Synchronous Sequential Circuits: Design Procedure and Examples

Overview

- Sequential Circuit Design
- Sequential Circuit Design Procedure
- Design Example1: Sequence Recognizer
- Sequence Recognizer as Mealy Finite State Machine
- Design using JK Flip-Flops
- Design using D Flip-Flops
- Design Comparison
- Design Example2: Cyclic Shifter
- Cyclic Shifter as Moore Finite State Machine
- Sequential circuits with unused states
- Design using don't care conditions for unused states
- Design using explicit specification for unused states

Sequential Circuit Design

F'In sequential circuit design, we turn some description into a working circuit.

- Start: With a list of specifications (descriptions):
- Behavior description of the circuit
- Type of Flip-Flops to be used (SR or JK or D or T)
- Type of gates to be used
- End: With a logic diagram OR list of Boolean functions.
- NOTE:
- \# Flip-Flops to be used depends on the \# of states. At most 2^{n} states can be represented with \boldsymbol{n} Flip-Flops.
- The binary coding of the states and the type of the FlipFlops determine the complexity of the circuit.

Sequential Circuit Design Procedure

- Step 1: Given the problem statement, derive the state table:
- The table should show inputs, present states, next states and outputs.
- It may be easier to find a state diagram first, and then convert that to a table.
- Step 2 (optional): Apply state-reduction methods to reduce (if possible) the number of states.
- We will not discuss state-reduction methods in this course.
- Step 3: Assign binary codes to the states in the state table, if you haven't already.
- If you have n states, your binary codes will have at least $\left\lceil\log _{2} n\right\rceil$ bits.
- Step 4: Determine the number of Flip-Flops needed and the type of Flip-Flops to be used:
- If you have \boldsymbol{n} states, your circuit will have at least $\left\lceil\log _{2} \boldsymbol{n}\right\rceil$ Flip-Flops.
- The types of Flip-Flops may be given in the initial specification.
- If not, select the type according to some criteria, e.g., to get simpler circuit or to make the design procedure easier.

Sequential Circuit Design Procedure (cont.)

- Step 5: For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state:
- You can use Flip-Flop excitation tables here.
- Step 6: Derive the characteristic (Flip-Flop input) equations from the state table.
- Step 7: Derive the primary output equations from the state table.
- Step 8: Simplify the Flip-Flop input equations and output equations:
- Use K-maps or
- Other simplification methods
- Step 9: Draw the logic diagram of the circuit.

Sequence Recognizers

- I will explain the Design Procedure in detail by designing a sequence recognizer circuit.
- A sequence recognizer is a special kind of sequential circuit that looks for a special bit pattern in some input.
- The recognizer circuit has only one input, X.
- One bit of input is supplied on every clock cycle. For example, it would take 20 cycles to scan a 20 -bit input.
- This is an easy way to permit arbitrarily long input sequences.
- There is one output, Z, which is 1 when the desired pattern is found.
- Our example will detect the bit pattern "1001":
- Input X:
... 00011100110100100110 ...
- Output Z:
... 00000000100000100100 ...
- Here, one input and one output bit appear every clock cycle.
- This requires a sequential circuit because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found.

Step 1: Deriving the State Table

- Problem Statement: Design the sequence recognizer circuit described in the previous slide.
- The first thing to figure out is precisely how the use of states will help to solve the given problem.
- Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs.
- Sometimes it is easier to first find a state diagram and then convert that to a table.
- This is usually the most difficult step. Why?
- There is not a formal procedure how to derive a state table or state diagram from a problem specification such as the one we have here.
- In Step 1 you have to relay on your knowledge and design experience.
- Currently, Step 1 is more an art than a science!
- Once you have the state table, the rest of the design procedure is the same for all sequential circuits.

Step 1: Deriving the State Table (cont.)

- How many and What states do we need for the sequence recognizer?
- We have to "remember" inputs from previous clock cycles.
- For example, if the previous three inputs were 100 and the current input is 1 , then the output should be 1 .
- In general, we will have to remember occurrences of parts of the desired pattern - in this case, 1, 10, and 100.
- So, we need the following four states:

State	Meaning
A	None of the desired pattern (1001) has been input yet.
B	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

- We will derive a state diagram before deriving the state table.
- First, we draw a part of the state diagram:

Step 1: Deriving the State Table (cont.)

- What happens if we are in state D (the last three inputs were 100), and the current input is 1 ?
- The output should be a 1, because we've found the desired pattern.
- But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001.
- To detect overlapping occurrences of the pattern, the next state should be B.

State	Meaning
A	None of the desired pattern (1001) has been input yet.
B	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Step 1: Deriving the State Table (cont.)

- Remember that we need two outgoing arrows for each node, to account for the possibilities of $X=0$ and $X=1$.
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

0/0

State	Meaning
A	None of the desired pattern (1001) has been input yet.
B	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Step 1: Deriving the State Table (cont.)

- Finally, we have the state diagram and we can derive the state table.

0/0

Input X	Present State	Next State	Output Z
0	A	A	0
1	A	B	0
0	B	C	0
1	B	B	0
0	C	D	0
1	C	B	0
0	D	A	0
1	D	B	1

Remember how the state diagram arrows correspond to rows of the state table:

Step 3: Assigning Binary Codes to States

- We skip Step 2 because in this course we will not discuss state-reduction methods.
- We have four states A, B, C, and D, so we need at least two bits Q_{1} and Q_{2} to encode the states.
- There are many possible ways to encode the states:

State	$Q_{1} Q_{2}$	$Q_{1} Q_{2}$	$Q_{1} Q_{2}$	$Q_{1} Q_{2}$	\ldots		
A	0	0	0	1	1	0	1
B	0	1	0	0	0	0	0

- The state code can have a big impact on circuit complexity, but we will not study this in this course.
- So, we take an arbitrary code. For example, we represent state A with $Q_{1} Q_{2}=10, B$ with $00, C$ with 01 , and D with 11.

Step 3: Assigning Binary Codes to States (cont.)

- We fill the state table with the selected state code.
- Recall, we selected to represent state A with 10, B with 00, C with 01, and D with 11.

Encoded State Table

State Table					nput	Present State		Next State		$\begin{array}{\|c\|} \hline \text { Output } \\ \hline Z(t) \\ \hline \end{array}$
$\begin{array}{\|c\|} \hline \text { Input } \\ \mathrm{X} \end{array}$	Present State	Next State	$\begin{aligned} & \text { Output } \\ & \text { Z } \end{aligned}$		X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$Q_{2}(t+1)$	
0	A	A	0	2	0	1	0	1	0	0
1	A	B	0	6	1	1	0	0	0	0
0	B	C	0		0	0	0	0	1	0
1	B	B	0		1	0	0	0	0	0
0	C	D	0		0	0	1	1	1	0
1	C	B	0	5	1	0	1	0	0	0
0	D	A	0	3	0	1	1	1	0	0
1	D	B	,	7	1	1	1	0	0	1

NOTE: The rows of the Encoded State Table are not ordered as we are used to.
Reorder the rows to make the table ordered. This will make further design steps easier.

Step 3: Assigning Binary Codes to States (cont.)

- Ordered Encoded State Table:

Input	Present State		Next State		Output
$\mathbf{X}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	$\mathrm{Z}(\mathrm{t})$
0	0	0	0	0	1
2	0	0	1	1	1
	4	0			
4	0	1	0	1	0
	0	1	1	1	0
	1	0	0	0	0
	1	0	1	0	0
1	1	0	0	0	0
1	1	1	0	0	0

- This table contains the same information as the table from the previous slide. Just, the order of the rows is different.

Step 4: Determine the number and type of Flip-Flops to be used

- We have 4 states and we have encoded them with 2 bits Q_{1} and Q_{2}. Thus, we need 2 Flip-Flops.
- Here, we will use JK Flip-Flops (later you will see the same example using D Flip-Flops).
- Thus, for each Flip-Flip Q_{i}, we add two columns (for J_{i} and K_{i}) in the state table.

	Input	$\begin{aligned} & \text { Present } \\ & \text { State } \end{aligned}$		Next State		Flip-Flop Inputs				Output		
				for Q_{1}	for Q_{2}							
	X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$			$Q_{1}(t+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	J_{1}	K_{1}	J_{2}	K_{2}	Z(t)
0	0	0	0	0	1					0		
	0	0	1	1	1					0		
	0	1	0	1	0					0		
	0	1	1	1	0					0		
4	1	0	0	0	0					0		
	1	0	1	0	0					0		
6	1	1	0	0	0					0		
7	1	1	1	0	0					1		

Step 5: Finding Flip-Flop Input Values

- How to actually make the Flip-Flops change from their present state into the desired next state.
- For each Flip-Flip Q_{i}, look at its present and next states, and determine what the inputs J_{i} and K_{i}

JK Execution Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

- Use the JK execution table.

Input	Present State		Next State		Flip-Flop Inputs				Output		
X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$			$Q_{1}(t+1)$	$\mathrm{Q}_{2}(t+1)$	J_{1}	K_{1}	J_{2}	K_{2}	Z(t)
0	0	0	0	1	0	x	1	X	0		
0	0	1	1	1	1	x	x	0	0		
0	1	0	1	0	x	0	0	x	0		
0	1	1	1	0	x	0	x	,	0		
1	0	0	0	0	0	x	0	x	0		
1	0	1	0	0	0	x	x	1	0		
1	1	0	0	0	x	1	0	,	0		
1	1	1	0	0	x	1	x	1	1		

Step 6 and 8: Deriving Simplified Flip-Flop Input Equations

Input	Present State		Next State		Flip-Flop Inputs				Output		
X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$			$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	J_{1}	K_{1}	J_{2}	K_{2}	Z(t)
0	0	0	0	1	0	x	1	x	0		
0	0	1	1	1	1	x	x	0	0		
0	1	0	1	0	x	0	0	x	0		
0	1	1	1	0	x	0	x	1	0		
1	0	0	0	0	0	x	0	x	0		
1	0	1	0	0	0	X	x	1	0		
1	1	0	0	0	x	1	0	x	0		
1	1	1	0	0	x	1	x	1	1		

$J_{1}=X(t) \cdot Q_{2}(t)$

$K_{1}=X(t)$

$K_{2}=X(t)+Q_{1}(t)$

Step 7 and 8: Deriving Simplified Primary Output Equations

Input	Present State		Next State		Flip-Flop Inputs				Output		
			for Q_{1}	for Q_{2}							
X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$			$Q_{1}(t+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	J_{1}	K_{1}	J_{2}	K_{2}	Z(t)
0	0	0	0	1	0	x	1	X	0		
0	0	1	1	1	1	x	x	0	0		
0	1	0	1	0	x	0	0	x	0		
0	1	1	1	0	x	0	x	1	0		
1	0	0	0	0	0	x	0	x	0		
1	0	1	0	0	0	x	x	1	0		
1	1	0	0	0	x	1	0	x	0		
1	1	1	0	0	x	1	x	1	1		

Step 9: Drawing The Logic Diagram

$$
\begin{aligned}
& Q_{1}(t+1)\left\{\begin{array}{l}
J_{1}=X(t) \cdot Q_{2}(t) \\
K_{1}=X(t)
\end{array}\right. \\
& Q_{2}(t+1)\left\{\begin{array}{l}
J_{2}=X(t) \cdot Q_{1}(t) \cdot \\
K_{2}=X(t)+Q_{1}(t)
\end{array}\right. \\
& Z(t)=X(t) \cdot Q_{1}(t) \cdot Q_{2}(t)
\end{aligned}
$$

- IMPORTANT: Do not forget to connect a clock signal to the Flip-Flops.
- IMPORTANT: Do not forget to connect a reset signal to the Flip-Flops:
- The reset signal must switch the circuit to the initial state. Every sequential circuit must have one initial state. Always, first switch the circuit to the initial state.
- To switch to the initial state, use the asynchronous signals preset (S) and/or clear (R) of the Flip-Flops.
- For our sequence recognizer the initial state is A with $Q_{1} Q_{2}=10$, thus:
- While $\overline{\text { reset }}$ is active ($\overline{\text { reset }}=0$), Q_{1} is set to 1 and Q_{2} to 0 - the circuit stays in the initial state.
- While $\overline{\text { reset }}$ is non-active ($\overline{\text { reset }}=1$), the circuit operates normally.

Fall $2023 \quad$ Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Designing the Same Circuit with D Flip-Flops (Step 4)

- What if we want to design the circuit using D Flip-Flops instead of JK?
- We already have the ordered encoded state table, so we can just start from Step 4, determining the number of Flip-Flops.
- We have 4 states and we have encoded them with 2 bits Q_{1} and Q_{2}. Thus, we need 2 Flip-Flops.
- For each Flip-Flip Q_{i}, we add one column (for D_{i}) in the state table.

| Input | Present
 State | | Next
 State | | Flip-Flop Inputs | | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | for Q_{1} | for Q_{2} | | | | | |
| $\mathrm{X}(\mathrm{t})$ | $\mathrm{Q}_{1}(\mathrm{t})$ | $\mathrm{Q}_{2}(\mathrm{t})$ | $\mathrm{Q}_{1}(\mathrm{t}+1)$ | $\mathrm{Q}_{2}(\mathrm{t}+1)$ | D_{1} | D_{2} | $\mathrm{Z}(\mathrm{t})$ |
| 0 | 0 | 0 | 0 | 1 | | | 0 |
| 0 | 0 | 1 | 1 | 1 | | | 0 |
| 0 | 1 | 0 | 1 | 0 | | | 0 |
| 0 | 1 | 1 | 1 | 0 | | | 0 |
| 1 | 0 | 0 | 0 | 0 | | | 0 |
| 1 | 0 | 1 | 0 | 0 | | | 0 |
| 1 | 1 | 0 | 0 | 0 | | | 0 |
| 1 | 1 | 1 | 0 | 0 | | | 1 |

Finding Flip-Flop Input Values (Step 5)

- Again, for each Flip-Flip Q_{i}, look at its present and next states, and determine what the input D_{i} should be in order to make that state change. Use the \boldsymbol{D} execution table.
- The D excitation table is pretty boring; set the D input to whatever the next state should be.
- You don't even need to show separate columns for D_{1} and D_{2}; you can just use the Next State columns.

| Input | Present
 State | | Next
 State | | Flip-Flop Inputs | | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | for Q_{1} | for Q_{2} | | | | | |
| $X(t)$ | $Q_{1}(t)$ | $Q_{2}(t)$ | $Q_{1}(t+1)$ | $Q_{2}(t+1)$ | D_{1} | D_{2} | $Z(t)$ |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |

Deriving Simplified Equations (Steps 6, 7, and 8)

- We can use K-maps again, to simplify:

Fall 2023

Drawing The Logic Diagram (Step 9)

- Use the equations on the right to draw the logic diagram of the circuit.
- IMPORTANT: Again, do not forget to connect properly the clock and reset signals to the Flip-Flops.

$$
\begin{array}{r}
Q_{1}(t+1)=D 1= \\
X(t)^{\prime} \cdot Q_{2}(t)+ \\
X(t)^{\prime} \cdot Q_{1}(t) \\
Q_{2}(t+1)=D 2=X(t)^{\prime} \cdot Q_{1}(t) \cdot
\end{array}
$$

$$
Z(t)=X(t) \cdot Q_{1}(t) \cdot Q_{2}(t)
$$

Design Comparison

- D Flip-Flops have the advantage that you do not have to set up Flip-Flop inputs at all, since
 $Q(\mathrm{t}+1)=\mathrm{D}$. However, the D input equations are usually more complex than JK input equations.
- In practice, \boldsymbol{D} Flip-Flops are used more often.
- There is only one input for each Flip-Flop, not two.
- There are no execution tables to worry about.
- D Flip-Flops can be implemented with slightly less hardware than JK Flip-Flops.

Another Example: A Cyclic Shifter

- Design a circuit which has one input X and three outputs Z_{1}, Z_{2}, and Z_{3} and the following behavior:
- Initially, the output values are: $Z_{1} Z_{2} Z_{3}=010$;
- On every clock cycle:
- If $X=1$ then $Z_{1}=Z_{2}, Z_{2}=Z_{3}, Z_{3}=Z_{1}$ (cyclic shift-left)

- If $X=0$ then $Z_{1}=Z_{3}, Z_{2}=Z_{1}, Z_{3}=Z_{2}$ (cyclic shift-right)

- This circuit we will call 3-bit cyclic shifter.

Deriving the State Table

- How many and What states do we need for our circuit?
- We have initial state where outputs are "010".
- If we make cyclic shift-left we can have the following possible output values: "100" or "001" or "010" (which is the initial output value)
- If we make cyclic shift-right we can have the following possible output values: "001" or " 100 " or " 010 " (which is the initial output value)
- We see that we can use only 3 states, one for each of the three distinct output values "010", "100", "001".
- So, for each possible output value we define a state as follows:

State	Meaning
A	Initial state where the outputs $Z_{1} Z_{2} Z_{3}=" 010 "$.
B	While at this state the circuit has outputs $Z_{1} Z_{2} Z_{3}=" 100 "$.
C	While at this state the circuit has outputs $Z_{1} Z_{2} Z_{3}=" 001 "$.

Deriving the State Table (cont.)

- First, we will derive the state diagram of the circuit.
- We need two outgoing arrows for each node, to account for the possibilities of $X=0$ (cyclic shift-right) and $X=1$ (cyclic shift-left).

State	Meaning
A	Initial state where the outputs $Z_{1} Z_{2} Z_{3}=" 010 "$.
B	While at this state the circuit has outputs $Z_{1} Z_{2} Z_{3}=" 100 "$.
C	While at this state the circuit has outputs $Z_{1} Z_{2} Z_{3}=" 001 "$.

Deriving the State Table (cont.)

- We have the state diagram and we can derive the state table.

Input	Present	Next	Outputs		
X	State	State	Z_{1}	Z_{2}	Z_{3}
0	A	C	0	1	0
1	A	B	0	1	0
0	B	A	1	0	0
1	B	C	1	0	0
0	C	B	0	0	1
1	C	A	0	0	1

Remember that we have defined that:

- In state A the circuit outputs $Z_{1} Z_{2} Z_{3}=010$
- In state B the circuit outputs $Z_{1} Z_{2} Z_{3}=100$
- In state C the circuit outputs $Z_{1} Z_{2} Z_{3}=001$

Assigning Binary Codes to States

State Table

Input	Present	Next	Outputs		
	State	State	Z_{1}	Z_{2}	Z_{3}
0	A	C	0	1	0
1	A	B	0	1	0
0	B	A	1	0	0
1	B	C	1	0	0
0	C	B	0	0	1
1	C	A	0	0	1

- We will represent state A with $00, B$ with $10, C$ with 01.

Encoded State Table

		Input	Present State		Next State		Outputs		
		X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	$\mathrm{Z}_{1}(\mathrm{t})$	$\mathrm{Z}_{2}(\mathrm{t})$	$\mathrm{Z}_{3}(\mathrm{t})$
	0	0	0	0	0	1	0	1	0
NOTE: We have toorder the encodedstate table.	4	1	0	0	1	0	0	1	0
	2	0	1	0	0	0	1	0	0
	6	1	1	0	0	1	1	0	0
	1	0	0	0	1	0	0	0	1
	5	1	0	1	0	0	0	0	1

Ordered Encoded State Table

- For this circuit the ordered encoded state table is not complete. Why?
- We have 3 states that we encode with 2 bits, i.e., state A with $Q_{1} Q_{2}=00$, B with $Q_{1} Q_{2}=10$, and C with $Q_{1} Q_{2}=01$.
- Using two bits we can encode 4 states from which we use only 3 states => one state is unused, i.e., $Q_{1} Q_{2}=11$
- Thus, two rows (3 and 7) in the table are incomplete.
- We have two main options to complete the table (see next slides).

	Input	PresentState		Next State		Outputs		
	X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$Q_{1}(t+1)$	$Q_{2}(t+1)$	$\mathrm{Z}_{1}(\mathrm{t})$	$\mathrm{Z}_{2}(\mathrm{t})$	$\mathrm{Z}_{3}(\mathrm{t})$
0	0	0	0	0	1	0	1	0
1	0	0	1	1	0	0	0	1
2	0	1	0	0	0	1	0	0
3	0	1	1					
4	1	0	0	1	0	0	1	0
5	1	0	1	0	0	0	0	1
6	1	1	0	0	1	1	0	0
7	1	1	1					

Option 1: Use don't-care Conditions

- We can use don't-care conditions because if the circuit operates correctly it will never enter unused states.

Input	Present State		$\begin{aligned} & \hline \text { Next } \\ & \text { State } \end{aligned}$		Outputs		
X(t)	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{2}(t+1)$	$\mathrm{Z}_{1}(\mathrm{t})$	$\mathrm{Z}_{2}(\mathrm{t})$	$\mathrm{Z}_{3}(\mathrm{t})$
0	0	0	,	1	0	1	0
0	0	1	1	0	0	0	1
0	1	0	0	0	1	0	0
0	1	1	X	X	X	X	\times
1	0	0	1	0	0	1	0
1	0	1	0	0	0	0	1
1	1	0	0	1	1	0	0
1	1	1	x	X	X	X	X

- Now, you can apply Steps 4 to 9 of the design procedure to get the complete circuit.
- Do this at home as an exercise!
- Similar example will be given at the tutorials!

Option 2: Explicitly Specify Unused States

- It is possible that outside interference or a malfunction will cause the circuit to enter one of the unused states causing temporary or permanent incorrect behavior of the circuit.
- Temporary or permanent incorrect behavior may be harmful.
- Thus, in such case it is necessary to explicitly specify, fully or at least partially, the next state values or the output values for the unused states.
- This will make the behavior of the circuit predictable.
- Undesired harmful behavior can be avoided if the circuit enters an unused state.

Option 2: Explicitly Specify Unused States (cont.)

- Depending on the function and application of the circuit, a number of ideas may be applied:
- First, the outputs for the unused states are specified such that any action that results from entry into and transitions between unused states are not harmful.
- Second, an unused output combination may be employed which indicates that the circuit has entered an unused (incorrect) state.
- Third, Next-State for each unused state is selected such that one of the normal occurring states is reached within a few clock cycles, regardless of the input values.
- Typically, the next state for an unused state is selected to be the initial state.
- The ideas above may be applied in combination.

Option 2: An Example

- Example: Assume that our 3-bit cyclic shifter circuit is used within a system with three other devices:
- Each output of our circuit controls only one device.
- Logic '1' on an output enables the corresponding device.
- A harmful situation for the system will occur if more than one device is enabled.
- So, we can avoid harmful situations by specifying the unused states as shown below (see rows 3 and 7):

Input	Present State		Next State		Outputs		
$\mathrm{X}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{2}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{2}(\mathrm{t}+1)$	$\mathrm{Z}_{1}(\mathrm{t})$	$\mathrm{Z}_{2}(\mathrm{t})$	$\mathrm{Z}_{3}(\mathrm{t})$
0	0	0	0	0	1	0	1
1							
2	0	0	1	1	0	0	0
2	0	1					
3	1	0	0	0	1	0	0
4	0	1	1	0	0	0	0
5							
	1	0	0	1	0	0	1
7	1	0	1	0	0	0	0
7	1	1	0	0	1	1	0

The output:
$Z_{1} z_{2} z_{3}=000$ is not harmful and indicates that the circuit has entered unused (incorrect) state. Why?

Next-State of the unused state
$\left(Q_{1} Q_{2}=11\right)$ is the initial state
$\left(\mathrm{Q}_{1} \mathrm{Q}_{2}=00\right.$)

