Fundamentals of

 Digital Systems Design

 Digital Systems Design}

Course website:

http://www.liacs.leidenuniv.nl/~stefanovtp/courses/DITE/index.html
Main Lecturer: Todor Stefanov
(t.p.stefanov@liacs.leidenuniv.nl)

Assistants:
8 BSc/MSc/PhD students (dite.liacs@gmail.com)

Leiden Embedded Research Center (LERC)
Leiden Institute of Advanced Computer Science (LIACS)
Leiden University, The Netherlands

Course Organization: Structure and Rules

- On-campus Lectures
- your attendance is strongly recommended
- On-campus Hands-on tutorials with practical assignments
- your attendance is strongly encouraged
- On-campus and At-home Design Project
- you must make and turn-in the design project
- Homeworks
- doing homeworks is strongly recommended
- excellent material to practice for the exams!

Important:

- All info needed for the course will be on the course website
- Check the website regularly for instructions
- Check regularly Brightspace and your email for announcements

Course Organization: On-campus Lectures

- Goal
- To learn the fundamentals of digital systems design
- Theoretical Foundations
- Basic Digital Circuits and Building Blocks
- Design Algorithms and Procedures
- The basics of Memory Design
- The basics of Micro-Processor Design
- Format
- On-campus presentations supported by PowerPoint slides
- Slides available after each lecture on the course website
- Literature
- M. Morris Mano and Charles R. Kime, "Logic and Computer Design Fundamentals", $3^{\text {rd }}$ or $4^{\text {th }}$ edition Important:
- Dedicated 2 hours for questions after each lecture on Mondays!

Lectures Schedule and Location

Date	Time	Location
04 Sept (Monday)	$15: 15-17: 00$	Lecture Hall - C1
06 Sept (Wednesday)	$15: 15-17: 00$	Lecture Hall - C1
11 Sept (Monday)	$15: 15-17: 00$	Lecture Hall - C1
13 Sept (Wednesday)	$15: 15-17: 00$	Lecture Hall - C1
25 Sept (Monday)	$15: 15-17: 00$	Lecture Hall - C1
27 Sept (Wednesday)	$15: 15-17: 00$	Lecture Hall - C1
09 Oct (Monday)	$15: 15-17: 00$	Lecture Hall - C1
16 Oct (Monday)	$15: 15-17: 00$	Lecture Hall - C1
30 Oct (Monday)	$15: 15-17: 00$	Lecture Hall - C1
06 Nov (Monday)	$15: 15-17: 00$	Lecture Hall - C1
13 Nov (Monday)	$15: 15-17: 00$	Lecture Hall - C1
20 Nov (Monday)	$15: 15-17: 00$	Lecture Hall - C1
27 Nov (Monday)	$15: 15-17: 00$	Lecture Hall - C1
04 Dec (Monday)	$15: 15-17: 00$	Lecture Hall - C1
11 Dec (Monday)	$15: 15-17: 00$	Lecture Hall - C1

Course Organization: On-campus Tutorials

- Goal
- To learn how to solve simple digital design problems in practice
- To learn how to use software tools to design digital circuits
- Format
- Pen-and-paper practical assignments (simple digital circuit designs)
- Design and simulation of digital circuits using software tools
- Tools
- Xilinx ISE for digital circuit design and simulation
- Go to the website of the course to see options to access Xilinx ISE!
- Timetable and Location

Period	Day	Time	Place
11 Oct - 08 Nov	Every Wednesday	$15: 15-17: 00$	Rooms 302-304, 303, 306- $308,307,309$ in Snellius

Course Organization: Design Project

- Goal
- To apply the knowledge gained at lectures and hands-on tutorials
- To design a simple 4-bit Micro-Processor
- Format
- Project specification will be given in beginning of November
- Project tutorials with the tutors on Wednesdays
- to work on the project on-campus
- to get advice on how to design the micro-processor
- to ask questions
- You have to spend extra time at home or in our computer labs if
- project tutorials time is not sufficient to accomplish the project
- Timetable and Location

Period	Day	Time	Place
15 Nov - 13 Dec	Every Wednesday	$15: 15-17: 00$	Rooms 302-304, 303, 306- $308,307,309$ in Snellius

Course Organization: Homeworks

- Goals
- To understand better the material given at lectures
- To study alone additional material not given at lectures
- To prepare and practice for exams!
- Format
- Several homeworks will be given
- Homework instructions posted on website every Wednesday
- Try to do homework alone
- within 7 days after the instructions are posted
- Answers to homeworks will be posted on the course website
- 7 days after the instructions

Important:

- Dedicated 2 hours for questions after each lecture on Mondays!

Course Organization: Exams and Grading

- Exams
- One Midterm exam and one Final exam at the end of the course
- You must be present at these exams
- In case you fail at the final exam, there will be one Re-take exam
- Timetable and Location

Exams	Date	Hour	Place
Midterm Exam	October 25, 2023	$13: 15-16: 15$	Lecture Hall - C4/5
Final Exam	January 26, 2024	$13: 15-16: 15$	Lecture Hall - C4/5

- Grading
- You will receive 3 Grades: one for Final exam ($G^{\text {Fexam }}$), one for Project ($\mathbf{G}^{\text {Project }}$), and one for Midterm exam ($\mathbf{G}^{\text {Mexam }}$),
- All grades are important and will form your Final Grade as follows:

> If ($G^{\text {Fexam }} \geq 6.0$ and $G^{\text {Project }} \geq 6.0$) Then
> Final Grade $=0.4^{*} G^{\text {Fexam }}+0.4^{*} G^{\text {Project }}+0.2^{*} G^{\text {Mexam }}$

Else
Final Grade ≤ 5

Digital Systems and Information

Part I

Overview

- Introduction to Digital Systems
- Digital Systems (examples and general remarks)
- Basic Digital System Structure (basic components and their function)
- Number Systems
- Positional Number Systems (decimal, binary, octal, and hexadecimal)
- Number Conversions (r-to-decimal, decimal-to-r, other conversions)
- Representations of Numbers in Digital Systems
- Integer Numbers (unsigned and signed representations)
- Real Numbers (floating-point representation)

Digital Systems: Example

- Modern Digital Personal Computers (PC)
- The best known example of a digital system
- Most striking properties are: generality and flexibility

Digital Systems: More Examples

Fall 2023

Digital Systems: General Remarks

- Digital Systems manipulate discrete elements/quantities of information
- Discrete quantities of information emerge from:
- the nature of the data being processed
- the data may be discretized from continues values
- Early computer systems used mainly for numeric computations
- the discrete elements used were the digits
- hence the term digital computer/system emerged
- In general, any system uses an alphabet (set of symbols) to represent information
- The English language system uses an alphabet of 26 symbols (letters)
- The decimal number system uses an alphabet of 10 symbols (digits)
- What about the alphabet of the Digital Systems?

The Digital Systems' Alphabet is Binary

- Digital Systems use only one alphabet with two symbols (digits) ' 0 ' and ' 1 ' (hence binary alphabet)
- Binary digit is called a bit
- Information is represented by groups of bits
- Why is a binary alphabet used?
- Digital systems have a basic building block called switch
- The switch can only be "on" or "off"
- That is, two discrete values ' 0 ' and ' 1 ' can be distinguished
- Electric device, transistor, physically implements the switch
- ' 0 ' and ' 1 ' are physically represented by voltage values called LOW and HIGH
- "on" (closed) switch corresponds to ' 0 ' and is represented by LOW voltage value (between 0.0 and 1.0 Volt)
- "off" (open) switch corresponds to ' 1 ' and is represented by HIGH voltage value (between 3.0 and 5.0 Volts)
- More information will be given later in another lecture

Basic Digital System Structure

- CPU: Central Processing Unit
- Data Path: arithmetic and logic operations
- Control Unit: make sure that the sequence of data path operations is correct
- Storage: no memory = no system
- Input/Output: allow the system to interact with the outside world

Information Representation

- All information in Digital Systems is represented in binary form
- Information that is not binary is converted to binary before processed by Digital Systems
- Decimal numbers are expressed
- in the binary number system or
- by means of a binary code
- That is not too difficult because
- All number systems have a similar formal representation
- Thus, one number system can be converted into another
- Let us look into number systems and conversions

Number Systems

Number Systems are used in arithmetic to represent numbers by strings of digits. There are two types of systems:

- Positional number systems
- The meaning of each digit depends on its position in the number
- Example: Decimal number system
- 585.5 is a decimal number in positional code
- " 5 hundreds plus 8 tens plus 5 units plus 5 tenths"
- The hundreds, tens, units, and tenths are powers of 10 implied by the position of the digits

$$
585.5=5 \times 10^{2}+8 \times 10^{1}+5 \times 10^{0}+5 \times 10^{-1}
$$

- Decimal number system is said to be of base or radix 10 because
- it uses 10 distinct digits ($0-9$)
- the digits are multiplied by powers of 10
- Non-positional number systems
- Old Roman numbers: for example, XIX equals to 19

Positional Number Systems

We can represent numbers in any number system with base r

- Number in positional code
- $\left(A_{n-1} A_{n-2} \ldots A_{1} A_{0} . A_{-1} A_{-2} \ldots A_{-m+1} A_{-m}\right)_{r}$
- r is the base (radix) of the system, $r \in\{2,3, \ldots, I\}$
- every digit $A_{i} \in\{0,1,2, \ldots, r-1\}$, where $\{0,1,2, \ldots, r-1\}$ is the digit set
- "." is called the radix point
- A_{n-1} is referred to as the most significant digit
- A_{-m} is referred to as the least significant digit
- Number in base r expressed as power series of r
$-A_{n-1} r^{n-1}+A_{n-2} r^{n-2}+\ldots+A_{1} r^{1}+A_{0} r^{0}+A_{-1} r^{-1}+A_{-2} r^{-2}+\ldots+A_{-m+1} r^{-m+1}+A_{-m} r^{-m}$
- Example: a number in number system with base 5
- $(132.4)_{5}=1 \times 5^{2}+3 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1}=25+15+2+0.8=(42.8)_{10}$

Binary Number System

This is the system used for arithmetic in all digital computers

- Number in positional code
- $\left(b_{n-1} b_{n-2} \ldots b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots b_{-m_{+1}} b_{-m}\right)_{r}$
- $r=2$ is the base of the binary system
- every digit $b_{i} \in\{0,1\}$
- the digits b_{i} in a binary number are called bits
- b_{n-1} is referred to as the most significant bit (MSB)
- b_{-m} is referred to as the least significant bit (LSB)
- Number in base 2 expressed as power series of 2
- $b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\ldots+b_{1} 2^{1}+b_{0} 2^{0}+b_{-1} 2^{-1}+b_{-2} 2^{-2}+\ldots+b_{-m+1} 2^{-m+1}+b_{-m} 2^{-m}$
- Example: a number in the binary number system
- $(1011.01)_{2}=1 x 2^{3}+0 x 2^{2}+1 x 2^{1}+1 x 2^{0}+0 x 2^{-1}+1 x 2^{-2}=8+2+1+0.25=$ $(11.25)_{10}$

Burn this table into your memory

Power of Two

n	2^{n}	n	2^{n}	n	2^{n}
0	1	5	32	10	1024
1	2	6	64	11	2048
2	4	7	128	12	4096
3	8	8	256	13	8192
4	16	9	512	14	16384

$$
2^{10}=1024 \begin{array}{lll}
\text { is 1K } \\
\text { (kilo) }
\end{array} \quad 2^{20} \begin{aligned}
& \text { is } \mathbf{1 M} \\
& \text { (mega) }
\end{aligned} \quad 2^{30} \text { is } \mathbf{1 G} \text { (giga) }
$$

Other Useful Number Systems

Octal (base-8) and Hexadecimal (base-16) number systems
-- useful for representing binary quantities indirectly because
-- their bases are powers of two
-- have more compact representations of binary quantities

- Octal number system
- $\left(O_{n-1} O_{n-2} \ldots O_{1} O_{0} \cdot O_{-1} O_{-2} \ldots O_{-m+1} O_{-m}\right)_{8}$
- every digit $o_{i} \in\{0,1,2,3,4,5,6,7\}$.
- $o_{n-1} 8^{n-1}+o_{n-2} 8^{n-2}+\ldots+o_{1} 8^{1}+o_{0} 8^{0}+o_{-1} 8^{-1}+o_{-2} 8^{-2}+\ldots+o_{-m+1} 8^{-m+1}+o_{-m} 8^{-m}$
- $(127.4)_{8}=1 x 8^{2}+2 x 8^{1}+7 x 8^{0}+4 x 8^{-1}=(87.5)_{10}=(001010111.100)_{2}$
- Hexadecimal number system
- $\left(h_{n-1} h_{n-2} \ldots h_{1} h_{0} . h_{-1} h_{-2} \ldots h_{-m+1} h_{-m}\right)_{16}$
- every digit $h_{i} \in\{0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$.
- $h_{n-1} 16^{n-1}+h_{n-2} 16^{n-2}+\ldots+h_{1} 16^{1}+h_{0} 16^{0}+h_{-1} 16^{-1}+h_{-2} 16^{-2}+\ldots+h_{-m+1} 16^{-m+1}$ $+h_{-m} 16^{-m}$
- $(\text { B6F. } 4)_{16}=11 \times 16^{2}+6 \times 16^{1}+15 \times 16^{0}+4 \times 16^{-1}=(2927.25)_{10}=(10110110$ 1111.0100) ${ }_{2}$

Another Important Table

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hex (base 16)
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1010	11	9
10	1011	1100	13
12	1101	115	B
13	1111	16	F
14	17	F	
15		17	7

Fall 2023
Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Conversion from base r to Decimal

To convert a number in base \boldsymbol{r} to decimal number (base 10) do: -- expand the number in power series of \boldsymbol{r} and
-- add all the terms as shown below
$\left(A_{n-1} A_{n-2} \ldots A_{1} A_{0 .} A_{-1} A_{-2} \ldots A_{-m+1} A_{-m}\right)_{r}=$
$A_{n-1} r^{n-1}+A_{n-2} r^{n-2}+\ldots+A_{1} r^{1}+A_{0} r^{0}+A_{-1} r^{-1}+A_{-2} r^{-2}+\ldots+A_{-m+1} r^{-m+1}+A_{-m} r^{-m}$

- Example of converting Binary (base 2) to Decimal (base 10):
$(1011.01)_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}=8+2+1+0.25=(11.25)_{10}$
- Example of converting number in base 5 to Decimal (base 10):
$(132.4)_{5}=1 \times 5^{2}+3 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1}=25+15+2+0.8=(42.8)_{10}$
- Example of converting Octal (base 8) to Decimal (base 10):
$(127.4)_{8}=1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+4 \times 8^{-1}=(87.5)_{10}$
- Example of converting Hexadecimal (base 16) to Decimal (base 10):
$(\text { B6F.4 })_{16}=11 \times 16^{2}+6 \times 16^{1}+15 \times 16^{0}+4 \times 16^{-1}=(2927.25)_{10}$

Conversion from Decimal to base r

The conversion is done as follows:

1) Separate the number into integer part and fraction part
-- the two parts must be converted differently
2) Converting the integer part
-- divide the integer part and all successive quotients by r and
-- accumulate the remainders
3) Converting the fraction part
-- multiply the fractional parts by r and accumulate integers

- Example of converting Decimal (base 10) to Binary (base 2): $(41.6875)_{10}$ Converting the integer part $(41)_{10}$:

$$
\begin{array}{|ccr|}
\hline 41 / 2=20+1 / 2 & \text { Remainder }=1 \\
20 / 2=10+0 / 2 & 0 \\
10 / 2=5+0 / 2 & 0 \\
5 / 2=2+1 / 2 & 1 \\
2 / 2=1+0 / 2 & 0 \\
1 / 2= & 0+1 / 2 & \\
& (41)_{10}=(101001)_{2} & \\
\hline
\end{array}
$$

Converting the fraction part $(0.6875)_{10}$:

$$
\begin{array}{crr|r}
0.6875 \times 2 & =1.3750 & \text { Integer }=1 \\
0.3750 \times 2 & =0.7500 & 0 & \text { MSB } \\
0.7500 \times 2 & =1.5000 & 1 & \\
0.5000 \times 2 & =1.0000 & 1 & \text { LSB } \\
(0.6875)_{10}=(0.1011)_{2} &
\end{array}
$$

$$
(41.6875)_{10}=(101001.1011)_{2}
$$

Other Conversions

- Binary to Octal or Hexadecimal: grouping bits starting from the radix point
- (1101010.01) $)_{2}$ to Octal (groups of 3): $(001|101| 010.010 \mid)_{2}=(152.2)_{8}$
- (1101010.01) to Hex (groups of 4): $(0110|1010.0100|)_{2}=(6 A .4)_{16}$
- Octal to Binary: convert each digit to binary using 3 bits
- $(475.2)_{8}=(100111 \text { 101. 010 })_{2}$
- Hexadecimal to Binary: convert each digit to binary using 4 bits
- $(7 A 5 F . C)_{16}=(0111101001011111.1100)_{2}=(111101001011111.11)_{2}$
- Hexadecimal to Octal
- Hexadecimal \rightarrow Binary \rightarrow Octal
- Octal to Hexadecimal
- Octal \rightarrow Binary \rightarrow Hexadecimal

Range of Numbers in base \mathbf{r}

- Assume numbers represented by n digits for the integer part and m digits for the fraction part -- $\left(A_{n-1} A_{n-2} \ldots A_{1} A_{0} \cdot A_{-1} A_{-2} \ldots A_{-m+1} A_{-m}\right)_{r}$
- What is the smallest and the largest number that can be represented?
- The smallest integer number is 0 and the larges is $(r-1) r^{n-1}+(r-1) r^{n-2}+$ $\ldots+(r-1) r^{1}+(r-1) r^{0}=r^{n}-1$,i.e., the range is from 0 to r^{n-1}
- The smallest fraction number is 0.0 and the largest is $(r-1) r^{-1}+(r-1) r^{-2}+$ $\ldots+(r-1) r^{-m+1}+(r-1) r^{-m}=1-r^{-m}$,i.e., the range is from 0.0 to $1-r^{-m}$
- The range of numbers is from 0.0 to $r^{n-r^{-m}}$
- The range of numbers in base r depends on the number of digits used to represent the numbers
- Examples:
- Largest 3-digit integer decimal (base 10) number is $10^{3}-1=1000-1=999$
- Largest 8 -digit integer binary (base 2) number is $(11111111)_{2}$, i.e., $2^{8-1}=255$
- Largest 5 -digit decimal (base 10) fraction is $1-10^{-5}=1-0.00001=0.99999$
- Largest 16 -digit binary (base 2) fraction is $1-2^{-16}=0.9999847412$
- What about the range of negative numbers?

Representations of Numbers in Digital Systems (1)

- Numbers are represented in binary format as strings of bits
- Bit is the smallest binary quantity with a value of 0 or 1
- Byte is a string (sequence) of 8 bits
- Word is a string (sequence) of n bits ($\mathrm{n}>8$)
- Examples \rightarrow bit: 1 byte: 01101111 16-bit word: 1111010010001010
- Positive Integer Numbers
- Can be represented as Unsigned Binary Numbers using a string of n bits
- Magnitude representation - number \mathbf{X} in binary having \mathbf{n} bits
- Example: 00001001 (represents integer number 9 using 8 bits)
- 2's Complement representation - Given number \mathbf{X} in binary having \mathbf{n} bits, the 2's complement of \mathbf{X} is defined as $2^{n}-\mathbf{X}$.
- Example: 11110111 (2's complement of integer number 9)
- 1's Complement representation - Given number \mathbf{X} in binary having \mathbf{n} bits, the 1^{\prime} 's complement of \mathbf{X} is defined as $\left(2^{n}-1\right)-\mathbf{X}$.
- Example: 11110110 (1 's complement of integer number 9).

Representations of Numbers in Digital Systems (2)

- Positive and Negative Integer Numbers
- Can be represented as Signed Binary Numbers using a string of \mathbf{n} bits
- The most significant bit is interpreted as a sign bit
- For positive numbers the sign bit is 0
- For negative numbers the sign bit is 1
- Signed-Magnitude representation
- Example: 0|0001001 (represents integer number +9 using 8 bits)
- Example: 1|0001001 (represents integer number -9 using 8 bits)
- Signed-2's Complement representation
- Example: 0|0001001 (signed-2's complement of integer number +9)
- Example: 1|1110111 (signed-2's complement of integer number -9)
- Signed-1's Complement representation
- Example: 0|0001001 (signed-1's complement of integer number +9)
- Example: 1|1110110 (signed-1's complement of integer number -9)
- How do we get the signed complements?

Representations of Numbers in Digital Systems (3)

- Real Numbers
- Can be represented as fixed-point or floating-point numbers
- We will look closer to floating-point numbers
- Floating-point representation is similar to scientific notation
- It consists of two parts - mantissa M and exponent E
- Floating-point number F represented by the pair (M,E) has the value

$$
F=M x \beta^{E} \quad(\beta-\text { base of exponent })
$$

- Example: the decimal number -179.75 as a floating-point number is
$-0.17975 \times 10^{+3}$
- Mantissa $\mathbf{M}=-0.17975$ - represents the number as a fraction
- Exponent $\mathrm{E}=+3$ - designates the position of the radix point
- Base $\beta=10$ - the number is decimal
- Floating-point representation is not unique
- $-179.75=-0.17975 \times 10^{+3}=-0.0017975 \times 10^{+5}$.
- $-0.17975 \times 10^{+3}$ is called normalized form because the most significant digit of the fraction is nonzero.

Representations of Numbers in Digital Systems (4)

- IEEE standard single-precision floating-point representation
- Using 32-bit word with the following format:

1	8	
S	Exponent E	Unsigned Significand M

- The value of the number is: $(-1)^{\mathrm{S}} \times(1 . \mathrm{M})_{2} \times 2^{\mathrm{E}-127}$
- The larges and smallest positive numbers are:
- $(-1)^{0} \times(1.11111111111111111111111)_{2} \times 2^{254-127}=+\left(1+1-2^{-23}\right) \times 2^{127}$
- $(-1)^{0} \times(1.00000000000000000000000)_{2} \times 2^{1-127}=+2^{-126}$
- Special cases:
- $E=255$ and $M=0$, the number represents plus or minus infinity.
- $E=255$ and $M \neq 0$, not a valid number (signify invalid operations).
- $E=0$ and $M=0$, the number denotes plus or minus zero.
- $E=0$ and $M \neq 0$, the number is said to be de-normalized.
- Example: $(-179.75)_{10}=(-10110011.11)_{2}=\left(-1.011001111 \times 2^{7}\right)_{2}$

1	10000110	01100111100000000000000

