Example of Exam for the FDSD course

Task I: Convert the following numbers from the given base to the other listed bases in the table.

Decimal	Binary	Octal	Hexadecimal
13.3125	$?$	$?$	$?$
$?$	10100111.101	$?$	$?$
$?$	$?$	532.6	$?$
$?$	$?$	$?$	D7A4.C

Important: Show and explain the conversion procedures you use and not only the final result.

Task II: Simplify the Boolean function $\mathrm{F} 1(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,2,4,5,10,11,13,15)$ by finding all prime implicants and essential prime implicants and applying the selection rule. After you have simplified the function, represent it using the logic basis NOR. Also, draw the combinational logic circuit corresponding to the function using only 2-input NOR gates.
Important: Show all prime implicants and essential prime implicants as well as explain all the steps you do to simplify and represent function $\mathrm{F} 1(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})$.

Task III: Let be given the Boolean function F2(w,x,y,z) $=\Sigma \mathrm{m}(4,5,12,13)$. Implement F under the following conditions:

1. Use only multiplexers 2-to-1 (gates must not be used!);
2. The number of multiplexers used in your implementation must be as small as possible.
Important: Show and explain all the steps you do to implement F2(w,x,y,z).
Task IV: Design a Sequence Recognizer circuit that recognizes the occurrence of the sequence of bits " $\mathbf{0 1 1}$ ", regardless of where it occurs in a longer sequence. This circuit has one input \boldsymbol{X} and one output \boldsymbol{Z}. An arbitrary long input sequence of bits enters the circuit via input \boldsymbol{X}. Output \boldsymbol{Z} equals to $\mathbf{0}$ when the previous three input bits to the circuit were $\mathbf{0 1 1}$. Otherwise, \mathbf{Z} equals to $\mathbf{1}$.
Implement the circuit described above under the following conditions:
3. The Sequence Recognizer circuit must be Moore Finite State Machine;
4. Use only NAND gates and T Flip-Flops.

Important: Show and explain all the steps you do to design and implement the Sequence Recognizer circuit.

