
Combinational Logic Circuits

Part III -Theoretical Foundations

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 2

Overview

◼ Simplifying Boolean Functions
◼ Algebraic Manipulation

◼ Karnaugh Map Manipulation (simplifying functions of 2, 3,
4 variables)

◼ Systematic Approach for Simplifying Functions
using K-maps
◼ Implicants, Prime Implicants (PIs), and Essential Prime

Implicants

◼ Simplifying Functions using Essential and Nonessential
PIs

◼ Don’t-care Conditions and Simplification using Don’t
Cares

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 3

Boolean Functions as Equations

◼ Truth table and K-map of a Boolean
function are unique representations

◼ However, representing a Boolean function
as an equation can be done in many
different ways

◼ Canonical and Standard forms

◼ Example:

◼ F1(X,Y,Z) = X’•Y’•Z’ + X’•Y•Z’ + X•Y•Z’

◼ F2(X,Y,Z) = X’•Y’•Z’ + Y•Z’

◼ F3(X,Y,Z) = X’•Z’ + X•Y•Z’

◼ F4(X,Y,Z) = X’•Z’ + Y•Z’

◼ The corresponding truth tables for F1 to F4
are identical!

◼ Thus, F1 = F2 = F3 = F4

◼ However, F2 and F3 are simpler than F1
and F4 is simpler than the others.

X Y Z F1 F2 F3 F4

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 1 1 1

1 1 1 0 0 0 0

How do we simplify

Boolean functions?

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 4

Simplifying a Boolean Function

◼ Why simplifying Boolean functions?
◼ Boolean functions are used to design digital logic circuits

◼ Simpler Boolean function can mean cheaper, smaller,
faster circuit

◼ Three main approaches to simplify Boolean
functions:
◼ Algebraic Manipulations

◼ using the Boolean Algebra as a tool for simplifications

◼ Karnaugh Map Manipulations
◼ very easy graphical method to simplify Boolean functions

◼ it works for functions of up to 4 variables!

◼ Algorithmic Techniques
◼ used to program a computer to do the simplifications

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 5

Algebraic Manipulation

◼ We use basic identities, properties, and theorems of the

Boolean Algebra to manipulate and simplify Boolean

functions

◼ Example1: Simplify F = X’YZ + X’YZ’ + XZ

F = X’YZ + X’YZ’ + XZ -- apply identity 14

 = X’Y(Z+Z’) + XZ -- apply identity 7

 = X’Y•1 + XZ -- apply identity 2

 = X’Y + XZ

◼ Example2: Simplify G = X’Y’Z’ + X’YZ’ + XYZ’

F = X’Y’Z’ + X’YZ’ + XYZ’ -- apply identity 5

 = X’Y’Z’ + X’YZ’ + X’YZ’ + XYZ’ -- apply identity 14

 = X’Z’(Y’+Y) + YZ’(X’+X) -- apply identity 7

 = X’Z’•1 + YZ’•1 -- apply identity 2

 = X’Z’ + YZ’

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 6

Karnaugh Map Manipulations

◼ We can use a K-map to simplify a Boolean function of 2, 3, or

4 variables as Sum-Of-Products

◼ Procedure:

◼ Enter 1s in the K-map for each minterm (product term) in the function

◼ Group adjacent K-map cells containing 1s to obtain a product term

with fewer variables

◼ The number of cells in a group must be a power of 2 (2, 4, 8, …)!

◼ Try to group as many as possible cells containing 1s in a group

◼ Such group corresponds to a simpler product term!

◼ Try to make as less as possible groups to cover all cells containing 1s

◼ This corresponds to fewer product terms in the simplified function!

◼ Do not forget to handle boundary cells for K-maps of 3 or 4 variables

when you do the grouping

◼ Important: The result after the simplification may not be unique!

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 7

Simplifying a Boolean Function using

2-variable K-map (examples)

1Y
X

1

0

0

1

1

1

F1(X,Y) = Σm(0,1) =

= X’Y’ + X’Y

Given functions: 1Y
X

0

0

1

11

X 1Y 0

0

1 1

1

1Y 0

0

1 1

1 1

1

F1(X,Y) = X’

F2(X,Y) = Σm(0,3) =

= X’Y’ + XY
F2(X,Y) = X’Y’ + XY

F3(X,Y) = Σm(0,2,3) =

= X’Y’ + XY’ + XY
F3(X,Y) = X + Y’

F4(X,Y) = Σm(0,1,2,3) =

= X’Y’ + X’Y + XY’ + XY F4(X,Y) = 1

Simplified functions:

X

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 8

Simplifying a Boolean Function using

3-variable K-map (groupings)

◼ Group of 4 adjacent cells gives product term of one literal.

minterm

m0 m1
m3 m2

m4 m5 m7 m6

Z

X

Z’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

X’

Y’

00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z Y

XZXZ’

X’Z’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

YZ

Y’Z

X’Z

XYXY’

X’Y’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

X’Y

◼ Group of 2 adjacent cells gives product term of two literals.

1 00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 9

Simplifying a Boolean Function using

3-variable K-map (examples)

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z
YZ

X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

YZ
X

1

00

0

1

11

01 11 10

1

X

Y

Z

1 1

Given functions: Simplified functions:

F1(X,Y,Z) = Σm(1,2,4,7) Simplification is

not possible

F2(X,Y,Z) = Σm(2,3,4,5) F2(X,Y,Z) = XY’ + X’Y

F3(X,Y,Z) = Σm(0,2,4,6) F3(X,Y,Z) = Z’

F4(X,Y,Z) = Σm(0,1,2,3,6,7) F4(X,Y,Z) = X’ + Y

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 10

Simplifying a Boolean Function using

3-variable K-map (more examples)

YZ
X

1

00

0

1 11

01 11 10

1

X

Y

Z

Given functions: Simplified functions:

F5(X,Y,Z) = Σm(3,4,6,7) F5(X,Y,Z) = XZ’ + YZ

YZ
X

1

00

0

1

1

1

01 11 10

1X

Y

Z

F6(X,Y,Z) = Σm(0,2,4,5,6) F6(X,Y,Z) = Z’ + XY’ 1

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

F7(X,Y,Z) = Σm(1,2,3,5,7) F7(X,Y,Z) = Z + X’Y
1

YZ
X

1

00

0

1 1

01 11 10

1

X

Y

Z

1 1
F8(X,Y,Z) = Σm(1,3,4,5,6)

F8(X,Y,Z) = XZ’+X’Z +Y’Z

or

F8(X,Y,Z) = XZ’+X’Z +XY’

Not unique solution

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 11

Simplifying a Boolean Function using

4-variable K-map (grouping examples)

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of all cells gives

constant one. 1
YZ

WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 8 adjacent cells gives

product term of 1 literal. Z’

W

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 4 adjacent cells gives

product term of 2 literals.

WY

X’Z’

W’Y’

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 2 adjacent cells gives

product term of 3 literals.

W’X’Z’

W’YZ

WXY
X’Y’Z

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 12

Simplifying a Boolean Function using

4-variable K-map (examples)

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

11 1

1

W

1 1

1 1

F1(W,X,Y,Z) =

= Σm(0,1,2,4,5,7,8,9,10,12,13)

F1(W,X,Y,Z) =

= Y’ + X’Z’ + W’XZ

Given function:

Simplified function:

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

1

1 1

1

1

1
W

F2(W,X,Y,Z) =

= Σm(0,1,2,4,5,6,8,

 9,12,13,14)

F2(W,X,Y,Z) =

= Y’ + W’Z’ + XZ’

Given function:

Simplified function:

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

11 1

1

W

F3(W,X,Y,Z) = W’X’Y’ +

X’YZ’ + WX’Y’ + W’XYZ’

F3(W,X,Y,Z) =

= X’Y’ + X’Z’ + W’YZ’

Given function:

Simplified function:

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 13

Simplifying with K-maps Systematically

◼ You have seen intuitive procedure on how to group
cells and simplify Boolean functions!

◼ Can we have more systematic procedure?

◼ YES, if we introduce the terms:
◼ implicant

◼ prime implicant

◼ essential prime implicant

◼ An Implicant I of a function F() is a product term
which implies F(), i.e., F() = 1 whenever I = 1
◼ All minterms of a function F are implicants of F

◼ All rectangles in a K-map made up of cells containing 1s
correspond to implicants

Prime Implicant (PI)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 14

◼ An implicant I of F is called a Prime Implicant (PI)
if the removal of any literal from I results in a product
term that is NOT an implicant of F
◼ The above should hold for all literals in I

◼ Thus, a prime implicant is not contained in any
simpler implicant

◼ The set of prime implicants corresponds to
◼ all rectangles, in a K-map, made up of cells containing 1s

that satisfy the following condition:

◼ each rectangle is not contained in a larger rectangle

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 15

1

Example of Prime Implicants (PIs)

◼ Consider function F(W,X,Y,Z)
whose K-map is shown at right

◼ Y’Z’ is not a prime implicant
because it is contained in Z’

◼ WXY is not a prime implicant
because it is contained in XY

◼ Product terms Z’, XY, WX’Y’ are
prime implicants. Why?
◼ Consider the term XY and obtain

terms by deleting any literal:
◼ We get two terms: term X and term Y

◼ Both terms are NOT implicants of F

◼ Thus, the term XY is prime implicant

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

11 1

11
W

Y’Z’ WXYWX’Y’

Z’ XY

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 16

Essential Prime Implicants (EPIs)

◼ If a minterm of function F is included in

ONLY one prime implicant pi, then pi

is an Essential Prime Implicant of F

◼ An essential prime implicant MUST

appear in all possible SOP

expressions of function F

◼ To find essential prime implicants:

◼ Generate all prime implicants of a function

◼ Select those prime implicants that contain

at least one 1 that is not covered by any

other prime implicant

◼ For the previous example, the PIs are

Z’, XY, and WX’Y’; all of these are

essential.

1

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

11 1

11

WX’Y’

Z’ XY

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 17

Essential Prime Implicants (examples)

11

Z

YZ
WX 00

00

01

01 11 10

11

10

X

111

1

W

1

1 1

Y

1

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X
1

1

1

1

1

1
W

◼ Consider function F1(W,X,Y,Z) whose K-map is shown below:

◼ All Prime Implicants are:
XZ’, W’XY’, W’Y’Z, X’Y’Z,
WX’Z, WX’Y, WYZ’

◼ Essential Prime Implicants are:
XZ’

◼ Consider function F2(W,X,Y,Z) whose K-map is shown below:

◼ All Prime Implicants are:
XZ’, W’Z, W’X

◼ Essential Prime Implicants are:
XZ’ and W’Z

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 18

Systematic Procedure for Simplifying

Boolean Functions

1. Find all prime implicants (PIs) of the function

2. Select all essential PIs

3. For remaining minterms not included in the

essential PIs, select a set of other PIs to cover

them, with minimal overlap in the set

4. The resulting simplified function is the logical

OR of the product terms selected above

Given : The K-map of a Boolean function

Obtain: The simplest SOP expression for the function

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 19

Example

◼ F(W,X,Y,Z) =

∑m(0,1,2,3,4,5,7,14,15).

◼ All prime implicants (PI) are:

W’X’, W’Y’, W’Z, XYZ, WXY

◼ Select all essential PIs:

 W’X’, W’Y’, WXY

◼ Select other PIs to cover all 1s with

minimal overlap:

◼ Possibilities: W’Z or XYZ

◼ We select W’Z because it is simpler.

◼ F(W,X,Y,Z) = W’X’+W’Y’+WXY+ W’Z

11

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

W

1 1

1

1

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 20

Other Examples

Z

1

1

1

YZ
WX 00

00

01

01 11 10

11

10

X

11
W

11

Y

◼ Consider function F(W,X,Y,Z) whose K-map

is shown at right.

◼ All prime implicants are:

◼ W’X’Y’Z’, WXY’, WX’Y, WXZ, WYZ, XY’Z

◼ Essential prime implicants are:

◼ W’X’Y’Z’, WXY’, WX’Y, XY’Z

◼ Nonessential prime implicants are:

◼ WXZ, WYZ

◼ Simplified function (solution not unique):

◼ F = W’X’Y’Z’+WXY’+WX’Y+XY’Z + WXZ

◼ F = W’X’Y’Z’+WXY’+WX’Y+XY’Z + WYZ

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 21

Other Examples (cont.)

◼ Consider function F(W,X,Y,Z) =∑m(0,1,2,4,5,10,11,13,15)

whose K-map is shown at right.

◼ All prime implicants are:

◼ W’Y’, XY’Z, WXZ, WYZ, WX’Y, W’X’Z’, X’YZ’

◼ Essential prime implicants are:

◼ W’Y’

◼ Nonessential prime implicants are:

◼ XY’Z, WXZ, WYZ, WX’Y, W’X’Z’, X’YZ’

◼ Simplified function (solution not unique):

◼ F = W’Y’+WXZ+WX’Y+W’X’Z’

◼ F = W’Y’+WXZ+WX’Y+X’YZ’

◼ F = W’Y’+WYZ+X’YZ’+XY’Z

◼ F = W’Y’+WYZ+X’YZ’+WXZ

W

Z

1

1

1

YZ
WX 00

00

01

01 11 10

11

10

X

11

1

Y

1

1

1

WXZ and WX’Y are NON-overlapping PIs.

WYZ and X’YZ’ are NON-overlapping PIs.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 22

Product-Of-Sums (POS) Simplification

◼ So far, we have considered simplification of a Boolean

function expressed in Sum-Of-Products (SOP) form using a

K-map .

◼ Sometimes the Product-Of-Sums form of a function is

simpler than the SOP form.

◼ Can we use K-maps to simplify a Boolean function in

Product-Of-Sums form?

◼ Procedure:

◼ Use sum-of-products simplification on the zeros of function F in the K-

map. In this way you will get the simplified complement of F (F’).

◼ Find the complement of F’ which is F, i.e., (F’)’ = F

◼ Recall that the complement of a Boolean function can be obtained by (1)

taking the dual and (2) complementing each literal.

◼ OR, using DeMorgan’s Theorem.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 23

POS Simplification Example

◼ Simplify using zeros: F’ = WX’ + WY’+ W’XYZ’

◼ Complement F’ to find F, i.e., F = (F’)’

◼ First get the dual of F’:

dual(F’) = (W+X’) • (W+Y’) • (W’+X+Y+Z’)

◼ Complement each literal in dual(F’) to get F as POS

F = (W’+X) • (W’+Y) • (W+X’+Y’+Z)

W

Z

1

1

YZ
WX 00

00

01

01 11 10

11

10

X
1

0

1

Y

1 1

1 1 1 0

00

00

0
W

Z

YZ
WX 00

00

01

01 11 10

11

10

X

1

Y

1

11

11

1

F = ∑m(0,1,2,3,4,5,7,14,15) The complement of F (F’)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 24

◼ Sometimes a Boolean function is not specified for
some combinations of input values. Why?
◼ There may be a combination of input values which will

never occur

◼ If they do occur, the value of the function is of no concern

◼ Such combinations is called don’t-care condition

◼ The function value for such combinations is called a
don't-care

◼ The don’t-care function values are usually denoted
with x
◼ x may be arbitrarily set to 0 or 1 in an implementation

◼ Don’t-cares can be used to further simplify a
function

Don’t-Care Conditions

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 25

Simplification using Don’t-Cares

◼ Treat don't-cares as if they are 1s to

generate prime implicants in order to

produce simple expressions

◼ Delete prime implicants that cover only don't-

care minterms

◼ Treat the covering of remaining don't care

minterms as optional in the selection process
◼ they may be covered

◼ but it is not necessary

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 26

Example with Don’t-Care Conditions

◼ Consider the following incompletely specified

function F that has three don’t-care minterms d:

◼ F(A,B,C,D) = ∑m(1,3,7,11,15)

◼ d(A,B,C,D) = ∑m(0,2,5)

A

D

x

1

CD
AB 00

00

01

01 11 10

11

10

B
0

1

1

C

1 x

0 x 1 0

00

00

0

D

A

x

1

CD
AB 00

00

01

01 11 10

11

10

B
0

1

1

C

1 x

0 x 1 0

00

00

0

F1 = CD + A’B’ F2 = CD + A’D

Notice: F1 and F2 are algebraically not equal. Both include the specified

minterms of F, but each includes different don’t-care minterms.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 27

1

Other Examples with Don’t-Cares (1)

◼ Simplify the function G(A,B,C,D)

whose K-map is shown at right.

A

D

x

1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

1 x 0 x

00

x1

x

1

A

D

x

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

x 0 x

00

x1

x

A

D

x

1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

1 x 0 x

00

x1

x

1

A

D

x 1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

x 0 x

00

x1

x

G = A’C’+ AB or G = A’C’+BD’ or G = BD’ + C’D

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 28

Other Examples with

Don’t-Cares (2)

◼ Simplify the function F(A,B,C,D)
whose K-map is shown at the
top-right.

◼ F = A’BC’+AB’+CD’+A’C’D

 or

◼ F = A’BD’+AB’+CD’+A’C’D

◼ The middle two terms are EPIs,
while the first and last terms are
selected to cover the minterms
m1, m4, and m5.

◼ There’s a third solution! Can you
find it?

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 29

Algorithmic Techniques for Simplification

◼ Simplification of Boolean functions using K-maps

works for functions of up to 4 variables

◼ What do we do for functions with more than 4

variables?

◼ You can “code up” a minimizer program

◼ Use the Quine-McCluskey algorithm

◼ Base on (essential) prime implicants

◼ We won’t discuss these techniques here

◼ Search on Internet to find more information about

the Quine-McCluskey algorithm

	Slide 1: Combinational Logic Circuits Part III -Theoretical Foundations
	Slide 2: Overview
	Slide 3: Boolean Functions as Equations
	Slide 4: Simplifying a Boolean Function
	Slide 5: Algebraic Manipulation
	Slide 6: Karnaugh Map Manipulations
	Slide 7: Simplifying a Boolean Function using 2-variable K-map (examples)
	Slide 8: Simplifying a Boolean Function using 3-variable K-map (groupings)
	Slide 9: Simplifying a Boolean Function using 3-variable K-map (examples)
	Slide 10: Simplifying a Boolean Function using 3-variable K-map (more examples)
	Slide 11: Simplifying a Boolean Function using 4-variable K-map (grouping examples)
	Slide 12: Simplifying a Boolean Function using 4-variable K-map (examples)
	Slide 13: Simplifying with K-maps Systematically
	Slide 14: Prime Implicant (PI)
	Slide 15: Example of Prime Implicants (PIs)
	Slide 16: Essential Prime Implicants (EPIs)
	Slide 17: Essential Prime Implicants (examples)
	Slide 18: Systematic Procedure for Simplifying Boolean Functions
	Slide 19: Example
	Slide 20: Other Examples
	Slide 21: Other Examples (cont.)
	Slide 22: Product-Of-Sums (POS) Simplification
	Slide 23: POS Simplification Example
	Slide 24: Don’t-Care Conditions
	Slide 25: Simplification using Don’t-Cares
	Slide 26: Example with Don’t-Care Conditions
	Slide 27: Other Examples with Don’t-Cares (1)
	Slide 28: Other Examples with Don’t-Cares (2)
	Slide 29: Algorithmic Techniques for Simplification

