

Combinational Logic Circuits Part II -Theoretical Foundations

Overview

- Boolean Algebra
 - Basic Logic Operations
 - Basic Identities
 - Basic Principles, Properties, and Theorems
- Boolean Function and Representations
- Truth Table
- Canonical and Standard Forms
 - Minterms and Maxterms
 - Canonical Sum-Of-Products and Product-Of-Sums forms
 - Standard Sum-Of-Products and Product-Of-Sums forms
 - Conversions
- Karnaugh Map (K-Map)
 - 2, 3, 4, and 5 variable K-maps
- Complement of a Boolean function

Boolean Function Representations

- Truth Table (unique representation)
 - Size of a truth table grows exponentially with the number of variables involved
 - This motivates the use of other representations
- Boolean Equation
 - Canonical Sum-Of-Products (CSOP) form (unique)
 - Canonical Product-Of-Sums (CPOS) form (unique)
 - Standard Forms (NOT unique representations)
- Map (unique representation)
- We can convert one representation of a Boolean function into another in a systematic way

Canonical and Standard Forms

- Canonical and Standard forms of a Boolean function are boolean equation representations
- To introduce them we need the following definitions:
 - Literal: A variable or its complement
 - Product term: literals connected by "•"
 - Sum term: literals connected by "+"
 - <u>Minterm</u>: a product term in which all variables appear exactly once, either complemented or uncomplemented
 - <u>Maxterm</u>: a sum term in which all variables appear exactly once, either complemented or uncomplemented

Minterm: Characteristic Property

- A <u>minterm</u> of N variables defines a boolean function that represents exactly one combination (b_j) of the binary variables in the truth table
- The function has value 1 for this combination and value 0 for all others
- There are 2^N distinct <u>minterms</u> for N variables
- A <u>minterm</u> is denoted by m_i
 - j is the decimal equivalent of the minterm's corresponding binary combination (b_j)
- A variable in *m_j* is complemented if its value in (*b_j*) is
 0, otherwise it is uncomplemented

Minterms for Three Variables

For 3 variables X, Y, Z there are 2^3 minterms (products of 3 literals): $m_0 = X' \cdot Y' \cdot Z'$ $m_1 = X' \cdot Y' \cdot Z$ $m_2 = X' \cdot Y \cdot Z'$ $m_3 = X' \cdot Y \cdot Z$

 $m_4 = X \cdot Y' \cdot Z'$ $m_5 = X \cdot Y' \cdot Z$ $m_6 = X \cdot Y \cdot Z'$ $m_7 = X \cdot Y \cdot Z$

- Example: consider minterm m₅:
 - m_5 defines a boolean function that represents exactly one combination ($b_5=101$)
 - the function has value 1 for this combination and value 0 for all others
 - variable Y in \mathbf{m}_5 is complemented because its value in \mathbf{b}_5 is 0

	Х	Y	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
b ₀	0	0	0	1	0	0	0	0	0	0	0
b ₁	0	0	1	0	1	0	0	0	0	0	0
b ₂	0	1	0	0	0	1	0	0	0	0	0
b ₃	0	1	1	0	0	0	1	0	0	0	0
b ₄	1	0	0	0	0	0	0	1	0	0	0
b ₅	1	0	1	0	0	0	0	0	1	0	0
b ₆	1	1	0	0	0	0	0	0	0	1	0
b ₇	1	1	1	0	0	0	0	0	0	0	1

Maxterm: Characteristic Property

- A <u>maxterm</u> of N variables defines a boolean function that represents exactly one combination (b_j) of the binary variables in the truth table
- The function has value 0 for this combination and value 1 for all others
- There are 2^N distinct <u>maxterms</u> for N variables
- A <u>maxterm</u> is denoted by M_i
 - j is the decimal equivalent of the maxterm's corresponding binary combination (b_j)
- A variable in M_j is complemented if its value in (b_j) is
 1, otherwise it is uncomplemented

Maxterms for Three Variables

For 3 variables X, Y, Z there are 2^3 maxterms (sums of 3 literals): $M_0 = X+Y+Z$ $M_1 = X+Y+Z'$ $M_2 = X+Y'+Z$ $M_3 = X+Y'+Z'$ $M_4 = X'+Y+Z$ $M_5 = X'+Y+Z'$ $M_6 = X'+Y'+Z$ $M_7 = X'+Y'+Z'$

- Example: consider maxterm M₅:
 - M₅ defines a boolean function that represents exactly one combination (b₅=101)
 - the function has value 0 for this combination and value 1 for all others
 - variables X and Z in M₅ are complemented because their values in b₅ are 1

	Х	Y	Z	M ₀	M ₁	M_2	M_3	M_4	M 5	M_6	M ₇
b ₀	0	0	0	0	1	1	1	1	1	1	1
b ₁	0	0	1	1	0	1	1	1	1	1	1
b ₂	0	1	0	1	1	0	1	1	1	1	1
b ₃	0	1	1	1	1	1	0	1	1	1	1
b ₄	1	0	0	1	1	1	1	0	1	1	1
b ₅	1	0	1	1	1	1	1	1	0	1	1
b ₆	1	1	0	1	1	1	1	1	1	0	1
b ₇	1	1	1	1	1	1	1	1	1	1	0

Canonical Forms (Unique)

Any Boolean function F() can be expressed as:

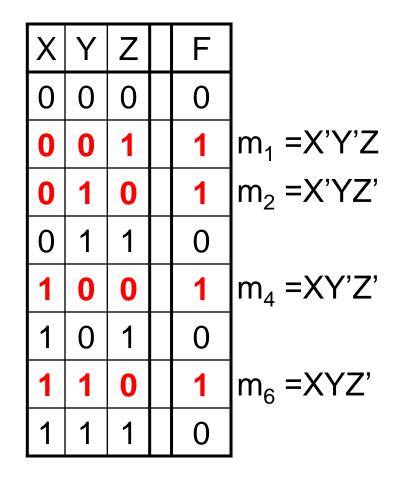
- a unique sum of minterms
- a unique product of maxterms
- In other words, every function F() has two canonical forms:
 - Canonical Sum-Of-Products (CSOP) (sum of minterms)
 - Canonical Product-Of-Sums (CPOS) (product of maxterms)
- The words product and sum do not imply arithmetic operations in Boolean algebra!
 - they specify the logical operations AND and OR, respectively

Canonical Sum-Of-Products

- It is a sum of minterms
- The minterms included are those m_j such that F() = 1 in row j of the truth table for F()
- Example:
 - Truth table for F(X,Y,Z) at right
 - The canonical sum-of-products form for F is:

$$f(X,Y,Z) = m_1 + m_2 + m_4 + m_6 =$$

= X'Y'Z + X'YZ' +
XY'Z' + XYZ'

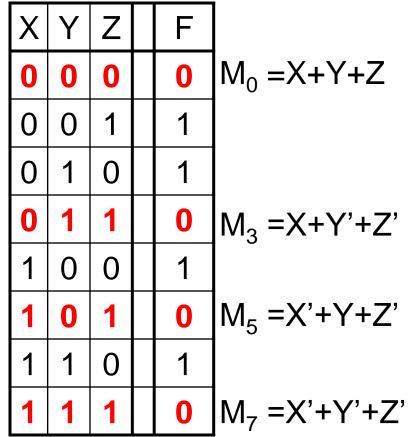


Canonical Product-Of-Sums

- It is a product of maxterms
- The maxterms included are those M_j such that F() = 0 in row j of the truth table for F()
- Example:
 - Truth table for F(X,Y,Z) at right
 - The canonical product-of-sums form for F is:

$$F(X,Y,Z) = M_0 \bullet M_3 \bullet M_5 \bullet M_7 =$$

= (X+Y+Z) • (X+Y'+Z') •
(X'+Y+Z') • (X'+Y'+Z')



Shorthand: \sum and \prod

•
$$F(X,Y,Z) = m_1 + m_2 + m_4 + m_6 =$$

= X'Y'Z + X'YZ' + XY'Z' + XYZ' =
= $\sum m(1,2,4,6)$,

- \sum indicates that this is a sum-of-products form
- m(1,2,4,6) indicates to included minterms m_1 , m_2 , m_4 , and m_6

•
$$F(X,Y,Z) = M_0 \cdot M_3 \cdot M_5 \cdot M_7 =$$

= $(X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y+Z') \cdot (X'+Y'+Z') =$
= $\prod M(0,3,5,7)$,

- Indicates that this is a product-of-sums form
- M(0,3,5,7) indicates to included maxterms M₀, M₃, M₅, and M₇

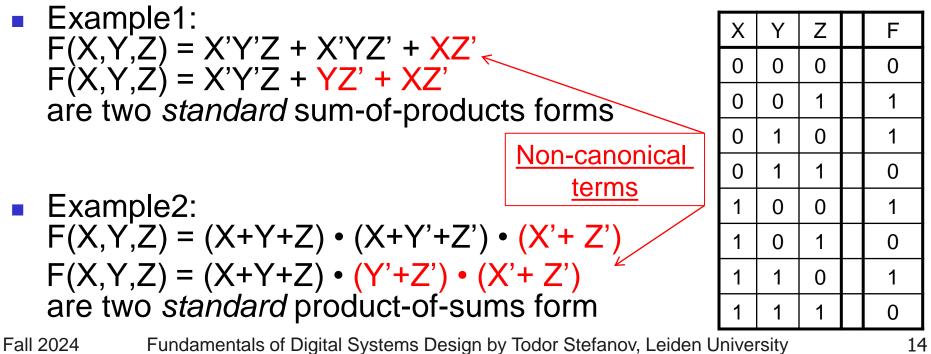
• $\sum m(1,2,4,6) = \prod M(0,3,5,7) = F(X,Y,Z)$

Conversion Between Canonical Forms

- 1. Get the shorthand notation
- 2. Replace \sum with \prod (or vice versa)
- 3. Replace those **j**'s that appeared in the original form with those that do not
- Example: F(X,Y,Z) = X'Y'Z + X'YZ' + XY'Z' + XYZ' $= m_1 + m_2 + m_4 + m_6$ $= \sum m(1,2,4,6)$ $= \prod M(0,3,5,7)$ $= (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y+Z') \cdot (X'+Y'+Z')$

Standard Forms (NOT Unique)

- There are two types of standard forms:
 - Sum-of-Products (SOP) form (NOT unique)
 - Product-of-Sums (POS) form (NOT unique)
- In standard forms, not all variables need to appear in the individual product or sum terms!



Conversion from Standard to Canonical SOP form

- Expand *non-canonical* product terms by inserting equivalent of 1 for each missing variable V:
 (V + V') = 1
- 2. Remove duplicate minterms
- Example:
 F(X,Y,Z) = X'Y'Z + YZ' + XZ' =
 X'Y'Z + (X+X')YZ' + X(Y+Y')Z'
 X'Y'Z + XYZ' + X'YZ' + XYZ' + XY'Z'
 X'Y'Z + XYZ' + X'YZ' + XY'Z'
- Can you do it:
 F(X,Y,Z) = X'Y'Z + X'YZ' + XZ'

Х	Y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Conversion from Standard to Canonical POS form

- Expand *non-canonical* sum terms by adding 0 for each missing variable V:
 V•V' = 0
- 2. Remove duplicate maxterms
- Example: $F(X,Y,Z) = (X+Y+Z) \cdot (Y'+Z') \cdot (X'+Z') =$ $= (X+Y+Z) \cdot (XX'+Y'+Z') \cdot (X'+YY'+Z')$ $= (X+Y+Z) \cdot (X+Y'+Z') \cdot (X'+Y'+Z') \cdot$ $(X'+Y+Z') \cdot (X'+Y'+Z') \cdot (X'+Y'+Z') \cdot$ $(X'+Y+Z') \cdot (X'+Y'+Z') \cdot (X'+Y'+Z') \cdot$
- Can you do it for: F(X,Y,Z) = (X+Y+Z)•(X+Y'+Z')•(X'+ Z')

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Х

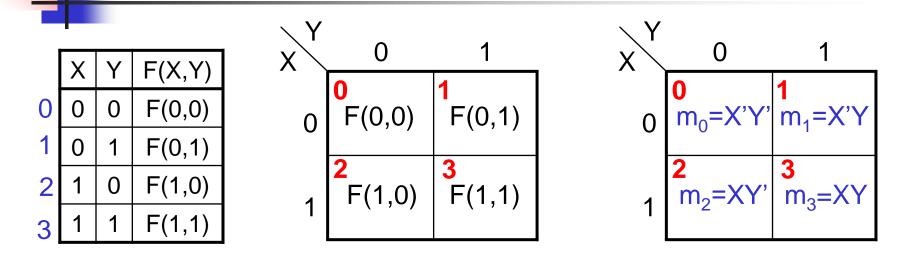
Y

F

Karnaugh Maps (Unique)

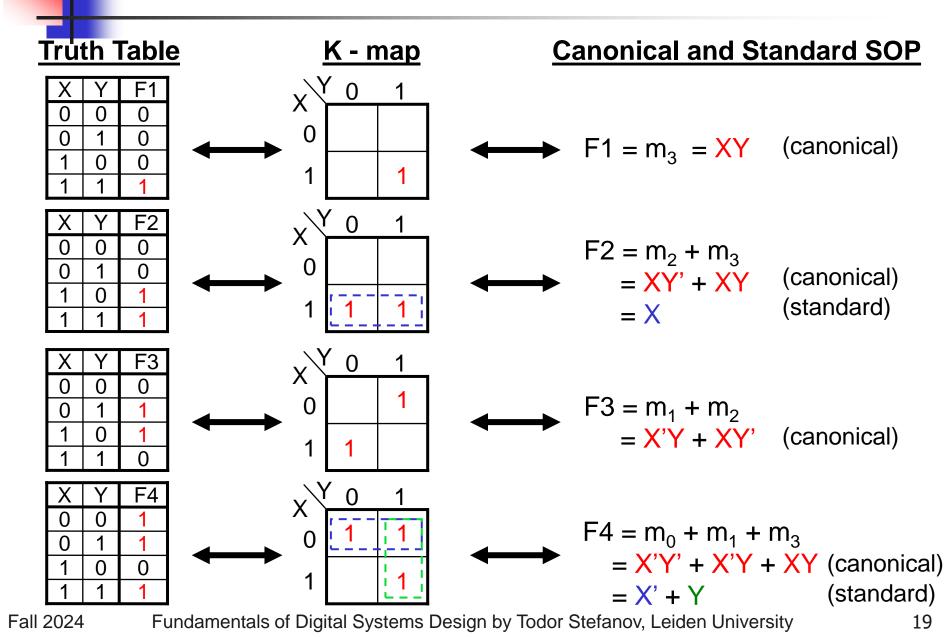
- A Karnaugh map (K-map) is a unique graphical representation of a Boolean functions
- K-map of a Boolean function of N variables consists of 2^N cells
- One map cell corresponds to a row in the truth table
- Also, one map cell corresponds to a minterm
- Multiple-cell rectangles in the map correspond to standard terms
- The K-map representation is useful for Boolean functions of up to 5 variables. Why?

Two-Variable K-map



- Cell 0 corresponds to row 0 in the truth table and represents minterm X'Y'; Cell 1 corresponds to row 1 and represents X'Y; etc.
- If Boolean function F(X,Y) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is placed in the corresponding cell.

Two-Variable K-map -- Examples

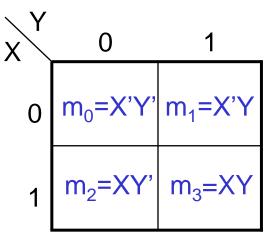


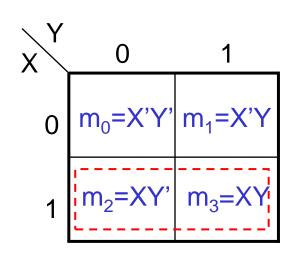
Two-Variable K-map (cont.)

- Any two adjacent cells in the map differ by ONLY one variable
 - appears complemented in one cell and uncomplemented in the other
 - Example: m₀ (=X'Y') is adjacent to m₁ (=X'Y) and m₂ (=XY') but NOT m₃ (=XY)

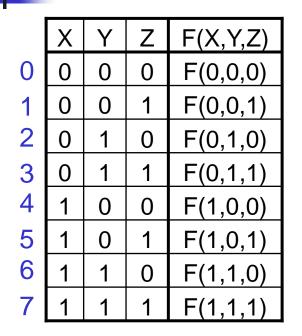
- Examples:
 - 2-cell rectangle m₂m₃ corresponds to term X: m₂ + m₃ = XY'+XY = X•(Y'+Y) = X
 - 4-cell rect. $\boxed{m_0 m_1}_{m_2 m_3}$ corresponds to constant 1:

 $m_0 + m_1 + m_2 + m_3 = X'Y' + X'Y + XY' + XY =$ = X'•(Y'+Y) + X•(Y'+Y) = X + X' = 1





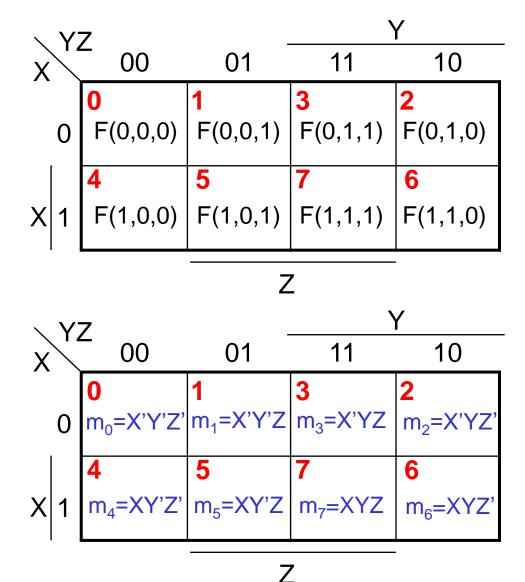
Three-Variable K-map



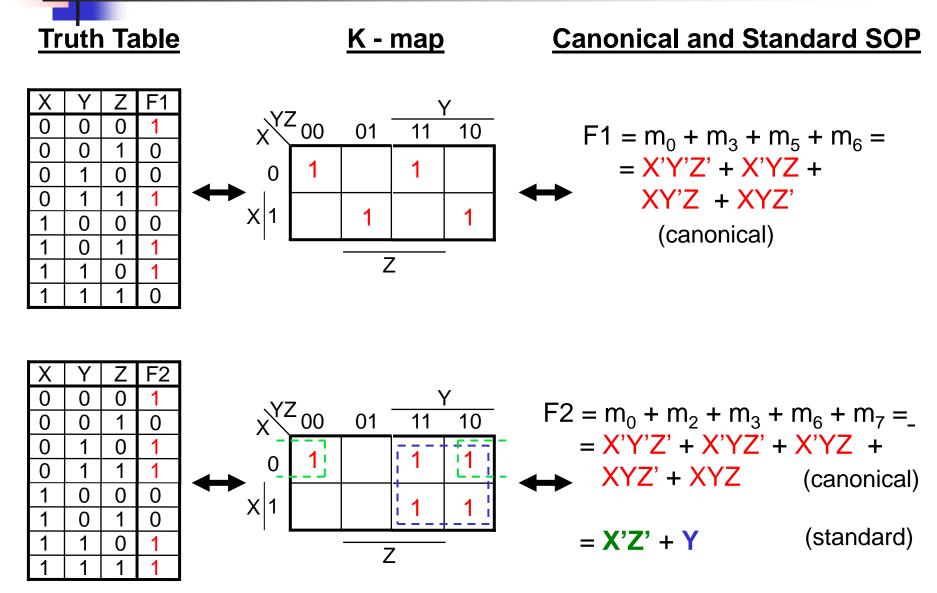
- Cell 0 corresponds to row 0 in the truth table and represents minterm X'Y'Z'; Cell 1 corresponds to row 1 and represents X'Y'Z; etc.
- If F(X,Y,Z) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is

placed in the corresponding cell.

Fall 2024



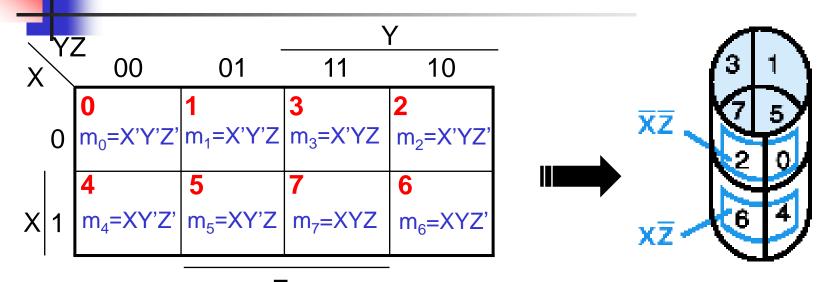
Three-Variable K-map -- Examples



Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

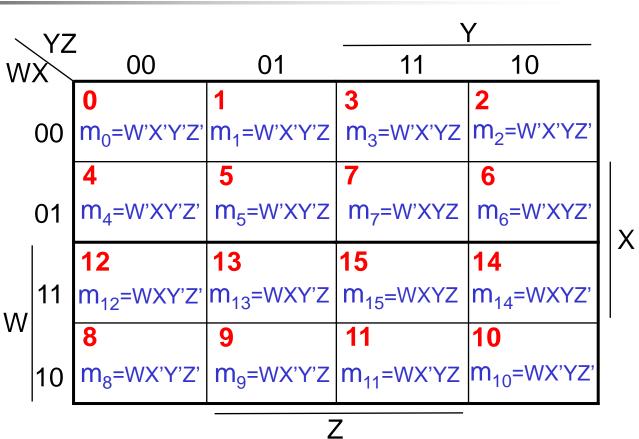
Fall 2024

Three-Variable K-map (cont.)



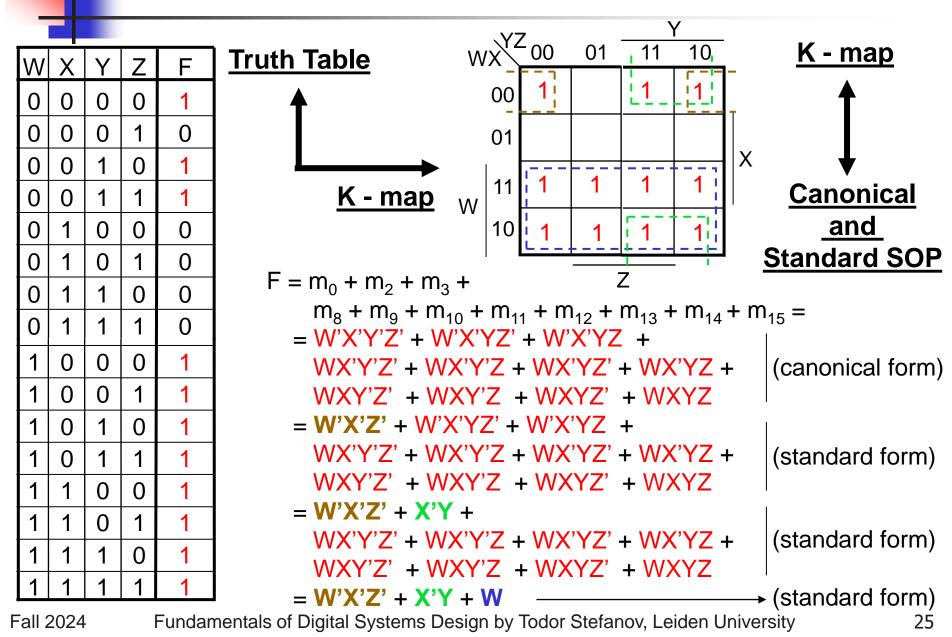
- <u>NOTE</u>: variable ordering is important assume function F(X,Y,Z) then X specifies the rows in the map and YZ the columns
- Each cell is adjacent to three other cells (left, right, up or down).
 - Left-edge cells are adjacent to right-edge cells!
- One cell represents a minterm of 3 literals
- A rectangle of 2 adjacent cells represents a product term of 2 literals
- A rectangle of 4 cells represents a product term of 1 literal
- A rectangle of 8 cells encompasses the entire map and produces a function that is equal to logic 1

Four-Variable K-map

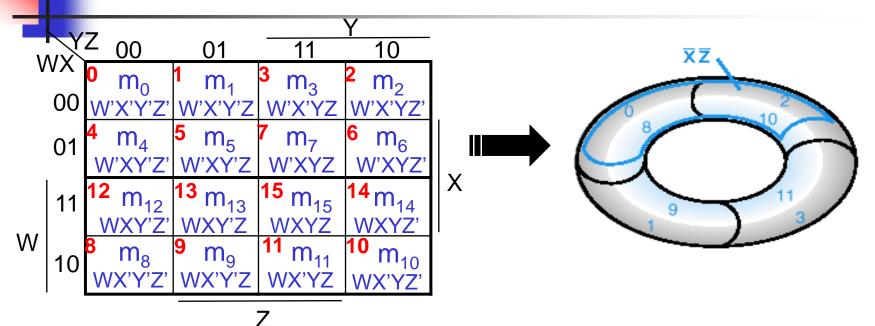


- Cell 0 corresponds to row 0 in the truth table and represents minterm W'X'Y'Z'; Cell 1 corresponds to row 1 and represents W'X'Y'Z; etc.
- If F(W,X,Y,Z) has value 1 in a row of the truth table, i.e., a minterm is present in the function, then a 1 is placed in the corresponding cell.

Four-Variable K-map -- Examples



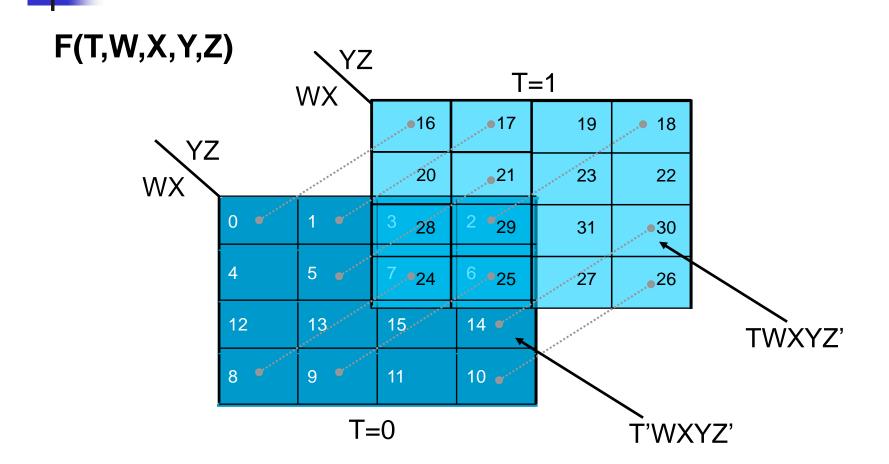
Four-Variable K-map (cont.)



- <u>NOTE</u>: variable ordering is important assume function F(W,X,Y,Z) then WX specifies the rows in the map and YZ the columns
- Each cell is adjacent to <u>four</u> cells (left, right, up, down)
 - Top cells are adjacent to bottom cells; Left-edge cells are adjacent to right-edge cells
- One cell represents a minterm of 4 literals
- A rectangle of 2 adjacent cells represents a product term of 3 literals
- A rectangle of 4 cells represents a product term of 2 literals
- A rectangle of 8 cells represents a product term of 1 literal
- A rectangle of 16 cells produces a function that is equal to logic 1

Fall 2024

Five-Variable K-map



Can you draw six-variable K-map ?

Complement of a Boolean Function

- The complement representation of function F is denoted as F'
- F' can be obtained by interchanging 1's to 0's and 0's to 1's in the column showing F of the truth table
- F' can be derived by applying DeMorgan's theorem on F
- F' can be derived by
 - taking the dual of F, i.e., interchanging "•" with "+", and "1" with "0" in F and
 - 2. complementing each literal
- The complement of a function IS NOT THE SAME as the dual of the function

Complementation: Example

Consider function F(X,Y,Z) = X'YZ' + XY'Z'

Х	Y	Ζ	F	F'
X 0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

Table method **•** DeMorgan method: F' = (X'YZ' + XY'Z')' -- apply DeMorgan $= (X'YZ')' \cdot (XY'Z')' - DeMorgan again$ $= (X+Y'+Z) \cdot (X'+Y+Z)$

Dual method:

F = X'YZ' + XY'Z'

-- interchange "•" with "+" to find the dual of F

 $G = (X'+Y+Z') \cdot (X+Y'+Z') G$ is the dual of F

-- complement each literal to find F'

 $F' = (X+Y'+Z) \cdot (X'+Y+Z)$