Homework 8

The sequence 01111110 is a flag used in a message communications network that represents the beginning of a message. This flag must be unique. As a consequence, at most five 1's in sequence may appear anywhere else in the message. Since this is unrealistic for normal message content, a trick called zero-insertion is used. The normal message, which can contain strings of 1's longer than 5, enters input X of a sequential zero-insertion circuit given below:

The circuit has two outputs Z and S. When a sixth 1 in sequence appears on X, a 0 is inserted into the stream of outputs appearing on Z and the output S = 1 indicating that a zero-insertion has happened. Zero-insertion is illustrated by the following example sequences:

Task: Design the zero-insertion circuit above following the 9-step design procedure given in Lecture 10 using SR Flip-Flops and logic gates.

We have to insert 1 zero every time we recognize 5 ones in the sequence and another 1 is waiting at input. We can make a state machine of this situation but it is clear that we need 6 states to remember the zero to five ones, which means we need 3 bits to encode this. This also means we need 3 flip flops.

Х	Q1(t)	Q2(t)	Q3(t)	Q1(t+1)	Q2(t+1)	Q3(t+1)	Ζ	S
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	Х	Х	Х	Х	Х
0	1	1	1	Х	Х	Х	Х	Х
1	0	0	0	0	0	1	1	0
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	1	1	0
1	0	1	1	1	0	0	1	0
1	1	0	0	1	0	1	1	0
1	1	0	1	0	0	0	0	1
1	1	1	0	Х	Х	Х	X	Х
1	1	1	1	X	Х	Х	X	Х

Here we have the table for the state machine (S is only 1 when Z is forced to be zero)

Because Q1, Q2 and Q3 are SR flip-flops (which means 2 inputs) we need to model their behaviour with another table showing their input values.

Х	Q1(t)	Q2(t)	Q3(t)	Q1(t+1)	Q2(t+1)	Q3(t+1)	S 1	R1	S2	R2	S 3	R3	Ζ	S
0	0	0	0	0	0	0	0	Х	0	Х	0	Х	0	0
0	0	0	1	0	0	0	0	Х	0	Х	0	1	0	0
0	0	1	0	0	0	0	0	Х	0	1	0	Х	0	0
0	0	1	1	0	0	0	0	Х	0	1	0	1	0	0
0	1	0	0	0	0	0	0	1	0	Х	0	Х	0	0
0	1	0	1	0	0	0	0	1	0	Х	0	1	0	0
0	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
0	1	1	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1	0	0	0	0	0	1	0	Х	0	Х	1	0	1	0
1	0	0	1	0	1	0	0	Х	1	0	0	1	1	0
1	0	1	0	0	1	1	0	Х	Х	0	1	0	1	0
1	0	1	1	1	0	0	1	0	0	1	0	1	1	0
1	1	0	0	1	0	1	Х	0	0	Х	1	0	1	0
1	1	0	1	0	0	0	0	1	0	X	0	1	0	1
1	1	1	0	Х	Х	Х	х	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	Х	Х

Now that we have all the needed tables, we can construct our Boolean equations and simplify them with k-maps.

S1)

R1)

 $S2 = XQ_1 ^{\prime}Q_2 ^{\prime}Q3$

R2)

$$R2 = X' + Q_2 Q_3$$

S2)

 $S3 = XQ_3$

R3)

 $R3 = Q_3$

S3)

$$Z = XQ_1' + XQ_3'$$

S)

$$\mathbf{S} = \mathbf{X}\mathbf{Q}_1\mathbf{Q}_3$$

Z)

The schematic of our functions

