Combinational Logic Circuits
Part || -Theoretical Foundations



Overview

= Canonical and Standard Forms
= Minterms and Maxterms
= Canonical Sum-Of-Products and Product-Of-Sums forms
= Standard Sum-Of-Products and Product-Of-Sums forms
= Conversions

= Karnaugh Map (K-Map)
= 2,3, 4, and 5 variable K-maps

= Complement of a Boolean function
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i Boolean Function Representations

= Truth Table (unique representation)

= Size of a truth table grows exponentially with the number
of variables involved

= This motivates the use of other representations

= Boolean Equation
= Canonical Sum-Of-Products (CSOP) form (unigue)
= Canonical Product-Of-Sums (CPOS) form (unigue)
= Standard Forms (NOT unique representations)

= Map (unique representation)

= We can convert one representation of a Boolean
function into another in a systematic way
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Canonical and Standard Forms

= Canonical and Standard forms of a Boolean function
are boolean equation representations

= To Introduce them we need the following definitions:
= Literal: A variable or its complement

= Product term: literals connected by “°”

= Sum term: literals connected by “+”

= Minterm: a product term in which all variables appear
exactly once, either complemented or uncomplemented

= Maxterm: a sum term in which all variables appear
exactly once, either complemented or uncomplemented
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i Minterm: Characteristic Property

= A minterm of N variables defines a boolean function
that represents exactly one combination (b;) of the
binary variables in the truth table

= he function has value 1 for this combination and
value O for all others

s There are 2N distinct minterms for N variables

= A minterm is denoted by m,
= | is the decimal equivalent of the minterm'’s corresponding
binary combination (b,)
= Avariable in m; is complemented if its value in (b)) Is
0, otherwise it is uncomplemented
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Minterms for Three Variables

= For 3 variables X, Y, Z there are 22 minterms (products of 3 literals):
My = X'eY’eZ' m;=XeY'eZ m,=XeYeZ' m;=X'eYeZ
m, = XeY’eZ’ m;=XeY’eZ mg=XeYeZ' m,=XeYeZ
= Example: consider minterm mg:
= M defines a boolean function that represents exactly one combination (b;=101)
= the function has value 1 for this combination and value O for all others
= Variable Y in mg is complemented because its value in bg is O

X Y Z mg, my m,, m, m, Mg Mg m-,
b 0 0 0 1 0 0 0 0 0 0 0
b, 0 0 1 0 1 0 0 0 0 0 0
b, 0 1 0 0 0 1 0 0 0 0 0
b, 0 1 1 0 0 0 1 0 0 0 0
b, 1 0 0 0 0 0 0 1 0 0 0
bs 1 0 1 0 0 0 0 0 1 0 0
bg 1 1 0 0 0 0 0 0 0 1 0
b, 1 1 1 0 0 0 0 0 0 0 1
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i Maxterm: Characteristic Property

= A maxterm of N variables defines a boolean function
that represents exactly one combination (b;) of the
binary variables in the truth table

= he function has value O for this combination and
value 1 for all others

s There are 2N distinct maxterms for N variables

= A maxterm is denoted by M,
= | is the decimal equivalent of the maxterm'’s corresponding
binary combination (b,)
= Avariable in M, Is complemented If its value in (b)) Is
1, otherwise it is uncomplemented
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Maxterms for Three Variables

= For 3 variables X, Y, Z there are 23 maxterms (sums of 3 literals):
My=X+Y+Z M;=X+Y+Z M, =X+Y'+Z M,;=X+Y'+Z
M, =X+Y+Z M;=X+Y+Z M;=X+Y'+Z M,=X+Y'+2
= Example: consider maxterm Mg:
= M. defines a boolean function that represents exactly one combination (b;=101)
= the function has value O for this combination and value 1 for all others
= Variables X and Z in Mg are complemented because their values in b are 1

X Y Z Mo | My | My | Mg | M, | Mg | Mg | M,
bo 0 0 0 0 1 1 1 1 1 1 1
b, 0 0 1 1 0 1 1 1 1 1 1
b, 0 1 0 1 1 0 1 1 1 1 1
b, 0 1 1 1 1 1 0 1 1 1 1
b, 1 0 0 1 1 1 1 0 1 1 1
bs 1 0 1 1 1 1 1 1 0 1 1
be 1 1 0 1 1 1 1 1 1 0 1
b, 1 1 1 1 1 1 1 1 1 1 0
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i Canonical Forms (Unique)

= Any Boolean function F() can be expressed as:
= a unigue sum of minterms
= a unique product of maxterms

= In other words, every function F( ) has two canonical
forms:
= Canonical Sum-Of-Products (CSOP) (sum of minterms)
= Canonical Product-Of-Sums (CPQOS) (product of
maxterms)
= The words product and sum do not imply arithmetic
operations in Boolean algebra!

= they specify the logical operations AND and OR,

respectively
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i Canonical Sum-Of-Products

s ItIs a sum of minterms

= The minterms included are those
m, such that F() = 1 in row | of
the truth table for F()

= Example:

= Truth table for F(X,Y,2Z) at right

= The canonical sum-of-products
form for F is:
FOX,Y,Z)=m;+m, + m, + mg =
=XYZ+ XYZ +
XY'Z + XYZ

m, =XY’Z
m, =X'YZ’

m, =XY’Z’

Mg =XYZ'

R |IRP|RP|RPIO|IO|O|O|X
R O|O|FR|Fk|O|O0]|XL
R | Ok | OFR|IO|FL,|O|N
OIFRPIO|IFRP|IO|FR,|IFL|IO]TM
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i Canonical Product-Of-Sums

= Itis a product of maxterms

= The maxterms included are those
M; such that F(') = O in row j of
the truth table for F()

= Example:

= Truth table for F(X,Y,Z) at right

= The canonical product-of-sums
form for F is:
FOXY,Z) =My e Mg * Mg » M, =
= (X+Y+Z) « (X+Y'+Z') »
(X'+Y+Z) « (X'+Y'+2)

My =X+Y+Z

=X+Y'+Z

M =X +Y+Z’

R lRr|Rr|RPIOO|O|O]|X
RO, |IkRr|IO|O0O]|XL
ROl |O|FRr|O|FRr|O|N
Ol |O|FR|O|FR|F|O|T
<
w

M, =X'+Y'+Z’
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i Shorthand: ) and [}

= FIX,Y,Z)=m;+m,+m, + mg =
=XYZ+XYZ + XY Z + XYZ' =
=> m(1,2,4,6),
= > indicates that this is a sum-of-products form
= M(1,2,4,6) indicates to included minterms m,, m,, m,, and mg

= F(X,Y,Z)=Mg*M;*M;* M, =
= (X+Y+Z) o (X+Y'+27) « (X'+Y+Z') » (X'+Y'+2Z') =
=[] M(0,3,5,7),
= []indicates that this is a product-of-sums form
= M(0,3,5,7) indicates to included maxterms M,, M3, M, and M,

= Y m(1,2,4,6) =[] M(0,3,5,7) = F(X,Y,2)
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i Conversion Between Canonical Forms

1. Get the shorthand notation
2. Replace > with [ (or vice versa)

3. Replace those |’s that appeared in the original form
with those that do not

= Example:
FOX,Y,Z2) =XYZ+ XYZ + XY'Z + XYZ
=m;+m,+m,+mg
=>m(1,2,4,6)
= [1M(0,3,5,7)
= (X+Y+2Z)o(X+Y'+Z2)(X'+Y+L' ) (X' +Y'+2')
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i Standard Forms (NOT Unigque)

= There are two types of standard forms:
= Sum-of-Products (SOP) form (NOT unique)
= Product-of-Sums (POS) form (NOT unique)

= In standard forms, not all variables need to appear
In the individual product or sum terms!

= Examplel:
FIX,)Y,2)=XYZ+ XYZ + XZ

FIX,Y,Z)=XYZ+YZ + XZ

are two standard sum-of-products forms

Non-canonical

terms

= Example2:

FOX,Y,Z) = (X+Y+Z) * (X+Y'+Z’) « (X'+ Z))

R|IRr|R|O|O|lO|O]I X
R lOoO|lo|lrRr|[R|O|lO]I

FOX,Y,Z) = (X+Y+Z) * (Y'+Z) « (X'+ Z)

RPIO|RP|O|FRP|O|FRL|O|N

are two standard product-of-sums form 1|1

O|FR,|O|FRP|O|FR,|FL|O]T
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Conversion from Standard to
Canonical SOP form

+

1. Expand non-canonical product terms by inserting

equivalent of 1 for each missing variable V:
(V+V’)=1
2. Remove duplicate minterms

= Example:
FIX,Y, 2)=XYZ+YZ + XZ =
=XYZ+ (X+X)YZ' + X(Y+Y')Z
=XYZ+XYZ + XYL + XYZ + XY'Z
=XYZ+XYZ + XYZ + XY'Z

= Can you do It:
FIX,Y,Z) =XYZ+ XYZ + XZ

Fall 2024

R|lRr|R|O|lO|lO|O] X

R |O|lO|Rr|FR|[O|lO]X

1

1

P [([O|IRP|[O|FRP|O(FRL|O]IN

O(FR|IO(FRP|O|FR, [k, |O]T
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Canonical POS form

i Conversion from Standard to

1. Expand non-canonical sum terms by adding O for

each missing variable V:

VeV’ =0
2. Remove duplicate maxterms
= Example:

F(X,Y,Z)_ = (X+Y+Z)(Y'+Z')o(X'+Z)) =

= (X+Y+Z)s

= Can you do it for:

F
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= (X+Y+Z)«(XX+Y'+2Z)o (X +YY'+Z))

(X+Y+Z)e(X+Y +Z)e(X +Y'+2)s

X+Y+2Z)e(X'+Y'+2Z)

X+Y'+Z)o(X'+Y'+Z’)s

AA/‘\/‘\

X'+Y+2Z)

R|lRr|R|O|lO|lO|O] X

R |O|lO|Rr|FR|[O|lO]X

(XY, Z) = (X+Y+Z)s(X+Y'+Z)(X+ Z)) [1

1

P [([O|IRP|[O|FRP|O(FRL|O]IN

O(FR|IO(FRP|O|FR, [k, |O]T

Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

16



i Karnaugh Maps (Unique)

= A Karnaugh map (K-map) is a uniqgue graphical
representation of a Boolean functions

= K-map of a Boolean function of N variables consists
of 2N cells

= One map cell corresponds to a row In the truth table
= Also, one map cell corresponds to a minterm

= Multiple-cell rectangles in the map correspond to
standard terms

= The K-map representation is useful for Boolean
functions of up to 5 variables. Why?
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i Two-Variable K-map

F(X,Y)

F(0,0)

F(0,1)

F(1,0)

W N O
R[OOI X

ROk, |[O]XL

F(1,1)

X

Y

0

1

0
F(0,0)

1
F(0,1)

2
F(1,0)

3
F(1,1)

my=XY"

m,;=XY

2
m,=XY"

m5=XY

= Cell O corresponds to row O In the truth table and
represents minterm XY’; Cell 1 corresponds to row 1
and represents X'Y; etc.

= If Boolean function F(X,Y) has value 1 in a row of the

truth table, 1.e., a minterm is present in the function,

then a 1 is placed in the corresponding cell.

Fall 2024
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Two-Variable K-map -- Examples

Truth Table K -map Canonical and Standard SOP
X Y] F1 " Yo 1
0|01 O 9
2 (1) 8 P <4—p F1=m, =XY (canonical)
1]1]1 1 -
X Y] F2 v Yo 1
o[o]oO F2=m, +m,
2 (1) 2 < — = XY’ + XY (canonical)
1(1] 1 11 | _1__: = X (standard)
X]Y] F3 Yo 1
0]0] 0 X
0 1 F3=m,+m
o[1]1 ¢ ; . . =m, 2
110 1 = XY + XY’ (canonical)
1]1]0 111
X|Y] Fa Yo 1
0]0] 1 Xy
011 gy of 1 ]i1] F4=my+my +mg
1{0]0 ] ¢ > = XY + XY + XY (canonical)
1[1]1 L1 =X +Y (standard)
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Two-Variable K-map (cont.)

= Any two adjacent cells in the map differ Y%
by ONLY one variable X
= appears complemented in one cell and
uncomplemented in the other 0
= Example:
m, (=X"Y’) is adjacent to m; (=X"Y) and m, 1
(=XY’) but NOT m, (=XY)
= Multiple-cell rectangles in the map
correspond to standard terms Y
= Examples: X
= 2-cell rectangle|m,|m, corresponds to term X: 0

Fall 2024

m, + my = XY'+XY = X+(Y'+Y) = X
= 4-cell rect. m,(m corresponds to constant 1:
m, m_fJ'

Mg+ my+ m,+ my; = XY + XY + XY + XY =
=X (Y+Y) + X(Y+Y) =X+ X' =1

my=XY’

m;=XY

m,=XY’

m;=XY
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Three-Variable K-map

F(X,Y,2)
F(0,0,0)
F(0,0,1)
F(0,1,0)
F(0,1,1)
F(1,0,0)
F(1,0,1)
F(1,1,0)
7 F(1,1,1)

= Cell O corresponds to row O in the
truth table and represents minterm

XY'Z’; Cell 1 corresponds to row 1
and represents X'Y’Z; etc.

s If F(X,Y,Z) has value 1 in a row of
the truth table, i.e., a minterm is
present in the function, thena 1 is

OO0l W N O

= ([ OO |0 |0 |X
= |10 |0 [k |~k |0 |0 ]|
O |k |O|F O |~ |O]IN

[

placed in the corresponding cell.
Fall 2024

YZ

O 00

Y

01

11

10

0
F(0,0,0)

1
F(0,0,1)

3
F(0,1,1)

2
F(0,1,0)

4
F(1,0,0)

5
F(1,0,1)

=
F(1,1,1)

6
F(1,1,0)

YZ

O 00

Z

Y

01

11

10

0)
Me=X'Y’Z’

1
m,=X'Y’Z

3
My=X'YZ

m,=X'YZ’

4

X|1 | m=xY'Z

)
M=XY'Z

=
m,=XYZ

Me=XYZ’

Z
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Three-Variable K-map -- Examples

Truth Table K - map

Y

X000 01 11 10

el el el el (=) (@] [e][=] P24
R ] R

R[OOI O(FR|OIN

OHl—‘OHOOI—‘E
o
|_\
[N

Y

YN\"00 01 11 10

[ . =

1 |11

L1

|
1 [

i i =ll=l=]=] P4
il ellsli it (el (e] £
el =l = =] Y
HHOOHl—\Ol—\E

|

|

|

-

Z
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Canonical and Standard SOP

F1=mg+mg+mg+mg=
=XYZ + XYZ+
«> XY'Z +XYZ
(canonical)

|:2:m0+m2+m3+m6+m7:_

- =XYZ +XYZ +XYZ +
- g=p XYL +XYZ (canonical)
=XZ'+Y (standard)
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Three-Variable K-map (cont.)

Y
N\O 00 01 11 10

0 [Mmy=XY'Z|mMm=XY'ZIm;=XYZ | m,=XYZ’

X|1 |m=XY'Z|m=XY'Z | m,=XYZ | m=XYZ

Z
= NOTE: variable ordering is important - assume function F(X,Y,Z) then X

specifies the rows in the map and YZ the columns

= Each cell is adjacent to three other cells (left, right, up or down).
= Left-edge cells are adjacent to right-edge cells!

= One cell represents a minterm of 3 literals
= A rectangle of 2 adjacent cells represents a product term of 2 literals
= A rectangle of 4 cells represents a product term of 1 literal

= A rectangle of 8 cells encompasses the entire map and produces a
function that is equal to logic 1
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© 00 N o o A WN - O
S e = =l =l =} =N NN b=
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Four-Variable K-map

F(W,X,Y,Z)

F(0,0,0,0)

F(0,0,0,1)

F(0,0,1,0)

F(0,0,1,1)

F(0,1,0,0)

F(0,1,0,1)

F(0,1,1,0)

F(0,1,1,1)

F(1,0,0,0)

F(1,0,0,1)

F(1,0,1,0)

F(1,0,1,1)

F(1,1,0,0)

F(1,1,0,1)

R PR, OI0I0|I0 k(|- |0 |0 |0 |0 |IX

F(1,1,1,0)

=

RrolokRlolo IO | |lO|0|K

P OFOIFRIOIFk[O|FPI|IO|Fk O O |O|N

F(1,1,1,1)

YZ

WX

00

01

11

10

00

01

Y

11

10

0
My=WX'Y'Z

1
m,=WXx'Y'z

3
M,=WX'YZ

2

My,=WXYZ

4
m,=wWxy’z’

S
M=W'XY'Z

>
m_=WXYZ

6

Mg=W'XYZ’

12
m,,=WXY’Z

13
M, 3=WXY'Z

15
M, =WXYZ

14

m,,=WXYZ

38
Mg=WXY'Z

9
My=WX'Y'Z

11
My, =WX'YZ

10

M, =WX'YZ

L

= Cell O corresponds to row 0 in the truth table and represents
minterm W’X'Y’Z’; Cell 1 corresponds to row 1 and
represents W XY’Z; etc.

= If F(W,X,Y,Z) has value 1 in a row of the truth table, i.e., a
minterm is present in the function, then a 1 is placed in the

corresponding cell.
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Four-Variable K-map -- Examples

Y
YZ

wl x|y |zl g | Truth Table WX _C_)C: 01 . 11 3‘9:__ K - map

olojo|o] 1 oo| 1, (1o

o(ojo0|1]| O 01

0({0|1]|0]| 1 ———F--d--—f---

olol1]1] 1 K - map Wllll 1 {1 1E Canonical

ol1|o|0| O 1°:Ll 11 ] L and

ol1l0l1] O — — Standard SOP

o|1(1]0] 0 F=mg+m,+ms+ ‘

oj1(1]1] O Mg * Mo * Mag My * Map * Mg+ Mg ¥ Mas =

=WXYZ +WXYZ + WXYZ +

1/]0]0j0] 1 WXY'Z + WXY'Z + WXYZ +WXYZ+ |(canonical form)

110(0|1] 1 WXY'Z' + WXY’Z + WXYZ' + WXYZ

110(1|0]| 1 =WXZ +WXYZ +WXYZ +

11011111 1 WXY'Z' + WXY'Z + WXYZ + WX'YZ + | (standard form)

1111010 1 WXY'Z' + WXY'Z + WXYZ + WXYZ

1111011l 1 =WX'Z' + XY +

11110l 1 WXY'Z + WXYZ+WXYZ +WXYZ+ |(standard form)

WXY’'Z + WXY'Z + WXYZ + WXYZ

111/31 /1] 1 = WX°Z' + XY + W . (standard form)
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Four-Variable K-map (cont.)

WX

00 WXYZIWXYZ
014 m, P mg

112 My, 13 M3

W 3
10 Ms 9 mg
WXYZ | WXY'Z

= NOTE: variable ordering is important - assume function F(W,X,Y,2)
then WX specifies the rows in the map and YZ the columns

= Each cell is adjacent to four cells (left, right, up, down)
= Top cells are adjacent to bottom cells; Left-edge cells are adjacent to right-edge cells

One cell represents a minterm of 4 literals

A rectangle of 2 adjacent cells represents a product term of 3 literals
A rectangle of 4 cells represents a product term of 2 literals

A rectangle of 8 cells represents a product term of 1 literal

= A rectangle of 16 cells produces a function that is equal to logic 1
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Five-Variable K-map

F(T,W,X,Y,2) vy

o
S
o
o
o
3

TWXYZ

TWXYZ

= Can you draw six-variable K-map ?

Fall 2024
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i Complement of a Boolean Function

= The complement representation of function F is
denoted as F’

= F’ can be obtained by interchanging 1's to O’s and
0’s to 1's Iin the column showing F of the truth table

= F’ can be derived by applying DeMorgan’s theorem
on F
= F’ can be derived by
1. taking the dual of F, i.e., interchanging “*” with “+”, and
“1” with “0” in F and
2. complementing each literal

= The complement of a function IS NOT THE SAME
as the dual of the function

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University
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i Complementation: Example

Consider function F(X,Y,Z2) = X'YZ' + XY'Z

= Table method = DeMorgan method:
X|Y|Z]|F |F F’' = ( XYZ + XY'Z )’ -- apply DeMorgan
8 8 2 8 i = (X'YZ') * (XY'Z') -- DeMorgan again
o1 ol 1 o = (X+Y’+Z) » (X’+Y+2Z)
ol1/1]0]1 [ =« Dual method:
ot F=XYZ+XYZ
11110l o | 1 -= interchange “*" with “+” to find the dual of F
1]1]1]0]1 G = (X'+Y+Z)(X+Y'+Z’) Gis the dual of F

-- complement each literal to find F’

F’ = (X+Y’+Z) * (X' +Y+2)
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