
Digital Systems and

Information

Part II

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 2

Overview

◼ Arithmetic Operations
◼ General Remarks

◼ Unsigned and Signed Binary Operations

◼ Number representation using Decimal Codes
◼ BCD code and Seven-Segment Code

◼ Text representation
◼ Alphanumeric Codes - ASCII and Unicode

◼ Sound and Speech representation
◼ Can we talk digitally?

◼ Image and Video representation
◼ Can we see digitally?

Arithmetic Operations

◼ Arithmetic operations with numbers in base r follow the same
rules as for decimal numbers
◼ Examples: addition, subtraction, and multiplication in base-2

◼ In Digital Computers arithmetic operations are done with the
binary number system (base-2) - Binary Arithmetic

◼ Binary subtraction is done by binary addition! Why?
◼ It is much more simple to do it that way

◼ Simple building block, called adder, can be implemented

◼ One Adder block can be used for both binary addition and subtraction

Carries:

Augend:

Addend:

Sum:

+

111

 10110

01110

100100

Borrows:

Minuend:

Subtrahend:

Difference:

-
 00110

11101

-

11

 11101

00110

-10111

Multiplicand:

Multiplier:

Product:

x
1010

 101

1010

 0000

 1010

 110010

+

3Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Unsigned Binary Subtraction

◼ Binary subtraction done by 2’s complement addition
◼ Assume two n-bit unsigned numbers M and N, M - N can be done as follows:

◼ Take the 2’s complement of N and add it to M ==> M + (2n - N)

◼ The sum is M + (2n - N) = M – N + 2n

◼ If M ≥ N, the sum produces an end carry, 2n. We can discard it, leaving the
correct result M – N.

◼ If M < N, the sum does not produces an end carry because it is equal to
 2n – (N - M), which is the 2’s complement of N – M. To obtain the correct
result take the 2’s complement of the sum, i.e., 2n – (2n – (N - M)) = (N - M)
and place a minus sign in front.

◼ Examples:

◼ What about binary subtraction by 1’s complement addition?
◼ I leave this for you as a home work (see the course web page) !!!

0101

 0001

0110

(5)

(2’s compl. of 15)

(the sum)

+
5

 15

-10

-

-1010 (“-” 2’s compl. of sum)
no carry correction is needed

1111

 1011

1 1010

(15)

(2’s compl. of 5)

(the sum)

+
15

 5

10

-

discard carry

4Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Signed Binary Addition

◼ Assume two n-bit signed numbers M and N in signed-2’s
complement format

◼ M + N is done as follows:
◼ Add M and N including their sign bits

◼ A carry out of the sign bit position is discarded

◼ Obtained sum is always correct!
◼ the sum is in signed-2’s complement format

◼ Examples:

(- 9)

(+ 5)

(- 4)

+
1|0111

 0|0101

1|1100
discard

+
(- 9)

(- 5)

(-14)

1|0111

 1|1011

11|0010

(+ 9)

(+ 5)

(+14)

+
0|1001

 0|0101

0|1110

(+ 9)

(- 5)

(+ 4)

+
0|1001

 1|1011

10|0100
discard

5Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Signed Binary Subtraction

◼ Assume two n-bit signed numbers M and N in signed-2’s
complement format

◼ M - N is done by addition as follows:
◼ Take the 2’s complement of N (including the sign bit) and add it to M

(including the sign bit)

◼ A carry out of the sign bit position is discarded

◼ Obtained result is always correct!
◼ the result is in signed-2’s complement format

◼ Examples:

(- 9)

(+ 5)

(-14)

-
1|0111

 0|0101

1|0111

 1|1011

11|0010

+
(- 9)

(- 5)

(- 4)

-
1|0111

 1|1011

1|0111

 0|0101

1|1100

+

discard

6Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Binary Floating-point Operations

◼ Assume two binary floating-point numbers F1 = M1 x 2E1 and F2 = M2 x 2E2

◼ Multiplication: F = F1 x F2 = M x 2E (how to find M and E)

◼ F = F1 x F2 = (M1 x 2E1) x (M2 x 2E2) = (M1 x M2) x 2(E1 + E2)

◼ Division: F = F1 / F2 = M x 2E (how to find M and E)

◼ F = F1 / F2 = (M1 x 2E1) / (M2 x 2E2) = (M1 / M2) x 2(E1 - E2)

◼ Addition: F = F1 + F2 = M x 2E (how to find M and E)

◼ If E1 ≥ E2 then F = F1 + F2 = (M1 x 2E1) + (M2 x 2E2) =
= M1 x 2E1 + (M2 x 2(E2-E1)) x 2E1 =(M1 + (M2 x 2-(E1-E2))) x 2E1

◼ Subtraction: F = F1 - F2 = M x 2E (how to find M and E)

◼ If E1 ≥ E2 then F = F1 - F2 = (M1 x 2E1) - (M2 x 2E2) =
= M1 x 2E1 - (M2 x 2(E2-E1)) x 2E1 = (M1 - (M2 x 2-(E1-E2))) x 2E1

◼ After each operation, M has to be normalized (if necessary) by shifting it to
the left and decrementing E until a nonzero bit appears in the first position.

◼ Example:

- (+0.101000)2 x 2(011)2

(+0.101100)2 x 2(010)2 - (+0.101000)2 x 2(011)2

(+0.010110)2 x 2(011)2

(+0.010010)2 x 2(011)2

5.00

2.75 -
2.25 (+0.100100)2 x 2(010)2

normalized result

7Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 8

Number Representation using

Decimal Codes

◼ The binary number system is used in digital computers

◼ BUT people are accustomed to the decimal system

◼ We can resolve this difference by

◼ converting decimal numbers to binary

◼ performing all arithmetic calculations in binary

◼ converting the binary result back to decimal

◼ You already know how to do this!

◼ Digital computers can do this as well, BUT:

◼ We have to store the decimal numbers in the computer in a way that

they can be converted to binary

◼ Since the computer can accept only 1’s and 0’s, we must represent

the decimal digits by a code that contains 1’s and 0’s

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 9

Binary Coded Decimals (BCD) (1)

◼ BCD code is the most commonly used code

◼ Each decimal digit is coded by a 4-bit string
called BCD digit

◼ A decimal number is converted to a BCD number
by replacing each decimal digit with the
corresponding BCD digit code

◼ Example:
(369)10 = (0011 0110 1001)BCD = (101110001)2

 3 6 9

◼ A BCD number needs more bits than its
equivalent binary value!

◼ However, the advantages of using BCD are:
◼ BCD numbers are decimal numbers even though

they are represented 1s and 0s

◼ Computer input/output data are handled by people
who use the decimal system

◼ Computers can store decimal numbers using BCD,
convert the BCD numbers to binary, perform binary
operations, and convert the result back to BCD

Decimal Digit BCD Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Note: the binary

combinations 1010

through 1111 are not

used and have no

meaning in the BCD

code

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 10

◼ Converting a BCD number to a binary number
(25)10 = (0010 0101)BCD = (0010)2 x 101 + (0101)2 x 100 =

 = (0010)2 x (1010)2 + (0101)2 x (0001)2 =

 = (10100)+(0101) = (11001)2

◼ Converting a binary number to a BCD number

◼ BCD Arithmetic
◼ Digital computers can perform arithmetic operations directly with

decimal numbers stored in BCD code

◼ How is this done? (study the text book or go to internet for information)

Binary Coded Decimals (BCD) (2)

Convert the number (11001)2 by dividing it to (1010)2 = (10)10

(11001)2 / (1010)2 = (0010)2 and Remainder = (0101)2 Least significant BCD digit

 (0010)2 / (1010)2 = (0000)2 and Remainder = (0010)2 Most significant BCD digit

 (11001)2 = (0010 0101)BCD = (25)10

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 11

Other Useful Decimal Codes:

Excess-3 Code

◼ Given a decimal digit n, its corresponding excess-3
codeword is (n+3)2
◼ Example:

 n=5 → n+3=8 → 1000excess-3

 n=0 → n+3=3 → 0011excess-3

◼ Decimal number in Excess-3 code.
◼ Example:

(158)10 = (0100 1000 1011)excess-3 = (10011110)2

 1+3 5+3 8+3

◼ Useful in some cases for digital arithmetic, e.g., decimal
subtraction.

Decimal

Digit

Excess-3

Digit

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 12

Another Useful Decimal Code:

Seven-Segment Code

◼ Used to display numbers on seven-segment displays

◼ Seven-segment display:

◼ 7 LEDs (light emitting diodes), each one controlled by an input

◼ 1 means “on”, 0 means “off”

◼ Display digit “3”?

◼ Set a, b, c, d, g to 1

◼ Set e, f to 0

Decimal Digit 7- Segment Code

a b c d e f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

d

a

b

c e

f
g

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 13

Text Representation using

Alphanumeric Codes

◼ Digital computers need to handle data consisting not only of

numbers, but also of letters

◼ Alphanumeric character set of English includes:

◼ The 10 decimal digits

◼ The 26 letters of the alphabet (uppercase and lowercase letters)

◼ Several special characters (more than three)

◼ We need to code these symbols

◼ The code must be binary – computers can handle only 0’s and 1’s

◼ We need binary code of at least seven bits (27 = 128 symbols)

◼ American Standard Code for Information Interchange (ASCII)

◼ 7-bit standard code for representing symbols of the English language

◼ Unicode

◼ 16-bit standard code for representing the symbols of other languages

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 14

ASCII Code Table

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 15

How can we talk digitally?

◼ Digital Systems manipulate discrete quantities of information

◼ Speech and music are continuous (non-discrete) quantities of information

◼ How a Digital System can handle this continuous information?

speech in

What happens in here?

1) Signal is sampled in time at 8000 samples per second

2) Each sample is quantized and coded by a single byte

3) After (1) and (2) we get discrete quantity of information:

• The cost is 64 Kbit/sec which is way too much!

• Digital Signal Processing techniques allow us to bring this amount

down to as low as 2.4 Kbit/s.

11001101

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 16

How can we see digitally?

◼ Image and video are continuous (non-discrete) quantities of

information. How a Digital System handles it?

video in

What happens in here?

1) Video Signal is sampled in time at 24 images (frames) per second

2) Each image is sampled in space at 3.2 mega pixels per image

3) Each pixel is quantized and coded by 3 bytes (Red, Green, Blue)

4) After (1), (2), and (3) we get discrete quantity of information:

• The cost is 1.8432 Gbit/sec which is huge!!!

• Image Compression techniques (JPEG, MPEG-4, H.264) allow us to

bring this amount down to several Mbit/s

sampled in time

sampled in space

01100100

00011000

10100101

Combinational Logic Circuits

Part I -Theoretical Foundations

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 18

Overview

◼ What is a combinational logic circuit?

◼ Boolean Algebra

◼ Basic Logic Operations

◼ Basic Identities

◼ Basic Principles, Properties, and Theorems

◼ Boolean Function and Representations

◼ Truth Table

◼ Canonical and Standard Forms

◼ Karnaugh Maps (K-Maps)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 19

Combinational Logic Circuits

◼ Digital Systems are made out of digital circuits

◼ Digital circuits are hardware components that

manipulate binary information

◼ Certain well defined basic (small) digital circuits are

called Logic Gates

◼ Gates have inputs and outputs and perform specific

mathematical logic operations

◼ Outputs of gates are connected to inputs of other

gates to form a digital combinational logic circuit.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 20

Boolean Algebra

◼ To analyze and design digital combinational logic circuits

 we need a mathematical system

◼ A system called Boolean Algebra is used

◼ George Boole (1815-1864): “An investigation of the laws of

thought” – a book published in 1854 introducing the

mathematical theory of logic

◼ Boolean Algebra deals with binary variables that take 2

discrete values (0 and 1), and with logic operations

◼ Binary/logic variables are typically represented as letters:

A,B,C,…,X,Y,Z or a,b,c,…,x,y,z

◼ Three basic logic operations:

◼ AND, OR, NOT (complementation)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 21

Basic Logic Operations

◼ AND operation is represented by operators “•” or “ ” or by the absence
of an operator.

◼ Z = X•Y or Z = X Y, or Z = XY is read “Z is equal to X AND Y” meaning that:

◼ Z = 1 if and only if X = 1 and Y = 1; otherwise Z = 0.

◼ AND resembles binary multiplication:

 0 • 0 = 0, 0 • 1 = 0,

 1 • 0 = 0, 1 • 1 = 1

◼ OR operation is represented by operators “+” or “ ”.

◼ Z = X+Y or Z = X Y is read “Z is equal to X OR Y” meaning that:

◼ Z = 1 if X = 1 or Y = 1, or if both X = 1 and Y = 1, i.e., Z = 0 if and only if X = 0
and Y = 0.

◼ OR resembles binary addition, except in one case:

 0 + 0 = 0, 0 + 1 = 1,

 1 + 0 = 1, 1 + 1 = 1 (≠ 102)

◼ NOT operation is represented by operator “ ’ ” or by a bar over a variable.

◼ Z = X’ or Z = X is read “Z is equal to NOT X” meaning that:

◼ Z = 1 if X = 0; but Z = 0 if X = 1

◼ NOT operation is also referred to as complement operation.

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 22

Basic Identities of Boolean Algebra

Let X be a boolean variable and 0,1 constants

1. X + 0 = X -- Zero Axiom

2. X • 1 = X -- Unit Axiom

3. X + 1 = 1 -- Unit Property

4. X • 0 = 0 -- Zero Property

5. X + X = X -- Idempotence

6. X • X = X -- Idempotence

7. X + X’ = 1 -- Complement

8. X • X’ = 0 -- Complement

9. (X’)’ = X -- Involution

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 23

Boolean Algebra Properties

Let X,Y, and Z be boolean variables

◼ Commutative
 10. X + Y = Y + X 11. X • Y = Y • X

◼ Associative
 12. X + (Y+Z) = (X+Y) + Z 13. X•(Y•Z) = (X•Y)•Z

◼ Distributive
 14. X•(Y+Z) = X•Y + X•Z 15. X+(Y•Z) = (X+Y) • (X+Z)

◼ DeMorgan’s Theorem
 16. (X + Y)’ = X’ • Y’ 17. (X • Y)’ = X’ + Y’

◼ In general for DeMorgan,
◼ (X1 + X2 + … + Xn)’ = X1’ • X2’ • … • Xn’,

◼ (X1 • X2 • … • Xn)’ = X1’ + X2’ + … + Xn’

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 24

The Duality Principle

◼ The dual of an expression is obtained by

exchanging (• and +), and (1 and 0) in it, provided

that the precedence of operations is not changed

◼ Cannot exchange x with x’

◼ Example:

◼ Find the dual of expression: x’yz’ + x’y’z

◼ Answer: (x’ + y + z ’) • (x ’ + y’ + z)

◼ The dual expression does not always equal the

original expression

◼ If a Boolean equation/equality is valid, its dual is

also valid

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 25

The Duality Principle (cont.)

With respect to duality, Identities 1 – 8 and Properties

10 – 17 have the following relationship:

 1. X + 0 = X 2. X • 1 = X (dual of 1)

 3. X + 1 = 1 4. X • 0 = 0 (dual of 3)

 5. X + X = X 6. X • X = X (dual of 5)

 7. X + X’ = 1 8. X • X’ = 0 (dual of 7)

10. X + Y = Y + X 11. X • Y = Y • X (dual of 10)

12. X + (Y+Z) = (X+Y) + Z 13. X•(Y•Z) = (X•Y)•Z (dual of 12)

14. X•(Y+Z) = X•Y + X•Z 15. X+(Y•Z) = (X+Y) • (X+Z) (dual of14)

16. (X + Y)’ = X’ • Y’ 17. (X • Y)’ = X’ + Y’ (dual of16)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 26

Absorption Property (Covering)

◼ X + X•Y = X -- (absorption property)

◼ X•(X+Y) = X -- (dual absorption property)

◼ Proof:

X + X•Y = X•1 + X•Y

 = X • (1 + Y)

 = X • 1

 = X

◼ Can you prove the dual absorption property?

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 27

Consensus Theorem

◼ XY + X’Z + YZ = XY + X’Z -- (theorem)

◼ (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z) -- (dual theorem)

◼ Proof:

XY + X’Z + YZ = XY + X’Z + (X+X’)YZ

 = XY + X’Z + XYZ + X’YZ

 = (XY + XYZ) + (X’Z + X’ZY)

 = XY + X’Z

◼ Can you prove the dual consensus theorem?

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 28

Boolean Function

◼ F(vars) = Boolean expression

◼ Example: F(a,b) = a’• b + b’

 G(x,y,z) = x • (y + z’)

◼ Terminology:

◼ Literal: A variable or its complement (Example: x or b’).

◼ Product term: literals connected by “•” (Example: a’• b).

◼ Sum term: literals connected by “+” (Example y + z’).

set of binary

variables

◼ Operators (+, •, ’)

◼ Variables

◼ Constants (0, 1)

◼ Groupings (parenthesis)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 29

Boolean Function Representations

◼ Truth Table (unique representation)

◼ Boolean Equation

◼ Canonical Sum-Of-Products (CSOP) form (unique)

◼ Canonical Product-Of-Sums (CPOS) form (unique)

◼ Standard Forms (NOT unique representations)

◼ Map (unique representation)

◼ We can convert one representation of a Boolean

function into another in a systematic way

◼ Why do we need all these representations?

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 30

Truth Table

◼ Tabular form that uniquely represents

the relationship between the input

variables of a Boolean function

and its output

◼ Enumerates all possible

combinations of 1’s and 0’s that

can be assigned to binary variables

◼ Shows binary value of the function

for each possible binary combination

◼ Example:

x y z F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

F(x,y,z)

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 31

Truth Table (cont.)

◼ Assume a Boolean function F(x1,x2,…,xN-1,xN) that

depends on N variables

◼ Question1: How many columns are there in the truth

table of F(x1,x2,…,xN-1,xN) ?

◼ Question2: How many rows are there in the truth

table of F(x1,x2,…,xN-1,xN) ?

◼ Answer Q1: columns = N + 1

◼ a column is needed for each variable and 1 column is

needed for the values of the function

◼ Answer Q2: rows = 2N

◼ there are 2N possible binary combinations for N variables

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 32

Truth Table (cont.)

◼ Truth table: a unique representation of a Boolean function

◼ If two functions have identical truth tables, the functions are

equivalent (and vice-versa)

◼ Truth tables can be used to prove equality theorems

◼ Proof of the DeMorgan’s Theorem: (X + Y)’ = X’ • Y’

◼ The size of a truth table grows exponentially with the number

of variables involved

◼ This motivates the use of other representations!

X Y X + Y F1 = (X + Y)’

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

X Y X’ Y’ F2 = X’ • Y’

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

Observe: F1 and

F2 have identical

truth tables =>

F1 = F2, i.e., the

theorem is

proved

	Slide 1: Digital Systems and Information Part II
	Slide 2: Overview
	Slide 3: Arithmetic Operations
	Slide 4: Unsigned Binary Subtraction
	Slide 5: Signed Binary Addition
	Slide 6: Signed Binary Subtraction
	Slide 7: Binary Floating-point Operations
	Slide 8: Number Representation using Decimal Codes
	Slide 9: Binary Coded Decimals (BCD) (1)
	Slide 10: Binary Coded Decimals (BCD) (2)
	Slide 11: Other Useful Decimal Codes: Excess-3 Code
	Slide 12: Another Useful Decimal Code: Seven-Segment Code
	Slide 13: Text Representation using Alphanumeric Codes
	Slide 14: ASCII Code Table
	Slide 15: How can we talk digitally?
	Slide 16: How can we see digitally?
	Slide 17: Combinational Logic Circuits Part I -Theoretical Foundations
	Slide 18: Overview
	Slide 19: Combinational Logic Circuits
	Slide 20: Boolean Algebra
	Slide 21: Basic Logic Operations
	Slide 22: Basic Identities of Boolean Algebra
	Slide 23: Boolean Algebra Properties
	Slide 24: The Duality Principle
	Slide 25: The Duality Principle (cont.)
	Slide 26: Absorption Property (Covering)
	Slide 27: Consensus Theorem
	Slide 28: Boolean Function
	Slide 29: Boolean Function Representations
	Slide 30: Truth Table
	Slide 31: Truth Table (cont.)
	Slide 32: Truth Table (cont.)

