

Assistants:

Fundamentals of Digital Systems Design

Course website:

http://www.liacs.leidenuniv.nl/~stefanovtp/courses/DITE/index.html

Main Lecturer: Todor Stefanov

(t.p.stefanov@liacs.leidenuniv.nl)

8 BSc/MSc/PhD students (dite.liacs@gmail.com)

Leiden Embedded Research Center (LERC) Leiden Institute of Advanced Computer Science (LIACS) Leiden University, The Netherlands

Course Organization: Structure and Rules

• **On-campus** Lectures

- your attendance is strongly recommended
- On-campus Hands-on tutorials with practical assignments
 - your attendance is strongly encouraged
- On-campus and At-home Design Project
 - you must make and turn-in the design project
- Homeworks
 - doing homeworks is strongly recommended
 - excellent material to practice for the exams!

Important:

- All info needed for the course will be on the course website
- Check the website regularly for instructions
- Check regularly Brightspace and your email for announcements

Course Organization: On-campus Lectures

- Goal
 - To learn the fundamentals of digital systems design
 - Theoretical Foundations
 - Basic Digital Circuits and Building Blocks
 - Design Algorithms and Procedures
 - The basics of Memory Design
 - The basics of Micro-Processor Design
- Format
 - On-campus presentations supported by PowerPoint slides
 - Slides available after each lecture on the course website
- Literature
 - M. Morris Mano and Charles R. Kime, "Logic and Computer Design Fundamentals", 3rd or 4th edition

Important:

Dedicated 2 hours for questions after each lecture on Mondays!

Lectures Schedule and Location

Date	Time	Location
02 Sept (Monday)	15:15 - 17:00	Lecture Hall - C3
04 Sept (Wednesday)	15:15 - 17:00	Lecture Hall - C3
09 Sept (Monday)	15:15 - 17:00	Lecture Hall - C3
11 Sept (Wednesday)	15:15 - 17:00	Lecture Hall - C3
16 Sept (Monday)	15:15 - 17:00	Lecture Hall - C3
18 Sept (Wednesday)	15:15 - 17:00	Lecture Hall - C3
23 Sept (Monday)	15:15 - 17:00	Lecture Hall - C3
30 Sept (Monday)	15:15 - 17:00	Lecture Hall - C3
07 Oct (Monday)	15:15 - 17:00	Lecture Hall - C3
28 Oct (Monday)	15:15 - 17:00	Lecture Hall - C3
04 Nov (Monday)	15:15 - 17:00	Lecture Hall - C3
11 Nov (Monday)	15:15 - 17:00	Lecture Hall - C3
18 Nov (Monday)	15:15 - 17:00	Lecture Hall - C3
25 Nov (Monday)	15:15 - 17:00	Lecture Hall - C3
02 Dec (Monday)	15:15 - 17:00	Lecture Hall - C3

Course Organization: On-campus Tutorials

Goal

- To learn how to solve simple digital design problems in practice
- To learn how to use software tools to design digital circuits
- Format
 - Pen-and-paper practical assignments (simple digital circuit designs)
 - Design and simulation of digital circuits using software tools

Tools

- Xilinx ISE for digital circuit design and simulation
- Go to the website of the course to see options to access Xilinx ISE!
- Timetable and Location

Period	Day	Time	Place
02 Oct – 06 Nov	Every Wednesday	15:15 - 17:00	Rooms DM.0.09-PC to DM.0.21-PC in Gorlaeus

Course Organization: Design Project

- Goal
 - To apply the knowledge gained at lectures and hands-on tutorials
 - To design a simple 4-bit Micro-Processor
- Format
 - Project specification will be given in beginning of November
 - Project tutorials with the tutors on Wednesdays
 - to work on the project on-campus
 - to get advice on how to design the micro-processor
 - to ask questions
 - You have to spend extra time at home or in our computer labs if
 - project tutorials time is not sufficient to accomplish the project
- Timetable and Location

Period	Day	Time	Place
13 Nov - 11 Dec	Every Wednesday	15:15 - 17:00	Rooms DM.0.09-PC to DM.0.21-PC in Gorlaeus

Course Organization: Homeworks

- Goals
 - To understand better the material given at lectures
 - To study alone additional material not given at lectures
 - To prepare and practice for exams!
- Format
 - Several homeworks will be given
 - Homework instructions posted on website every Wednesday
 - Try to do homework alone
 - within 7 days after the instructions are posted
 - Answers to homeworks will be posted on the course website
 - 7 days after the instructions

Important:

- Dedicated 2 hours for questions after each lecture on Mondays!
- Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Course Organization: Exams and Grading

- Exams
 - One *Midterm exam* and one *Final exam* at the end of the course
 - You must be present at these exams
 - In case you fail at the final exam, there will be one Re-take exam

Timetable and Location

Exams	Date	Hour	Place
Midterm Exam	October 23, 2024	13:15 – 16:15	Lecture Hall - C1&C2
Final Exam	January 14, 2025	13:15 – 16:15	Lecture Hall - C3 Gorlaeus - BE.0.17&0.18

Grading

- You will receive 3 Grades: one for Final exam (G^{Fexam}), one for Project (G^{Project}), and one for Midterm exam (G^{Mexam}),
- All grades are important and will form your <u>Final Grade</u> as follows:

```
If (G<sup>Fexam</sup> ≥ 6.0 and G<sup>Project</sup> ≥ 6.0) Then

<u>Final Grade</u> = 0.4*G<sup>Fexam</sup> + 0.4*G<sup>Project</sup> + 0.2*G<sup>Mexam</sup>

Else

<u>Final Grade</u> ≤ 5
```


Digital Systems and Information Part I

Overview

Introduction to Digital Systems

- Digital Systems (examples and general remarks)
- Basic Digital System Structure (basic components and their function)
- Number Systems
 - Positional Number Systems (decimal, binary, octal, and hexadecimal)
 - Number Conversions (r-to-decimal, decimal-to-r, other conversions)
- Representations of Numbers in Digital Systems
 - Integer Numbers (unsigned and signed representations)
 - Real Numbers (floating-point representation)

Digital Systems: Example

Modern Digital Personal Computers (PC)

- The best known example of a digital system
- Most striking properties are: generality and flexibility

Digital Systems: More Examples

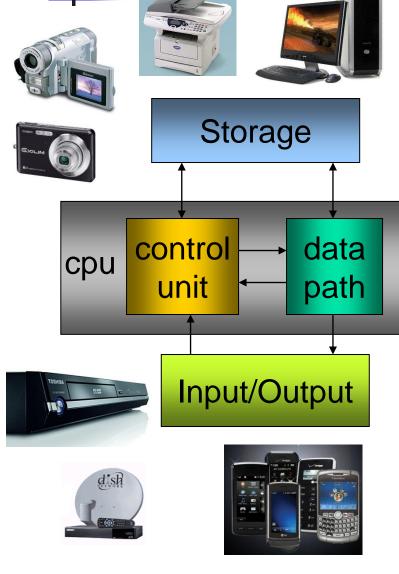
Digital Systems: General Remarks

- Digital Systems manipulate discrete elements/quantities of information
- Discrete quantities of information emerge from:
 - the nature of the data being processed
 - the data may be discretized from continues values
- Early computer systems used mainly for numeric computations
 - the discrete elements used were the digits
 - hence the term digital computer/system emerged
- In general, any system uses an alphabet (set of symbols) to represent information
 - The English language system uses an alphabet of 26 symbols (letters)
 - The decimal number system uses an alphabet of 10 symbols (digits)
- What about the alphabet of the Digital Systems?

The Digital Systems' Alphabet is Binary

- Digital Systems use only one alphabet with two symbols (digits) '0' and '1' (hence binary alphabet)
 - Binary digit is called a bit
 - Information is represented by groups of bits
- Why is a binary alphabet used?
 - Digital systems have a basic building block called switch
 - The switch can only be "on" or "off"
 - That is, two discrete values '0' and '1' can be distinguished
- Electric device, transistor, physically implements the switch
 - '0' and '1' are physically represented by voltage values called LOW and HIGH
 - "on" (closed) switch corresponds to '0' and is represented by LOW voltage value (between 0.0 and 1.0 Volt)
 - "off" (open) switch corresponds to '1' and is represented by HIGH voltage value (between 3.0 and 5.0 Volts)
 - More information will be given later in another lecture

Basic Digital System Structure



Fall 2024

- CPU: Central Processing Unit
- Data Path: arithmetic and logic operations
- <u>Control Unit:</u> make sure that the sequence of data path operations is correct
- <u>Storage</u>: no memory = no system
- Input/Output: allow the system to interact with the outside world

15

Information Representation

- All information in Digital Systems is represented in binary form
- Information that is not binary is converted to binary before processed by Digital Systems
- Decimal numbers are expressed
 - in the binary number system or
 - by means of a binary code
- That is not too difficult because
 - All number systems have a similar formal representation
 - Thus, one number system can be converted into another

Let us look into number systems and conversions

Number Systems

<u>Number Systems</u> are used in arithmetic to represent numbers by strings of digits. There are two types of systems:

- Positional number systems
 - The meaning of each digit depends on its position in the number
 - Example: Decimal number system
 - **585.5** is a decimal number in positional code
 - "5 hundreds plus 8 tens plus 5 units plus 5 tenths"
 - The hundreds, tens, units, and tenths are powers of 10 implied by the position of the digits

585.5 = **5***x*10² + **8***x*10¹ + **5***x*10⁰ + **5***x*10⁻¹

- Decimal number system is said to be of <u>base</u> or <u>radix</u> 10 because
 - it uses 10 distinct digits (0 9)
 - the digits are multiplied by powers of 10
- Non-positional number systems
 - Old Roman numbers: for example, *XIX* equals to 19

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Positional Number Systems

We can represent numbers in any number system with base *r*

- Number in positional code
 - $(A_{n-1}A_{n-2}...A_{1}A_{0}A_{-1}A_{-2}...A_{-m+1}A_{-m})_{r}$
 - *r* is the base (radix) of the system, $r \in \{2, 3, ..., I\}$
 - every digit $A_i \in \{0, 1, 2, ..., r-1\}$, where $\{0, 1, 2, ..., r-1\}$ is the digit set
 - "" is called the radix point
 - A_{n-1} is referred to as the most significant digit
 - A_{-m} is referred to as the least significant digit
- Number in base r expressed as power series of r
 - $A_{n-1}r^{n-1} + A_{n-2}r^{n-2} + \dots + A_1r^1 + A_0r^0 + A_{-1}r^{-1} + A_{-2}r^{-2} + \dots + A_{-m+1}r^{-m+1} + A_{-m}r^{-m}$
- Example: a number in number system with base 5
 - $(132.4)_5 = 1x5^2 + 3x5^1 + 2x5^0 + 4x5^{-1} = 25 + 15 + 2 + 0.8 = (42.8)_{10}$

Binary Number System

This is the system used for arithmetic in all digital computers

- Number in positional code
 - $(b_{n-1}b_{n-2}...b_1b_0.b_{-1}b_{-2}...b_{-m+1}b_{-m})_r$
 - r = 2 is the base of the binary system
 - every digit $b_i \in \{0, 1\}$
 - the digits b_i in a binary number are called bits
 - b_{n-1} is referred to as the most significant bit (MSB)
 - *b_{-m}* is referred to as the least significant bit (LSB)
- Number in base 2 expressed as power series of 2
 - $b_{n-1} 2^{n-1} + b_{n-2} 2^{n-2} + \ldots + b_1 2^1 + b_0 2^0 + b_{-1} 2^{-1} + b_{-2} 2^{-2} + \ldots + b_{-m+1} 2^{-m+1} + b_{-m} 2^{-m}$
- Example: a number in the binary number system
 - $(1011.01)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2} = 8 + 2 + 1 + 0.25 = (11.25)_{10}$
- Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Burn this table into your memory

Power of Two

п	2^n	п	2^{n}	п	2 ⁿ
0	1	5	32	10	1024
1	2	6	64	11	2048
2	4	7	128	12	4096
3	8	8	256	13	8192
4	16	9	512	14	16384

 $2^{10} = 1024$ is 1K 2^{20} is 1M 2^{30} is 1G (mega) (giga)

Other Useful Number Systems

Octal (base-8) and Hexadecimal (base-16) number systems

- -- useful for representing binary quantities indirectly because
- -- their bases are powers of two
- -- have more compact representations of binary quantities

Octal number system

$$(O_{n-1}O_{n-2}...O_1O_0.O_{-1}O_{-2}...O_{-m+1}O_{-m})_8$$

- every digit $o_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$.
- $O_{n-1} 8^{n-1} + O_{n-2} 8^{n-2} + \dots + O_1 8^1 + O_0 8^0 + O_{-1} 8^{-1} + O_{-2} 8^{-2} + \dots + O_{-m+1} 8^{-m+1} + O_{-m} 8^{-m}$
- $(127.4)_8 = 1x8^2 + 2x8^1 + 7x8^0 + 4x8^{-1} = (87.5)_{10} = (001\ 010\ 111.100)_2$
- Hexadecimal number system
 - $(h_{n-1}h_{n-2}...h_1h_0h_1h_2...h_{-m+1}h_m)_{16}$
 - every digit h_i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}.
 - $h_{n-1} \, 16^{n-1} + h_{n-2} \, 16^{n-2} + \ldots + h_1 \, 16^1 + h_0 \, 16^0 + h_{-1} \, 16^{-1} + h_{-2} \, 16^{-2} + \ldots + h_{-m+1} \, 16^{-m+1} + h_{-m} \, 16^{-m}$
 - $(B6F.4)_{16} = 11x16^2 + 6x16^1 + 15x16^0 + 4x16^{-1} = (2927.25)_{10} = (1011\ 0110\ 1111.0100)_2$

Another Important Table

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hex (base 16)
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion from base r to Decimal

To convert a number in base *r* to decimal number (base 10) do: -- expand the number in power series of *r* and

-- add all the terms as shown below

 $(A_{n-1}A_{n-2}...A_{1}A_{0}A_{-1}A_{-2}...A_{-m+1}A_{-m})_{r} =$

 $A_{n-1}r^{n-1} + A_{n-2}r^{n-2} + \ldots + A_{1}r^{1} + A_{0}r^{0} + A_{-1}r^{-1} + A_{-2}r^{-2} + \ldots + A_{-m+1}r^{-m+1} + A_{-m}r^{-m}$

• Example of converting Binary (base 2) to Decimal (base 10): (1011.01)₂ = $1x^{2^3} + 0x^{2^2} + 1x^{2^1} + 1x^{2^0} + 0x^{2^{-1}} + 1x^{2^{-2}} = 8 + 2 + 1 + 0.25 = (11.25)_{10}$

- Example of converting number in base 5 to Decimal (base 10): $(132.4)_5 = 1x5^2 + 3x5^1 + 2x5^0 + 4x5^{-1} = 25 + 15 + 2 + 0.8 = (42.8)_{10}$
- Example of converting Octal (base 8) to Decimal (base 10):

 $(127.4)_8 = 1x8^2 + 2x8^1 + 7x8^0 + 4x8^{-1} = (87.5)_{10}$

Example of converting Hexadecimal (base 16) to Decimal (base 10):

 $(B6F.4)_{16} = 11x16^2 + 6x16^1 + 15x16^0 + 4x16^{-1} = (2927.25)_{10}$

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Conversion from Decimal to base r

The conversion is done as follows:

- 1) Separate the number into integer part and fraction part
 - -- the two parts must be converted differently
- 2) Converting the integer part
 - -- divide the integer part and all successive quotients by r and
 - -- accumulate the remainders
- 3) Converting the fraction part
 - -- multiply the fractional parts by r and accumulate integers
- Example of converting Decimal (base 10) to Binary (base 2): $(41.6875)_{10}$ Converting the integer part $(41)_{10}$: Converting the fraction part $(0.6875)_{10}$:

41/2 = 20 + 1/2	Remainder = 1 [†] LSB
20/2 = 10 + <mark>0</mark> /2	0
10/2 = 5 + 0/2	0
5/2 = 2 + 1/2	1
2/2 = 1 + 0/2	0
1/2 = 0 + 1/2	1 MSB
(41) ₁₀ =	= (101001) ₂

 $\begin{array}{c|c} 0.6875 \times 2 = 1.3750 & \text{Integer} = 1 & \text{MSB} \\ 0.3750 \times 2 = 0.7500 & 0 & 0 \\ 0.7500 \times 2 = 1.5000 & 1 & 1 \\ 0.5000 \times 2 = 1.0000 & 1 & \text{LSB} \\ & & (0.6875)_{10} = (0.1011)_2 \end{array}$

$(41.6875)_{10} = (101001.1011)_2$

Other Conversions

- Binary to Octal or Hexadecimal: grouping bits starting from the radix point
 - $(1101010.01)_2$ to Octal (groups of 3): $(001|101|010.010|)_2 = (152.2)_8$
 - (1101010.01)₂ to Hex (groups of 4): (0110 1010.0100)₂ = (6A.4)₁₆
- Octal to Binary: <u>convert each digit to binary using 3 bits</u>
 - $(475.2)_8 = (100\ 111\ 101.\ 010)_2$
- Hexadecimal to Binary: <u>convert each digit to binary using 4 bits</u>
 - (7A5F.C)₁₆ = (0111 1010 0101 1111. 1100)₂ = (111101001011111.11)₂
- Hexadecimal to Octal
 - Hexadecimal \rightarrow Binary \rightarrow Octal
- Octal to Hexadecimal
 - Octal \rightarrow Binary \rightarrow Hexadecimal

Range of Numbers in base r

- Assume numbers represented by *n* digits for the integer part and *m* digits for the fraction part -- $(A_{n-1}A_{n-2}...A_1A_0A_1A_2...A_{-m+1}A_{-m})_r$
- What is the smallest and the largest number that can be represented?
- The smallest integer number is **0** and the larges is $(r-1)r^{n-1} + (r-1)r^{n-2} + ... + (r-1)r^1 + (r-1)r^0 = r^n-1$, i.e., the range is from **0** to r^n-1
- The smallest fraction number is **0.0** and the largest is $(r-1)r^{-1} + (r-1)r^{-2} + ... + (r-1)r^{-m+1} + (r-1)r^{-m} = 1 r^{-m}$, i.e., the range is from **0.0** to $1 r^{-m}$
- The range of numbers is from **0.0** to $r^n r^{-m}$
 - The range of numbers in base r depends on the number of digits used to represent the numbers
- Examples:
 - Largest 3-digit integer decimal (base 10) number is 10³-1 = 1000 1 = 999
 - Largest 8-digit integer binary (base 2) number is $(11111111)_2$, i.e., $2^8-1 = 255$
 - Largest 5-digit decimal (base 10) fraction is 1-10⁻⁵ = 1 0.00001 = 0.99999
 - Largest 16-digit binary (base 2) fraction is 1-2⁻¹⁶ = 0.9999847412
- What about the range of negative numbers?

Representations of Numbers in Digital Systems (1)

- Numbers are represented in binary format as strings of bits
 - Bit is the smallest binary quantity with a value of 0 or 1
 - Byte is a string (sequence) of 8 bits
 - Word is a string (sequence) of n bits (n > 8)
 - Examples → bit: 1 byte: 01101111 16-bit word: 11110100 10001010
- Positive Integer Numbers
 - Can be represented as Unsigned Binary Numbers using a string of n bits
 - Magnitude representation number X in binary having n bits
 - Example: 00001001 (represents integer number 9 using 8 bits)
 - 2's Complement representation Given number X in binary having n bits, the 2's complement of X is defined as 2ⁿ X.
 - Example: **11110111** (2's complement of integer number 9)
 - 1's Complement representation Given number X in binary having n bits, the 1's complement of X is defined as (2ⁿ 1) X.
 - Example: **11110110** (1's complement of integer number 9).

Representations of Numbers in Digital Systems (2)

- Positive and Negative Integer Numbers
 - Can be represented as Signed Binary Numbers using a string of n bits
 - The most significant bit is interpreted as a sign bit
 - For positive numbers the sign bit is 0
 - For negative numbers the sign bit is 1
 - Signed-Magnitude representation
 - Example: 0 0001001 (represents integer number +9 using 8 bits)
 - Example: 1 0001001 (represents integer number -9 using 8 bits)
 - Signed-2's Complement representation
 - Example: 0 0001001 (signed-2's complement of integer number +9)
 - Example: 1 1110111 (signed-2's complement of integer number -9)
 - Signed-1's Complement representation
 - Example: 0 0001001 (signed-1's complement of integer number +9)
 - Example: 1 1110110 (signed-1's complement of integer number -9)

• How do we get the signed complements?

Representations of Numbers in Digital Systems (3)

- Real Numbers
 - Can be represented as fixed-point or floating-point numbers
- We will look closer to floating-point numbers
 - Floating-point representation is similar to scientific notation
 - It consists of two parts mantissa M and exponent E
 - Floating-point number F represented by the pair (M,E) has the value

 $F = Mx\beta^E$ (β - base of exponent)

- Example: the decimal number -179.75 as a floating-point number is - 0.17975 x 10⁺³
 - Mantissa M = -0.17975 represents the number as a fraction
 - Exponent E = +3 designates the position of the radix point
 - Base $\beta = 10$ the number is decimal
- Floating-point representation is not unique
 - -179.75 = $-0.17975 \times 10^{+3} = -0.0017975 \times 10^{+5}$.
 - -0.17975 x 10⁺³ is called normalized form because the most significant digit of the fraction is nonzero.
- Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Representations of Numbers in Digital Systems (4)

- IEEE standard single-precision floating-point representation
 - Using 32-bit word with the following format:

S Exponent E Unsigned Significand M

- The value of the number is: (-1)^S x (1.M)₂ x 2^{E-127}
- The larges and smallest positive numbers are:
 - $(-1)^{0} \times (1.111111111111111111111111_{2} \times 2^{254-127} = +(1+1-2^{-23})\times 2^{127}$
- Special cases:
 - E = 255 and M = 0, the number represents plus or minus infinity.
 - E = 255 and $M \neq 0$, not a valid number (signify invalid operations).
 - E = 0 and M = 0, the number denotes plus or minus zero.
 - E = 0 and $M \neq 0$, the number is said to be de-normalized.
- Example: $(-179.75)_{10} = (-10110011.11)_2 = (-1.011001111 \times 2^7)_2$