
Combinational Logic Circuits

Part III -Theoretical Foundations 
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Overview

◼ Simplifying Boolean Functions
◼ Algebraic Manipulation

◼ Karnaugh Map Manipulation (simplifying functions of 2, 3, 
4 variables)

◼ Systematic Approach for Simplifying Functions 
using K-maps  
◼ Implicants, Prime Implicants (PIs), and Essential Prime 

Implicants

◼ Simplifying Functions using Essential and Nonessential 
PIs

◼ Don’t-care Conditions and Simplification using Don’t 
Cares
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Boolean Functions as Equations 

◼ Truth table and K-map of a Boolean 
function are unique representations

◼ However, representing a Boolean function 
as an equation can be done in many 
different ways

◼ Canonical and Standard forms  

◼ Example:

◼ F1(X,Y,Z) = X’•Y’•Z’ + X’•Y•Z’ + X•Y•Z’

◼ F2(X,Y,Z) = X’•Y’•Z’ + Y•Z’ 

◼ F3(X,Y,Z) = X’•Z’ + X•Y•Z’

◼ F4(X,Y,Z) = X’•Z’ + Y•Z’

◼ The corresponding truth tables for F1 to F4 
are identical!

◼ Thus, F1 = F2 = F3 = F4

◼ However, F2 and F3 are simpler than F1 
and F4 is simpler than the others.

X Y Z F1 F2 F3 F4

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 1 1 1

1 1 1 0 0 0 0

How do we simplify 

Boolean functions?
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Simplifying a Boolean Function

◼ Why simplifying Boolean functions?
◼ Boolean functions are used to design digital logic circuits

◼ Simpler Boolean function can mean cheaper, smaller, 
faster circuit

◼ Three main approaches to simplify Boolean 
functions:
◼ Algebraic Manipulations

◼ using the Boolean Algebra as a tool for simplifications

◼ Karnaugh Map Manipulations 
◼ very easy graphical method to simplify Boolean functions 

◼ it works for functions of up to 4 variables! 

◼ Algorithmic Techniques
◼ used to program a computer to do the simplifications 
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Algebraic Manipulation

◼ We use basic identities, properties, and theorems of the 

Boolean Algebra to manipulate and simplify Boolean 

functions

◼ Example1: Simplify F = X’YZ + X’YZ’ + XZ

F = X’YZ + X’YZ’ + XZ     -- apply identity 14 

   = X’Y(Z+Z’) + XZ          -- apply identity 7

 = X’Y•1 + XZ                -- apply identity 2 

  = X’Y + XZ 

◼ Example2: Simplify G = X’Y’Z’ + X’YZ’ + XYZ’

F    = X’Y’Z’ + X’YZ’ + XYZ’                     -- apply identity 5          

      = X’Y’Z’ + X’YZ’ + X’YZ’ + XYZ’        -- apply identity 14  

      = X’Z’(Y’+Y) + YZ’(X’+X)                   -- apply identity 7

      = X’Z’•1 + YZ’•1      -- apply identity 2

      = X’Z’ + YZ’
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Karnaugh Map Manipulations

◼ We can use a K-map to simplify a Boolean function of 2, 3, or 

4 variables as Sum-Of-Products

◼ Procedure:

◼ Enter 1s in the K-map for each minterm (product term) in the function

◼ Group adjacent K-map cells containing 1s to obtain a product term 

with fewer variables 

◼ The number of cells in a group must be a power of 2 (2, 4, 8, …)!

◼ Try to group as many as possible cells containing 1s in a group 

◼ Such group corresponds to a simpler product term!

◼ Try to make as less as possible groups to cover all cells containing 1s

◼ This corresponds to fewer product terms in the simplified function!

◼ Do not forget to handle boundary cells for K-maps of 3 or 4 variables 

when you do the grouping

◼ Important: The result after the simplification may not be unique!
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Simplifying a Boolean Function using 

2-variable K-map (examples)

1Y
X

1

0

0

1

1

1

F1(X,Y) = Σm(0,1) =

= X’Y’ + X’Y 

Given functions: 1Y
X

0

0

1

11

X 1Y 0

0

1 1

1

1Y 0

0

1 1

1 1

1

F1(X,Y) = X’ 

F2(X,Y) = Σm(0,3) =

= X’Y’ + XY 
F2(X,Y) = X’Y’ + XY 

F3(X,Y) = Σm(0,2,3) =

= X’Y’ + XY’ + XY 
F3(X,Y) = X + Y’ 

F4(X,Y) = Σm(0,1,2,3) =

= X’Y’ + X’Y + XY’ + XY F4(X,Y) = 1 

Simplified functions:

X
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Simplifying a Boolean Function using 

3-variable K-map (groupings)

◼ Group of 4 adjacent cells gives product term of one literal. 

minterm

m0 m1
m3 m2

m4 m5 m7 m6

Z

X

Z’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

X’

Y’

00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z Y

XZXZ’

X’Z’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

YZ

Y’Z

X’Z

XYXY’

X’Y’
00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z

X’Y

◼ Group of 2 adjacent cells gives product term of two literals. 

1 00 01 11 10

0 m0 m1 m3 m2

X 1 m4 m5 m7 m6

Y

Z
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Simplifying a Boolean Function using 

3-variable K-map (examples)

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z
YZ

X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

YZ
X

1

00

0

1

11

01 11 10

1

X

Y

Z

1 1

Given functions: Simplified functions:

F1(X,Y,Z) = Σm(1,2,4,7) Simplification is 

not possible 

F2(X,Y,Z) = Σm(2,3,4,5) F2(X,Y,Z) = XY’ + X’Y 

F3(X,Y,Z) = Σm(0,2,4,6) F3(X,Y,Z) = Z’ 

F4(X,Y,Z) = Σm(0,1,2,3,6,7) F4(X,Y,Z) = X’ + Y
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Simplifying a Boolean Function using 

3-variable K-map (more examples)

YZ
X

1

00

0

1 11

01 11 10

1

X

Y

Z

Given functions: Simplified functions:

F5(X,Y,Z) = Σm(3,4,6,7) F5(X,Y,Z) = XZ’ + YZ 

YZ
X

1

00

0

1

1

1

01 11 10

1X

Y

Z

F6(X,Y,Z) = Σm(0,2,4,5,6) F6(X,Y,Z) = Z’ + XY’ 1

YZ
X

1

00

0

1

1

1

01 11 10

1

X

Y

Z

F7(X,Y,Z) = Σm(1,2,3,5,7) F7(X,Y,Z) = Z + X’Y 
1

YZ
X

1

00

0

1 1

01 11 10

1

X

Y

Z

1 1
F8(X,Y,Z) = Σm(1,3,4,5,6) 

F8(X,Y,Z) = XZ’+X’Z +Y’Z

or

F8(X,Y,Z) = XZ’+X’Z +XY’

Not unique solution



Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 11

Simplifying a Boolean Function using 

4-variable K-map (grouping examples)

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of all cells gives

constant one. 1
YZ

WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 8 adjacent cells gives 

product term of 1 literal. Z’

W

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 4 adjacent cells gives 

product term of 2 literals. 

WY

X’Z’

W’Y’

YZ
WX 00

00

01

01 11 10

W

Y

Z

11

10

X

m0 m1 m3 m2

m4 m5 m7
m6

m12 m13 m15 m14

m8 m9 m11
m10

◼ Group of 2 adjacent cells gives 

product term of 3 literals. 

W’X’Z’

W’YZ

WXY
X’Y’Z
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Simplifying a Boolean Function using 

4-variable K-map (examples)

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

11 1

1

W

1 1

1 1

F1(W,X,Y,Z) =

= Σm(0,1,2,4,5,7,8,9,10,12,13) 

F1(W,X,Y,Z) = 

= Y’ + X’Z’ + W’XZ 

Given function:

Simplified function:

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

1

1 1

1

1

1
W

F2(W,X,Y,Z) =

= Σm(0,1,2,4,5,6,8,

          9,12,13,14) 

F2(W,X,Y,Z) = 

= Y’ + W’Z’ + XZ’ 

Given function:

Simplified function:

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

11 1

1

W

F3(W,X,Y,Z) = W’X’Y’ +

X’YZ’ + WX’Y’ + W’XYZ’ 

F3(W,X,Y,Z) = 

= X’Y’ + X’Z’ + W’YZ’ 

Given function:

Simplified function:
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Simplifying with K-maps Systematically

◼ You have seen intuitive procedure on how to group 
cells and simplify Boolean functions!

◼ Can we have more systematic procedure?

◼ YES, if we introduce the terms:
◼ implicant 

◼ prime implicant 

◼ essential prime implicant

◼ An Implicant  I of a function F() is a product term 
which implies F(), i.e., F() = 1  whenever I = 1
◼ All minterms of a function F are implicants of F

◼ All rectangles in a K-map made up of cells containing 1s 
correspond to implicants



Prime Implicant (PI)
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◼ An implicant I of F is called a Prime Implicant (PI) 
if the removal of any literal from I results in a product 
term that is NOT an implicant of F
◼ The above should hold for all literals in I

◼ Thus, a prime implicant is not contained in any 
simpler implicant

◼ The set of prime implicants corresponds to
◼ all rectangles, in a K-map, made up of cells containing 1s 

that satisfy the following condition:

◼ each rectangle is not contained in a larger rectangle
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1

Example of Prime Implicants (PIs)

◼ Consider function F(W,X,Y,Z) 
whose K-map is shown at right

◼ Y’Z’ is not a prime implicant 
because it is contained in Z’

◼ WXY is not a prime implicant 
because it is contained in XY

◼ Product terms Z’, XY, WX’Y’ are 
prime implicants. Why?
◼ Consider the term XY and obtain 

terms by deleting any literal:
◼ We get two terms: term X and term Y

◼ Both terms are NOT implicants of F

◼ Thus, the term XY is prime implicant

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

11 1

11
W

Y’Z’ WXYWX’Y’

Z’ XY
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Essential Prime Implicants (EPIs)

◼ If a minterm of function F is included in 

ONLY one prime implicant pi, then pi 

is an Essential Prime Implicant of F

◼ An essential prime implicant MUST 

appear in all possible SOP 

expressions of function F 

◼ To find essential prime implicants:

◼ Generate all prime implicants of a function

◼ Select those prime implicants that contain 

at least one 1 that is not covered by any 

other prime implicant

◼ For the previous example, the PIs are 

Z’, XY, and WX’Y’; all of these are 

essential.

1

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

1

11 1

11

WX’Y’

Z’ XY
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Essential Prime Implicants (examples)

11

Z

YZ
WX 00

00

01

01 11 10

11

10

X

111

1

W

1

1 1

Y

1

1

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X
1

1

1

1

1

1
W

◼ Consider function F1(W,X,Y,Z) whose K-map is shown below:

◼ All Prime Implicants are:
XZ’, W’XY’, W’Y’Z, X’Y’Z,  
WX’Z, WX’Y, WYZ’ 

◼ Essential Prime Implicants are:
XZ’ 

◼ Consider function F2(W,X,Y,Z) whose K-map is shown below:

◼ All Prime Implicants are:
XZ’, W’Z, W’X 

◼ Essential Prime Implicants are:
XZ’ and W’Z 
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Systematic Procedure for Simplifying 

Boolean Functions

1. Find all prime implicants (PIs) of the function

2. Select all essential PIs

3. For remaining minterms not included in the 

essential PIs, select a set of other PIs to cover 

them, with minimal overlap in the set

4. The resulting simplified function is the logical 

OR of the product terms selected above

Given : The K-map of a Boolean function

Obtain: The simplest SOP expression for the function
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Example

◼ F(W,X,Y,Z) = 

∑m(0,1,2,3,4,5,7,14,15).

◼ All prime implicants (PI) are:

W’X’, W’Y’, W’Z, XYZ, WXY

◼ Select all essential PIs:

 W’X’, W’Y’, WXY

◼ Select other PIs to cover all 1s with 

minimal overlap:

◼ Possibilities: W’Z or XYZ 

◼ We select W’Z because it is simpler.

◼ F(W,X,Y,Z) = W’X’+W’Y’+WXY+ W’Z

11

Z

YZ
WX 00

00

01

01 11 10
Y

11

10

X

1

1

1

W

1 1

1

1
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Other Examples

Z

1

1

1

YZ
WX 00

00

01

01 11 10

11

10

X

11
W

11

Y

◼ Consider function F(W,X,Y,Z) whose K-map 

is shown at right.

◼ All prime implicants are:

◼ W’X’Y’Z’, WXY’, WX’Y, WXZ, WYZ, XY’Z

◼ Essential prime implicants are:

◼ W’X’Y’Z’, WXY’, WX’Y, XY’Z

◼ Nonessential prime implicants are:

◼ WXZ, WYZ

◼ Simplified function (solution not unique):

◼ F = W’X’Y’Z’+WXY’+WX’Y+XY’Z + WXZ 

◼ F = W’X’Y’Z’+WXY’+WX’Y+XY’Z + WYZ 
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Other Examples (cont.)

◼ Consider function F(W,X,Y,Z) =∑m(0,1,2,4,5,10,11,13,15) 

whose K-map is shown at right.

◼ All prime implicants are:

◼ W’Y’, XY’Z, WXZ, WYZ, WX’Y, W’X’Z’, X’YZ’ 

◼ Essential prime implicants are:

◼ W’Y’

◼ Nonessential prime implicants are:

◼ XY’Z, WXZ, WYZ, WX’Y, W’X’Z’, X’YZ’

◼ Simplified function (solution not unique):

◼ F = W’Y’+WXZ+WX’Y+W’X’Z’

◼ F = W’Y’+WXZ+WX’Y+X’YZ’

◼ F = W’Y’+WYZ+X’YZ’+XY’Z

◼ F = W’Y’+WYZ+X’YZ’+WXZ 

W

Z

1

1

1

YZ
WX 00

00

01

01 11 10

11

10

X

11

1

Y

1

1

1

WXZ and WX’Y are NON-overlapping PIs.

WYZ and X’YZ’ are NON-overlapping PIs.
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Product-Of-Sums (POS) Simplification

◼ So far, we have considered simplification of a Boolean 

function expressed in Sum-Of-Products (SOP) form using a 

K-map .

◼ Sometimes the Product-Of-Sums form of a function is 

simpler than the SOP form. 

◼ Can we use K-maps to simplify a Boolean function in 

Product-Of-Sums form?

◼ Procedure:

◼ Use sum-of-products simplification on the zeros of function F in the K-

map. In this way you will get the simplified complement of F (F’).

◼ Find the complement of F’ which is F, i.e., (F’)’ = F

◼ Recall that the complement of a Boolean function can be obtained by (1) 

taking the dual and (2) complementing each literal.

◼ OR,  using DeMorgan’s Theorem.
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POS Simplification Example

◼ Simplify using zeros: F’ = WX’ + WY’+ W’XYZ’

◼ Complement F’ to find F, i.e., F = (F’)’

◼ First get the dual of F’: 

dual(F’) = (W+X’) • (W+Y’) • (W’+X+Y+Z’)

◼ Complement each literal in dual(F’) to get F as POS

F = (W’+X) • (W’+Y) • (W+X’+Y’+Z)

W

Z

1

 

1

YZ
WX 00

00

01

01 11 10

11

10

X
1

0

1

Y

1 1

1 1 1 0

00

00

0
W

Z

YZ
WX 00

00

01

01 11 10

11

10

X

1

Y

1

11

11

1

F = ∑m(0,1,2,3,4,5,7,14,15) The complement of F (F’)
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◼ Sometimes a Boolean function is not specified for 
some combinations of input values. Why?
◼ There may be a combination of input values which will 

never occur

◼ If they do occur, the value of the function is of no concern

◼ Such combinations is called don’t-care condition

◼ The function value for such combinations is called a 
don't-care

◼ The don’t-care function values are usually denoted 
with x
◼ x may be arbitrarily set to 0 or 1 in an implementation

◼ Don’t-cares can be used to further simplify a 
function

Don’t-Care Conditions 
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Simplification using Don’t-Cares

◼ Treat don't-cares as if they are 1s to 

generate prime implicants in order to 

produce simple expressions

◼ Delete prime implicants that cover only don't-

care minterms

◼ Treat the covering of remaining don't care 

minterms as optional in the selection process
◼ they may be covered

◼ but it is not necessary
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Example with Don’t-Care Conditions

◼ Consider the following incompletely specified 

function F that has three don’t-care minterms d:

◼ F(A,B,C,D) = ∑m(1,3,7,11,15) 

◼ d(A,B,C,D) = ∑m(0,2,5) 

A

D

x

 

1

CD
AB 00

00

01

01 11 10

11

10

B
0

1

1

C

1 x

0 x 1 0

00

00

0

D

A

x

 

1

CD
AB 00

00

01

01 11 10

11

10

B
0

1

1

C

1 x

0 x 1 0

00

00

0

F1 = CD + A’B’ F2 = CD + A’D 

Notice: F1 and F2 are algebraically not equal. Both include the specified 

minterms of F, but each includes different don’t-care minterms. 
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1

Other Examples with Don’t-Cares (1)  

◼ Simplify the function G(A,B,C,D) 

whose K-map is shown at right.

A

D

x

 

1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

1 x 0 x

00

x1

x

1

A

D

x

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

x 0 x

00

x1

x

A

D

x

 

1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

1 x 0 x

00

x1

x

1

A

D

x 1

CD
AB 00

00

01

01 11 10

11

10

B
1

x

x

C

0 0

x 0 x

00

x1

x

G = A’C’+ AB     or    G = A’C’+BD’   or   G = BD’ + C’D 
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Other Examples with 

Don’t-Cares (2)

◼ Simplify the function F(A,B,C,D) 
whose K-map is shown at the 
top-right.

◼ F = A’BC’+AB’+CD’+A’C’D

 or

◼ F = A’BD’+AB’+CD’+A’C’D

◼ The middle two terms are EPIs, 
while the first and last terms are 
selected to cover the minterms 
m1, m4, and m5.

◼ There’s a third solution! Can you 
find it?

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1

A

D

1

CD
AB 00

00

01

01 11 10

11

10

B

x

x

C

0 1

1 0

0

1

x0

x

1

1

0

1
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Algorithmic Techniques for Simplification

◼ Simplification of Boolean functions using K-maps 

works for functions of up to 4 variables

◼ What do we do for functions with more than 4 

variables?

◼ You can “code up” a minimizer program

◼ Use the Quine-McCluskey algorithm

◼ Base on (essential) prime implicants

◼ We won’t discuss these techniques here

◼ Search on Internet to find more information about 

the Quine-McCluskey algorithm
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