
Combinational Logic Design

Arithmetic Functions and Circuits

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 2

Overview

◼ Binary Addition

◼ Half Adder

◼ Full Adder

◼ Ripple Carry Adder

◼ Carry Look-ahead Adder

◼ Binary Subtraction

◼ Binary Subtractor

◼ Binary Adder-Subtractor

◼ Subtraction with Complements

◼ Complements (2’s complement and 1’s complement)

◼ Binary Adder-Subtractor

◼ Signed Binary Numbers

◼ Signed Numbers

◼ Signed Addition/Subtraction

◼ Overflow Problem

◼ Binary Multipliers

◼ Other Arithmetic Functions

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 3

1-bit Addition

◼ Performs the addition of two binary bits.

◼ Four possible operations:

◼ 0+0=0

◼ 0+1=1

◼ 1+0=1

◼ 1+1=10

◼ Circuit implementation requires 2 outputs; one to

indicate the sum and another to indicate the carry.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 4

Half Adder

◼ Performs 1-bit addition.

◼ Inputs: A0, B0

◼ Outputs: S0, C1

◼ Index indicates significance,
0 is for LSB and 1 is for the
next higher significant bit.

◼ Boolean equations:
◼ S0 = A0B0’+A0’B0 = A0 B0

◼ C1 = A0B0

A0 B0 S0 C1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 5

Half Adder (cont.)

◼ S0 = A0B0’+A0’B0 = A0 B0

◼ C1 = A0B0

1 bit

half adder

A0 B0

C1

S0

A0

B0

S0

C1

Logic DiagramBlock Diagram

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 6

n-bit Addition

◼ Design an n-bit binary adder which performs the
addition of two n-bit binary numbers and generates
a n-bit sum and a carry out.

◼ Example: Let n=4

Cout C3 C2 C1 C0 1 1 0 1 0
 A3 A2 A1 A0 1 1 0 1
 +B3 B2 B1 B0 +1 1 0 1
 ------------------- -------------
 S3 S2 S1 S0 1 0 1 0

◼ Notice that in each column we add 3 bits!

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 7

Full Adder

◼ Combinational circuit that

performs the additions of 3 bits

(two bits and a carry-in bit).

◼ Full Adder is used for addition of

n-bit binary numbers

(for higher-order bit addition).

1 bit

full adder

Ai Bi

Ci+1

Si

Ci

Block Diagram

Ai Bi Ci Si Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Truth Table

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 8

Full Adder (cont.)

◼ K-maps:

◼ Boolean equations:
◼ Ci+1 = AiBi + AiCi + BiCi

◼ Si = AiBi’ Ci’ + Ai’Bi’Ci + Ai’BiCi’ + AiBiCi

 = Ai Bi Ci

◼ You can design full adder circuit directly from the
above equations (requires 3 ANDs and 2 OR for Ci+1
and 2 XORs for Si)

◼ Can we do better?

K-map for

Si

Ai

1

00

0

1 1

1

01 11 10

1

Ai

Ci

Bi BiCi

Ai

1

00

0

1 1

1

01 11 10

1Ai

Ci

Bi

K-map for

Ci+1

BiCi

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 9

Full Adder using 2 Half Adders

◼ A full adder can also be realized with two half adders and an

OR gate, since Ci+1 can also be expressed as:

◼ Ci+1 = AiBi + AiCi + BiCi

 = AiBi + Ai(Bi+Bi’)Ci + (Ai+Ai’)BiCi

 = AiBi + AiBiCi + AiBi’Ci + AiBiCi + Ai’BiCi

 = AiBi(1+Ci +Ci) + Ci(AiBi’ + Ai’Bi)

 = AiBi + Ci(Ai Bi)

◼ Si = Ai Bi Ci

Ai

Bi

Ci

Ci+1

Si

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 10

n-bit Combinational Adders

◼ Perform parallel addition of n-bit binary

numbers.

◼ Ripple Carry Adder

◼ Simple design.

◼ Slow circuit. Why? (you’ll see …)

◼ Carry Lookahead Adder

◼ More complex than ripple-carry adder.

◼ Reduces circuit delay.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 11

n-bit Ripple Carry Adder

◼ Constructed using n 1-bit full adder

blocks in parallel.

◼ Cascade the full adders so that the carry

out from one becomes the carry in to the

next higher bit position.

◼ Example: 4-bit Ripple Carry Adder

C4 C3 C2 C1 C0

 A3 A2 A1 A0

 + B3 B2 B1 B0

 S3 S2 S1 S0

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 12

Ripple Carry Adder Delay

◼ Circuit delay in an n-bit ripple carry adder is

determined by the delay on the carry path from the

LSB (C0) to the MSB (Cn).

◼ Let the delay in a 1-bit FA be Δ. Then, the delay of

an n-bit ripple carry adder is nΔ.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 13

Carry Look-ahead Adder

◼ Alternative design for

a combinational n-bit

adder.

◼ Reduced delay at

the expense of more

complex hardware.

◼ Study this circuit in

detail using the

textbook.

Ripple Carry Delay (RD)
Carry Look-ahead Delay (LD)

LD < RD

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 14

Binary Subtraction

◼ Unsigned numbers: minus sign is not explicitly
represented.

◼ Given 2 binary numbers M and N, find M-N:

◼ Case I: M ≥ N, thus, MSB of Borrow is 0

 B 0 0 0 1 1 0
 M 1 1 1 1 0 30
 N 1 0 0 1 1 19 Result is Correct
 Dif 0 1 0 1 1 11

◼ Case II: N > M, thus MSB of Borrow is 1

 B 1 1 1 0 0 0
 M 1 0 0 1 1 19
 N 1 1 1 1 0 30 Result requires correction!
 Dif 1 0 1 0 1 21

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 15

Binary Subtraction (cont.)

◼ In Case II of the previous example, Dif= 19-30 = 21
= 19-30+2

5
 (not correct).

◼ In general, if N > M, Dif = M-N+2
n
, where n = # bits.

◼ To correct the magnitude of Dif, which should be N-
M, calculate 2

n
-(M-N+2

n
) = N-M (correct).

◼ This is known as the 2’s complement of Dif.

◼ To subtract two n-bit numbers, M-N, in base 2:
◼ Find M-N.

◼ If MSB of Borrow is 0, then M ≥ N. Result is positive and
correct.

◼ If MSB of Borrow is 1, then N > M. Result is negative and
its magnitude must be corrected by subtracting it from 2

n

(find its 2’s complement).

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 16

Another Subtraction Example

◼ Given M = 01100100 and N = 10010110, find M-N.

 B 1 0 0 1 1 1 1 0 0
 M 0 1 1 0 0 1 0 0 100
 N 1 0 0 1 0 1 1 0 150
 Dif 1 1 0 0 1 1 1 0 206 (the result is negative)

 2
n

1 0 0 0 0 0 0 0 0 256

 Dif 1 1 0 0 1 1 1 0 206
 0 0 0 1 1 0 0 1 0 50

 (corrected result, should be read as -50)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 17

Block Diagram for Subtractor

M0M1M2M3

4-bit Subtractor

Selective

2’s Complementer

B

N0N1N2N3

Correct the result if N>M

Enabled when B=1;

otherwise, just pass the

result from the subtractor

Not the best way to implement a subtractor circuit!

Subtract numbers M-N

If B = 1 then N>M

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 18

Block Diagram for

Binary Adder-Subtractor

M0M1M2M3

4-bit Subtractor

Selective

2’s Complementer

B

N0N1N2N3

▪
▪
▪ ▪

▪ ▪
▪ ▪

4-bit Adder

2-to-1 4-line MUX

Result

Sub/Add

Sub/Add=1 → Result=|M-N|

Sub/Add=0 → Result=M+N

Again, not the best way to implement a Sub/Add circuit!

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 19

Complement Representations

◼ There are 2 types of complement

representation of a number in base-2

(binary) system:

◼ 2’s complement

◼ 1’s complement

◼ We have discussed this briefly at the

beginning of the course (see Lecture 1).

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 20

2’s Complement

◼ For a positive n-bit number N, the 2’s complement, 2C(N), is
given by:
◼ 2C(N) = 2

n
- N

◼ Example: N = 1010
◼ 2C(N) = 2

4
- N = 10000 – 10102 = 0110

◼ Example: N = 11111
◼ 2C(N) = 2

5
- N = 100000 – 11111 = 00001

◼ Here’s an easier way to compute the 2’s complement:
1. Leave all least significant 0’s and first 1 unchanged

2. Replace 0 with 1 and 1 with 0 in all remaining higher significant bits.

◼ Examples:

◼ N = 1010 N = 01011000
 0110 10101000

2’s complement on N 2’s complement of N

unchangedcomplement unchangedcomplement

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 21

1’s Complement

◼ For a positive n-bit number N, the 1's complement, 1C(N2), is
given by:
◼ 1C(N) = (2

n
-1) - N

◼ Example: N = 011
◼ 1C(N) = (2

3
-1) - N = 111 – 011 = 100

◼ Example: N = 1010
◼ 1C(N) = (2

4
-1) - N = 1111 – 1010 = 0101

◼ Observation1: 1’s complement can be derived by just
inverting all the bits in the number.

◼ Observation2: Compare 1’s complement with 2’s complement
◼ 2

n
-N = [(2

n
-1) - N] + 1

◼ Thus, the 2’s complement can be obtained by deriving the 1’s
complement and adding 1 to it.
◼ Example:

◼ N = 1001

◼ 2C(N) = 1C(N) + 1 = 0110 + 0001 = 0111

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 22

Subtraction with Complements

◼ To perform the subtraction M - N do:

◼ Take the complement of N, i.e., C(N)

◼ Perform addition M + C(N)

◼ May need to correct the result

◼ We have discussed this briefly at the

beginning of the course (see Lecture 1).

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 23

◼ If we use 2's complements to represent negative numbers:
1. Form RI = M + 2C(N) = M + (2

n
-N) = M – N + 2

n
.

2. If there is a nonzero carry out of the addition, M ≥ N, so discard that
carry and the remaining digits are the result R = M-N.

3. Otherwise, M < N, so take the 2’s complement of
RI (=2

n
- RI = 2

n
- (M – N + 2

n
) = N – M), and attach a minus sign in

front, i.e., the result R is -2C([RI]2) = -(N-M).

◼ A = 1010100 (8410), B = 1000011 (6710)

◼ Find R = A-B:
◼ 2C(B) = 0111101 (6110)

◼ A+2C(B) = 1010100 + 0111101 = 10010001

◼ Discard carry, R = 0010001 (1710)

◼ Find R = B-A:
◼ 2C(A) = 0101100 (4410)

◼ B+2C(A) = 1000011 + 0101100 = 1101111 (no carry, correction req.)

◼ R = -2C(B+2C(A)) = -0010001 (-1710)

Subtraction with 2’s complement

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 24

Subtraction with 1’s complement

◼ If we use 1's complements to represent negative numbers:
1. Form RI = M + 1C(N) = M + (2

n
-1-N) = M – N + 2

n
-1.

2. If there is a nonzero carry out of the addition, M ≥ N, so discard that
carry and add 1 to the remaining digits. The result R = M-N.

3. Otherwise, M < N, so take the 1’s complement of
RI (=2

n
- 1 - RI = 2

n
- 1 - (M – N + 2

n
-1) = N – M), and attach a minus

sign in front, i.e., the result R is -1C([RI]2) = -(N-M).

◼ A = 1010100 (8410), B = 1000011 (6710)

◼ Find R = A-B:
◼ 1C(B) = 0111100 (6010)

◼ A+1C(B) = 1010100 + 0111100 = 10010000

◼ Discard carry and add 1,
R = 0010000 + 1 = 0010001 (1710)

◼ Find R = B-A:
◼ 1C(A) = 0101011

◼ B+1C(A) = 1000011 + 0101011 = 1101110 (no carry, correction
needed)

◼ R = -1C(B+1C(A)) = -0010001 (-17)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 25

Binary Adder/Subtractors

◼ If we perform subtraction using complements
◼ we do addition instead of subtraction operation

◼ we can use an adder with appropriate complementer for
subtraction

◼ Actually, we can use an adder for both addition and
subtraction:
◼ Complement subtrahend for subtraction

◼ Do not complement subtrahend for addition

◼ Thus, to form an adder-subtractor circuit, we only
need a selective complementer and an adder.

◼ The subtraction A-B can be performed as follows:

 A-B = A + 2C(B)
 = A + 1C(B) + 1
 = A + B’ + 1

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 26

4-bit Binary Adder-Subtractor

using 2’s Complement

Selective complementer:

XOR gates act as programmable inverters

Adder

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 27

◼ When S = 0, the circuit performs A + B. The carry in
is 0, and the XOR gates simply pass B untouched.

4-bit Binary Adder-Subtractor (cont.)

S = 0

0

B0
B1B2B3

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 28

◼ When S = 1, the circuit performs A - B , i.e.,
A - B = A + 2C(B) = A + 1C(B) + 1 = A + B’ + 1

4-bit Binary Adder-Subtractor (cont.)

S = 1

1

B0’B1’B2’B3’

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 29

4-bit Binary Adder-Subtractor (cont.)

◼ When we do subtraction, result may need to be corrected

◼ If C4 = 0 and S = 1, we must correct the result S3 … S0.

◼ Thus, we must compute 2’s complement of S3…S0:

◼ Use a specialized 2’s complement circuit or

◼ Use the 4-bit Adder-Subtractor again, with A3…A0=0000, B3…B0 =

S3…S0, and S=1.

B3B2B1B0

4-bit Adder-Subtractor

Selective

2’s Complementer

S

A3A2A1A0

C4

C4’S

S3 S2 S1 S0

R3 R2 R1 R0

Correct the result if B>A

Enabled when C4’S = 1;

otherwise, just pass the

result from Adder-Subtractor

S = 0 “Add”

S = 1 “Sub”

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 30

Signed Binary Numbers

◼ Signed-magnitude representation: Singed numbers are

represented using the MSB of the binary number to indicate

the number’s sign:

◼ If MSB is 0 → number is positive

◼ If MSB is 1 → number is negative

◼ Do not confuse with unsigned numbers!

◼ For example:

◼ -1010 is

◼ 110102 in singed (“-” sing is indicated in MSB = 1)

◼ Another example:

◼ 10112 is

◼ 1110 in unsigned

◼ -310 in signed

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 31

◼ To implement signed-magnitude addition and
subtraction
◼ separate the sign bit from the magnitude bits

◼ treat the magnitude bits as an unsigned number

◼ do ordinary arithmetic

◼ do correction if needed

◼ Example: M:00011001, N:10100101; find M+N
◼ N is negative

◼ so do M-N = 0011001-0100101 =1110100, with end
borrow 1. This implies that M-N is a negative number,

◼ so to correct find its 2’s complement 0001100. Result is
10001100.

Signed-Magnitude

Addition-Subtraction

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 32

Signed-Complement System

◼ To avoid correction of the result, use the
singed-complement representation of numbers
◼ Signed-1’s complement

◼ Signed-2’s complement

◼ Ex.: Use 8-bits to represent -910 and 910

◼ 910 is 000010012 in any of the above representations

◼ -910 is:
◼ 100010012 in singed-magnitude

◼ 111101102 in singed-1’s complement

◼ 111101112 in singed-2’s complement

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 33

Signed-Complement Addition

◼ Addition of two signed numbers in signed-2’s
complement form is obtained
◼ by adding the two numbers including the sign bits.

◼ carry out is discarded”.

◼ Examples: (Assume 5-bit representations)

 0|1010 (+10) 0|1010 (+10) 1|0110 (-10) 1|0110 (-10)
 + 0|0101 (+5) + 1|1011 (-5) + 0|0101 (+5) + 1|1011 (-5)
 0|1111 (+15) 10|0101 (+5) 1|1011 (-5) 11|0001 (-15)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 34

Signed-Complement Subtraction

◼ Subtraction of two signed numbers in signed-2’s
complement form is obtained by
◼ taking the 2’s complement of the subtrahend

including sign bit

◼ add it to the minuend

◼ Discard carry out

◼ Examples: (Assume 5-bit representations)
 0|1010 (+10) 0|1010 (+10) 1|0110 (-10) 1|0110 (-10)
-0|0101 -(+5) - 1|1011 -(-5) - 0|0101 -(+5) -1|1011 -(-5)

 0|1010 (+10) 0|1010 (+10) 1|0110 (-10) 1|0110 (-10)
 +1|1011 +(-5) +0|0101 +(+5) +1|1011 +(-5) +0|0101 +(+5)
 10|0101 (+5) 0|1111 (+15) 11|0001 (-15) 1|1011 (-5)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 35

Binary Adder-Subtractor using 2’s

Complement Signed Numbers

◼ The circuit is simpler (correction is not needed):

B3B2B1B0

4-bit Adder-Subtractor S

A3A2A1A0

C4

S3 S2 S1 S0

S = 0 “Add”

S = 1 “Sub”

B3B2B1B0

4-bit Adder-Subtractor

Selective

2’s Complementer

S

A3A2A1A0

C4

C4’S
S3 S2 S1 S0

R3 R2 R1 R0

S = 0 “Add”

S = 1 “Sub”

Adder-Subtractor of

4-bit unsigned numbers.

Adder-Subtractor of

4-bit signed 2’s complement

numbers

The 4-th bit in the numbers is

interpreted as the sign bit.

Remove the correction

circuit

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 36

The Overflow problem

◼ If the sum of two n-bit numbers results in an n+1 bit

number, then an overflow conditions is said to

occur.

◼ Detection of overflow can be implemented using

either hardware or software.

◼ Detection depends on number system used: signed

or unsigned.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 37

The Overflow problem in

Unsigned System

◼ Addition:

◼ When Carry out is 1 we have overflow.

◼ Subtraction:

◼ Can never occur. Magnitude of the result is always equal

or smaller than the larger of the two numbers.

◼ → Not REALLY a problem!

n-bit Adder/SubtractorV
Cn

• V = 1 indicates overflow condition when adding unsigned numbers.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 38

The Overflow problem in

Signed-2’s Complement

◼ Remember that the MSB is the sign. But, the sign is also added! Thus, a
carry out equal to 1 does not necessarily indicate overflow.

◼ Overflow can occur ONLY when both numbers have the same sign. This
condition can be detected when the carry out (Cn) is different than the
carry at the previous position (Cn-1).

◼ Example 1: Let M=6510 and N=6510 in an 8-bit signed-2’s complement
system.

◼ M = N = 010000012

◼ M+N = 10000010 with Cn=0. This is clearly wrong! Bring Cn as the MSB to
get 0100000102 (13010) which is correct, but requires 9-bits → overflow
occurs.

◼ Example 2: Let M=-6510 and N=-6510 in an 8-bit signed-2’s complement
system.

◼ M = N = 101111112

◼ M+N = 01111110 with Cn=1. This is wrong again! Bring Cn as the MSB to get
1011111102 (-13010) which is correct, but also requires 9-bits → overflow
occurs.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 39

Overflow Detection in

Signed-2’s Complement

◼ Overflow condition is detected by comparing the carry

values into and out of the sign bit (Cn and Cn-1).

n-bit Adder/Subtractor

V

Cn

Cn-1

n-bit Adder/Subtractor with Overflow Detection Logic

• V = 1 indicates overflow condition when adding/subtracting signed-2’s

 complement numbers.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 40

Binary Multiplier

◼ Binary multiplication resembles decimal
multiplication:
◼ n-bit multiplicand is multiplied by each bit of the m-bit

multiplier, starting from LSB, to form m partial products.

◼ Each successive partial product is shifted 1 bit to the left.

◼ Derive result by addition the m rows of partial products.

◼ The resultant product is a binary number that consists of
n + m bits.

◼ Example:
◼ Multiplicand B = (1011)2

◼ Multiplier A = (101)2

◼ Find Product C = B x A:

Multiplicand:

Multiplier:

Product:

x
1011

 101

1011

 0000

 1011

 110111

+

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 41

Half Adders are Sufficient

since there is no Carry-in

in addition to the two inputs

to sum

2-bit by 2-bit Binary Multiplier

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 42

4 bit by 3 bit yields a

7 bit result

4-bit by 3-bit Binary Multiplier

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 43

Other Arithmetic Functions

◼ Incrementing

◼ Decrementing

◼ Multiplication by Constant

◼ Division by Constant

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 44

Increment by 1

0 0 0 1A3 A2 A1 A0

0

=

0 0 0 1 A0A1A2A3

0

S1,2,3 = Ai Ci

C2,3 = AiCi

A0A1
A2A3

Si = Ai Bi Ci

Ci+1 = AiBi + AiCi + BiCi

S0S1
S2S3

C1
C2

C3

S0 = A0’

C1 = A0

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 45

Decrement by 1

0 0 0 1A3 A2 A1 A0

1

=

1 1 1 0 A0A1A2A3

1

S1,2,3 = (Ai Ci)’

C2,3 = Ai + Ci

A0A1
A2A3

Si = Ai Bi Ci

Ci+1 = AiBi + AiCi + BiCi

S0S1
S2S3

C1
C2

C3

S0 = A0’

C1 = A0

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 46

Multiplication/Division by constant

‘0’

A0A1A2A3

S0S1S2S3S4

Multiplication by 2 (shift left)

Multiplication by 2n

‘0…0’

n ‘zeros’

A0A1A2A3

S0Sn-1

Division by 2 (shift right)

Division by 2n

‘0’

A0A1A2A3

x

S0S1S2S3

Division by 2n

‘0…0’
…

xx

A0A1A2A3

S0S1S2Sn+1
SnSn+1Sn+2Sn+3

	Slide 1: Combinational Logic Design Arithmetic Functions and Circuits
	Slide 2: Overview
	Slide 3: 1-bit Addition
	Slide 4: Half Adder
	Slide 5: Half Adder (cont.)
	Slide 6: n-bit Addition
	Slide 7: Full Adder
	Slide 8: Full Adder (cont.)
	Slide 9: Full Adder using 2 Half Adders
	Slide 10: n-bit Combinational Adders
	Slide 11: n-bit Ripple Carry Adder
	Slide 12: Ripple Carry Adder Delay
	Slide 13: Carry Look-ahead Adder
	Slide 14: Binary Subtraction
	Slide 15: Binary Subtraction (cont.)
	Slide 16: Another Subtraction Example
	Slide 17: Block Diagram for Subtractor
	Slide 18: Block Diagram for Binary Adder-Subtractor
	Slide 19: Complement Representations
	Slide 20: 2’s Complement
	Slide 21: 1’s Complement
	Slide 22: Subtraction with Complements
	Slide 23: Subtraction with 2’s complement
	Slide 24: Subtraction with 1’s complement
	Slide 25: Binary Adder/Subtractors
	Slide 26: 4-bit Binary Adder-Subtractor using 2’s Complement
	Slide 27: 4-bit Binary Adder-Subtractor (cont.)
	Slide 28: 4-bit Binary Adder-Subtractor (cont.)
	Slide 29: 4-bit Binary Adder-Subtractor (cont.)
	Slide 30: Signed Binary Numbers
	Slide 31: Signed-Magnitude Addition-Subtraction
	Slide 32: Signed-Complement System
	Slide 33: Signed-Complement Addition
	Slide 34: Signed-Complement Subtraction
	Slide 35: Binary Adder-Subtractor using 2’s Complement Signed Numbers
	Slide 36: The Overflow problem
	Slide 37: The Overflow problem in Unsigned System
	Slide 38: The Overflow problem in Signed-2’s Complement
	Slide 39: Overflow Detection in Signed-2’s Complement
	Slide 40: Binary Multiplier
	Slide 41
	Slide 42
	Slide 43: Other Arithmetic Functions
	Slide 44: Increment by 1
	Slide 45: Decrement by 1
	Slide 46: Multiplication/Division by constant

