Combinational Logic Circuits
 Part III -Theoretical Foundations

Overview

- Simplifying Boolean Functions
- Algebraic Manipulation
- Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables)
- Systematic Approach for Simplifying Functions using K-maps
- Implicants, Prime Implicants (PIs), and Essential Prime Implicants
- Simplifying Functions using Essential and Nonessential Pls
- Don't-care Conditions and Simplification using Don't Cares

Boolean Functions as Equations

- Truth table and K-map of a Boolean function are unique representations
- However, representing a Boolean function as an equation can be done in many different ways
- Canonical and Standard forms
- Example:
- $F 1(X, Y, Z)=X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X^{\prime} \cdot Y \cdot Z^{\prime}+X \cdot Y \cdot Z^{\prime}$
- $F 2(X, Y, Z)=X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+Y \cdot Z^{\prime}$
- $F 3(X, Y, Z)=X^{\prime} \cdot Z^{\prime}+X \cdot Y \cdot Z^{\prime}$

X	Y	Z	F 1	F 2	F 3	F 4
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0

- $F 4(X, Y, Z)=X^{\prime} \cdot Z^{\prime}+Y \cdot Z^{\prime}$
- The corresponding truth tables for F1 to F4 are identical!
- Thus, F1 = F2 = F3 = F4
- However, F2 and F3 are simpler than F1 and F4 is simpler than the others.

How do we simplify Boolean functions?

Simplifying a Boolean Function

- Why simplifying Boolean functions?
- Boolean functions are used to design digital logic circuits
- Simpler Boolean function can mean cheaper, smaller, faster circuit
- Three main approaches to simplify Boolean functions:
- Algebraic Manipulations
- using the Boolean Algebra as a tool for simplifications
- Karnaugh Map Manipulations
- very easy graphical method to simplify Boolean functions
- it works for functions of up to 4 variables!
- Algorithmic Techniques
- used to program a computer to do the simplifications

Algebraic Manipulation

- We use basic identities, properties, and theorems of the Boolean Algebra to manipulate and simplify Boolean functions
- Example1: Simplify F = X'YZ + X'YZ' + XZ

$$
\begin{array}{rlrl}
\hline F & =X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z & & - \text {-- apply identity } 14 \\
& =X^{\prime} Y\left(Z+Z^{\prime}\right)+X Z & - \text {-- apply identity } 7 \\
& =X^{\prime} Y \bullet 1+X Z & & - \text { apply identity } 2 \\
& =X^{\prime} Y+X Z &
\end{array}
$$

- Example2: Simplify G = X'Y'Z' + X'YZ' + XYZ'

$$
\begin{aligned}
& F=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y Z^{\prime} \\
& \text {-- apply identity } 5 \\
& =X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Y Z^{\prime} \quad--\quad \text { apply identity } 14 \\
& =X^{\prime} Z^{\prime}\left(Y^{\prime}+Y\right)+Y Z^{\prime}\left(X^{\prime}+X\right) \quad-- \text { apply identity } 7 \\
& =X^{\prime} Z^{\prime} \cdot 1+Y Z^{\prime} \cdot 1 \quad-- \text { apply identity } 2 \\
& =X^{\prime} Z^{\prime}+Y Z^{\prime}
\end{aligned}
$$

Karnaugh Map Manipulations

- We can use a K-map to simplify a Boolean function of 2, 3, or 4 variables as Sum-Of-Products
- Procedure:
- Enter 1 s in the K-map for each minterm (product term) in the function
- Group adjacent K-map cells containing 1s to obtain a product term with fewer variables
- The number of cells in a group must be a power of $2(2,4,8, \ldots)$!
- Try to group as many as possible cells containing 1 s in a group
- Such group corresponds to a simpler product term!
- Try to make as less as possible groups to cover all cells containing 1 s
- This corresponds to fewer product terms in the simplified function!
- Do not forget to handle boundary cells for K-maps of 3 or 4 variables when you do the grouping
- Important: The result after the simplification may not be unique!

Simplifying a Boolean Function using 2-variable K-map (examples)

$$
\begin{aligned}
& \text { Given functions: } \\
& F 1(X, Y)=\sum m(0,1)= \\
& =X^{\prime} Y^{\prime}+X^{\prime} Y
\end{aligned}
$$

$\mathrm{F} 2(\mathrm{X}, \mathrm{Y})=\sum \mathrm{m}(0,3)=$
$=X^{\prime} Y^{\prime}+X Y$
$\mathrm{F} 3(\mathrm{X}, \mathrm{Y})=\Sigma \mathrm{m}(0,2,3)=$
$=X^{\prime} Y^{\prime}+X Y^{\prime}+X Y$
$\mathrm{F} 4(\mathrm{X}, \mathrm{Y})=\sum \mathrm{m}(0,1,2,3)=$ $=X^{\prime} Y^{\prime}+X^{\prime} Y+X Y^{\prime}+X Y$

Simplified functions:

$F 1(X, Y)=X^{\prime}$
$F 2(X, Y)=X^{\prime} Y^{\prime}+X Y$
$F 3(X, Y)=X+Y^{\prime}$
$F 4(X, Y)=1$

Simplifying a Boolean Function using 3-variable K-map (groupings)

- minterm			
	$\mathrm{L}_{1} \mathrm{~m}_{1}{ }^{1}$	$\mathrm{I}^{-\mathrm{m}_{3}^{-1}}$	
1- $\overline{\mathrm{m}_{4}^{-1}}$	$\square^{-} \bar{m}_{5}^{-1}$	$1 \bar{m}_{7}^{-7}$! \bar{m}_{6}^{-1}

- Group of 2 adjacent cells gives product term of two literals.

- Group of 4 adjacent cells gives product term of one literal.

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Simplifying a Boolean Function using 3-variable K-map (examples)

Given functions:

$\mathrm{F} 1(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(1,2,4,7)$

Simplified functions:
Simplification is not possible
$\mathrm{F} 2(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(2,3,4,5)$
$\mathrm{F} 3(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,2,4,6)$

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Simplifying a Boolean Function using 3-variable K-map (more examples)

Given functions:

$\mathrm{F} 5(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{\Sigma m}(3,4,6,7)$

F6(X,Y,Z) $=\Sigma \mathrm{m}(0,2,4,5,6)$

$F 7(X, Y, Z)=Z+X^{\prime} Y$
$F 8(X, Y, Z)=\Sigma m(1,3,4,5,6)$
$F 6(X, Y, Z)=Z^{\prime}+X Y^{\prime}$
$\mathrm{F} 7(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(1,2,3,5,7)$

Not unique solution
Fall 2023

Simplifying a Boolean Function using 4-variable K-map (grouping examples)

- Group of 2 adjacent cells gives product term of 3 literals.

- Group of 8 adjacent cells gives

- Group of 4 adjacent cells gives product term of 2 literals.

- Group of all cells gives

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Simplifying a Boolean Function using 4-variable K-map (examples)

Given function:

$\mathrm{F} 1(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$
$=\Sigma m(0,1,2,4,5,7,8,9,10,12,13)$

Simplified function:

$\mathrm{F} 1(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$
$=Y^{\prime}+X^{\prime} Z^{\prime}+W^{\prime} X Z$

Given function:
$\mathrm{F} 2(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$
$=\Sigma m(0,1,2,4,5,6,8$, $9,12,13,14)$

Simplified function:

$\mathrm{F} 2(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$
$=Y^{\prime}+W^{\prime} Z^{\prime}+X Z^{\prime}$

Given function:
$F 3(W, X, Y, Z)=W^{\prime} X^{\prime} Y^{\prime}+$ $X^{\prime} Y Z^{\prime}+W X^{\prime} Y^{\prime}+W^{\prime} X Y Z '$

Simplified function:
F3(W,X,Y,Z) =
$=X^{\prime} Y^{\prime}+X^{\prime} Z^{\prime}+W^{\prime} Y Z^{\prime}$

Simplifying with K-maps Systematically

- You have seen intuitive procedure on how to group cells and simplify Boolean functions!
- Can we have more systematic procedure?
- YES, if we introduce the terms:
- implicant
- prime implicant
- essential prime implicant
- An Implicant I of a function $F()$ is a product term which implies $F()$, i.e., $F()=1$ whenever $\mathbf{I}=1$
- All minterms of a function F are implicants of F
- All rectangles in a K-map made up of cells containing 1s correspond to implicants

Prime Implicant (PI)

- An implicant I of F is called a Prime Implicant (PI) if the removal of any literal from I results in a product term that is NOT an implicant of F
- The above should hold for all literals in I
- Thus, a prime implicant is not contained in any simpler implicant
- The set of prime implicants corresponds to
- all rectangles, in a K-map, made up of cells containing 1s that satisfy the following condition:
- each rectangle is not contained in a larger rectangle

Example of Prime Implicants (PIs)

- Consider function F(W,X,Y,Z) whose K-map is shown at right
- Y'Z' is not a prime implicant because it is contained in Z^{\prime}
- WXY is not a prime implicant because it is contained in $X Y$
- Product terms Z', XY, WX'Y' are ${ }_{w}$ prime implicants. Why?
- Consider the term XY and obtain terms by deleting any literal:

- We get two terms: term X and term Y
- Both terms are NOT implicants of F
- Thus, the term XY is prime implicant

Essential Prime Implicants (EPIs)

- If a minterm of function F is included in ONLY one prime implicant pi, then pi is an Essential Prime Implicant of F
- An essential prime implicant MUST appear in all possible SOP expressions of function F
- To find essential prime implicants:
- Generate all prime implicants of a function
- Select those prime implicants that contain at least one 1 that is not covered by any other prime implicant

- For the previous example, the Pls are $Z^{\prime}, X Y$, and $W X^{\prime} Y^{\prime}$; all of these are essential.

Essential Prime Implicants (examples)

- Consider function $\mathrm{F} 1(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$ whose K -map is shown below:
- All Prime Implicants are: $X Z^{\prime}, W^{\prime} X Y^{\prime}, W^{\prime} Y^{\prime} Z, X^{\prime} Y^{\prime} Z$, WX'Z, WX'Y, WYZ'
- Essential Prime Implicants are: XZ'

- Consider function $\mathrm{F} 2(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$ whose K -map is shown below:
- All Prime Implicants are: XZ', W'Z, W'X
- Essential Prime Implicants are: XZ' and W'Z

Systematic Procedure for Simplifying Boolean Functions

Given : The K-map of a Boolean function
Obtain: The simplest SOP expression for the function

1. Find all prime implicants (PIs) of the function
2. Select all essential Pls
3. For remaining minterms not included in the essential Pls, select a set of other Pls to cover them, with minimal overlap in the set
4. The resulting simplified function is the logical OR of the product terms selected above

Example

- $F(W, X, Y, Z)=$
$\sum m(0,1,2,3,4,5,7,14,15)$.
- All prime implicants (PI) are: W'X', W'Y', W'Z, XYZ, WXY
- Select all essential PIs:
 W'X', W'Y', WXY
- Select other Pls to cover all 1s with minimal overlap:
- Possibilities: W'Z or XYZ
- We select W'Z because it is simpler.
- $F(W, X, Y, Z)=W^{\prime} X^{\prime}+W^{\prime} Y^{\prime}+W X Y+W^{\prime} Z$

Other Examples

- Consider function $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$ whose K -map is shown at right.
- All prime implicants are:
- W'X'Y'Z', WXY', WX'Y, WXZ, WYZ, XY'Z
- Essential prime implicants are:
- W'X'Y'Z', WXY', WX'Y, XY'Z
- Nonessential prime implicants are:
- WXZ, WYZ

- Simplified function (solution not unique):
- $F=W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}+W X Y^{\prime}+W X^{\prime} Y+X Y^{\prime} Z+W X Z$
- $F=W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}+W X Y^{\prime}+W X^{\prime} Y+X Y^{\prime} Z+W Y Z$

Other Examples (cont.)

- Consider function $F(W, X, Y, Z)=\sum m(0,1,2,4,5,10,11,13,15)$ whose K -map is shown at right.
- All prime implicants are:

- Simplified function (solution not unique):
- $F=W^{\prime} Y^{\prime}+W X Z+W X^{\prime} Y+W^{\prime} X^{\prime} Z^{\prime}$
- $\mathrm{F}=\mathrm{W}^{\prime} \mathrm{Y}^{\prime}+W X Z+W X^{\prime} Y+X^{\prime} Y Z^{\prime}$
- $F=W^{\prime} Y^{\prime}+W Y Z+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z$
- $F=W^{\prime} Y^{\prime}+W Y Z+X^{\prime} Y Z^{\prime}+W X Z$

WXZ and WX'Y are NON-overlapping PIs.

WYZ and $X^{\prime} Y Z$ ' are NON-overlapping Pls.

Product-Of-Sums (POS) Simplification

- So far, we have considered simplification of a Boolean function expressed in Sum-Of-Products (SOP) form using a K-map .
- Sometimes the Product-Of-Sums form of a function is simpler than the SOP form.
- Can we use K-maps to simplify a Boolean function in Product-Of-Sums form?
- Procedure:
- Use sum-of-products simplification on the zeros of function F in the K map. In this way you will get the simplified complement of $F\left(F^{\prime}\right)$.
- Find the complement of F^{\prime} which is F, i.e., ($\left.F^{\prime}\right)^{\prime}=F$
- Recall that the complement of a Boolean function can be obtained by (1) taking the dual and (2) complementing each literal.
- OR, using DeMorgan's Theorem.

POS Simplification Example

$$
F=\sum m(0,1,2,3,4,5,7,14,15)
$$

$w x{ }^{Y Z}{ }^{\text {P }} 00$		01	Y		
		11	10		
00	1		1	1	1
01	1	1	1	${ }^{1}$	
11	1	0	1	1	
10	-	O-1	-	-1/	

The complement of $F\left(F^{\prime}\right)$

- Simplify using zeros: $\mathrm{F}^{\prime}=\mathrm{WX}+\mathrm{WY}+\mathrm{W}^{\prime} X Y Z^{\prime}$
- Complement F^{\prime} to find F , i.e., $\mathrm{F}=\left(\mathrm{F}^{\prime}\right)$ '
- First get the dual of F^{\prime} :
dual(F^{\prime}) $=\left(W+X^{\prime}\right) \cdot\left(W+Y^{\prime}\right) \cdot\left(W^{\prime}+X+Y+Z^{\prime}\right)$
- Complement each literal in dual(F^{\prime}) to get F as POS

Don't-Care Conditions

- Sometimes a Boolean function is not specified for some combinations of input values. Why?
- There may be a combination of input values which will never occur
- If they do occur, the value of the function is of no concern
- Such combinations is called don't-care condition
- The function value for such combinations is called a don't-care
- The don't-care function values are usually denoted with x
- x may be arbitrarily set to 0 or 1 in an implementation
- Don't-cares can be used to further simplify a function
Fall 2023

Simplification using Don't-Cares

- Treat don't-cares as if they are 1s to generate prime implicants in order to produce simple expressions
- Delete prime implicants that cover only don'tcare minterms
- Treat the covering of remaining don't care minterms as optional in the selection process
- they may be covered
- but it is not necessary

Example with Don't-Care Conditions

- Consider the following incompletely specified function \mathbf{F} that has three don't-care minterms \mathbf{d} :
- $F(A, B, C, D)=\sum m(1,3,7,11,15)$
- $d(A, B, C, D)=\sum m(0,2,5)$

$\mathrm{F} 1=\mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
Notice: F1 and F2 are algebraically not equal. Both include the specified minterms of \mathbf{F}, but each includes different don't-care minterms.

Other Examples with Don't-Cares (1)

- Simplify the function $\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ whose K-map is shown at right.

CD			01	C	
	B	00		11	10
	00	x	1	0	0
	01	1	X	0	X
A	11	1	x	X	1
A	10	0	X	X	0

$$
G=A^{\prime} C^{\prime}+A B \quad \text { or } \quad G=A^{\prime} C^{\prime}+B D^{\prime} \quad \text { or } \quad G=B D^{\prime}+C^{\prime} D
$$

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Other Examples with Don't-Cares (2)

- Simplify the function F(A,B,C,D) whose K-map is shown at the top-right.
- $F=A^{\prime} B C^{\prime}+A B^{\prime}+C D^{\prime}+A^{\prime} C^{\prime} D$ or
- $F=A^{\prime} B D^{\prime}+A B^{\prime}+C D^{\prime}+A^{\prime} C^{\prime} D$
- The middle two terms are EPIs, while the first and last terms are selected to cover the minterms $\mathrm{m}_{1}, \mathrm{~m}_{4}$, and m_{5}.
- There's a third solution! Can you find it?

Algorithmic Techniques for Simplification

- Simplification of Boolean functions using K-maps works for functions of up to 4 variables
- What do we do for functions with more than 4 variables?
- You can "code up" a minimizer program
- Use the Quine-McCluskey algorithm
- Base on (essential) prime implicants
- We won't discuss these techniques here
- Search on Internet to find more information about the Quine-McCluskey algorithm

