Overview

- Storage Elements
- Latches
- SR, JK, D, and T
- Characteristic Tables, Characteristic Equations, Execution Tables, and State Diagrams
- Standard Symbols
- Flip-Flops
- SR, JK, D, and T
- Characteristic Tables, Characteristic Equations, Execution Tables, and State Diagrams
- Standard Symbols
- Design of Latches/Flip-Flops using a given Latch/Flip-Flop
- Implementing Latches using Logic Gates
- SR Latch Design using Logic Gates
- D Latch Design using Logic Gates
- Implementing Flip-Flops using Latches
- D Flip-Flop Design based on SR Latch and D Latch

Storage Elements

- Sequential Circuits contain Storage Elements that keep the state of the circuit.

- One storage element can store one bit of information.
- A one-bit storage element should have at least three properties:
- It should be able to hold a single bit, 0 or 1 (storage mode).
- You should be able to read the bit that was stored.
- You should be able to change the value. Since there's only a single bit, there are only two choices:
- Set the bit to 1
- Reset, or clear, the bit to 0 .

Storage Elements (cont.)

- Two types of storage elements are used in Sequential Circuits: Latches and Flip-Flops.
- Latches (SR, JK, D, T)
- General description of a latch:

- 1-bit storage device with several inputs (\boldsymbol{X}) and an output (\boldsymbol{Q}).
- Output is changed $\boldsymbol{Q}=\boldsymbol{f}(\boldsymbol{X})$ only when specific combinations occur at the inputs \boldsymbol{X}; otherwise the output remains unchanged (storage mode).
- Flip-Flops (SR, JK, D, T)
- General description of a Flip-Flop:

- 1-bit storage device with several inputs (\boldsymbol{X}), an output (\boldsymbol{Q}), and a specific trigger input (CLK).
- Output is changed $\boldsymbol{Q}=\boldsymbol{f}(\boldsymbol{X})$ on response of a pulse at the trigger input CLK (on the rising or falling edge of the pulse). When a pulse is absent at input CLK the output remains unchanged (storage mode).

SR Latch

Symbol

Function Table						Characteristic Table			
C	S(t)	R(t)	Q(t)	$\mathrm{Q}(\mathrm{t}+1)$	Operation	S(t)	R(t)	$Q(t)$	$Q(t+1)$
	0	0	0	0	No change	0	0	0	0
	0	0	1		No change	0	0	1	1
	0	1	0	0		0	1	0	0
	0	1	1	0	Reset	0	1	1	0
	1	0	0	1	Set	1	0	0	1
	1	0	1	?	Set	1	0	1	1
	1	1	0	?	Undefined	1	1	0	X
1	1	1	1	?	Undefined	1	1	1	X
0	x	x	x	Q(t)	No change				

Execution Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	$\mathrm{S}(\mathrm{t})$	$\mathrm{R}(\mathrm{t})$
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

State Diagram

Characteristic Equation

Fall 2023

JK Latch

Symbol

Function Table						Characteristic Table			
C	J(t)	K(t)	Q(t)	$Q(\mathrm{t}+1)$	Operation	$\mathrm{J}(\mathrm{t})$	K(t)	Q(t)	Q(t+1)
	0	0	0	0		0	0	0	0
	0	0	1	1	No change	0	0	1	1
	0	1	0	0		0	1	0	0
	0	1	1	0	Reset	0	1	1	0
	1	0	0	1		1	0	0	1
	1	0	1	1	Set	1	0	1	1
	1	1	0	1		1	1	0	1
1	1	1	1	0	Complement	1	1	1	0
0	x	x	x	Q(t)	No change				

Execution Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	$\mathrm{J}(\mathrm{t})$	$\mathrm{K}(\mathrm{t})$
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

State Diagram

Characteristic Equation

$$
\begin{aligned}
& Q(t+1)=J(t) \cdot Q(t)^{\prime}+K(t)^{\prime} \cdot Q(t)
\end{aligned}
$$

D Latch

Function Table					Characteristic Table		
C	D (t)	Q(t)	$Q(t+1)$	Operation	D(t)	Q(t)	Q(t+1)
I	0	0	0	Propagate input D	0	0	0
1	0	1	0		0	1	0
1	1	0	1		1	0	1
1	1	1	1		1	1	1
0	X	X	Q(t)	No change			

Execution Table

$Q(t)$	$Q(t+1)$	$D(t)$
0	0	0
0	1	1
1	0	0
1	1	1

State Diagram

Characteristic Equation

$$
Q(t+1)=D(t)
$$

TLatch

Symbol	Function Table				Characteristic Table			
Q	C	T(t)	Q(t)	$Q(t+1)$	Operation	T(t)	Q(t)	$Q(t+1)$
	1	0	0	0	No change	0	0	0
	1	0	1	1	No change	0	1	1
\bar{Q}	1	1	0	1	Complement	1	0	1
	1	1	1	0	Complement	1	1	0
	0	X	x	Q(t)	No change			

Execution Table

$Q(t)$	$Q(t+1)$	$T(t)$
0	0	0
0	1	1
1	0	1
1	1	0

State Diagram

Characteristic Equation

$$
Q(t+1)=T(t) \oplus Q(t)
$$

Standard Symbols for Latches

- We have seen that a Latch can change state if there is an active level on the control input C.
- Logic-1 active level Latches:
- Latch can change state if $C=$ Logic- 1
- Standard symbols for Logic-1 active level Latches:

- Logic-0 active level Latches:
- Latch can change state if $C=$ Logic-0
- Standard symbols for Logic-0 active level Latches:

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

SR Flip-Flop

Symbol

\uparrow - rising edge
z-1 or 0 or falling edge

Function Table						Characteristic Table			
CLK	S(t)	R(t)	Q(t)	$\mathrm{Q}(\mathrm{t}+1)$	Operation	S(t)	R(t)	Q(t)	$Q(t+1)$
\uparrow	0	0	0	0		0	0	0	0
\uparrow	0	0	1		No change	0	0	0	1
\uparrow	0	1	0	0	Reset	0	1	0	0
\uparrow	0	1	1	0	Reset	0	1	1	0
\uparrow	1	0	0	1	Set	1	0	0	,
\uparrow	1	0	1	1	Set	1	0	1	1
\uparrow	1	1	0	?	Undefined	1	1	0	x
\uparrow	1	1	1	?	Undefined	1	1	1	X
$\underline{7}$	x	x	x	Q(t)	No change				

Execution Table

State Diagram

Characteristic Equation

$Q(t+1)=S(t)+R(t) \cdot Q(t)$

JK Flip-Flop

Symbol

\uparrow - rising edge
z-1 or 0 or falling edge

Function Table						Characteristic Table			
CLK	J(t)	K(t)	Q(t)	$Q(t+1)$	Operation	$\mathrm{J}(\mathrm{t})$	K(t)	Q(t)	$Q(t+1)$
\uparrow	0	0	0	0		0	0	0	0
\uparrow	0	0	1	1	No change	0	0	1	1
\uparrow	0	1	0	0		0	1	0	0
\uparrow	0	1	1	0	Reset	0	1	1	0
\uparrow	1	0	0	1		1	0	0	1
\uparrow	1	0	1	1	Set	1	0	1	1
\uparrow	1	1	0	1		1	1	0	1
\uparrow	1	1	1	0	Complement	1	1	1	0
t	x	x	x	Q(t)	No change				

Execution Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	$\mathrm{J}(\mathrm{t})$	$\mathrm{K}(\mathrm{t})$
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

State Diagram

Characteristic Equation

D Flip-Flop

Symbol

Function Table					Characteristic Table		
CLK	D(t)	Q(t)	$Q(t+1)$	Operation	D(t)	$Q(\mathrm{t})$	Q(t+1)
\uparrow	0	0	0	Propagate input D	0	0	0
\uparrow	0	1	0		0	1	0
\uparrow	1	0	1		1	0	1
\uparrow	1	1	1		1	1	1
7	x	x	Q(t)	No change			

\uparrow - rising edge z-1 or 0 or falling edge

Execution Table

$Q(t)$	$Q(t+1)$	$D(t)$
0	0	0
0	1	1
1	0	0
1	1	1

State Diagram

Characteristic Equation

$$
Q(t+1)=D(t)
$$

T Flip-Flop

Function Table				Operation	Characteristic Table		
CLK	T(t)	Q(t)	$Q(t+1)$		T(t)	Q(t)	Q(t+1)
\uparrow	0	0	0	No change	0	0	0
\uparrow	0	1	1		0	1	1
\uparrow	1	0	1	Complement	1	0	1
\uparrow	1	1	0		1	1	0
7	X	X	Q(t)	No change			

\uparrow - rising edge z-1 or 0 or falling edge

Execution Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	$\mathrm{T}(\mathrm{t})$
0	0	0
0	1	1
1	0	1
1	1	0

State Diagram

Characteristic Equation

$$
Q(t+1)=T(t) \oplus Q(t)
$$

Standard Symbols for Flip-Flops

- We have seen that a Flip-Flop can change state, only during a transition of the trigger input CLK (Edge-Triggered).
- Rising-Edge Triggered Flip-Flops:
- Flip-Flop can change state only during 0-to-1 transition on CLK
- Standard symbols for Rising-Edge triggered Flip-Flops:

- Falling-Edge Triggered Flip-Flops:
- Flip-Flop can change state only during 1-to-0 transition on CLK
- Standard symbols for Falling-Edge triggered Flip-Flops :

Asynchronous Set/Reset of Flip-Flops

- Many times it is desirable to asynchronously (i.e., independent of the clock) set or reset FFs.
- Asynchronous set is called direct set or Preset
- Asynchronous reset is called direct reset or Clear
- Example: At power-up so that we can start from a known state.
- Examples of Standard Graphics Symbols

NOTE: CLKn indicates that CKLn controls all inputs whose label starts with n .
Hence, CLKn does NOT control S and R (S and R have Logic-0 active level).

Asynchronous Set/Reset: Example

- JK Flip-Flop with asynchronous set \& reset.

IEEE standard graphics symbol for JK-FF with direct set \& reset

Function Table							Operation
S	R	CLK	$\mathrm{J}(\mathrm{t})$	K(t)	Q(t)	$Q(t+1)$	
1	1	\uparrow	0	0	0	0	
1	1	\uparrow	0	0	1	1	No change
1	1	\uparrow	0	1	0	0	Reset
1	1	\uparrow	0	1	1	0	Reset
1	1	\uparrow	1	0	0	1	Set
1	1	\uparrow	1	0	1	1	Set
1	1	\uparrow	1	1	0	1	Complement
1	1	\uparrow	1	1	1	0	Complement
1	1	z	X	x	x	Q(t)	No change
0	1	x	X	\bar{X}	X	11	Asynch. Preset
1	0	X	X	X	X	0 ,	Asynch. Clear
0	0	X	X	X	X	- ${ }^{\text {? }}$	Undefined

NOTE: Characteristic Table, Characteristic Equation, Execution Table, and State Diagram are the same as for the normal JK Flip-Flop (without direct set \& reset).

Latches \& Flip-Flops

- The Latches are Level-triggered whereas the FlipFlops are Edge-triggered.
- SR Latch and SR Flip-Flop have the same Characteristic Table, Characteristic Equation, Execution Table, and State Diagram.
- The above is valid for the other pairs: JK Latch JK Flip-Flop, D Latch - D Flip-Flop, T Latch - T Flip-Flop.
- Given a Latch of type \boldsymbol{X} (\boldsymbol{X} is SR or JK or D or T), any other type of Latch can be designed using \boldsymbol{X}.
- Given a Flip-Flop of type \boldsymbol{X} (\boldsymbol{X} is SR or JK or D or T), any other type of Flip-Flop can be designed using \boldsymbol{X}.
Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Design Procedure

- The procedure to design Latches with a given Latch of type X is the same as the procedure to design Flip-Flops with a given Flip-Flop of type X.
- So, I will illustrate the design procedure for Flip-Flops.
- Given D Flip-Flop, design:
- SR Flip-Flop, JK Flip-Flop, and \boldsymbol{T} Flip-Flop (see this lecture)
- Given SR Flip-Flop, design:
- D Flip-Flop
- JK Flip-Flop, and \boldsymbol{T} Flip-Flop
- Given JK Flip-Flop, design:
- SR Flip-Flop, D Flip-Flop
- T Flip-Flop
(see this lecture)
(see homework 7)
(see homework 7)
(try at home)
- Given \boldsymbol{T} Flip-Flop, design:
- SR Flip-Flop, JK Flip-Flop, and D Flip-Flop (try at home)

SR Flip-Flop with D Flip-Flop

$\boldsymbol{J} K$ Flip-Flop with \boldsymbol{D} Flip-Flop

\boldsymbol{T} Flip-Flop with D Flip-Flop

D Flip-Flop with SR Flip-Flop

T Flip-Flop with JK Flip-Flop

SR Flip-Flop with \boldsymbol{T} Flip-Flop

JK Flip-Flop with \boldsymbol{T} Flip-Flop

D Flip-Flop with \boldsymbol{T} Flip-Flop

Implementing Latches \& Flip-Flops

- We have seen so far that we can design any other Latch/Flip-Flop with a given Latch/Flip-Flop.
- To do this we need to implement at least one Latch and one Flip-Flop using gates (transistors).
- Historically, first SR Latch has been implemented using gates (transistors) - next slides will show you how!
- D Latch can be implemented using SR Latch (you already know how to do it!).
- D Flip-Flop can be implemented using SR Latch and D Latch - next slides will show you how!
- Given D Latch we can implement JK Latch and T Latch (you already know how to do it!).
- Given D Flip-Flop we can implement SR, JK, and T FlipFlops (you already know how to do it!).

What exactly is storage (memory)?

- A memory should have at least three properties.

1. It should be able to hold a value.
2. You should be able to read the value that was stored.
3. You should be able to change the value that is stored.

- We'll start with the simplest case, a one-bit memory.

1. It should be able to hold a single bit, 0 or 1 .
2. You should be able to read the bit that was saved.
3. You should be able to change the value. Since there's only a single bit, there are only two choices:

- Set the bit to 1
- Reset, or clear, the bit to 0 .

The Basic Idea of a Storage Element

- How can a circuit "remember" anything, when it's just a bunch of gates that produce outputs according to the inputs?
- The basic idea is to make a loop, so the circuit outputs are also inputs.
- Here is one initial attempt:

- Does this satisfy the properties of storage?
- These circuits "remember" Q, because its value never changes. (Similarly, Q' never changes either.)
- We can also "read" Q, by attaching a probe or another circuit.
- But we can not change Q! There are no external inputs here, so we can not control whether $\mathrm{Q}=1$ or $\mathrm{Q}=0$.

SR Latch Design using Logic Gates

- Let us use NOR gates instead of inverters.
- The circuit is called SR latch. It has two inputs S and R, which will let us control the outputs Q and Q'.

- Here Q and Q' feed back into the circuit. They are not only outputs, they are also inputs!
- To figure out how Q and Q ' change, we have to look at not only the inputs S and R, but also the current values of Q and Q ':

$$
\begin{aligned}
& Q_{\text {next }}=\left(R+Q_{\text {current }}^{\prime}\right)^{\prime} \\
& Q_{\text {next }}^{\prime}=\left(S+Q_{\text {current }}\right)^{\prime}
\end{aligned}
$$

- Let's see how different input values for S and R affect this circuit.

Storing a Value: SR =00

- What if $S=0$ and $R=0$?
- The equations on the right reduce to:

$$
\begin{aligned}
& Q_{\text {next }}=\left(0+Q_{\text {current }}^{\prime}\right)^{\prime}=Q_{\text {current }} \\
& Q_{\text {next }}^{\prime}=\left(0+Q_{\text {current }}\right)^{\prime}=Q_{\text {current }}^{\prime}
\end{aligned}
$$

- So, when $S R=00$, then $Q_{\text {next }}=$ $Q_{\text {current }}$. Whatever value Q has, it keeps.
- This is exactly what we need to store values in the latch.

Setting The Latch: $\mathrm{SR}=10$

- What if $S=1$ and $R=0$?
- Since $S=1, Q_{\text {next }}$ is 0 , regardless of $Q_{\text {current }}$:

$$
Q_{\text {next }}^{\prime}=\left(1+Q_{\text {current }}\right)^{\prime}=0
$$

- Then, this new value of Q' goes into the top NOR gate, along with $R=0$.

$$
Q_{n e x t}=(0+0)^{\prime}=1
$$

- So when $S R=10$, then $Q_{n e x t}^{\prime}=0$ and $Q_{\text {next }}=1$.
- This is how you set the latch to 1 . The S input stands for "set."
- Notice that it can take up to two steps (two gate delays) from the time S becomes 1 to the time $Q_{\text {next }}$ becomes 1 .
- But once $Q_{\text {next }}$ becomes 1, the outputs will stop changing. This is a stable state.

Latch Delays

- Timing diagrams are especially useful in understanding how circuits work.
- Here is a diagram which shows an example of how our latch outputs change with inputs $\mathrm{SR}=10$.
0 . Suppose that initially, $\mathrm{Q}=0$ and $\mathrm{Q}^{\prime}=1$.

1. Since $S=1, Q$ ' will change from 1 to 0 after one NOR-gate delay (marked by vertical lines in the diagram for clarity).
2. This change in Q ', along with $R=0$, causes Q to become 1 after another gate delay.
3. The latch then stabilizes until S or R change again.

Resetting The Latch: $\mathrm{SR}=01$

- What if $S=0$ and $R=1$?
- Since $R=1, Q_{\text {next }}$ is 0 , regardless of $Q_{\text {current }}$:

$$
Q_{\text {next }}=\left(1+Q_{\text {current }}^{\prime}\right)^{\prime}=0
$$

- Then, this new value of Q goes into the bottom NOR gate, where $S=0$.

$$
Q_{\text {next }}^{\prime}=(0+0)^{\prime}=1
$$

- So when $S R=01$, then $Q_{\text {next }}=0$ and $Q_{n e x t}^{\prime}=1$.
- This is how you reset, or clear, the latch to 0 .

The R input stands for "reset."

- Again, it can take two gate delays before a change in R propagates to the output $\mathrm{Q}_{\text {next }}{ }^{\text {. }}$

What about $\mathrm{SR}=11$?

- Both $Q_{\text {next }}$ and $Q_{n e x t}^{\prime}$ will become 0 .
- This contradicts the assumption that Q and Q' are always complements.

$$
\begin{aligned}
& Q_{\text {next }}=\left(R+Q_{\text {current }}^{\prime}\right)^{\prime} \\
& Q_{\text {next }}^{\prime}=\left(S+Q_{\text {current }}^{\prime}\right)^{\prime}
\end{aligned}
$$

- Another problem is what happens if we then make $S=0$ and $R=0$ together.

$$
\begin{aligned}
& Q_{\text {next }}=(0+0)^{\prime}=1 \\
& Q_{\text {next }}^{\prime}=(0+0)^{\prime}=1
\end{aligned}
$$

- But these new values go back into the NOR gates, and in the next step we get:

$$
\begin{aligned}
& Q_{\text {next }}=(0+1)^{\prime}=0 \\
& Q_{\text {next }}^{\prime}=(0+1)^{\prime}=0
\end{aligned}
$$

- The circuit enters an infinite loop, where Q and Q' cycle between 0 and 1 forever.
- This is actually the worst case, but the moral is do not ever set $\mathrm{SR}=11$!

SR latch: Summary

- SR latch is indeed 1 -bit memory. Why?
- We can store the present value
- We can set it to 1
- We can reset it to 0

S	R	Q
0	0	No change
0	1	0 (reset)
1	0	1 (set)
1	1	Undefined!

- SR latch is a simple asynchronous sequential circuit. Why?
- It is made of gates with feed-back loops

- The output Q represents the data stored in the latch. It is sometimes called the state of the latch.

$S^{\prime} R^{\prime}$ latch Design using Logic Gates

- There are several varieties of latches.
- You can use NAND instead of NOR gates to get a S'R' latch.

S^{\prime}	R^{\prime}	Q
1	1	No change
1	0	0 (reset)
0	1	1 (set)
0	0	Undefined!

- This is just like an SR latch, but with inverted inputs, as you can see from the table.
- You can derive this table by writing equations for the outputs in terms of the inputs and the current state, just as we did for the SR latch.

SR Latch with a Control Input

- Here is $S R$ latch with a control input C. It is based on an S'R' latch. The additional gates generate the S' and R' signals, based on inputs S and R and C ("control").

C	S	R	S^{\prime}	R^{\prime}	Q
0	x	x	1	1	No change
1	0	0	1	1	No change
1	0	1	1	0	0 (reset)
1	1	0	0	1	1 (set)
1	1	1	0	0	Undefined

- Notice the hierarchical design!
- The dotted blue box is the S'R' latch from the previous slide.
- The additional NAND gates are simply used to generate the correct inputs for the S'R' latch.
- The control input acts just like an enable.

D Latch Design using Logic Gates

- Finally, a D latch is based on an SR latch. The additional inverter generates the R signal, based on input D ("data").
- When $C=0$, S^{\prime} and R' are both 1 , so the state Q does not change.
- When $C=1$, the latch output Q will equal the input D.
- No more messing with one input for set and another input for reset!

C	D	Q
0	x	No change
1	0	0
1	1	1

- Also, this latch has no "bad" input combinations to avoid. Any of the four possible assignments to C and D are valid.

Latches: Behaviour \& Issues

- Level triggered
- Latches are "transparent", i.e., any change on the inputs is seen at the outputs immediately.
- This causes synchronization problems! (not recommended for use in synchronous designs)
- Solution: use latches to create Flip-Flops that can respond (update) ONLY at SPECIFIC times (instead of ANY time).
- The specific times are the rising or falling edge of a clock signal.
- Thus, Flip-Flops are Edge triggered and used in synchronous design.
Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

D Flip-Flop Design using Latches

- Here is the internal structure of a D flip-flop.
- The flip-flop inputs are C and D, and the outputs are Q and Q .
- The D latch on the left is the master, while the SR latch on the right is called the slave.

- Note the layout here (Master-Slave structure).
- The flip-flop input D is connected directly to the master latch.
- The master latch output goes to the slave.
- The flip-flop outputs come directly from the slave latch.

D Flip-Flop Behavior

- The D flip-flop's control input C enables either the D latch or the SR latch, but not both.
- When C = 0:
- The master D latch is enabled. Whenever D changes, the master's output changes too.
- The slave is disabled, so the D latch output has no effect on it. Thus, the slave just maintains the flip-flop's current state.
- As soon as C becomes 1 :
- The master is disabled. Its output will be the last D input value seen just before C became 1 .
- Any subsequent changes to the D input while $\mathrm{C}=1$ have no effect on the master latch, which is now disabled.
- The slave latch is enabled. Its state changes to reflect the master's output.

D Flip-Flop Behavior (cont.)

- Based on the behavior described in previous slide we conclude that:
- The flip-flop output Q changes only at the rising edge of C.
- The change is based on the flip-flop input value that was present right at the rising edge of the clock signal.
- Thus, this is called a rising edge-triggered flip-flop.
- How do we get a falling edge-triggered flip-flop?

