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Overview

◼ Sequential Circuit Design

◼ Sequential Circuit Design Procedure 

◼ Design Example1: Sequence Recognizer
◼ Sequence Recognizer as Mealy Finite State Machine   

◼ Design using JK Flip-Flops

◼ Design using D Flip-Flops

◼ Design Comparison 

◼ Design Example2: Cyclic Shifter
◼ Cyclic Shifter as Moore Finite State Machine 

◼ Sequential circuits with unused states 

◼ Design using don’t care conditions for unused states

◼ Design using explicit specification for unused states
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Sequential Circuit Design

◼ In sequential circuit design, we turn some 
description into a working circuit.

◼ Start: With a list of specifications (descriptions):
◼ Behavior description of the circuit

◼ Type of Flip-Flops to be used (SR or JK or D or T)

◼ Type of gates to be used

◼ …

◼ End: With a logic diagram OR list of Boolean 
functions.

◼ NOTE:
◼ # Flip-Flops to be used depends on the # of states. 

At most 2
n
 states can be represented with n Flip-Flops.

◼ The binary coding of the states and the type of the Flip-
Flops determine the complexity of the circuit.
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◼ Step 1: Given the problem statement, derive the state table:
◼ The table should show inputs, present states, next states and outputs.

◼ It may be easier to find a state diagram first, and then convert that to a 
table.

◼ Step 2 (optional): Apply state-reduction methods to reduce (if 
possible) the number of states.
◼ We will not discuss state-reduction methods in this course.

◼ Step 3: Assign binary codes to the states in the state table, if 
you haven’t already. 
◼ If you have n states, your binary codes will have at least log2 n bits.

◼ Step 4: Determine the number of Flip-Flops needed and the 
type of Flip-Flops to be used:
◼ If you have n states, your circuit will have at least log2 n Flip-Flops.

◼ The types of Flip-Flops may be given in the initial specification. 

◼ If not, select the type according to some criteria, e.g., to get simpler 
circuit or to make the design procedure easier.  

Sequential Circuit Design Procedure 
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Sequential Circuit Design Procedure (cont.)

◼ Step 5: For each flip-flop and each row of your state table, 

find the flip-flop input values that are needed to generate the 

next state from the present state: 

◼ You can use Flip-Flop excitation tables here.

◼ Step 6: Derive the characteristic (Flip-Flop input) equations 

from the state table. 

◼ Step 7: Derive the primary output equations from the state 

table.

◼ Step 8: Simplify the Flip-Flop input equations and output 

equations:

◼ Use K-maps or 

◼ Other simplification methods

◼ Step 9: Draw the logic diagram of the circuit.
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Sequence Recognizers

◼ I will explain the Design Procedure in detail by designing a 
sequence recognizer circuit.  

◼ A sequence recognizer is a special kind of sequential circuit 
that looks for a special bit pattern in some input.

◼ The recognizer circuit has only one input, X.
◼ One bit of input is supplied on every clock cycle. For example, it 

would take 20 cycles to scan a 20-bit input.

◼ This is an easy way to permit arbitrarily long input sequences.

◼ There is one output, Z, which is 1 when the desired pattern is 
found.

◼ Our example will detect the bit pattern “1001”:
◼ Input X:  …00011100110100100110 … 

◼ Output Z:  …00000000100000100100 … 

◼ Here, one input and one output bit appear every clock cycle.

◼ This requires a sequential circuit because the circuit has to 
“remember” the inputs from previous clock cycles, in order to 
determine whether or not a match was found.

6



Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 1: Deriving the State Table

◼ Problem Statement: Design the sequence recognizer circuit 
described in the previous slide.

◼ The first thing to figure out is precisely how the use of states 
will help to solve the given problem.
◼ Make a state table based on the problem statement. The table should 

show the present states, inputs, next states and outputs.

◼ Sometimes it is easier to first find a state diagram and then convert 
that to a table.

◼ This is usually the most difficult step. Why?
◼ There is not a formal procedure how to derive a state table or state 

diagram from a problem specification such as the one we have here.

◼ In Step 1 you have to relay on your knowledge and design 
experience.

◼ Currently, Step 1 is more an art than a science! 

◼ Once you have the state table, the rest of the design 
procedure is the same for all sequential circuits.
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Step 1: Deriving the State Table (cont.)

◼ How many and What states do we need for the sequence 
recognizer?
◼ We have to “remember” inputs from previous clock cycles.

◼ For example, if the previous three inputs were 100 and the current 
input is 1, then the output should be 1.

◼ In general, we will have to remember occurrences of parts of the 
desired pattern - in this case, 1, 10, and 100.

◼ So, we need the following four states:

◼ We will derive a state diagram before deriving the state table.
◼ First, we draw a part of the state diagram:

A B C D
1/0 0/0 0/0

State Meaning 

A None of the desired pattern (1001) has been input yet. 
B We’ve already seen the first bit (1) of the desired pattern. 
C We’ve already seen the first two bits (10) of the desired pattern. 
D We’ve already seen the first three bits (100) of the desired pattern. 
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◼ What happens if we are in state D (the last three inputs were 

100), and the current input is 1?

◼ The output should be a 1, because we’ve found the desired pattern.

◼ But this last 1 could also be the start of another occurrence of the 

pattern! For example, 1001001 contains two occurrences of 1001.

◼ To detect overlapping occurrences of the pattern, the next state 

should be B.

A B C D
1/0 0/0 0/0

1/1

Step 1: Deriving the State Table (cont.)

State Meaning 

A None of the desired pattern (1001) has been input yet. 
B We’ve already seen the first bit (1) of the desired pattern. 
C We’ve already seen the first two bits (10) of the desired pattern. 
D We’ve already seen the first three bits (100) of the desired pattern. 
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◼ Remember that we need two outgoing arrows for each node, 
to account for the possibilities of X = 0 and X = 1.

◼ The remaining arrows we need are shown in blue. They also 
allow for the correct detection of overlapping occurrences of 
1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

Step 1: Deriving the State Table (cont.)

State Meaning 

A None of the desired pattern (1001) has been input yet. 
B We’ve already seen the first bit (1) of the desired pattern. 
C We’ve already seen the first two bits (10) of the desired pattern. 
D We’ve already seen the first three bits (100) of the desired pattern. 
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Input 
X 

Present 
State 

Next 
State 

Output 
Z 

0 A A 0 
1 A B 0 
0 B C 0 
1 B B 0 

0 C D 0 
1 C B 0 
0 D A 0 
1 D B 1 

 

Step 1: Deriving the State Table (cont.)

◼ Finally, we have the state diagram and we can derive the 
state table.

input/outputpresent 

state

next 

state

Remember how the state diagram 

arrows correspond to rows of the 

state table:

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0
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◼ We skip Step 2 because in this course we will not discuss 
state-reduction methods. 

◼ We have four states A,B,C, and D, so we need at least two 
bits Q1 and Q2 to encode the states.

◼ There are many possible ways to encode the states:

◼ The state code can have a big impact on circuit complexity, 
but we will not study this in this course.

◼ So, we take an arbitrary code. For example, we represent 
state A with Q1Q2 = 10, B with 00, C with 01, and D with 11. 

Step 3: Assigning Binary Codes to 

States

State Q1Q2 Q1Q2 Q1Q2 Q1Q2 …

A 0  0 0  1 1  0 1  1 …

B 0  1 0  0 0  0 0  1 …

C 1  0 1  0 0  1 0  0 …

D 1  1 1  1 1  1 1  0 …
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◼ We fill the state table with the selected state code. 

◼ Recall, we selected to represent state A with 10, B with 00,
C with 01, and D with 11. 

Step 3: Assigning Binary Codes to 

States (cont.)

Input 
X 

Present 
State 

Next 
State 

Output 
Z 

0 A A 0 

1 A B 0 
0 B C 0 

1 B B 0 

0 C D 0 

1 C B 0 
0 D A 0 

1 D B 1 
 

Input Present 
State 

Next 
State 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z(t) 

0 1 0 1 0 0 

1 1 0 0 0 0 

0 0 0 0 1 0 

1 0 0 0 0 0 
0 0 1 1 1 0 

1 0 1 0 0 0 

0 1 1 1 0 0 

1 1 1 0 0 1 
 

NOTE: The rows of the Encoded State Table are not ordered as we are used to. 

Reorder the rows to make the table ordered. This will make further design steps easier. 

State Table

Encoded State Table

0

1

2

6

4

5

3

7
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◼ Ordered Encoded State Table:

◼ This table contains the same information as the table 
from the previous slide. Just, the order of the rows is 
different.

Step 3: Assigning Binary Codes to 

States (cont.)

Input Present 
State 

Next 
State 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z(t) 

0 0 0 0 1 0 

0 0 1 1 1 0 

0 1 0 1 0 0 

0 1 1 1 0 0 
1 0 0 0 0 0 

1 0 1 0 0 0 

1 1 0 0 0 0 

1 1 1 0 0 1 
 

2

4

0

1

3

5

6

7
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Step 4: Determine the number and 

type of Flip-Flops to be used
◼ We have 4 states and we have encoded them with 2 bits Q1 

and Q2. Thus, we need 2 Flip-Flops. 

◼ Here, we will use JK Flip-Flops (later you will see the same 
example using D Flip-Flops).

◼ Thus, for each Flip-Flip Qi, we add two columns (for Ji and Ki) 
in the state table.

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t) 

0 0 0 0 1     0 

0 0 1 1 1     0 

0 1 0 1 0     0 

0 1 1 1 0     0 
1 0 0 0 0     0 

1 0 1 0 0     0 

1 1 0 0 0     0 

1 1 1 0 0     1 
 

2

4

0

1

3

5

6

7
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Step 5: Finding Flip-Flop Input Values

◼ How to actually make the Flip-Flops change 
from their present state into the desired next 
state. 

◼ For each Flip-Flip Qi, look at its present and next 
states, and determine what the inputs Ji and Ki 
should be in order to make that state change.

◼ Use the JK execution table.

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t) 

0 0 0 0 1 0 x 1 x 0 

0 0 1 1 1 1 x x 0 0 

0 1 0 1 0 x 0 0 x 0 

0 1 1 1 0 x 0 x 1 0 
1 0 0 0 0 0 x 0 x 0 

1 0 1 0 0 0 x x 1 0 

1 1 0 0 0 x 1 0 x 0 

1 1 1 0 0 x 1 x 1 1 
 

0
1
x
x
K

1
1
0
0

Q(t)

x1
x0
11
00

Q(t+1) J

JK Execution Table
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Step 6 and 8: Deriving Simplified 

Flip-Flop Input Equations

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t) 

0 0 0 0 1 0 x 1 x 0 

0 0 1 1 1 1 x x 0 0 

0 1 0 1 0 x 0 0 x 0 

0 1 1 1 0 x 0 x 1 0 
1 0 0 0 0 0 x 0 x 0 

1 0 1 0 0 0 x x 1 0 

1 1 0 0 0 x 1 0 x 0 

1 1 1 0 0 x 1 x 1 1 
 

X(t)

Q2(t)

Q1(t)

x x

1

J1 = X(t)’•Q2(t)

xX(t)

Q2(t)

Q1(t)

x 1

x

X(t)

Q1(t)

x x

x

X(t)

Q2(t)

Q1(t)

1 1

1

Q2(t)

J1 K1
J2 K2

xx x

1

1 x x x

x x

K1 = X(t) J2 = X(t)’•Q1(t)’ K2 = X(t) + Q1(t)
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Step 7 and 8: Deriving Simplified 

Primary Output Equations

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t) 

0 0 0 0 1 0 x 1 x 0 

0 0 1 1 1 1 x x 0 0 

0 1 0 1 0 x 0 0 x 0 

0 1 1 1 0 x 0 x 1 0 
1 0 0 0 0 0 x 0 x 0 

1 0 1 0 0 0 x x 1 0 

1 1 0 0 0 x 1 0 x 0 

1 1 1 0 0 x 1 x 1 1 
 

X(t)

Q2(t)

Q1(t)

1
Z(t) = X(t)•Q1(t) •Q2(t)

Z(t)
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Step 9: Drawing The Logic Diagram

J1 = X(t)’•Q2(t)

K1 = X(t)

J2 = X(t)’•Q1(t)’

K2 = X(t) + Q1(t)

Z(t) = X(t)•Q1(t) •Q2(t)

Q1(t+1)

Q2(t+1)

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

Z(t)

Q1(t)

Q1(t)’

Q2(t)J2

J1

K1

K2

X(t)

clockreset

‘1’

◼ IMPORTANT: Do not forget to connect a clock signal to the Flip-Flops.

◼ IMPORTANT: Do not forget to connect a reset signal to the Flip-Flops:
◼ The reset signal must switch the circuit to the initial state. Every sequential circuit 

must have one initial state. Always, first switch the circuit to the initial state.

◼ To switch to the initial state, use the asynchronous signals preset (S) and/or 
clear (R) of the Flip-Flops.

◼ For our sequence recognizer the initial state is A with Q1Q2 = 10, thus:
◼ While reset is active (reset = 0), Q1 is set to 1 and Q2 to 0 – the circuit stays 

in the initial state.

◼ While reset is non-active (reset = 1), the circuit operates normally.       
19
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Designing the Same Circuit with 

D Flip-Flops (Step 4)
◼ What if we want to design the circuit using D Flip-Flops instead of JK?

◼ We already have the ordered encoded state table, so we can just start 
from Step 4, determining the number of Flip-Flops.

◼ We have 4 states and we have encoded them with 2 bits Q1 and Q2. 
Thus, we need 2 Flip-Flops. 

◼ For each Flip-Flip Qi, we add one column (for Di) in the state table.

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t) 

0 0 0 0 1   0 

0 0 1 1 1   0 

0 1 0 1 0   0 

0 1 1 1 0   0 
1 0 0 0 0   0 

1 0 1 0 0   0 

1 1 0 0 0   0 

1 1 1 0 0   1 
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Finding Flip-Flop Input Values (Step 5)

◼ Again, for each Flip-Flip Qi, look at its present 
and next states, and determine what the input Di 
should be in order to make that state change. 
Use the D execution table.

◼ The D excitation table is pretty boring; set the D 
input to whatever the next state should be.

◼ You don’t even need to show separate columns 
for D1 and D2 ; you can just use the Next State 
columns.

D Execution Table

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t) 

0 0 0 0 1 0 1 0 

0 0 1 1 1 1 1 0 

0 1 0 1 0 1 0 0 

0 1 1 1 0 1 0 0 
1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 1 
 

1
1
0
0

Q(t)

11
00
11
00

Q(t+1) D(t)
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Deriving Simplified Equations

 (Steps 6, 7, and 8)
◼ We can use K-maps again, to simplify:

Flip-Flop Inputs Input Present 
State 

Next 
State for Q1 for Q2 

Output 
 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t) 

0 0 0 0 1 0 1 0 

0 0 1 1 1 1 1 0 

0 1 0 1 0 1 0 0 

0 1 1 1 0 1 0 0 
1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 1 
 

X(t)

Q2(t)

Q1(t)

1

D1 = X(t)’•Q2(t) + X(t)’•Q1(t) 

X(t)

Q1(t)

1

Q2(t)

D1 D2

11 1

D2 = X(t)’•Q1(t)’

X(t)

Q2(t)

Q1(t)

1

Z(t) = X(t)•Q1(t) •Q2(t)

Z(t)
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Drawing The Logic Diagram (Step 9)

Z(t) = X(t)•Q1(t) •Q2(t)

Q1(t+1) = D1 = X(t)’•Q2(t) + 

                     X(t)’•Q1(t) 

Q2(t+1) = D2 = X(t)’•Q1(t)’

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

Z(t)

Q1(t)

Q1(t)’

Q2(t)D2

D1

X(t)

clockreset

‘1’

◼ Use the equations on the right to 
draw the logic diagram of the 
circuit.

◼ IMPORTANT: Again, do not forget 
to connect properly the clock and 
reset signals to the Flip-Flops.
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Design Comparison

◼ JK Flip-Flops are good because there are 
many don’t care values in the Flip-Flop 
inputs, which can lead to a simpler circuit.

◼ D Flip-Flops have the advantage that you do 
not have to set up Flip-Flop inputs at all, since 
Q(t+1) = D. However, the D input equations 
are usually more complex than JK input 
equations.

◼ In practice, D Flip-Flops are used more often.
◼ There is only one input for each Flip-Flop, not two.

◼ There are no execution tables to worry about.

◼ D Flip-Flops can be implemented with slightly less 
hardware than JK Flip-Flops.

1J

1K

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R
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Another Example: A Cyclic Shifter

◼ Design a circuit which has one input X and three 

outputs Z1, Z2, and Z3 and the following behavior:

◼ Initially, the output values are: Z1Z2Z3 = 010;

◼ On every clock cycle:

◼ If X = 1 then Z1 = Z2, Z2 = Z3, Z3 = Z1 (cyclic shift-left)

◼ If X = 0 then Z1 = Z3, Z2 = Z1, Z3 = Z2 (cyclic shift-right)

◼ This circuit we will call 3-bit cyclic shifter. 

Z1 Z2 Z3

Z1 Z2 Z3
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Deriving the State Table

◼ How many and What states do we need for our circuit?

◼ We have initial state where outputs are “010”.

◼ If we make cyclic shift-left we can have the following possible output 

values: “100” or “001” or “010” (which is the initial output value) 

◼ If we make cyclic shift-right we can have the following possible output 

values: “001” or “100” or “010” (which is the initial output value)

◼ We see that we can use only 3 states, one for each of the 

three distinct output values “010”, “100”, “001”.

◼ So, for each possible output value we define a state as 

follows: 

State Meaning 

A Initial state where the outputs Z1Z2Z3 = “010”. 

B While at this state the circuit has outputs Z1Z2Z3 = “100”. 

C While at this state the circuit has outputs Z1Z2Z3 = “001”. 
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◼ First, we will derive the state diagram of the circuit.

◼ We need two outgoing arrows for each node, to account for 
the possibilities of X = 0 (cyclic shift-right) and X = 1 (cyclic 
shift-left).

Deriving the State Table (cont.)

State Meaning 

A Initial state where the outputs Z1Z2Z3 = “010”. 

B While at this state the circuit has outputs Z1Z2Z3 = “100”. 

C While at this state the circuit has outputs Z1Z2Z3 = “001”. 
 

 

A B C

1

1 1

0

0 0
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A

◼ We have the state diagram and we can derive the state 
table.

Deriving the State Table (cont.)

B C

1

1 1

0

0 0

Outputs Input 
X 

Present 
State 

Next 
State Z1 Z2 Z3 

0 A C 0 1 0 
1 A B 0 1 0 
0 B A 1 0 0 
1 B C 1 0 0 

0 C B 0 0 1 
1 C A 0 0 1 

 

Remember that we have defined that:

• In state A the circuit outputs Z1Z2Z3 = 010

• In state B the circuit outputs Z1Z2Z3 = 100

• In state C the circuit outputs Z1Z2Z3 = 001
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◼ We will represent state A with 

00, B with 10, C with 01. 

Assigning Binary Codes to States
State Table

Encoded State Table

0

1

2

6

4

5

Outputs Input 
X 

Present 
State 

Next 
State Z1 Z2 Z3 

0 A C 0 1 0 
1 A B 0 1 0 
0 B A 1 0 0 
1 B C 1 0 0 

0 C B 0 0 1 
1 C A 0 0 1 

 

Input Present 
State 

Next 
State 

Outputs 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t) 

0 0 0 0 1 0 1 0 

1 0 0 1 0 0 1 0 

0 1 0 0 0 1 0 0 

1 1 0 0 1 1 0 0 
0 0 1 1 0 0 0 1 

1 0 1 0 0 0 0 1 
 

NOTE: We have to 

order the encoded 

state table.
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◼ For this circuit the ordered encoded state table is not complete. Why?

◼ We have 3 states that we encode with 2 bits, i.e., state A with Q1Q2 = 00, 
B with Q1Q2 = 10, and C with Q1Q2 = 01. 

◼ Using two bits we can encode 4 states from which we use only 3 states 
=> one state is unused, i.e., Q1Q2 = 11 

◼ Thus, two rows (3 and 7) in the table are incomplete.

◼ We have two main options to complete the table (see next slides).

Ordered Encoded State Table

2

4

0

1

3

5

6

7

Input Present 
State 

Next 
State 

Outputs 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t) 

0 0 0 0 1 0 1 0 

0 0 1 1 0 0 0 1 

0 1 0 0 0 1 0 0 

0 1 1      
1 0 0 1 0 0 1 0 

1 0 1 0 0 0 0 1 

1 1 0 0 1 1 0 0 

1 1 1      
 30
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Option 1: Use don’t-care Conditions

2

4

0

1

3

5

6

7

Input Present 
State 

Next 
State 

Outputs 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t) 

0 0 0 0 1 0 1 0 

0 0 1 1 0 0 0 1 

0 1 0 0 0 1 0 0 

0 1 1 X X X X X 
1 0 0 1 0 0 1 0 

1 0 1 0 0 0 0 1 

1 1 0 0 1 1 0 0 

1 1 1 X X X X X 
 

◼ We can use don’t-care conditions because if the circuit 
operates correctly it will never enter unused states.

◼ Now, you can apply Steps 4 to 9 of the design procedure to 
get the complete circuit. 

◼ Do this at home as an exercise!

◼ Similar example will be given at the tutorials!  
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◼ It is possible that outside interference or a 

malfunction will cause the circuit to enter one of the 

unused states causing temporary or permanent 

incorrect behavior of the circuit.

◼ Temporary or permanent incorrect behavior may be 

harmful.

◼ Thus, in such case it is necessary to explicitly 

specify, fully or at least partially, the next state 

values or the output values for the unused states.

◼ This will make the behavior of the circuit predictable.

◼ Undesired harmful behavior can be avoided if the circuit 

enters an unused state.  

Option 2: Explicitly Specify Unused 

States
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◼ Depending on the function and application of the 
circuit, a number of ideas may be applied:
◼ First, the outputs for the unused states are specified such 

that any action that results from entry into and transitions 
between unused states are not harmful.

◼ Second, an unused output combination may be employed 
which indicates that the circuit has entered an unused 
(incorrect) state.

◼ Third, Next-State for each unused state is selected such 
that one of the normal occurring states is reached within a 
few clock cycles, regardless of the input values.

◼ Typically, the next state for an unused state is selected to be the 
initial state.  

◼ The ideas above may be applied in combination.  

Option 2: Explicitly Specify Unused 

States (cont.) 
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Option 2: An Example

◼ Example: Assume that our 3-bit cyclic shifter circuit is used within a system 
with three other devices:

◼ Each output of our circuit controls only one device.

◼ Logic ‘1’ on an output enables the corresponding device.

◼ A harmful situation for the system will occur if more than one device is enabled. 

◼ So, we can avoid harmful situations by specifying the unused states as 
shown below (see rows 3 and 7):    

2

4

0

1

3

5

6

7

Input Present 
State 

Next 
State 

Outputs 

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t) 

0 0 0 0 1 0 1 0 

0 0 1 1 0 0 0 1 

0 1 0 0 0 1 0 0 

0 1 1 0 0 0 0 0 

1 0 0 1 0 0 1 0 

1 0 1 0 0 0 0 1 

1 1 0 0 1 1 0 0 

1 1 1 0 0 0 0 0 
 

Next-State of the 

unused state 

(Q1Q2=11)  is the 

initial state 

(Q1Q2=00)

The output:

Z1Z2Z3 = 000 is not 

harmful and 

indicates that the 

circuit has entered 

unused (incorrect) 

state. Why?
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