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Overview

◼ Arithmetic Operations
◼ General Remarks

◼ Unsigned and Signed Binary Operations

◼ Number representation using Decimal Codes
◼ BCD code and Seven-Segment Code

◼ Text representation 
◼ Alphanumeric Codes - ASCII and Unicode

◼ Sound and Speech representation 
◼ Can we talk digitally?

◼ Image and Video representation
◼ Can we see digitally?



Arithmetic Operations

◼ Arithmetic operations with numbers in base r follow the same 
rules as for decimal numbers
◼ Examples: addition, subtraction, and multiplication in base-2 

◼ In Digital Computers arithmetic operations are done with the 
binary number system (base-2) - Binary Arithmetic

◼ Binary subtraction is done by binary addition! Why?
◼ It is much more simple to do it that way

◼ Simple building block, called adder, can be implemented 

◼ One Adder block can be used for both binary addition and subtraction

Carries:

Augend:

Addend:

Sum:

+

111                                

 10110  

01110 

100100     

Borrows:

Minuend:

Subtrahend:

Difference:

-
 00110  

11101 

     

-

11                                   

 11101  

00110 

-10111     

Multiplicand:

Multiplier:

Product:

x
1010                                

 101  

1010

     0000 

  1010 

  110010    

+
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Unsigned Binary Subtraction

◼ Binary subtraction done by 2’s complement addition
◼ Assume two n-bit unsigned numbers M and N, M - N can be done as follows:

◼ Take the 2’s complement of N and add it to M  ==>  M + (2n - N)

◼ The sum is M + (2n - N) =  M – N + 2n 

◼ If M ≥ N, the sum produces an end carry, 2n. We can discard it, leaving the 
correct result M – N.

◼ If M < N, the sum does not produces an end carry because it is equal to
 2n – (N - M), which is the 2’s complement of N – M. To obtain the correct 
result take the 2’s complement of the sum, i.e., 2n – (2n – (N - M)) = (N - M) 
and place a minus sign in front. 

◼ Examples: 

◼ What about binary subtraction by 1’s complement addition?
◼ I leave this for you as a home work (see the course web page) !!!

0101               

  0001  

0110      

(5)      

(2’s compl. of 15)

(the sum)

+
5

  15

-10

-

-1010 ( “-” 2’s compl. of sum )
no carry correction is needed 

1111               

  1011  

1 1010      

(15)      

(2’s compl. of 5)

(the sum)

+
15

  5

10

-

discard carry 
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Signed Binary Addition

◼ Assume two n-bit signed numbers M and N in signed-2’s 
complement format

◼ M + N is done as follows:
◼ Add M and N including their sign bits  

◼ A carry out of the sign bit position is discarded

◼ Obtained sum is always correct!
◼  the sum is in signed-2’s complement format   

◼ Examples: 

(-  9)

(+ 5)

(-  4)

+
1|0111               

 0|0101  

1|1100      
discard 

+
(-  9)

(-  5)

(-14)

1|0111               

 1|1011  

11|0010      

(+ 9)

(+ 5)

(+14)

+
0|1001               

 0|0101  

0|1110      

(+ 9)

(-  5)

(+ 4)

+
0|1001               

 1|1011  

10|0100      
discard 

5Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University



Signed Binary Subtraction

◼ Assume two n-bit signed numbers M and N in signed-2’s 
complement format

◼ M - N is done by addition as follows:
◼ Take the 2’s complement of N (including the sign bit) and add it to M 

(including the sign bit) 

◼ A carry out of the sign bit position is discarded

◼ Obtained result is always correct!
◼  the result is in signed-2’s complement format

◼ Examples:

(-  9)

(+ 5)

(-14)

-
1|0111               

 0|0101  

      

1|0111               

 1|1011  

11|0010      

+
(-  9)

(-  5)

(-  4)

-
1|0111               

 1|1011  

      

1|0111               

 0|0101  

1|1100      

+

discard 
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Binary Floating-point Operations

◼ Assume two binary floating-point numbers F1 = M1 x 2E1 and F2 = M2 x 2E2 

◼ Multiplication: F = F1 x F2 = M x 2E  ( how to find M and E )

◼ F = F1 x F2 = (M1 x 2E1) x (M2 x 2E2) = (M1 x M2) x 2(E1 + E2)  

◼ Division: F = F1 / F2 = M x 2E  (how to find M and E)

◼ F = F1 / F2 = (M1 x 2E1) / (M2 x 2E2) = (M1 / M2) x 2(E1 - E2)

◼ Addition: F = F1 + F2 = M x 2E  ( how to find M and E )

◼ If E1 ≥ E2 then F = F1 + F2 = (M1 x 2E1) + (M2 x 2E2)  = 
= M1 x 2E1 + (M2 x 2(E2-E1)) x 2E1 =( M1 + (M2 x 2-(E1-E2) ) ) x 2E1 

◼ Subtraction: F = F1 - F2 = M x 2E  ( how to find M and E )

◼ If E1 ≥ E2 then F = F1 - F2 = (M1 x 2E1) - (M2 x 2E2) = 
= M1 x 2E1 - (M2 x 2(E2-E1)) x 2E1 = ( M1 - (M2 x 2-(E1-E2) ) ) x 2E1 

◼ After each operation, M has to be normalized (if necessary) by shifting it to 
the left and decrementing E until a nonzero bit appears in the first position.

◼ Example:

- (+0.101000)2 x 2(011)2

(+0.101100)2 x 2(010)2 - (+0.101000)2 x 2(011)2

(+0.010110)2 x 2(011)2

(+0.010010)2 x 2(011)2

5.00

2.75 -
2.25 (+0.100100)2 x 2(010)2

normalized result
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Number Representation using 

Decimal Codes

◼ The binary number system is used in digital computers

◼ BUT people are accustomed to the decimal system

◼ We can resolve this difference by

◼ converting decimal numbers to binary

◼ performing all arithmetic calculations in binary

◼ converting the binary result back to decimal

◼ You already know how to do this! 

◼ Digital computers can do this as well, BUT:

◼ We have to store the decimal numbers in the computer in a way that 

they can be converted to binary

◼ Since the computer can accept only 1’s and 0’s, we must represent 

the decimal digits by a code that contains 1’s and 0’s   
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Binary Coded Decimals (BCD)     (1)

◼ BCD code is the most commonly used code

◼ Each decimal digit is coded by a 4-bit string 
called BCD digit

◼ A decimal number is converted to a BCD number 
by replacing each decimal digit with the 
corresponding BCD digit code

◼ Example:
(369)10 = ( 0011 0110 1001 )BCD = (101110001)2

                            3       6       9 

◼ A BCD number needs more bits than its 
equivalent binary value!

◼ However, the advantages of using BCD are:
◼ BCD numbers are decimal numbers even though 

they are represented 1s and 0s

◼ Computer input/output data are handled by people 
who use the decimal system

◼ Computers can store decimal numbers using BCD, 
convert the BCD numbers to binary, perform binary 
operations, and convert the result back to BCD

Decimal Digit BCD  Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Note: the binary 

combinations 1010 

through 1111 are not 

used and have no 

meaning in the BCD 

code
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◼ Converting a BCD number to a binary number
(25)10   = (0010 0101)BCD  = (0010)2 x 101 + (0101)2 x 100 =

        = (0010)2 x (1010)2 + (0101)2 x (0001)2 =

        = (10100)+(0101) = (11001)2 

◼ Converting a binary number to a BCD number

◼ BCD Arithmetic
◼ Digital computers can perform arithmetic operations directly with 

decimal numbers stored in BCD code

◼ How is this done? (study the text book or go to internet for information)   

Binary Coded Decimals (BCD)     (2)

Convert the number (11001)2 by dividing it to (1010)2 = (10)10

(11001)2 / (1010)2 = (0010)2  and  Remainder = (0101)2   Least significant BCD digit

  (0010)2 / (1010)2 = (0000)2  and  Remainder = (0010)2    Most significant BCD digit

 (11001)2 = ( 0010 0101 )BCD = (25)10
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Other Useful Decimal Codes:

Excess-3 Code

◼ Given a decimal digit n, its corresponding excess-3 
codeword is (n+3)2 
◼  Example: 

 n=5 → n+3=8 → 1000excess-3

 n=0 → n+3=3 → 0011excess-3

◼ Decimal number in Excess-3 code.
◼ Example:

(158)10 = ( 0100 1000 1011 )excess-3 = (10011110)2

                  1+3    5+3   8+3

◼ Useful in some cases for digital arithmetic, e.g., decimal 
subtraction.

Decimal 

Digit

Excess-3  

Digit

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100
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Another Useful Decimal Code:

Seven-Segment Code

◼ Used to display numbers on seven-segment displays

◼ Seven-segment display:

◼ 7 LEDs (light emitting diodes), each one controlled by an input

◼ 1 means “on”, 0 means “off”

◼ Display digit “3”?

◼ Set a, b, c, d, g to 1

◼ Set e, f to 0

Decimal Digit 7- Segment Code

a    b    c    d    e    f    g

0 1    1    1    1    1    1   0 

1 0    1    1    0    0    0   0

2 1    1    0    1    1    0   1

3 1    1    1    1    0    0   1

4 0    1    1    0    0    1   1

5 1    0    1    1    0    1   1 

6 1    0    1    1    1    1   1

7 1    1    1    0    0    0   0 

8 1    1    1    1    1    1   1 

9 1    1    1    1    0    1   1

d 

a 

b 

c e 

f 
g 
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Text Representation using 

Alphanumeric Codes

◼ Digital computers need to handle data consisting not only of 

numbers, but also of letters

◼ Alphanumeric character set of English includes:

◼ The 10 decimal digits

◼ The 26 letters of the alphabet (uppercase and lowercase letters)

◼  Several special characters (more than three) 

◼ We need to code these symbols

◼ The code must be binary – computers can handle only 0’s and 1’s

◼ We need binary code of at least seven bits (27 = 128 symbols) 

◼ American Standard Code for Information Interchange (ASCII)

◼ 7-bit standard code for representing symbols of the English language 

◼ Unicode

◼ 16-bit standard code for representing the symbols of other languages
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ASCII Code Table
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How can we talk digitally?

◼ Digital Systems manipulate discrete quantities of information

◼ Speech and music are continuous (non-discrete) quantities of information 

◼ How a Digital System can handle this continuous information?

speech in

What happens in here?

1) Signal is sampled in time at 8000 samples per second

2) Each sample is quantized and coded by a single byte

3) After (1) and (2) we get discrete quantity of information:

• The cost is 64 Kbit/sec which is way too much!

• Digital Signal Processing techniques allow us to bring this amount 

down to as low as 2.4 Kbit/s. 

11001101
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How can we see digitally?

◼ Image and video are continuous (non-discrete) quantities of 

information. How a Digital System handles it?

video in

What happens in here?

1) Video Signal is sampled in time at 24 images (frames) per second

2) Each image is sampled in space at 3.2 mega pixels per image

3) Each pixel is quantized and coded by 3 bytes (Red, Green, Blue)

4) After (1), (2), and (3) we get discrete quantity of information:

• The cost is 1.8432 Gbit/sec which is huge!!!

• Image Compression techniques (JPEG, MPEG-4, H.264) allow us to 

bring this amount down to several Mbit/s

sampled in time

sampled in space

01100100

00011000

10100101



Combinational Logic Circuits

Part I -Theoretical Foundations 
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Overview

◼ What is a combinational logic circuit?

◼ Boolean Algebra

◼ Basic Logic Operations

◼ Basic Identities

◼ Basic Principles, Properties, and Theorems

◼ Boolean Function and Representations

◼ Truth Table

◼ Canonical and Standard Forms

◼ Karnaugh Maps (K-Maps)
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Combinational Logic Circuits 

◼ Digital Systems are made out of digital circuits

◼ Digital circuits are hardware components that 

manipulate binary information 

◼ Certain well defined basic (small) digital circuits are 

called Logic Gates 

◼ Gates have inputs and outputs and perform specific 

mathematical logic operations

◼ Outputs of gates are connected to inputs of other 

gates to form a digital combinational logic circuit.  
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Boolean Algebra

◼ To analyze and design digital combinational logic circuits

 we need a mathematical system

◼ A system called Boolean Algebra is used

◼ George Boole (1815-1864): “An investigation of the laws of 

thought” – a book published in 1854 introducing the 

mathematical theory of logic

◼ Boolean Algebra deals with binary variables that take 2 

discrete values (0 and 1), and with logic operations

◼ Binary/logic variables are typically represented as letters: 

A,B,C,…,X,Y,Z or a,b,c,…,x,y,z

◼ Three basic logic operations: 

◼ AND, OR, NOT (complementation)
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Basic Logic Operations 

◼ AND operation is represented by operators “•” or “   ” or by the absence 
of an operator.

◼ Z = X•Y or Z = X    Y, or Z = XY is read “Z is equal to X AND Y” meaning that: 

◼ Z = 1 if and only if X = 1 and Y = 1; otherwise Z = 0.

◼ AND resembles binary multiplication:

   0 • 0 = 0, 0 • 1 = 0,

   1 • 0 = 0, 1 • 1  = 1

◼ OR operation is represented by operators “+” or “     ”.

◼ Z = X+Y or Z = X     Y is read “Z is equal to X OR Y” meaning that:

◼ Z = 1 if X = 1 or Y = 1, or if both X = 1 and Y = 1, i.e., Z = 0 if and only if X = 0 
and Y = 0. 

◼ OR resembles binary addition, except in one case:

   0 + 0 = 0, 0 + 1 = 1,

   1 + 0 = 1, 1 + 1 = 1 (≠ 102)

◼ NOT operation is represented by operator “ ’ ” or by a bar over a variable.

◼ Z = X’ or Z = X is read “Z is equal to NOT X” meaning that:

◼ Z = 1 if X = 0; but Z = 0 if X = 1

◼ NOT operation is also referred to as complement operation.   
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Basic Identities of Boolean Algebra

Let X be a boolean variable and  0,1 constants

1.    X + 0 = X    -- Zero Axiom

2.    X • 1  = X    -- Unit Axiom 

3.    X + 1  = 1   -- Unit Property

4.    X • 0  = 0    -- Zero Property

5.    X + X = X   -- Idempotence

6.    X • X  = X   -- Idempotence

7.    X + X’ = 1   -- Complement

8.    X • X’ = 0    -- Complement

9.   (X’)’ = X     -- Involution
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Boolean Algebra Properties 

Let X,Y, and Z be boolean variables

◼ Commutative
       10.  X + Y = Y + X                    11.  X • Y = Y • X

◼ Associative
       12.  X + (Y+Z) = (X+Y) + Z      13.  X•(Y•Z) = (X•Y)•Z

◼ Distributive
       14.  X•(Y+Z) = X•Y + X•Z         15.  X+(Y•Z) = (X+Y) • (X+Z)

◼ DeMorgan’s Theorem
       16.  (X + Y)’ = X’ • Y’              17.  (X • Y)’ = X’ + Y’      

◼ In general for DeMorgan, 
◼ ( X1 + X2 + … + Xn )’ = X1’ • X2’  • … •  Xn’, 

◼ ( X1 • X2  • …  • Xn )’ = X1’ + X2’ + … + Xn’
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The Duality Principle

◼ The dual of an expression is obtained by 

exchanging (• and +), and (1 and 0) in it, provided 

that the precedence of operations is not changed

◼ Cannot exchange x with x’ 

◼ Example:  

◼ Find the dual of expression: x’yz’ + x’y’z

◼ Answer: (x’ + y + z ’) • (x ’ + y’ + z)

◼ The dual expression does not always equal the 

original expression

◼ If a Boolean equation/equality is valid, its dual is 

also valid 
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The Duality Principle (cont.)

With respect to duality, Identities 1 – 8 and Properties 

10 – 17 have the following relationship:

  1. X + 0 = X                          2. X • 1  = X   (dual of 1)

  3. X + 1  = 1               4. X • 0  = 0        (dual of 3)

  5. X + X = X               6. X • X  = X       (dual of 5)

  7. X + X’ = 1               8. X • X’  = 0       (dual of 7)

10. X + Y = Y + X                 11. X • Y = Y • X                  (dual of 10)

12. X + (Y+Z) = (X+Y) + Z   13. X•(Y•Z) = (X•Y)•Z           (dual of 12)

14. X•(Y+Z) = X•Y + X•Z    15. X+(Y•Z) = (X+Y) • (X+Z)  (dual of14)

16. (X + Y)’ = X’ • Y’             17. (X • Y)’ = X’ + Y’             (dual of16) 
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Absorption Property (Covering)

◼ X + X•Y = X  -- (absorption property)

◼ X•(X+Y) = X  -- (dual absorption property)

◼ Proof:

X + X•Y = X•1 + X•Y    

    = X • (1 + Y) 

    = X • 1

    = X

◼ Can you prove the dual absorption property?
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Consensus Theorem

◼ XY + X’Z + YZ = XY + X’Z                -- (theorem)

◼ (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z)  -- (dual theorem)

◼ Proof:

XY + X’Z + YZ = XY + X’Z + (X+X’)YZ

     = XY + X’Z + XYZ + X’YZ

     = (XY + XYZ) + (X’Z + X’ZY)

     = XY + X’Z

◼ Can you prove the dual consensus theorem?



Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 28

Boolean Function

◼ F(vars) = Boolean expression

 

◼ Example: F(a,b)    =  a’• b + b’

    G(x,y,z) =  x • (y + z’)

◼ Terminology:

◼ Literal: A variable or its complement    (Example: x or b’ ).

◼ Product term: literals connected by “•” (Example: a’• b ).

◼ Sum term: literals connected by “+”      (Example y + z’).

set of binary

variables

◼ Operators ( +, •, ’ )

◼ Variables

◼ Constants ( 0, 1 )

◼ Groupings (parenthesis)
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Boolean Function Representations

◼ Truth Table (unique representation) 

◼ Boolean Equation

◼ Canonical Sum-Of-Products (CSOP) form (unique)

◼ Canonical Product-Of-Sums (CPOS) form (unique)

◼ Standard Forms (NOT unique representations)

◼ Map (unique representation)

◼ We can convert one representation of a Boolean 

function into another in a systematic way

◼ Why do we need all these representations?
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Truth Table

◼ Tabular form that uniquely represents 

the relationship between the input 

variables of a Boolean function 

and its output

◼ Enumerates all possible 

combinations of 1’s and 0’s that 

can be assigned to binary variables 

◼ Shows binary value of the function

for each possible binary combination

◼ Example: 

x y z F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

F(x,y,z)
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Truth Table (cont.)

◼ Assume a Boolean function F(x1,x2,…,xN-1,xN) that 

depends on N variables

◼ Question1: How many columns are there in the truth 

table of F(x1,x2,…,xN-1,xN) ?

◼ Question2: How many rows are there in the truth 

table of F(x1,x2,…,xN-1,xN) ?

◼ Answer Q1: columns = N + 1 

◼ a column is needed for each variable and 1 column is 

needed for the values of the function

◼ Answer Q2: rows = 2N 

◼ there are 2N possible binary combinations for N variables
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Truth Table (cont.)

◼ Truth table: a unique representation of a Boolean function

◼ If two functions have identical truth tables, the functions are 

equivalent (and vice-versa)

◼ Truth tables can be used to prove equality theorems

◼ Proof of the DeMorgan’s Theorem: (X + Y)’ = X’ • Y’

◼ The size of a truth table grows exponentially with the number 

of variables involved

◼ This motivates the use of other representations!

X Y X + Y F1 = (X + Y)’

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

X Y X’ Y’ F2 = X’ • Y’

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

Observe: F1 and 

F2 have identical 

truth tables => 

F1 = F2, i.e., the 

theorem is 

proved 
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