
Combinational Logic Design

Arithmetic Functions and Circuits 
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Overview

◼ Binary Addition

◼ Half Adder

◼ Full Adder

◼ Ripple Carry Adder

◼ Carry Look-ahead Adder

◼ Binary Subtraction  

◼ Binary Subtractor

◼ Binary Adder-Subtractor

◼ Subtraction with Complements

◼ Complements (2’s complement and 1’s complement)

◼ Binary Adder-Subtractor

◼ Signed Binary Numbers 

◼ Signed Numbers

◼ Signed Addition/Subtraction

◼ Overflow Problem

◼ Binary Multipliers

◼ Other Arithmetic Functions
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1-bit Addition

◼ Performs the addition of two binary bits.

◼ Four possible operations:

◼ 0+0=0

◼ 0+1=1

◼ 1+0=1

◼ 1+1=10

◼ Circuit implementation requires 2 outputs; one to 

indicate the sum and another to indicate the carry.
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Half Adder

◼ Performs 1-bit addition. 

◼ Inputs: A0, B0

◼ Outputs: S0, C1

◼ Index indicates significance, 
0 is for LSB and 1 is for the 
next higher significant bit.

◼ Boolean equations:
◼ S0 = A0B0’+A0’B0 = A0  B0

◼ C1 = A0B0

A0 B0 S0 C1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table
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Half Adder (cont.)

◼ S0 = A0B0’+A0’B0 = A0 B0

◼ C1 = A0B0

1 bit

half adder

A0 B0

C1

S0

A0

B0

S0

C1

Logic DiagramBlock Diagram
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n-bit Addition

◼ Design an n-bit binary adder which performs the 
addition of two n-bit binary numbers and generates 
a n-bit sum and a carry out.

◼ Example: Let n=4

Cout   C3  C2  C1  C0 1  1  0  1  0         
          A3  A2  A1  A0          1  1  0  1 
        +B3  B2  B1  B0        +1  1  0  1
         -------------------        ------------- 
           S3  S2  S1  S0               1  0  1  0  

◼ Notice that in each column we add 3 bits!            



Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 7

Full Adder

◼ Combinational circuit that 

performs the additions of 3 bits 

(two bits and a carry-in bit). 

◼ Full Adder is used for addition of 

n-bit binary numbers

(for higher-order bit addition).

1 bit

full adder

Ai Bi

Ci+1

Si

Ci

Block Diagram

Ai Bi Ci Si Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Truth Table
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Full Adder (cont.)

◼ K-maps:

◼ Boolean equations:
◼  Ci+1 = AiBi + AiCi + BiCi

◼  Si   = AiBi’ Ci’ + Ai’Bi’Ci + Ai’BiCi’ + AiBiCi

       = Ai  Bi  Ci

◼ You can design full adder circuit directly from the 
above equations (requires 3 ANDs and 2 OR for Ci+1 
and 2 XORs for Si) 

◼ Can we do better?

K-map for

Si

Ai

1

00

0

1 1

1

01 11 10

1

Ai

Ci

Bi BiCi

Ai

1

00

0

1 1

1

01 11 10

1Ai

Ci

Bi

K-map for

Ci+1

BiCi
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Full Adder using 2 Half Adders

◼ A full adder can also be realized with two half adders and an 

OR gate, since Ci+1 can also be expressed as:

◼ Ci+1 = AiBi + AiCi + BiCi

       = AiBi + Ai(Bi+Bi’)Ci  + (Ai+Ai’)BiCi 

       = AiBi + AiBiCi + AiBi’Ci + AiBiCi + Ai’BiCi 

       = AiBi(1+Ci +Ci) + Ci(AiBi’ + Ai’Bi)

       = AiBi + Ci(Ai  Bi) 

◼ Si   = Ai  Bi  Ci

Ai

Bi

Ci

Ci+1

Si
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n-bit Combinational Adders

◼ Perform parallel addition of n-bit binary 

numbers.

◼ Ripple Carry Adder

◼ Simple design.

◼ Slow circuit. Why? (you’ll see …)

◼ Carry Lookahead Adder

◼ More complex than ripple-carry adder.

◼ Reduces circuit delay.
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n-bit Ripple Carry Adder

◼ Constructed using n 1-bit full adder 

blocks in parallel.

◼ Cascade the full adders so that the carry 

out from one becomes the carry in to the 

next higher bit position.

◼ Example: 4-bit Ripple Carry Adder

C4  C3   C2 C1   C0 

         A3   A2    A1   A0 

    +   B3   B2    B1   B0 

       --------------------------       

          S3 S2 S1   S0         
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Ripple Carry Adder Delay

◼ Circuit delay in an n-bit ripple carry adder is 

determined by the delay on the carry path from the 

LSB (C0) to the MSB (Cn).

◼ Let the delay in a 1-bit FA be Δ. Then, the delay of 

an n-bit ripple carry adder is nΔ.
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Carry Look-ahead Adder

◼ Alternative design for 

a combinational n-bit 

adder.

◼ Reduced delay at 

the expense of more 

complex hardware.

◼ Study this circuit in 

detail using the 

textbook.

Ripple Carry Delay (RD)
Carry Look-ahead Delay (LD)

LD < RD
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Binary Subtraction

◼ Unsigned numbers: minus sign is not explicitly 
represented. 

◼ Given 2 binary numbers M and N, find M-N:

◼ Case I: M ≥ N, thus, MSB of Borrow is 0

       B 0 0 0 1 1 0
        M    1 1 1 1 0         30
        N    1 0 0 1 1              19               Result is Correct
        Dif   0 1 0 1 1             11 

◼ Case II: N > M, thus MSB of Borrow is 1

        B 1 1 1 0 0 0
        M    1 0 0 1 1         19
        N    1 1 1 1 0              30    Result requires correction!
       Dif    1 0 1 0 1             21 
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Binary Subtraction (cont.)

◼ In Case II of the previous example, Dif= 19-30 = 21 
= 19-30+2

5
 (not correct).

◼ In general, if N > M, Dif = M-N+2
n
, where n = # bits.

◼ To correct the magnitude of Dif, which should be N-
M, calculate 2

n
-(M-N+2

n
) = N-M (correct).

◼ This is known as the 2’s complement of Dif.

◼ To subtract two n-bit numbers, M-N, in base 2:
◼ Find M-N.

◼ If MSB of Borrow is 0, then M ≥ N. Result is positive and 
correct.

◼ If MSB of Borrow is 1, then N > M. Result is negative and 
its magnitude must be corrected by subtracting it from 2

n 

(find its 2’s complement).
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Another Subtraction Example

◼ Given M = 01100100 and N = 10010110, find M-N.

    
    B     1 0 0 1 1 1 1 0 0
    M  0 1 1 0 0 1 0 0       100
 N  1 0 0 1 0 1 1 0       150
 Dif  1 1 0 0 1 1 1 0       206   (the result is negative)
 

     2
n     

1 0 0 0 0 0 0 0 0        256    

   Dif      1 1 0 0 1 1 1 0        206
           0 0 0 1 1 0 0 1 0          50        

                (corrected result, should be read as -50)
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Block Diagram for Subtractor

M0M1M2M3

4-bit Subtractor

Selective 

2’s Complementer

B

N0N1N2N3

Correct the result if N>M 

Enabled when B=1; 

otherwise, just pass the

result from the subtractor

Not the best way to implement a subtractor circuit!

Subtract numbers M-N

If B = 1 then N>M 
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Block Diagram for 

Binary Adder-Subtractor

M0M1M2M3

4-bit Subtractor

Selective 

2’s Complementer

B

N0N1N2N3

▪
▪
▪ ▪

▪ ▪
▪ ▪

4-bit Adder

2-to-1 4-line MUX

Result

Sub/Add

Sub/Add=1 → Result=|M-N|

Sub/Add=0 → Result=M+N

Again, not the best way to implement a Sub/Add circuit!
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Complement Representations

◼ There are 2 types of complement 

representation of a number in base-2 

(binary) system:

◼ 2’s complement 

◼ 1’s complement 

◼ We have discussed this briefly at the 

beginning of the course (see Lecture 1).
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2’s Complement

◼ For a positive n-bit number N, the 2’s complement, 2C(N), is 
given by:
◼ 2C(N) = 2

n
- N 

◼ Example: N  = 1010
◼ 2C(N) = 2

4
- N = 10000 – 10102 = 0110 

◼ Example: N  = 11111
◼ 2C(N) = 2

5
- N = 100000 – 11111 = 00001 

◼ Here’s an easier way to compute the 2’s complement:
1. Leave all least significant 0’s and first 1 unchanged

2. Replace 0 with 1 and 1 with 0 in all remaining higher significant bits.

◼ Examples:

◼ N = 1010   N = 01011000
       0110                       10101000 

2’s complement on N  2’s complement of N

unchangedcomplement unchangedcomplement
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1’s Complement

◼ For a positive n-bit number N, the 1's complement, 1C(N2), is 
given by:
◼ 1C(N) = (2

n
-1) - N     

◼ Example: N  = 011
◼ 1C(N) = (2

3
-1) - N = 111 – 011 = 100 

◼ Example: N = 1010
◼ 1C(N) = (2

4
-1) - N = 1111 – 1010 = 0101 

 

◼ Observation1: 1’s complement can be derived by just 
inverting all the bits in the number.

◼ Observation2: Compare 1’s complement with 2’s complement
◼ 2

n
-N = [(2

n
-1) - N] + 1

◼ Thus, the 2’s complement can be obtained by deriving the 1’s 
complement and adding 1 to it.
◼ Example:

◼ N = 1001

◼ 2C(N) = 1C(N) + 1 = 0110 + 0001 = 0111
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Subtraction with Complements

◼ To perform the subtraction M - N do:

◼ Take the complement of N, i.e., C(N)

◼ Perform addition M + C(N)

◼ May need to correct the result

◼ We have discussed this briefly at the 

beginning of the course (see Lecture 1).
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◼ If we use 2's complements to represent negative numbers:
1. Form RI = M + 2C(N) = M + (2

n
-N) = M – N + 2

n
.

2. If there is a nonzero carry out of the addition, M ≥ N, so discard that 
carry and the remaining digits are the result R = M-N.

3. Otherwise, M < N, so take the 2’s complement of 
RI (=2

n
- RI = 2

n
- (M – N + 2

n
) = N – M), and attach a minus sign in 

front, i.e., the result R is -2C([RI]2) = -(N-M).

◼ A = 1010100 (8410), B = 1000011 (6710)

◼ Find R = A-B:
◼ 2C(B) = 0111101 (6110)

◼ A+2C(B) = 1010100 + 0111101 = 10010001

◼ Discard carry, R = 0010001 (1710) 

◼ Find R = B-A:
◼ 2C(A) = 0101100 (4410)

◼ B+2C(A) = 1000011 + 0101100 = 1101111 (no carry, correction req.)

◼ R = -2C(B+2C(A)) = -0010001 (-1710)  

Subtraction with 2’s complement 
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Subtraction with 1’s complement

◼ If we use 1's complements to represent negative numbers:
1. Form RI = M + 1C(N) = M + (2

n
-1-N) = M – N + 2

n
-1.

2. If there is a nonzero carry out of the addition, M ≥ N, so discard that 
carry and add 1 to the remaining digits. The result R = M-N.

3. Otherwise, M < N, so take the 1’s complement of
RI (=2

n
- 1 - RI = 2 

n
- 1 - (M – N + 2

n
-1) = N – M ), and attach a minus 

sign in front, i.e., the result R is -1C([RI]2) = -(N-M).

◼ A = 1010100 (8410), B = 1000011 (6710)

◼ Find R = A-B:
◼ 1C(B) = 0111100 (6010)

◼ A+1C(B) = 1010100 + 0111100 = 10010000

◼ Discard carry and add 1,
R = 0010000 + 1 = 0010001 (1710) 

◼ Find R = B-A:
◼ 1C(A) = 0101011

◼ B+1C(A) = 1000011 + 0101011 = 1101110   (no carry, correction 
needed) 

◼ R = -1C(B+1C(A)) = -0010001 (-17)  
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Binary Adder/Subtractors

◼ If we perform subtraction using complements
◼ we do addition instead of subtraction operation

◼ we can use an adder with appropriate complementer for 
subtraction

◼ Actually, we can use an adder for both addition and 
subtraction:
◼ Complement subtrahend for subtraction

◼ Do not complement subtrahend for addition

◼ Thus, to form an adder-subtractor circuit, we only 
need a selective complementer and an adder.

◼ The subtraction A-B can be performed as follows:

 A-B = A + 2C(B) 
  = A + 1C(B) + 1
  = A + B’ + 1
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4-bit Binary Adder-Subtractor 

using 2’s Complement

Selective complementer: 

XOR gates act as programmable inverters

Adder
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◼ When S = 0, the circuit performs A + B. The carry in 
is 0, and the XOR gates simply pass B untouched.

4-bit Binary Adder-Subtractor (cont.)

S = 0

0

B0
B1B2B3
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◼ When S = 1, the circuit performs A - B , i.e., 
A - B = A + 2C(B) = A + 1C(B) + 1 = A + B’ + 1

4-bit Binary Adder-Subtractor (cont.)

S = 1

1

B0’B1’B2’B3’
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4-bit Binary Adder-Subtractor (cont.)

◼ When we do subtraction, result may need to be corrected

◼ If C4 = 0 and S = 1, we must correct the result S3 … S0.

◼ Thus, we must compute 2’s complement of S3…S0:

◼ Use a specialized 2’s complement circuit or

◼ Use the 4-bit Adder-Subtractor again, with A3…A0=0000, B3…B0 = 

S3…S0, and S=1.

B3B2B1B0

4-bit Adder-Subtractor

Selective 

2’s Complementer

S

A3A2A1A0

C4

C4’S

S3       S2        S1       S0

R3       R2        R1       R0

Correct the result if B>A 

Enabled when C4’S = 1; 

otherwise, just pass the

result from Adder-Subtractor

S = 0 “Add”

S = 1 “Sub”
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Signed Binary Numbers

◼ Signed-magnitude representation: Singed numbers are 

represented using the MSB of the binary number to indicate 

the number’s sign:

◼ If MSB is 0 → number is positive

◼ If MSB is 1 → number is negative

◼ Do not confuse with unsigned numbers! 

◼ For example:

◼  -1010  is

◼ 110102 in singed (“-” sing is indicated in MSB = 1)

◼ Another example:

◼ 10112 is

◼ 1110 in unsigned

◼ -310 in signed
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◼ To implement signed-magnitude addition and 
subtraction 
◼ separate the sign bit from the magnitude bits 

◼ treat the magnitude bits as an unsigned number 

◼ do ordinary arithmetic

◼ do correction if needed

◼ Example: M:00011001, N:10100101; find M+N
◼ N is negative 

◼ so do M-N = 0011001-0100101 =1110100, with end 
borrow 1. This implies that M-N is a negative number, 

◼ so to correct find its 2’s complement 0001100. Result is 
10001100.

Signed-Magnitude 

Addition-Subtraction
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Signed-Complement System

◼ To avoid correction of the result, use the 
singed-complement representation of numbers
◼ Signed-1’s complement

◼ Signed-2’s complement

◼ Ex.: Use 8-bits to represent -910 and 910

◼ 910  is 000010012 in any of the above representations

◼ -910  is:
◼  100010012 in singed-magnitude

◼  111101102 in singed-1’s complement

◼  111101112 in singed-2’s complement
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Signed-Complement Addition

◼ Addition of two signed numbers in signed-2’s 
complement form is obtained 
◼ by adding the two numbers including the sign bits. 

◼ carry out is discarded”.

◼ Examples: (Assume 5-bit representations)

   0|1010 (+10)      0|1010 (+10)    1|0110 (-10)        1|0110 (-10)   
 + 0|0101 (+5) + 1|1011  (-5)    + 0|0101 (+5) + 1|1011  (-5)
    0|1111 (+15)    10|0101  (+5)      1|1011  (-5)       11|0001 (-15) 
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Signed-Complement Subtraction

◼ Subtraction of two signed numbers in signed-2’s 
complement form is obtained by 
◼ taking the 2’s complement of the subtrahend 

including sign bit

◼ add it to the minuend

◼ Discard carry out 

◼ Examples: (Assume 5-bit representations)
  0|1010  (+10)      0|1010  (+10)     1|0110   (-10)      1|0110   (-10)   
-0|0101 -(+5) - 1|1011 -(-5) - 0|0101 -(+5) -1|1011 -(-5)
 

 0|1010  (+10)      0|1010   (+10)      1|0110   (-10)      1|0110   (-10)   
 +1|1011 +(-5) +0|0101   +(+5)     +1|1011 +(-5) +0|0101  +(+5)
 10|0101   (+5)       0|1111    (+15)     11|0001  (-15)       1|1011     (-5) 
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Binary Adder-Subtractor using 2’s 

Complement Signed Numbers

◼ The circuit is simpler (correction is not needed):

B3B2B1B0

4-bit Adder-Subtractor S

A3A2A1A0

C4

S3       S2        S1       S0

S = 0 “Add”

S = 1 “Sub”

B3B2B1B0

4-bit Adder-Subtractor

Selective 

2’s Complementer

S

A3A2A1A0

C4

C4’S
S3       S2        S1       S0

R3       R2        R1       R0

S = 0 “Add”

S = 1 “Sub”

Adder-Subtractor of

4-bit unsigned numbers.

Adder-Subtractor of

4-bit signed 2’s complement 

numbers 

The 4-th bit in the numbers is 

interpreted as the sign bit.

Remove the correction 

circuit
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The Overflow problem

◼ If the sum of two n-bit numbers results in an n+1 bit 

number, then an overflow conditions is said to 

occur.

◼ Detection of overflow can be implemented using 

either hardware or software.

◼ Detection depends on number system used: signed 

or unsigned.
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The Overflow problem in 

Unsigned System

◼ Addition:

◼ When Carry out is 1 we have overflow.

◼ Subtraction:

◼ Can never occur. Magnitude of the result is always equal 

or smaller than the larger of the two numbers.

◼ → Not REALLY a problem!

n-bit Adder/SubtractorV
Cn

•  V = 1 indicates overflow condition when adding unsigned numbers.
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The Overflow problem in 

Signed-2’s Complement

◼ Remember that the MSB is the sign. But, the sign is also added! Thus, a 
carry out equal to 1 does not necessarily indicate overflow.

◼ Overflow can occur ONLY when both numbers have the same sign. This 
condition can be detected when the carry out (Cn) is different than the 
carry at the previous position (Cn-1).

◼ Example 1: Let M=6510 and N=6510 in an 8-bit signed-2’s complement 
system.

◼ M = N = 010000012

◼ M+N = 10000010 with Cn=0. This is clearly wrong! Bring Cn as the MSB to 
get 0100000102 (13010) which is correct, but requires 9-bits → overflow 
occurs.

◼ Example 2: Let M=-6510 and N=-6510 in an 8-bit signed-2’s complement 
system.

◼ M = N = 101111112

◼ M+N = 01111110 with Cn=1. This is wrong again! Bring Cn as the MSB to get 
1011111102 (-13010)  which is correct, but also requires 9-bits → overflow 
occurs.
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Overflow Detection in 

Signed-2’s Complement 

◼ Overflow condition is detected by comparing the carry 

values into and out of the sign bit (Cn and Cn-1).

n-bit Adder/Subtractor

V

Cn

Cn-1 

n-bit Adder/Subtractor with Overflow Detection Logic

• V = 1 indicates overflow condition when adding/subtracting signed-2’s 

   complement  numbers.
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Binary Multiplier

◼ Binary multiplication resembles decimal 
multiplication:
◼ n-bit multiplicand is multiplied by each bit of the m-bit 

multiplier, starting from LSB, to form m partial products.

◼ Each successive partial product is shifted 1 bit to the left.

◼ Derive result by addition the m rows of partial products.

◼ The resultant product is a binary number that consists of 
n + m bits.

◼ Example: 
◼ Multiplicand  B = (1011)2

◼ Multiplier       A = (101)2 

◼ Find Product C = B x A:

Multiplicand:

Multiplier:

Product:

x
1011                                

 101  

1011

     0000 

  1011 

  110111    

+
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Half Adders are Sufficient

since there is no Carry-in

in addition to the two inputs

to sum

2-bit by 2-bit Binary Multiplier
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4 bit by 3 bit yields a

7 bit result

4-bit by 3-bit Binary Multiplier
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Other Arithmetic Functions  

◼ Incrementing

◼ Decrementing

◼ Multiplication by Constant

◼ Division by Constant
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Increment by 1

0 0 0 1A3 A2 A1 A0

0

=

0 0 0 1 A0A1A2A3

0

S1,2,3  = Ai  Ci 

C2,3   = AiCi

A0A1
A2A3

Si      = Ai  Bi  Ci 

Ci+1 = AiBi + AiCi + BiCi

S0S1
S2S3

C1
C2

C3

S0     = A0’

C1   = A0
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Decrement by 1

0 0 0 1A3 A2 A1 A0

1

=

1 1 1 0 A0A1A2A3

1

S1,2,3  = (Ai  Ci)’ 

C2,3   = Ai + Ci

A0A1
A2A3

Si      = Ai  Bi  Ci 

Ci+1 = AiBi + AiCi + BiCi

S0S1
S2S3

C1
C2

C3

S0     = A0’

C1   = A0
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Multiplication/Division by constant

‘0’

A0A1A2A3

S0S1S2S3S4

Multiplication by 2 (shift left)

Multiplication by 2n

‘0…0’

n ‘zeros’

A0A1A2A3

S0Sn-1

Division by 2 (shift right)

Division by 2n

‘0’

A0A1A2A3

x

S0S1S2S3

Division by 2n

‘0…0’
…

xx

A0A1A2A3

S0S1S2Sn+1
SnSn+1Sn+2Sn+3
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