maybe a 

4 x 4 RAM?

◼ Duplicate the stuff 

in the dashed box! 

31



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A 4 x 4 RAM

◼ DATA and OUT are now each four bits long, so you 

can read and write four-bit words.

32



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Larger RAMs from Smaller RAMs

◼ We can use small RAMs as building blocks for 

making larger memories, by following the same 

principles as in the previous examples.

◼ As an example, suppose we have some 64K x 8 

RAMs to start with:

◼ 64K = 26 x 210 = 216, so there are 16 address lines.

◼ There are 8 data lines.

88

16

33



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

8

8

16

Making a Larger Memory

◼ We can put four 64K x 8 
chips together to make a 
256K x 8 memory.

◼ For 256K words, we need 18 
address lines.
◼ The two most significant 

address lines go to the decoder, 
which selects one of the four 
64K x 8 RAM chips.

◼ The other 16 address lines are 
shared by the 64K x 8 chips.

◼ The 64K x 8 chips also share 
WR and DATA inputs.

◼ This assumes the 64K x 8 
chips have three-state 
outputs.

34



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Analyzing the 256K x 8 RAM

◼ There are 256K words of memory, 
spread out among the four smaller 
64K x 8 RAM chips.

◼ When the two most significant bits 
of the address are 00, the bottom 
RAM chip is selected. It holds data 
for the first 64K addresses.

◼ The next chip up is enabled when 
the address starts with 01. It holds 
data for the second 64K addresses.

◼ The third chip up holds data for the 
next 64K addresses.

◼ The final chip contains the data of 
the final 64K addresses.

8

8

16

35



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Address Ranges

8

8

16 11 1111 1111 1111 1111 (0x3ffff)

to

11 0000 0000 0000 0000 (0x30000)

10 1111 1111 1111 1111 (0x2ffff)

to

10 0000 0000 0000 0000 (0x20000)

01 1111 1111 1111 1111 (0x1ffff)

to

01 0000 0000 0000 0000 (0x10000)

00 1111 1111 1111 1111 (0x0ffff)

to

00 0000 0000 0000 0000 (0x00000)

36



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

16

8 8

8 8

Making a Wider Memory

◼ You can also combine smaller chips to make wider 
memories, with the same number of addresses but more bits 
per word.

◼ Here is a 64K x 16 RAM, created from two 64K x 8 chips.
◼ The left chip contains the most significant 8 bits of the data.

◼ The right chip contains the lower 8 bits of the data.

37



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ A RAM looks like a bunch of registers connected 
together, allowing users to select a particular 
address to read or write.

◼ Much of the hardware in memory chips supports this 
selection process:
◼ Chip select inputs

◼ Decoders

◼ Tri-state buffers

◼ By providing a general interface, it is easy to 
connect RAMs together to make “longer” and 
“wider” memories.

  

38



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Read-Only Memory

2k x n ROM

ADDR OUT

CS

k n

◼ A read-only memory, or ROM, is a special kind of memory 

whose contents cannot be easily modified

◼ The WR and DATA inputs that we saw in RAMs are not needed.

◼ Data is stored onto a ROM chip using special hardware tools.

◼ ROMs are useful for holding data that almost never changes

◼ Arithmetic circuits might use tables to speed up computations of 

logarithms or divisions.

◼ Many computers use a ROM to store important programs that should 

not be modified, such as the system BIOS.

39



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Memories and Functions

◼ ROMs are actually combinational 

devices, not sequential ones!

◼ You can think of a ROM as a 

combinational circuit that takes an 

address as input, and produces some 

data as the output.

◼ A ROM table is basically just a 

truth table.

◼ The table shows what data is stored 

at each ROM address.

◼ You can generate that data 

combinationally, using the address as 

the input.

 

Address 
A2A1A0 

Data 
V2V1V0 

000 000 
001 100 
010 110 
011 100 

100 101 
101 000 
110 011 
111 011 

 

40



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Decoders

◼ We can already convert truth tables to circuits easily, with 
decoders.

◼ For example, you can think of this Full-Adder circuit as a 
memory that “stores” the sum and carry outputs from the 
truth table on the right.

X Y Z C S 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 

41



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

ROM Setup

◼ ROMs are based on this decoder implementation of 
functions.
◼ A blank ROM just provides a decoder and several OR gates.

◼ The connections between the decoder and the OR gates are 
“programmable,” so different functions can be implemented.

◼ To program a ROM, you just make the desired connections 
between the decoder outputs and the OR gate inputs.

42



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

ROM Example

◼ Here are three functions, V2V1V0, implemented with 
an 8 x 3 ROM.

◼ Blue crosses (X) indicate connections between 
decoder outputs and OR gates. Otherwise there is 
no connection.

V2 = m(1,2,3,4) V1 = m(2,6,7) V0 = m(4,6,7)

A2

A1

A0

43



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

V2 V1 V0

A2

A1

A0

The Same Example Again

◼ Here is an alternative presentation of the same 8 x 3 

ROM, using “abbreviated” OR gates to make the 

diagram neater.

V2 = m(1,2,3,4)

V1 = m(2,6,7)

V0 = m(4,6,7)

44



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Why Is This a “Memory”?

◼ This combinational circuit can be considered a read-only 
memory.
◼ It stores eight words of data, each consisting of three bits.

◼ The decoder inputs form an address, which refers to one of the eight 
available words.

◼ So, every input combination corresponds to an address, which is 
“read” to produce a 3-bit data output.

V2 V1 V0

A2

A1

A0

 

Address 
A2A1A0 

Data 
V2V1V0 

000 000 
001 100 
010 110 
011 100 

100 101 
101 000 
110 011 
111 011 

 

45



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Functions and Memories

◼ ROMs give us another way to implement 

functions.

◼ The idea behind using a ROM to implement a 

function is to “store” the function’s truth table, 

so we do not have to do any (well, very little) 

computation.

◼ This is like “memorization” or “caching” 

techniques in programming.

46



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ We discussed RAM and ROM memories.

◼ There are two main kinds of RAM memory.

◼ Static RAM 

◼ costs more in terms of HW, but the memory is faster 

◼ often used to implement cache memories

◼ Dynamic RAM 

◼ costs less HW and requires less physical space

◼ making it ideal for larger-capacity memories

◼ access times are slower

◼ ROMs are programmable devices that can 

implement arbitrary functions, which is equivalent to 

acting as a read-only memory.

47


	Slide 1: Memories 
	Slide 2: Overview
	Slide 3: Types of Memories
	Slide 4: Read – Only Memory (ROM)
	Slide 5:  Types of ROMs 
	Slide 6:  Types of ROMs (Flash ROMs)
	Slide 7: Random Access Memory (RAM)
	Slide 8: Types of RAMs
	Slide 9: Dynamic vs. Static Memory
	Slide 10: Types of SRAM
	Slide 11: Types of DRAM
	Slide 12: SDRAM
	Slide 13: DDR SDRAM
	Slide 14: ROMs vs. RAMs
	Slide 15: Random Access Memory (RAM)
	Slide 16: Introduction to RAM
	Slide 17: Picture of Memory
	Slide 18: Block Diagram of RAM
	Slide 19: Memory Sizes
	Slide 20: Size Matters!
	Slide 21: Typical Memory Sizes
	Slide 22: Reading RAM
	Slide 23: Writing RAM
	Slide 24: Example of Read/Write Timing Diagrams
	Slide 25: Static Memory
	Slide 26: Starting with Latches
	Slide 27: My First RAM
	Slide 28: Connecting Outputs Together
	Slide 29: Those Funny Triangles
	Slide 30: Connecting Three-State Buffs Together
	Slide 31: Bigger and Better
	Slide 32: A 4 x 4 RAM
	Slide 33: Larger RAMs from Smaller RAMs
	Slide 34: Making a Larger Memory
	Slide 35: Analyzing the 256K x 8 RAM
	Slide 36: Address Ranges
	Slide 37: Making a Wider Memory
	Slide 38: Summary
	Slide 39: Read-Only Memory
	Slide 40: Memories and Functions
	Slide 41: Decoders
	Slide 42: ROM Setup
	Slide 43: ROM Example
	Slide 44: The Same Example Again
	Slide 45: Why Is This a “Memory”?
	Slide 46: Functions and Memories
	Slide 47: Summary

