Homework 6

1) A sequential circuit with two flip-flops A and B, one input X, and one output Z is specified by the following equations:

$$
\begin{aligned}
\mathrm{A}(\mathrm{t}+1) & =\mathrm{X}^{\prime} \mathrm{A}(\mathrm{t})+\mathrm{XB}(\mathrm{t}) \\
\mathrm{B}(\mathrm{t}+1) & =\mathrm{X}^{\prime} \mathrm{A}(\mathrm{t})^{\prime} \\
\mathrm{Z} & =\mathrm{XA}(\mathrm{t})+\mathrm{XB}(\mathrm{t})^{\prime}
\end{aligned}
$$

Transform and implement the sequential circuit as Moore finite state machine (FSM):
(a) Draw the logic diagram of the Moore FSM;
(b) Derive the state table of the Moore FSM;
(c) Derive the state diagram of the Moore FSM;

