Answers Homework 6

A sequential circuit with two flip-flops A and B, one input X, and one output Z is specified by the following equations:

$$
\begin{aligned}
\mathbf{A}(\mathbf{t}+\mathbf{1)} & =\mathbf{X}^{\prime} \mathbf{A}(\mathbf{t})+\mathbf{X B}(\mathbf{t}) \\
\mathbf{B}(\mathbf{t}+\mathbf{1}) & =\mathbf{X}^{\prime} \mathbf{A}(\mathbf{t})^{\prime} \\
\mathbf{Z} & =\mathbf{X A}(\mathbf{t})+\mathbf{X B}(\mathbf{t})^{\prime}
\end{aligned}
$$

Transform and implement the sequential circuit as Moore finite state

 machine (FSM):(a) Draw the logic diagram of the Moore FSM;
(b) Derive the state table of the Moore FSM;
(c) Derive the state diagram of the Moore FSM;

We want a Moore state machine so our output only changes on a clock pulse. This is achieved by using Z as input for a flip-flop whom state only changes on a clock pulse.

We get the following equations from our circuit (because of the Moore machine)
$\mathrm{A}(\mathrm{t}+1)=\mathrm{X}(\mathrm{t})^{\prime} \mathrm{A}(\mathrm{t})+\mathrm{X}(\mathrm{t}) \mathrm{B}(\mathrm{t})$
$\mathrm{B}(\mathrm{t}+1)=\mathrm{X}(\mathrm{t})^{\prime} \mathrm{A}(\mathrm{t})^{\prime}$
$\mathrm{Z}(\mathrm{t}+1)=\mathrm{X}(\mathrm{t}) \mathrm{A}(\mathrm{t})+\mathrm{X}(\mathrm{t}) \mathrm{B}(\mathrm{t})^{\prime}$
$\mathrm{O}(\mathrm{t})=\mathrm{Z}(\mathrm{t})$

Here is the combinational circuit block based on the equations.

Here is the state table that we can derive out of the equations. It is the same as a truth table for Boolean functions only now the output depends on the current state.

$\mathrm{X}(\mathrm{t})$	$\mathrm{A}(\mathrm{t})$	$\mathrm{B}(\mathrm{t})$	$\mathrm{Z}(\mathrm{t})$	$\mathrm{A}(\mathrm{t}+1)$	$\mathrm{B}(\mathrm{t}+1)$	$\mathrm{Z}(\mathrm{t}+1)$	$\mathrm{O}(\mathrm{t})$
0	0	0	0	0	1	0	0
0	0	0	1	0	1	0	1
0	0	1	0	0	1	0	0
0	0	1	1	0	1	0	1
0	1	0	0	1	0	0	0
0	1	0	1	1	0	0	1
0	1	1	0	1	0	0	0
0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	1
1	1	0	0	0	0	1	0
1	1	0	1	0	0	1	1
1	1	1	0	1	0	1	0
1	1	1	1	1	0	1	1

Finally, we draw the state diagram. We have 8 states because we have 3 flip flops. Just follow the state table to make this diagram.

