

Combinational Logic Design

 Arithmetic Functions and Circuits
Overview

- Binary Addition
- Half Adder
- Full Adder
- Ripple Carry Adder
- Carry Look-ahead Adder
- Binary Subtraction
- Binary Subtractor
- Binary Adder-Subtractor
- Subtraction with Complements
- Complements (2's complement and 1's complement)
- Binary Adder-Subtractor
- Signed Binary Numbers
- Signed Numbers
- Signed Addition/Subtraction
- Overflow Problem
- Binary Multipliers
- Other Arithmetic Functions

1-bit Addition

- Performs the addition of two binary bits.
- Four possible operations:
- $0+0=0$
- $0+1=1$
- $1+0=$
- 1+1=10
- Circuit implementation requires 2 outputs; one to indicate the sum and another to indicate the carry.

Half Adder

- Performs 1-bit addition.
- Inputs: $\mathrm{A}_{0}, \mathrm{~B}_{0}$
- Outputs: $\mathrm{S}_{0}, \mathrm{C}_{1}$
- Index indicates significance, 0 is for LSB and 1 is for the next higher significant bit.
- Boolean equations:
- $\mathrm{S}_{0}=\mathrm{A}_{0} \mathrm{~B}_{0}{ }^{\prime}+\mathrm{A}_{0}{ }^{\prime} \mathrm{B}_{0}=\mathrm{A}_{0} \oplus \mathrm{~B}_{0}$
- $\mathrm{C}_{1}=\mathrm{A}_{0} \mathrm{~B}_{0}$

Half Adder (cont.)

- $\mathrm{S}_{0}=\mathrm{A}_{0} \mathrm{~B}_{0}{ }^{\prime}+\mathrm{A}_{0}{ }^{\prime} \mathrm{B}_{0}=\mathrm{A}_{0} \oplus \mathrm{~B}_{0}$
- $\mathrm{C}_{1}=\mathrm{A}_{0} \mathrm{~B}_{0}$

Block Diagram

Logic Diagram

n-bit Addition

- Design an n-bit binary adder which performs the addition of two n-bit binary numbers and generates a n-bit sum and a carry out.
- Example: Let $\mathrm{n}=4$
- Notice that in each column we add 3 bits!

Full Adder

- Combinational circuit that performs the additions of 3 bits (two bits and a carry-in bit).
- Full Adder is used for addition of n-bit binary numbers (for higher-order bit addition).

Truth Table				
A_{i} B_{i} C_{i} S_{i} C_{i+1} 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1				

Full Adder (cont.)

- K-maps:

K-map for S_{i}

K-map for
$\mathrm{C}_{\mathrm{i}+1}$

- Boolean equations:

$$
\begin{aligned}
=C_{i+1} & =A_{i} B_{i}+A_{i} C_{i}+B_{i} C_{i} \\
=S_{i} & =A_{i} B_{i}^{\prime} C_{i}^{\prime}+A_{i}^{\prime} B_{i}^{\prime} C_{i}+A_{i}^{\prime} B_{i} C_{i}^{\prime}+A_{i} B_{i} C_{i} \\
& =A_{i} \oplus B_{i} \oplus C_{i}
\end{aligned}
$$

- You can design full adder circuit directly from the above equations (requires 3 ANDs and 2 OR for $\mathrm{C}_{\mathrm{i}+1}$ and 2 XORs for S_{i})
- Can we do better?

Full Adder using 2 Half Adders

- A full adder can also be realized with two half adders and an OR gate, since C_{i+1} can also be expressed as:
- $C_{i+1}=A_{i} B_{i}+A_{i} C_{i}+B_{i} C_{i}$
$=A_{i} B_{i}+A_{i}\left(B_{i}+B_{i}^{\prime}\right) C_{i}+\left(A_{i}+A_{i}^{\prime}\right) B_{i} C_{i}$
$=A_{i} B_{i}+A_{i} B_{i} C_{i}+A_{i} B_{i}{ }^{\prime} C_{i}+A_{i} B_{i} C_{i}+A_{i}{ }^{\prime} B_{i} C_{i}$
$=A_{i} B_{i}\left(1+C_{i}+C_{i}\right)+C_{i}\left(A_{i} B_{i}^{\prime}+A_{i}^{\prime} B_{i}\right)$
$=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)$
- $S_{i}=A_{i} \oplus B_{i} \oplus C_{i}$

n-bit Combinational Adders

- Perform parallel addition of n-bit binary numbers.
- Ripple Carry Adder
- Simple design.
- Slow circuit. Why? (you'll see ...)
- Carry Lookahead Adder
- More complex than ripple-carry adder.
- Reduces circuit delay.

n-bit Ripple Carry Adder

- Constructed using n 1-bit full adder blocks in parallel.
- Cascade the full adders so that the carry out from one becomes the carry in to the next higher bit position.
- Example: 4-bit Ripple Carry Adder

Ripple Carry Adder Delay

- Circuit delay in an n-bit ripple carry adder is determined by the delay on the carry path from the LSB $\left(\mathrm{C}_{0}\right)$ to the MSB $\left(\mathrm{C}_{\mathrm{n}}\right)$.
- Let the delay in a 1-bit FA be Δ. Then, the delay of an n-bit ripple carry adder is $n \Delta$.

Carry Look-ahead Adder

- Alternative design for a combinational n -bit adder.
- Reduced delay at the expense of more complex hardware.
$\leftarrow-$ Ripple Carry Delay (RD)
\leftarrow - Carry Look-ahead Delay (LD)
LD < RD
- Study this circuit in detail using the textbook.

Binary Subtraction

- Unsigned numbers: minus sign is not explicitly represented.
- Given 2 binary numbers M and N , find $\mathrm{M}-\mathrm{N}$:
- Case I: $\mathrm{M} \geq \mathrm{N}$, thus, MSB of Borrow is 0

Result is Correct

- Case II: $\mathrm{N}>\mathrm{M}$, thus MSB of Borrow is 1

$$
\begin{array}{ll}
\text { B } 1110000 & \\
\mathrm{M}-10011 & \\
\mathrm{~N} \\
\mathrm{Dif} & 11010 \\
\hline 10101 & -\frac{30}{21}
\end{array}
$$

Result requires correction!

Binary Subtraction (cont.)

- In Case II of the previous example, Dif= 19-30 = 21 $=19-30+2^{5}$ (not correct).
- In general, if $N>M$, Dif $=M-N+2^{n}$, where $n=\#$ bits.
- To correct the magnitude of Dif, which should be N M , calculate $2^{n}-\left(\mathrm{M}-\mathrm{N}+2^{n}\right)=\mathrm{N}-\mathrm{M}$ (correct).
- This is known as the 2's complement of Dif.
- To subtract two n-bit numbers, M-N, in base 2 :
- Find M-N.
- If MSB of Borrow is 0 , then $\mathrm{M} \geq \mathrm{N}$. Result is positive and correct.
- If MSB of Borrow is 1 , then $\mathrm{N}>\mathrm{M}$. Result is negative and its magnitude must be corrected by subtracting it from $2^{\text {n }}$ (find its 2's complement).

Another Subtraction Example

- Given $\mathrm{M}=01100100$ and $\mathrm{N}=10010110$, find $\mathrm{M}-\mathrm{N}$.

$$
\begin{aligned}
& \text { B } 100111100 \\
& \begin{array}{lrrr}
\mathrm{M} & -11100100 & -100 \\
\mathrm{~N} & -10010110 & \underline{150} \\
\mathrm{Dif} & 11001110 & 206
\end{array} \\
& \text { (the result is negative) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (corrected result, should be read as -50) }
\end{aligned}
$$

Block Diagram for Subtractor

Not the best way to implement a subtractor circuit!

Block Diagram for Binary Adder-Subtractor

Again, not the best way to implement a Sub/Add circuit!

Complement Representations

- There are 2 types of complement representation of a number in base-2 (binary) system:
- 2's complement
- 1's complement
- We have discussed this briefly at the beginning of the course (see Lecture 1).

2's Complement

- For a positive n-bit number N, the 2 's complement, $2 \mathrm{C}(N)$, is given by:
- $2 \mathrm{C}(\mathrm{N})=2^{n}-N$
- Example: $N=1010$
- $2 \mathrm{C}(\mathrm{M})=2^{4}-N=10000-1010_{2}=0110$
- Example: $N=11111$
- $2 C(M)=2^{5}-N=100000-11111=00001$
- Here's an easier way to compute the 2's complement:

1. Leave all least significant 0 's and first 1 unchanged
2. Replace 0 with 1 and 1 with 0 in all remaining higher significant bits.

- Examples:
complement unchanged
- N = 1010

2's complement on N

1's Complement

- For a positive n-bit number N, the 1 's complement, $1 \mathrm{C}\left(N_{2}\right)$, is given by:
- $1 \mathrm{C}(\mathrm{N})=\left(2^{n-1}\right)-N$
- Example: $N=011$
- $1 \mathrm{C}(\mathrm{M})=\left(2^{3}-1\right)-N=111-011=100$
- Example: $N=1010$
- $1 \mathrm{C}(N)=\left(2^{4}-1\right)-N=1111-1010=0101$
- Observation1: 1's complement can be derived by just inverting all the bits in the number.
- Observation2: Compare 1's complement with 2's complement - $2^{n}-N=\left[\left(2^{n}-1\right)-N\right]+1$
- Thus, the 2's complement can be obtained by deriving the 1 's complement and adding 1 to it.
- Example:
- $N=1001$
- $2 \mathrm{C}(\mathrm{N})=1 \mathrm{C}(\mathrm{N})+1=0110+0001=0111$

Subtraction with Complements

- To perform the subtraction $\mathrm{M}-\mathrm{N}$ do: - Take the complement of N, i.e., C(N)
- Perform addition $\mathrm{M}+\mathrm{C}(\mathrm{N})$ - May need to correct the result
- We have discussed this briefly at the beginning of the course (see Lecture 1).

Subtraction with 2's complement

- If we use 2's complements to represent negative numbers:

1. Form $R_{l}=M+2 \mathrm{C}(N)=M+\left(2^{n}-N\right)=M-N+2^{n}$.
2. If there is a nonzero carry out of the addition, $\mathrm{M} \geq \mathrm{N}$, so discard that carry and the remaining digits are the result $\mathrm{R}=M-N$.
3. Otherwise, $\mathrm{M}<\mathrm{N}$, so take the 2's complement of
$R_{l}\left(=2^{n}-R_{l}=2^{n}-\left(M-N+2^{n}\right)=N-M\right)$, and attach a minus sign in front, i.e., the result R is $-2 C\left([R]_{2}\right)=-(N-M)$.

- $A=1010100\left(84_{10}\right), B=1000011\left(67_{10}\right)$
- Find $R=A-B$:
- $2 C(B)=0111101\left(61_{10}\right)$
- $A+2 C(B)=1010100+0111101=10010001$
- Discard carry, $\mathrm{R}=0010001\left(17_{10}\right) \checkmark$
- Find $R=B-A$:
- $2 C(A)=0101100\left(44_{10}\right)$
- $B+2 C(A)=1000011+0101100=1101111$ (no carry, correction req.)
- $R=-2 C(B+2 C(A))=-0010001\left(-17_{10}\right) \checkmark$

Subtraction with 1's complement

- If we use 1 's complements to represent negative numbers:

1. Form $R_{l}=M+1 \mathrm{C}(N)=M+\left(2^{n}-1-N\right)=M-N+2^{n}-1$.
2. If there is a nonzero carry out of the addition, $M \geq N$, so discard that carry and add 1 to the remaining digits. The result $\mathrm{R}=M-N$.
3. Otherwise, $\mathrm{M}<\mathrm{N}$, so take the 1 's complement of $R_{l}\left(=2^{n}-1-R_{l}=2^{n}-1-\left(M-N+2^{n}-1\right)=N-M\right)$, and attach a minus sign in front, i.e., the result R is $-1 C\left([R]_{2}\right)=-(N-M)$.

- $A=1010100\left(84_{10}\right), B=1000011\left(67_{10}\right)$
- Find $R=A-B$:
- $1 C(B)=0111100\left(60_{10}\right)$
- $A+1 C(B)=1010100+0111100=10010000$
- Discard carry and add 1, $R=0010000+1=0010001\left(17_{10}\right) \checkmark$
- Find $R=B-A$:
- $1 \mathrm{C}(\mathrm{A})=0101011$
- $B+1 C(A)=1000011+0101011=1101110$ (no carry, correction needed)
- $R=-1 C(B+1 C(A))=-0010001(-17) \checkmark$

Binary Adder/Subtractors

- If we perform subtraction using complements
- we do addition instead of subtraction operation
- we can use an adder with appropriate complementer for subtraction
- Actually, we can use an adder for both addition and subtraction:
- Complement subtrahend for subtraction
- Do not complement subtrahend for addition
- Thus, to form an adder-subtractor circuit, we only need a selective complementer and an adder.
- The subtraction $A-B$ can be performed as follows:

$$
\begin{aligned}
A-B & =A+2 C(B) \\
& =A+1 C(B)+1 \\
& =A+B^{\prime}+1
\end{aligned}
$$

4-bit Binary Adder-Subtractor using 2's Complement

Selective complementer:

XOR gates act as programmable inverters

4-bit Binary Adder-Subtractor (cont.)

- When $S=0$, the circuit performs $\boldsymbol{A}+\boldsymbol{B}$. The carry in is 0 , and the XOR gates simply pass B untouched.

4-bit Binary Adder-Subtractor (cont.)

- When $S=1$, the circuit performs $\boldsymbol{A}-\boldsymbol{B}$, i.e., $A-B=A+2 C(B)=A+1 C(B)+1=A+B^{\prime}+1$

4-bit Binary Adder-Subtractor (cont.)

- When we do subtraction, result may need to be corrected - If $\mathrm{C}_{4}=0$ and $\mathrm{S}=1$, we must correct the result $\mathrm{S}_{3} \ldots \mathrm{~S}_{0}$.
- Thus, we must compute 2 's complement of $S_{3} \ldots S_{0}$:
- Use a specialized 2's complement circuit or
- Use the 4-bit Adder-Subtractor again, with $\mathrm{A}_{3} \ldots \mathrm{~A}_{0}=0000, \mathrm{~B}_{3} \ldots \mathrm{~B}_{0}=$ $\mathrm{S}_{3} \ldots \mathrm{~S}_{0}$, and $\mathrm{S}=1$.

Correct the result if $\mathrm{B}>\mathrm{A}$
Enabled when $\mathrm{C}_{4}{ }^{\prime} \mathrm{S}=1$; otherwise, just pass the result from Adder-Subtractor

Signed Binary Numbers

- Signed-magnitude representation: Singed numbers are represented using the MSB of the binary number to indicate the number's sign:
- If MSB is $0 \rightarrow$ number is positive
- If MSB is $1 \rightarrow$ number is negative
- Do not confuse with unsigned numbers!
- For example:
- -10_{10} is
- 11010_{2} in singed ("-" sing is indicated in MSB = 1)
- Another example:
- 1011_{2} is
- 11_{10} in unsigned
- -3_{10} in signed

Signed-Magnitude Addition-Subtraction

- To implement signed-magnitude addition and subtraction
- separate the sign bit from the magnitude bits
- treat the magnitude bits as an unsigned number
- do ordinary arithmetic
- do correction if needed
- Example: M:00011001, N:10100101; find $\mathrm{M}+\mathrm{N}$
- N is negative
- so do $\mathrm{M}-\mathrm{N}=0011001-0100101=1110100$, with end borrow 1 . This implies that $\mathrm{M}-\mathrm{N}$ is a negative number,
- so to correct find its 2's complement 0001100. Result is 10001100.

Signed-Complement System

- To avoid correction of the result, use the singed-complement representation of numbers
- Signed-1's complement
- Signed-2's complement
- Ex.: Use 8-bits to represent -9_{10} and 9_{10}
- 9_{10} is 00001001_{2} in any of the above representations
- -9_{10} is:
- 10001001_{2} in singed-magnitude
- 111101102 in singed-1's complement
- 11110111_{2} in singed-2's complement

Signed-Complement Addition

- Addition of two signed numbers in signed-2's complement form is obtained
- by adding the two numbers including the sign bits.
- carry out is discarded".
- Examples: (Assume 5-bit representations)

$$
\begin{array}{r}
0 \mid 1010(+10) \\
+\frac{0 \mid 0101}{0 \mid 1111} \frac{(+5)}{(+15)}
\end{array} \begin{array}{r}
+1 \mid 1011(+10) \\
+10 \mid 0101 \\
(-5) \\
(+5)
\end{array} \frac{1 \mid 0110(-10)}{1 \mid 1011} \frac{1 \mid 0110(-10)}{(-5)} \quad \begin{array}{r}
+1 \left\lvert\, 1011\left(\frac{(-5)}{11 \mid 0001(-15)}\right.\right.
\end{array}
$$

Signed-Complement Subtraction

- Subtraction of two signed numbers in signed-2's complement form is obtained by
- taking the 2's complement of the subtrahend including sign bit
- add it to the minuend
- Discard carry out
- Examples: (Assume 5-bit representations)

$$
\begin{array}{ccccccc}
0 \mid 1010 & (+10) & 0 \mid 1010 & (+10) & 1 \mid 0110 & (-10) & 1 \mid 0110
\end{array}(-10)
$$

Binary Adder-Subtractor using 2's Complement Signed Numbers

- The circuit is simpler (correction is not needed):

Adder-Subtractor of 4-bit unsigned numbers.

Remove the correction circuit

Adder-Subtractor of 4-bit signed 2's complement numbers
The 4-th bit in the numbers is interpreted as the sign bit.

The Overflow problem

- If the sum of two n-bit numbers results in an $n+1$ bit number, then an overflow conditions is said to occur.
- Detection of overflow can be implemented using either hardware or software.
- Detection depends on number system used: signed or unsigned.

The Overflow problem in Unsigned System

- Addition:
- When Carry out is 1 we have overflow.
- Subtraction:
- Can never occur. Magnitude of the result is always equal or smaller than the larger of the two numbers.
- \rightarrow Not REALLY a problem!

- $\mathrm{V}=1$ indicates overflow condition when adding unsigned numbers.

The Overflow problem in Signed-2's Complement

- Remember that the MSB is the sign. But, the sign is also added! Thus, a carry out equal to 1 does not necessarily indicate overflow.
- Overflow can occur ONLY when both numbers have the same sign. This condition can be detected when the carry out $\left(\mathrm{C}_{\mathrm{n}}\right)$ is different than the carry at the previous position $\left(\mathrm{C}_{\mathrm{n}-1}\right)$.
- Example 1: Let $\mathrm{M}=65_{10}$ and $\mathrm{N}=65_{10}$ in an 8 -bit signed-2's complement system.
- $\mathrm{M}=\mathrm{N}=01000001_{2}$
- $M+N=10000010$ with $C_{n}=0$. This is clearly wrong! Bring C_{n} as the MSB to get $010000010_{2}\left(130_{10}\right)$ which is correct, but requires 9 -bits \rightarrow overflow occurs.
- Example 2: Let $\mathrm{M}=-65_{10}$ and $\mathrm{N}=-65_{10}$ in an 8 -bit signed-2's complement system.
- $\mathrm{M}=\mathrm{N}=10111111_{2}$
- $M+N=01111110$ with $C_{n}=1$. This is wrong again! Bring C_{n} as the MSB to get $101111110_{2}\left(-130_{10}\right)$ which is correct, but also requires 9 -bits \rightarrow overflow occurs.

Overflow Detection in Signed-2's Complement

- Overflow condition is detected by comparing the carry values into and out of the sign bit (C_{n} and $\mathrm{C}_{\mathrm{n}-1}$).

n-bit Adder/Subtractor with Overflow Detection Logic

- $\mathrm{V}=1$ indicates overflow condition when adding/subtracting signed-2's complement numbers.

Binary Multiplier

- Binary multiplication resembles decimal multiplication:
- n-bit multiplicand is multiplied by each bit of the m-bit multiplier, starting from LSB, to form m partial products.
- Each successive partial product is shifted 1 bit to the left.
- Derive result by addition the m rows of partial products.
- The resultant product is a binary number that consists of $n+m$ bits.
- Example:
- Multiplicand $\mathbf{B}=(1011)_{2}$
- Multiplier $\quad \mathrm{A}=(101)_{2}$
- Find Product $\mathbf{C}=\mathbf{B} \times \mathbf{A}$:

Multiplicand:

2-bit by 2-bit Binary Multiplier

		B_{1}	$\mathrm{~B}_{0}$
		$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$
		$\mathrm{~A}_{0} \mathrm{~B}_{1}$	$\mathrm{~A}_{0} \mathrm{~B}_{0}$
	$\mathrm{~A}_{1} \mathrm{~B}_{1}$	$\mathrm{~A}_{1} \mathrm{~B}_{0}$	
C_{3}	C_{2}	C_{1}	C_{0}

Half Adders are Sufficient since there is no Carry-in in addition to the two inputs to sum

4-bit by 3-bit Binary Multiplier

Other Arithmetic Functions

- Incrementing
- Decrementing
- Multiplication by Constant
- Division by Constant

Increment by 1

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Decrement by 1

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Multiplication/Division by constant

Multiplication by 2 (shift left)

Multiplication by 2^{n}

Division by 2 (shift right)

Division by 2^{n}

