
Synchronous Sequential Circuits:

Design Procedure and Examples

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Sequential Circuit Design

◼ Sequential Circuit Design Procedure

◼ Design Example1: Sequence Recognizer
◼ Sequence Recognizer as Mealy Finite State Machine

◼ Design using JK Flip-Flops

◼ Design using D Flip-Flops

◼ Design Comparison

◼ Design Example2: Cyclic Shifter
◼ Cyclic Shifter as Moore Finite State Machine

◼ Sequential circuits with unused states

◼ Design using don’t care conditions for unused states

◼ Design using explicit specification for unused states

2

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Sequential Circuit Design

◼ In sequential circuit design, we turn some
description into a working circuit.

◼ Start: With a list of specifications (descriptions):
◼ Behavior description of the circuit

◼ Type of Flip-Flops to be used (SR or JK or D or T)

◼ Type of gates to be used

◼ …

◼ End: With a logic diagram OR list of Boolean
functions.

◼ NOTE:
◼ # Flip-Flops to be used depends on the # of states.

At most 2
n
 states can be represented with n Flip-Flops.

◼ The binary coding of the states and the type of the Flip-
Flops determine the complexity of the circuit.

3

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Step 1: Given the problem statement, derive the state table:
◼ The table should show inputs, present states, next states and outputs.

◼ It may be easier to find a state diagram first, and then convert that to a
table.

◼ Step 2 (optional): Apply state-reduction methods to reduce (if
possible) the number of states.
◼ We will not discuss state-reduction methods in this course.

◼ Step 3: Assign binary codes to the states in the state table, if
you haven’t already.
◼ If you have n states, your binary codes will have at least log2 n bits.

◼ Step 4: Determine the number of Flip-Flops needed and the
type of Flip-Flops to be used:
◼ If you have n states, your circuit will have at least log2 n Flip-Flops.

◼ The types of Flip-Flops may be given in the initial specification.

◼ If not, select the type according to some criteria, e.g., to get simpler
circuit or to make the design procedure easier.

Sequential Circuit Design Procedure

4

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Sequential Circuit Design Procedure (cont.)

◼ Step 5: For each flip-flop and each row of your state table,

find the flip-flop input values that are needed to generate the

next state from the present state:

◼ You can use Flip-Flop excitation tables here.

◼ Step 6: Derive the characteristic (Flip-Flop input) equations

from the state table.

◼ Step 7: Derive the primary output equations from the state

table.

◼ Step 8: Simplify the Flip-Flop input equations and output

equations:

◼ Use K-maps or

◼ Other simplification methods

◼ Step 9: Draw the logic diagram of the circuit.

5

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Sequence Recognizers

◼ I will explain the Design Procedure in detail by designing a
sequence recognizer circuit.

◼ A sequence recognizer is a special kind of sequential circuit
that looks for a special bit pattern in some input.

◼ The recognizer circuit has only one input, X.
◼ One bit of input is supplied on every clock cycle. For example, it

would take 20 cycles to scan a 20-bit input.

◼ This is an easy way to permit arbitrarily long input sequences.

◼ There is one output, Z, which is 1 when the desired pattern is
found.

◼ Our example will detect the bit pattern “1001”:
◼ Input X: …00011100110100100110 …

◼ Output Z: …00000000100000100100 …

◼ Here, one input and one output bit appear every clock cycle.

◼ This requires a sequential circuit because the circuit has to
“remember” the inputs from previous clock cycles, in order to
determine whether or not a match was found.

6

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 1: Deriving the State Table

◼ Problem Statement: Design the sequence recognizer circuit
described in the previous slide.

◼ The first thing to figure out is precisely how the use of states
will help to solve the given problem.
◼ Make a state table based on the problem statement. The table should

show the present states, inputs, next states and outputs.

◼ Sometimes it is easier to first find a state diagram and then convert
that to a table.

◼ This is usually the most difficult step. Why?
◼ There is not a formal procedure how to derive a state table or state

diagram from a problem specification such as the one we have here.

◼ In Step 1 you have to relay on your knowledge and design
experience.

◼ Currently, Step 1 is more an art than a science!

◼ Once you have the state table, the rest of the design
procedure is the same for all sequential circuits.

7

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 1: Deriving the State Table (cont.)

◼ How many and What states do we need for the sequence
recognizer?
◼ We have to “remember” inputs from previous clock cycles.

◼ For example, if the previous three inputs were 100 and the current
input is 1, then the output should be 1.

◼ In general, we will have to remember occurrences of parts of the
desired pattern - in this case, 1, 10, and 100.

◼ So, we need the following four states:

◼ We will derive a state diagram before deriving the state table.
◼ First, we draw a part of the state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.
B We’ve already seen the first bit (1) of the desired pattern.
C We’ve already seen the first two bits (10) of the desired pattern.
D We’ve already seen the first three bits (100) of the desired pattern.

8

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ What happens if we are in state D (the last three inputs were

100), and the current input is 1?

◼ The output should be a 1, because we’ve found the desired pattern.

◼ But this last 1 could also be the start of another occurrence of the

pattern! For example, 1001001 contains two occurrences of 1001.

◼ To detect overlapping occurrences of the pattern, the next state

should be B.

A B C D
1/0 0/0 0/0

1/1

Step 1: Deriving the State Table (cont.)

State Meaning

A None of the desired pattern (1001) has been input yet.
B We’ve already seen the first bit (1) of the desired pattern.
C We’ve already seen the first two bits (10) of the desired pattern.
D We’ve already seen the first three bits (100) of the desired pattern.

9

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Remember that we need two outgoing arrows for each node,
to account for the possibilities of X = 0 and X = 1.

◼ The remaining arrows we need are shown in blue. They also
allow for the correct detection of overlapping occurrences of
1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

Step 1: Deriving the State Table (cont.)

State Meaning

A None of the desired pattern (1001) has been input yet.
B We’ve already seen the first bit (1) of the desired pattern.
C We’ve already seen the first two bits (10) of the desired pattern.
D We’ve already seen the first three bits (100) of the desired pattern.

10

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Input
X

Present
State

Next
State

Output
Z

0 A A 0
1 A B 0
0 B C 0
1 B B 0

0 C D 0
1 C B 0
0 D A 0
1 D B 1

Step 1: Deriving the State Table (cont.)

◼ Finally, we have the state diagram and we can derive the
state table.

input/outputpresent

state

next

state

Remember how the state diagram

arrows correspond to rows of the

state table:

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

11

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We skip Step 2 because in this course we will not discuss
state-reduction methods.

◼ We have four states A,B,C, and D, so we need at least two
bits Q1 and Q2 to encode the states.

◼ There are many possible ways to encode the states:

◼ The state code can have a big impact on circuit complexity,
but we will not study this in this course.

◼ So, we take an arbitrary code. For example, we represent
state A with Q1Q2 = 10, B with 00, C with 01, and D with 11.

Step 3: Assigning Binary Codes to

States

State Q1Q2 Q1Q2 Q1Q2 Q1Q2 …

A 0 0 0 1 1 0 1 1 …

B 0 1 0 0 0 0 0 1 …

C 1 0 1 0 0 1 0 0 …

D 1 1 1 1 1 1 1 0 …

12

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We fill the state table with the selected state code.

◼ Recall, we selected to represent state A with 10, B with 00,
C with 01, and D with 11.

Step 3: Assigning Binary Codes to

States (cont.)

Input
X

Present
State

Next
State

Output
Z

0 A A 0

1 A B 0
0 B C 0

1 B B 0

0 C D 0

1 C B 0
0 D A 0

1 D B 1

Input Present
State

Next
State

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z(t)

0 1 0 1 0 0

1 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0
0 0 1 1 1 0

1 0 1 0 0 0

0 1 1 1 0 0

1 1 1 0 0 1

NOTE: The rows of the Encoded State Table are not ordered as we are used to.

Reorder the rows to make the table ordered. This will make further design steps easier.

State Table

Encoded State Table

0

1

2

6

4

5

3

7

13

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Ordered Encoded State Table:

◼ This table contains the same information as the table
from the previous slide. Just, the order of the rows is
different.

Step 3: Assigning Binary Codes to

States (cont.)

Input Present
State

Next
State

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z(t)

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 0 0

0 1 1 1 0 0
1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

2

4

0

1

3

5

6

7

14

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 4: Determine the number and

type of Flip-Flops to be used
◼ We have 4 states and we have encoded them with 2 bits Q1

and Q2. Thus, we need 2 Flip-Flops.

◼ Here, we will use JK Flip-Flops (later you will see the same
example using D Flip-Flops).

◼ Thus, for each Flip-Flip Qi, we add two columns (for Ji and Ki)
in the state table.

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t)

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 0 0

0 1 1 1 0 0
1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

2

4

0

1

3

5

6

7

15

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 5: Finding Flip-Flop Input Values

◼ How to actually make the Flip-Flops change
from their present state into the desired next
state.

◼ For each Flip-Flip Qi, look at its present and next
states, and determine what the inputs Ji and Ki
should be in order to make that state change.

◼ Use the JK execution table.

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t)

0 0 0 0 1 0 x 1 x 0

0 0 1 1 1 1 x x 0 0

0 1 0 1 0 x 0 0 x 0

0 1 1 1 0 x 0 x 1 0
1 0 0 0 0 0 x 0 x 0

1 0 1 0 0 0 x x 1 0

1 1 0 0 0 x 1 0 x 0

1 1 1 0 0 x 1 x 1 1

0
1
x
x
K

1
1
0
0

Q(t)

x1
x0
11
00

Q(t+1) J

JK Execution Table

16

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 6 and 8: Deriving Simplified

Flip-Flop Input Equations

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t)

0 0 0 0 1 0 x 1 x 0

0 0 1 1 1 1 x x 0 0

0 1 0 1 0 x 0 0 x 0

0 1 1 1 0 x 0 x 1 0
1 0 0 0 0 0 x 0 x 0

1 0 1 0 0 0 x x 1 0

1 1 0 0 0 x 1 0 x 0

1 1 1 0 0 x 1 x 1 1

X(t)

Q2(t)

Q1(t)

x x

1

J1 = X(t)’•Q2(t)

xX(t)

Q2(t)

Q1(t)

x 1

x

X(t)

Q1(t)

x x

x

X(t)

Q2(t)

Q1(t)

1 1

1

Q2(t)

J1 K1
J2 K2

xx x

1

1 x x x

x x

K1 = X(t) J2 = X(t)’•Q1(t)’ K2 = X(t) + Q1(t)

17

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 7 and 8: Deriving Simplified

Primary Output Equations

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) J1 K1 J2 K2 Z(t)

0 0 0 0 1 0 x 1 x 0

0 0 1 1 1 1 x x 0 0

0 1 0 1 0 x 0 0 x 0

0 1 1 1 0 x 0 x 1 0
1 0 0 0 0 0 x 0 x 0

1 0 1 0 0 0 x x 1 0

1 1 0 0 0 x 1 0 x 0

1 1 1 0 0 x 1 x 1 1

X(t)

Q2(t)

Q1(t)

1
Z(t) = X(t)•Q1(t) •Q2(t)

Z(t)

18

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Step 9: Drawing The Logic Diagram

J1 = X(t)’•Q2(t)

K1 = X(t)

J2 = X(t)’•Q1(t)’

K2 = X(t) + Q1(t)

Z(t) = X(t)•Q1(t) •Q2(t)

Q1(t+1)

Q2(t+1)

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

1J

1K

CLK1

Q

Q

S

R

Z(t)

Q1(t)

Q1(t)’

Q2(t)J2

J1

K1

K2

X(t)

clockreset

‘1’

◼ IMPORTANT: Do not forget to connect a clock signal to the Flip-Flops.

◼ IMPORTANT: Do not forget to connect a reset signal to the Flip-Flops:
◼ The reset signal must switch the circuit to the initial state. Every sequential circuit

must have one initial state. Always, first switch the circuit to the initial state.

◼ To switch to the initial state, use the asynchronous signals preset (S) and/or
clear (R) of the Flip-Flops.

◼ For our sequence recognizer the initial state is A with Q1Q2 = 10, thus:
◼ While reset is active (reset = 0), Q1 is set to 1 and Q2 to 0 – the circuit stays

in the initial state.

◼ While reset is non-active (reset = 1), the circuit operates normally.
19

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Designing the Same Circuit with

D Flip-Flops (Step 4)
◼ What if we want to design the circuit using D Flip-Flops instead of JK?

◼ We already have the ordered encoded state table, so we can just start
from Step 4, determining the number of Flip-Flops.

◼ We have 4 states and we have encoded them with 2 bits Q1 and Q2.
Thus, we need 2 Flip-Flops.

◼ For each Flip-Flip Qi, we add one column (for Di) in the state table.

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t)

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 0 0

0 1 1 1 0 0
1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

20

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Finding Flip-Flop Input Values (Step 5)

◼ Again, for each Flip-Flip Qi, look at its present
and next states, and determine what the input Di
should be in order to make that state change.
Use the D execution table.

◼ The D excitation table is pretty boring; set the D
input to whatever the next state should be.

◼ You don’t even need to show separate columns
for D1 and D2 ; you can just use the Next State
columns.

D Execution Table

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t)

0 0 0 0 1 0 1 0

0 0 1 1 1 1 1 0

0 1 0 1 0 1 0 0

0 1 1 1 0 1 0 0
1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 1

1
1
0
0

Q(t)

11
00
11
00

Q(t+1) D(t)

21

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Deriving Simplified Equations

 (Steps 6, 7, and 8)
◼ We can use K-maps again, to simplify:

Flip-Flop Inputs Input Present
State

Next
State for Q1 for Q2

Output

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) D1 D2 Z(t)

0 0 0 0 1 0 1 0

0 0 1 1 1 1 1 0

0 1 0 1 0 1 0 0

0 1 1 1 0 1 0 0
1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 1

X(t)

Q2(t)

Q1(t)

1

D1 = X(t)’•Q2(t) + X(t)’•Q1(t)

X(t)

Q1(t)

1

Q2(t)

D1 D2

11 1

D2 = X(t)’•Q1(t)’

X(t)

Q2(t)

Q1(t)

1

Z(t) = X(t)•Q1(t) •Q2(t)

Z(t)

22

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Drawing The Logic Diagram (Step 9)

Z(t) = X(t)•Q1(t) •Q2(t)

Q1(t+1) = D1 = X(t)’•Q2(t) +

 X(t)’•Q1(t)

Q2(t+1) = D2 = X(t)’•Q1(t)’

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

Z(t)

Q1(t)

Q1(t)’

Q2(t)D2

D1

X(t)

clockreset

‘1’

◼ Use the equations on the right to
draw the logic diagram of the
circuit.

◼ IMPORTANT: Again, do not forget
to connect properly the clock and
reset signals to the Flip-Flops.

23

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Design Comparison

◼ JK Flip-Flops are good because there are
many don’t care values in the Flip-Flop
inputs, which can lead to a simpler circuit.

◼ D Flip-Flops have the advantage that you do
not have to set up Flip-Flop inputs at all, since
Q(t+1) = D. However, the D input equations
are usually more complex than JK input
equations.

◼ In practice, D Flip-Flops are used more often.
◼ There is only one input for each Flip-Flop, not two.

◼ There are no execution tables to worry about.

◼ D Flip-Flops can be implemented with slightly less
hardware than JK Flip-Flops.

1J

1K

CLK1

Q

Q

S

R

1D

CLK1

Q

Q

S

R

24

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Another Example: A Cyclic Shifter

◼ Design a circuit which has one input X and three

outputs Z1, Z2, and Z3 and the following behavior:

◼ Initially, the output values are: Z1Z2Z3 = 010;

◼ On every clock cycle:

◼ If X = 1 then Z1 = Z2, Z2 = Z3, Z3 = Z1 (cyclic shift-left)

◼ If X = 0 then Z1 = Z3, Z2 = Z1, Z3 = Z2 (cyclic shift-right)

◼ This circuit we will call 3-bit cyclic shifter.

Z1 Z2 Z3

Z1 Z2 Z3

25

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Deriving the State Table

◼ How many and What states do we need for our circuit?

◼ We have initial state where outputs are “010”.

◼ If we make cyclic shift-left we can have the following possible output

values: “100” or “001” or “010” (which is the initial output value)

◼ If we make cyclic shift-right we can have the following possible output

values: “001” or “100” or “010” (which is the initial output value)

◼ We see that we can use only 3 states, one for each of the

three distinct output values “010”, “100”, “001”.

◼ So, for each possible output value we define a state as

follows:

State Meaning

A Initial state where the outputs Z1Z2Z3 = “010”.

B While at this state the circuit has outputs Z1Z2Z3 = “100”.

C While at this state the circuit has outputs Z1Z2Z3 = “001”.

26

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ First, we will derive the state diagram of the circuit.

◼ We need two outgoing arrows for each node, to account for
the possibilities of X = 0 (cyclic shift-right) and X = 1 (cyclic
shift-left).

Deriving the State Table (cont.)

State Meaning

A Initial state where the outputs Z1Z2Z3 = “010”.

B While at this state the circuit has outputs Z1Z2Z3 = “100”.

C While at this state the circuit has outputs Z1Z2Z3 = “001”.

A B C

1

1 1

0

0 0

27

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

A

◼ We have the state diagram and we can derive the state
table.

Deriving the State Table (cont.)

B C

1

1 1

0

0 0

Outputs Input
X

Present
State

Next
State Z1 Z2 Z3

0 A C 0 1 0
1 A B 0 1 0
0 B A 1 0 0
1 B C 1 0 0

0 C B 0 0 1
1 C A 0 0 1

Remember that we have defined that:

• In state A the circuit outputs Z1Z2Z3 = 010

• In state B the circuit outputs Z1Z2Z3 = 100

• In state C the circuit outputs Z1Z2Z3 = 001

28

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We will represent state A with

00, B with 10, C with 01.

Assigning Binary Codes to States
State Table

Encoded State Table

0

1

2

6

4

5

Outputs Input
X

Present
State

Next
State Z1 Z2 Z3

0 A C 0 1 0
1 A B 0 1 0
0 B A 1 0 0
1 B C 1 0 0

0 C B 0 0 1
1 C A 0 0 1

Input Present
State

Next
State

Outputs

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t)

0 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0

0 1 0 0 0 1 0 0

1 1 0 0 1 1 0 0
0 0 1 1 0 0 0 1

1 0 1 0 0 0 0 1

NOTE: We have to

order the encoded

state table.

29

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ For this circuit the ordered encoded state table is not complete. Why?

◼ We have 3 states that we encode with 2 bits, i.e., state A with Q1Q2 = 00,
B with Q1Q2 = 10, and C with Q1Q2 = 01.

◼ Using two bits we can encode 4 states from which we use only 3 states
=> one state is unused, i.e., Q1Q2 = 11

◼ Thus, two rows (3 and 7) in the table are incomplete.

◼ We have two main options to complete the table (see next slides).

Ordered Encoded State Table

2

4

0

1

3

5

6

7

Input Present
State

Next
State

Outputs

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t)

0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 1

0 1 0 0 0 1 0 0

0 1 1
1 0 0 1 0 0 1 0

1 0 1 0 0 0 0 1

1 1 0 0 1 1 0 0

1 1 1
 30

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Option 1: Use don’t-care Conditions

2

4

0

1

3

5

6

7

Input Present
State

Next
State

Outputs

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t)

0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 1

0 1 0 0 0 1 0 0

0 1 1 X X X X X
1 0 0 1 0 0 1 0

1 0 1 0 0 0 0 1

1 1 0 0 1 1 0 0

1 1 1 X X X X X

◼ We can use don’t-care conditions because if the circuit
operates correctly it will never enter unused states.

◼ Now, you can apply Steps 4 to 9 of the design procedure to
get the complete circuit.

◼ Do this at home as an exercise!

◼ Similar example will be given at the tutorials!
31

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ It is possible that outside interference or a

malfunction will cause the circuit to enter one of the

unused states causing temporary or permanent

incorrect behavior of the circuit.

◼ Temporary or permanent incorrect behavior may be

harmful.

◼ Thus, in such case it is necessary to explicitly

specify, fully or at least partially, the next state

values or the output values for the unused states.

◼ This will make the behavior of the circuit predictable.

◼ Undesired harmful behavior can be avoided if the circuit

enters an unused state.

Option 2: Explicitly Specify Unused

States

32

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Depending on the function and application of the
circuit, a number of ideas may be applied:
◼ First, the outputs for the unused states are specified such

that any action that results from entry into and transitions
between unused states are not harmful.

◼ Second, an unused output combination may be employed
which indicates that the circuit has entered an unused
(incorrect) state.

◼ Third, Next-State for each unused state is selected such
that one of the normal occurring states is reached within a
few clock cycles, regardless of the input values.

◼ Typically, the next state for an unused state is selected to be the
initial state.

◼ The ideas above may be applied in combination.

Option 2: Explicitly Specify Unused

States (cont.)

33

Fall 2023 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Option 2: An Example

◼ Example: Assume that our 3-bit cyclic shifter circuit is used within a system
with three other devices:

◼ Each output of our circuit controls only one device.

◼ Logic ‘1’ on an output enables the corresponding device.

◼ A harmful situation for the system will occur if more than one device is enabled.

◼ So, we can avoid harmful situations by specifying the unused states as
shown below (see rows 3 and 7):

2

4

0

1

3

5

6

7

Input Present
State

Next
State

Outputs

X(t) Q1(t) Q2(t) Q1(t+1) Q2(t+1) Z1(t) Z2(t) Z3(t)

0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 1

0 1 0 0 0 1 0 0

0 1 1 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 0 0 1

1 1 0 0 1 1 0 0

1 1 1 0 0 0 0 0

Next-State of the

unused state

(Q1Q2=11) is the

initial state

(Q1Q2=00)

The output:

Z1Z2Z3 = 000 is not

harmful and

indicates that the

circuit has entered

unused (incorrect)

state. Why?

34

	Slide 1: Synchronous Sequential Circuits: Design Procedure and Examples
	Slide 2: Overview
	Slide 3: Sequential Circuit Design
	Slide 4: Sequential Circuit Design Procedure
	Slide 5: Sequential Circuit Design Procedure (cont.)
	Slide 6: Sequence Recognizers
	Slide 7: Step 1: Deriving the State Table
	Slide 8: Step 1: Deriving the State Table (cont.)
	Slide 9: Step 1: Deriving the State Table (cont.)
	Slide 10: Step 1: Deriving the State Table (cont.)
	Slide 11: Step 1: Deriving the State Table (cont.)
	Slide 12: Step 3: Assigning Binary Codes to States
	Slide 13: Step 3: Assigning Binary Codes to States (cont.)
	Slide 14: Step 3: Assigning Binary Codes to States (cont.)
	Slide 15: Step 4: Determine the number and type of Flip-Flops to be used
	Slide 16: Step 5: Finding Flip-Flop Input Values
	Slide 17: Step 6 and 8: Deriving Simplified Flip-Flop Input Equations
	Slide 18: Step 7 and 8: Deriving Simplified Primary Output Equations
	Slide 19: Step 9: Drawing The Logic Diagram
	Slide 20: Designing the Same Circuit with D Flip-Flops (Step 4)
	Slide 21: Finding Flip-Flop Input Values (Step 5)
	Slide 22: Deriving Simplified Equations (Steps 6, 7, and 8)
	Slide 23: Drawing The Logic Diagram (Step 9)
	Slide 24: Design Comparison
	Slide 25: Another Example: A Cyclic Shifter
	Slide 26: Deriving the State Table
	Slide 27: Deriving the State Table (cont.)
	Slide 28: Deriving the State Table (cont.)
	Slide 29: Assigning Binary Codes to States
	Slide 30: Ordered Encoded State Table
	Slide 31: Option 1: Use don’t-care Conditions
	Slide 32: Option 2: Explicitly Specify Unused States
	Slide 33: Option 2: Explicitly Specify Unused States (cont.)
	Slide 34: Option 2: An Example

