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Abstract—This paper assesses topic coherence and human topic
ranking of uncovered latent topics from scientific publications
when utilizing the topic model latent Dirichlet allocation (LDA)
on abstract and full-text data. The coherence of a topic, used
as a proxy for topic quality, is based on the distributional
hypothesis that states that words with similar meaning tend to
co-occur within a similar context. Although LDA has gained
much attention from machine-learning researchers, most notably
with its adaptations and extensions, little is known about the
effects of different types of textual data on generated topics. Our
research is the first to explore these practical effects and shows
that document frequency, document word length, and vocabulary
size have mixed practical effects on topic coherence and human
topic ranking of LDA topics. We furthermore show that large
document collections are less affected by incorrect or noise terms
being part of the topic-word distributions, causing topics to be
more coherent and ranked higher. Differences between abstract
and full-text data are more apparent within small document
collections, with differences as large as 90% high-quality topics
for full-text data, compared to 50% high-quality topics for
abstract data.

I. INTRODUCTION

There is an ever-growing amount of scientific literature with

which scientists must grapple and which threatens to over-

whelm their capacity to stay up to date with new research [1].

As a consequence, increased availability of tools and al-

gorithms is necessary to match the ever-growing scientific

output [2]. These tools and algorithms could aid in exploring

large document collections in alternative and structured new

ways in contrast to traditional searches. This is especially

important as the topics within articles, the main ideas within

articles that can be shared among similar articles, cannot

always be detected through traditional keyword searches [3].

Topic models are machine-learning algorithms to uncover

hidden or latent thematic structures (i.e. topics) from large

collections of documents [4]–[7]. The latent thematic struc-

tures automatically emerge from the statistical properties of

the documents and, as such, no prior labeling or annotation

is necessary. In turn, the thematic structures can be used to

automatically categorize or summarize documents up to a scale

that would be impossible to do manually. Topic modeling

approaches have proved to be very helpful in elucidating the

key ideas within a set of documents [8]–[10], and they do

so with greater speed and a quantitative rigor that would

otherwise be possible only through a traditional narrative

review [9].

One of the most popular and highly researched topic models

is latent Dirichlet allocation (LDA) [6]. LDA is a generative

probabilistic topic model that overcomes the limitations of

other well-known topic model algorithms such as Latent

Semantic Indexing (LSI) [4] and probabilistic Latent Semantic

Indexing (pLSI) [5]. LDA models documents as multinomial

distributions over K latent topics and each topic is modeled

as a multinomial distribution over the fixed vocabulary V . As

such, LDA captures the heterogeneity of research topics or

ideas within scientific publications and can be viewed as a

mixed membership model [11].

Utilizing LDA to uncover latent topics from textual data has

been successfully applied in several research domains. Grif-

fiths and Steyvers [8] performed LDA on 28,154 abstracts of

the journal Proceedings of the National Academy of Sciences
(PNAS) to uncover topics and to illustrate their relation to the

journal’s categorization scheme. Gatti et. al. [12] used LDA on

80,757 abstracts from 37 primary journals from the fields of

operations research and management science (OR/MS) to gain

insight into the historical and current publication trends. A

similar approach was performed within the field of transporta-

tion research on 17,163 abstracts from 22 leading transporta-

tion journals [13] and within the field of conservation science

on 9,834 abstracts [14]. Besides being performed on abstract

data, LDA has also been applied to 12,500 full-text research

articles within the field of computational linguistics [15], 2,326

articles from Neural Information Processing Systems papers

(NIPS) [16], and 1,060 articles within agricultural and resource

economics [17].

However, the reason for choosing abstract data over full-text

data, or vice versa, when using LDA has not been argued for.

Although some researchers (e.g. [12]) mention that abstract

data is likely to contain a high density of words, thus making

it suitable for LDA, others simply mention the dataset without
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explaining the rationale for the choice. There are various

reasons why this might be the case: one might simply only

have access to abstract data (i.e. availability), one may want

to keep the computational time to a minimum (i.e. feasibility),

or one may want to reduce the pre-processing steps that

are often necessary when dealing with full-text articles (i.e.

simplicity). These pre-processing steps could include scraping

the publishers’ repositories; converting PDF to plain-text,

either direct or with the aid of optical character recognition

(OCR) software; or an increased boilerplate cleaning phase.

However, a more scientific rationale is required to aid in the

choice of abstract or full-text data when uncovering latent

topics with LDA.

This research is the first to explore the practical effects

of choosing abstract or full-text data when uncovering latent

topics with LDA. In particular, it shows the practical effects

when revealing latent semantic structures from documents

concerning scientific research publications. The differences

between topics are calculated with a topic coherence mea-

sure [18]–[21] that shows, in contrast to the likelihood of held-

out data, a higher correlation with human topic ranking data,

the gold standard for topic interpretability. The underlying idea

of topic coherence is rooted in the distributional hypothesis of

linguistics [22]—namely, words with similar meanings tend to

occur in similar contexts. Additionally, we use the knowledge

of a domain expert to rank topics, thus providing, along with

topic coherence, a comparison of topic quality from a human

perspective.

II. BACKGROUND

A. Latent Dirichlet Allocation

LDA is a generative probabilistic topic model that aims to

uncover latent or hidden thematic structures from a corpus D.

The latent thematic structure, expressed as topics and topic

proportions per document, is represented by hidden variables

that LDA posits onto the corpus. The generative nature of LDA

describes an imaginary random process based on probabilistic

sampling rules from which we assume that the documents

come from. However, we only observe the words within

documents and need to infer the hidden structure, that is, the

topics and topic proportions per document, by applying sta-

tistical inference techniques. This process aims to answer the

question: Which hidden structure or topic model is most likely

to have generated these documents? In doing so, we obtain the

posterior distribution that captures the hidden structure given

the observed documents. The generative process is defined as

follows:

1) For every topic k = {1, ...,K}
a) draw a distribution over the vocabulary V, βk ∼

Dir(η)

2) For every document d
a) draw a distribution over topics, θd ∼ Dir(α) (i.e.

per-document topic proportion)

b) for each word w within document d

i) draw a topic assignment, zd,n ∼ Mult(θd),
where zd,n ∈ {1, ...,K} (i.e. per-word topic

assignment)

ii) draw a word wd,n ∼ Mult(βzd,n), where

wd,n ∈ {1, ..., V }
Each topic βk is a multinomial distribution over the vocab-

ulary V and comes from a Dirichlet distribution βk ∼ Dir(η).
Additionally, every document is represented as a distribu-

tion over K topics and come from a Dirichlet distribution

θd ∼ Dir(α). The Dirichlet parameter α denotes the smoothing

of topics within documents, and η denotes the smoothing of

words within topics. The joint distribution of all the hidden

variables βK (topics), θD (per-document topic proportions),

zD (word topic assignments), and observed variables wD

(words in documents) is expressed by (1):

p(βK , θD, zD, wD|α,η ) =
K∏

k=1

p(βK |η)
D∏

d=1

p(θd|α)

N∏
n=1

p(zd,n|θd)p(wd,n|zd,n, βd,k)

(1)

Fig. 1 shows the LDA probabilistic graphical model in plate

notation [23], where the unshaded nodes represent the hidden

random variables, the shaded nodes the observed random

variables, and the edges the conditional dependencies between

them. The rectangles, called plates, represent replication.

The graphical model is equivalent to the joint probability

of all the hidden and observed variables expressed in (1).

We have K topics βK (K-plate) as distributions over words

depending on the Dirichlet parameter η, i.e.
∏K

k=1 p(βK |η).
For all D documents (D-plate) we have a per-document

topic proportion θd depending on the Dirichlet parameter α,

i.e.
∏D

d=1 p(θd|α). Finally, for all N words (N -plate) of a

document d ∈ D, we find that the per-word topic assignment

zd,n depends on the previously drawn per-document topic

proportion θd, and the drawn word wd,n depends on the

per-word topic assignment zd,n and all the topics βd,k, i.e.∏N
n=1 p(zd,n|θd)p(wd,n|zd,n, βd,k [we retrieve the probability

of wd,n (row) from zd,n (column) within the K × V topic

matrix].

The per-word topic assignment, the per-document topic

distribution, and the topics are the latent variables and are not

observed. We would have to condition on the only observed

variable, the words within the documents, to infer the hidden

structure with statistical inference. This can be viewed as a

reversal of the generative process. The conditional probability,

also known as the posterior, is expressed by (2):

p(βK , θD, zD|wD) =
p(βK , θD, zD, wD)

p(wD)
(2)

Unfortunately, computation of the posterior is intractable

due to the denominator [6]. The marginal probability p(wD)
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Per-document 
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Fig. 1. LDA represented as a graphical model in which the nodes denote the
random variables and the edges the dependencies between them. Unshaded
nodes are unobserved or hidden variables and the shaded nodes represent the
observed random variables. The boxes, called plates, indicate replication.

is the sum of the joint distribution over all instantiations of

the hidden structure and is exponentially large [24]. Although

the posterior cannot be computed exactly, a close enough

approximation to the true posterior can be achieved with

statistical posterior inference. Mainly two types of infer-

ence techniques can be discerned: sampling-based algorithms

(e.g. [25], [26]) and variational-based algorithms (e.g. [27]–

[29]). It is important to note that both variational and sampling-

based algorithms provide similarly accurate results [30].

B. Topic Coherence Measurement

After approximating LDA’s posterior distribution, the K
topics are represented as multinomial distributions over V .

Each topic distribution contains every word but assigns a

different probability to each of the words. The words within

topics with high probability are words that tend to co-occur

more frequently. These high-probability words, usually the top

10 or top 15, are used to interpret and semantically label the

topics. However, LDA outputs as many topics as are defined by

K: a low K results in too few or very broad topics, whereas a

high K results in uninterpretable topics or topics that ideally

should have been merged. Choosing the right value of K is

thus an important task in topic modeling algorithms, including

LDA.

Measures such as the predictive likelihood of held-out

data [31] have been proposed to evaluate the quality of gen-

erated topics. However, such a measure correlates negatively

with human interpretability [32], making topics with high

predictive likelihood less coherent from a human perspective.

This is especially important when generated topics are used for

browsing document collections by users or understanding the

trends and development within a particular research field. As

a result, researchers have proposed topic coherence measures,

which are a qualitative approach to automatically uncover

the coherence of a topic [18], [33], and the underlying idea

is rooted in the distributional hypothesis of linguistics [22];

words with similar meanings tend to occur in similar contexts.

The topics are considered to be coherent if all or most of the

words, for example, the topic’s top N words, are related. The

computational challenge is to obtain a measure that correlates

highly with human topic ranking data, such as topic ranking

data obtained by word and topic intrusion tests [32]. Human

topic ranking data are often considered to be the gold standard,

and consequently a measure that correlates well is a good

indicator of topic interpretability. A recent study by Röder et.
al. [19] systematically and empirically explored the multitude

of topic coherence measures and their correlation with avail-

able human topic ranking data. Additionally, new coherence

measures obtained by combining existing elementary elements

were explored as well. Their systematic approach revealed a

new unexplored coherence measure, which they labeled CV , to

achieve the highest correlation with all available human topic

ranking data. As a result, this study adopts the CV coherence

measure for topic coherence calculations. CV is based on

four parts: (i) segmentation of the data into word pairs, (ii)

calculation of word or word pair probabilities, (iii) calculation

of a confirmation measure that quantifies how strongly a word

set supports another word set, and finally (iv) aggregation of

individual confirmation measures into an overall coherence

score.

(i) Data segmentation pairs each of the topic’s top-N
words with every other top-N word. Let W be the set of

a topic’s top-N most probable words W = {W1, ...,WN},

Si a segmented pair of each word W ′ ∈ W paired with all

other words W ∗ ∈ W , and S the set of all pairs defined

as S = {(W ′,W ∗)|W ′ = {wi};wi ∈ W ;W ∗ = W}.

For example, if W = {w1, w2, w3}, then a pair Si =
(W ′ = w1), (W

∗ = w1, w2, w3). Such segmentation measures

the extent to which the subset W ∗ supports, or conversely

undermines, the subset W ′ [34].

(ii) Probabilities of single words p(wi) or the joint prob-

ability of two words p(wi, wj) can be estimated by Boolean

document calculation, that is, the number of documents in

which (wi) or (wi, wj) occurs, divided by the total number

of documents. The Boolean document calculation, however,

ignores the frequencies and distances of words. CV incorpo-

rates a Boolean sliding window calculation in which a new

virtual document is created for every window of size s when

sliding over the document at a rate of one word token per step.

For example, document d1 with words w results in virtual

documents d′1 = {w1, ..., ws} and d′2 = {w2, ..., ws+1}, and

so on. The probabilities p(wi) and p(wi, wj) are subsequently

calculated from the total number of virtual documents. In

contrast to Boolean document calculation, the Boolean sliding

window calculation tries to capture the word token proximity

to some degree.

(iii) For every Si = (W ′,W ∗), we calculate a confirmation

measure φ that calculates how strongly W ∗ supports W ′

and is based on the similarity of W ′ and W ∗ in relation

to all the words in W . To calculate this similarity, W ′ and

W ∗ are represented as context vectors [18] as a means to

capture the semantic support of all the words in W . These

vectors �v(W ′) and �v(W ∗) are created by pairing them to all

words in W , as exemplified in (3). The agreement between

individual words wi and wj is calculated via normalized

pointwise mutual information (NPMI), as shown in (4). NPMI,

in contrast to pointwise mutual information (PMI), shows

a higher correlation with human topic ranking data [35].
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TABLE I
OVERVIEW OF THE DS1 AND DS1 DATASETS WHERE J = NUM.

JOURNALS; Y = TIME RANGE; D = NUM. DOCUMENTS; Nd = MEAN

DOCUMENT LENGTH; N = NUM. TOKENS; V = VOCABULARY SIZE.

DS1 DS2

Abstract Full-text Abstract Full-text

J 1 1 12 12

Y 1996-2016 1996-2016 2000-2016 2000-2016

D 4,417 4,417 15,004 15,004

Nd 108.94 3,855.36 123.7 3,850.78

N 481,168 17,029,133 1,856,700 57,777,025

V 14,643 142,852 25,781 379,116

Additionally, ε is used to account for the logarithm of zero

and γ to place more weight on higher NPMI values. The

confirmation measure φ of a pair Si is obtained by calculating

the cosine vector similarity of all context vectors φSi(�u, �w)
within Si, with �v(W ′) ∈ �u and �v(W ∗) ∈ �w as expressed in

(5).

�v(W ′) =

{ ∑
wi∈W ′

NPMI(wi, wj)
γ

}
j=1,...,|W |

(3)

NPMI(wi, wj)
γ =

⎛
⎝ log

P (wi,wj)+ε
P (wi)·P (wj)

− log(P (wi, wj) + ε)

⎞
⎠

γ

(4)

φSi
(�u, �w) =

∑|W |
i=1 ui · wi

‖�u‖2 · ‖�w‖2
(5)

(iv) The final coherence score is the arithmetic mean of all

confirmation measures φ.

III. METHODOLOGY

A. The Experiment

This paper explores the effects of uncovered latent topics

and their topic coherence score, a proxy for topic quality when

applying LDA on abstract and full-text data. Besides topic

coherence, we explore the effects of human topic ranking—

often considered the gold standard for topic interpretability—

on topics uncovered from abstract and full-text data. In doing

so, we explore the practical effects that types of documents,

and more specifically, word length, vocabulary size, and doc-

ument frequency have on the coherence and interpretability of

LDA topics.

B. Dataset

Two datasets were created that contain abstract and full-

text data: DS1 contains 4,417 research articles (1996 to 2016)

from the journal Canadian Journal of Fisheries and Aquatic
Sciences, and DS2 contains 15,004 research articles (2000 to

2016) from 12 top-tier fisheries journals: Canadian Journal of
Fisheries and Aquatic Sciences, Fish and Fisheries, Fisheries,

Fisheries Management and Ecology, Fisheries Oceanography,

(a) DS1 - abstract (b) DS1 - full-text

(c) DS2 - abstract (d) DS2 - full-text

Fig. 2. Histograms of token and vocabulary frequencies for DS1 and DS2

for both abstract and full-text data. (b) and (d) contain very long tails for the
number of tokens (up to 18,000).

Fisheries Research, Fishery Bulletin, Marine and Coastal
Fisheries, North American Journal of Fisheries Management,
Reviews in Fish Biology and Fisheries, Reviews in Fisheries
Science, and Transactions of the American Fisheries Society.

Note that DS1 ⊂ DS2 for Y = 2000 to 2016. Regular expres-

sions were used to extract abstracts from full-text articles, as

the downloaded articles appeared in full-text.

The DS1 dataset relates to studies where a single sci-

entific journal was analyzed from a domain-specific journal

(e.g. [16]), and DS2 to studies where LDA was used to

uncover topics from a multitude of related domain-specific

journals (e.g. [12], [13], [15] ). The two datasets allow for

comparison of not only abstract and full-text data but also

on corpus size (i.e. the number of scientific publications). An

overview of DS1 and DS2 is given in Table I, and histograms

of token and vocabulary (i.e. distinct words) frequencies are

displayed in Fig. 2.

The choice of these journals was based on two factors: (i)

they are domain-specific journals but employ a broad scope of

research topics from the field of fisheries, and (ii) a fisheries

domain expert was available to manually label and rank the

topics as an alternative means of assessing the quality of top-

ics. Furthermore, a domain-specific journal might increase the

generalizability to other domain-specific journals (e.g. journals

in the domain of social psychology or resource economics)

compared to a more general or broadly oriented journal such

as Nature, Science, or PLOS ONE. The domain of fisheries

includes a multitude of knowledge production approaches,

from mono- to transdisciplinary. Biologists, oceanographers,

mathematicians, computer scientists, anthropologists, sociol-

ogists, political scientists, economists, and researchers from
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many other more disciplines contribute to the body of knowl-

edge of fisheries, together with non-academic participants such

as decision makers and stakeholders. Within the domain of

fisheries, research into text analytics techniques has only been

applied in a number of cases (e.g. [36], [37]).

All research articles were downloaded from the journals’

repository and converted from PDF to plain text. Full-text data

and abstract data were tokenized, and single-character words,

numbers, and punctuation marks were removed. Furthermore,

we removed all single-occurrence words, words that occurred

in more than 90% of the documents, and words that belonged

to a standard English stop word list (n = 153). Apart from

grouping lowercase and uppercase words, no normalization

method such as stemming or lemmatization was applied to

reduce inflectional and derivational forms of words to a com-

mon base form; stemming algorithms can be overly aggressive

and could result in unrecognizable words that reduce the

interpretability when labeling the topics. Stemming might also

lead to another problem, namely that it cannot be deduced

whether a stemmed word comes from a verb or a noun [38].

C. Creating LDA Models

For both datasets, and for both abstract and full-text data,

we created 40 different LDA models by varying the K pa-

rameter (i.e. the number of topics) from 1 to 40 and repeating

this process three times (4 × 120 LDA models in total).

The Dirichlet parameters are set to be symmetrical for the

smoothing of words within topics η = 1
V and topics within

documents α = 1
K . By keeping α < 1, the modes of the

Dirichlet distribution are close to the corners, thus favoring

just a few topics for every document and leaving the larger

part of topic proportions very close to zero. The LDA models

are created using the Python library Gensim [39]. Gensim uses

variational inference called online LDA [40] to approximate

the posterior. The convergence iteration parameter for the

expectation step (i.e. E-step) is set to 100; the part where per-

document parameters are fit for the variational distributions

[see Algorithm 2 in [40]].

D. Topic Coherence

For every LDA model created (480 in total), we calcu-

lated the CV coherence score as explained in Section II-B.

Segmentation of top pairs is obtained by pairing every word

from the top 15 words with every other word from the top

15 words. In some cases, coherence calculations are based on

the top 10 most probable words. However, as no stemming or

lemmatization was applied, several words with the same base

form were among the top 10 words (e.g. sample, sampling), so

analyzing the top 10 words would effectively mean analyzing

less than 10 distinct words. To avoid logarithms of zero when

calculating coherence scores, ε is set to a very small number,

10−12, as proposed by Stevens et. al. [20]. We furthermore

set γ = 1 to place equal weights on all NPMI values as

researched by Röder et. al. [19] and have shown the highest

correlation with all topic ranking data, in contrast to Aletras

and Stevenson [18], where γ = 2 shows better results.

To capture word proximity when calculating word or word

pair probabilities, the Boolean sliding window for Boolean

document calculation is set to s = 110 [19].

The LDA model with the optimal coherence score, obtained

with an elbow method (the point with maximum absolute

second derivative), was additionally analyzed by a fisheries

domain expert. The domain expert is affiliated with the leading

competence institution for fishery and aquaculture in Norway.

The analysis consisted of an inspection of the top 15 most

probable words for each topic, together with an inspection

of the document titles and content. Additionally, the domain

expert rated the topics (high, medium, low) by assessing the

coherence of the top 15 words and the presence of incorrect

terms (i.e. words) within each topic. High-quality topics con-

tain no incorrect terms, medium-quality topics contain one or

two, and low-quality topics contain three or more. An incorrect

term is defined as a word that has no semantic relationship

with the topic’s top 15 words. The domain expert attached a

label to each topic that best captured the semantics of the top

15 words.

IV. RESULTS

Fig. 3 shows the obtained CV coherence scores for all 480

LDA models created, with Fig. 3a and Fig. 3b displaying the

results for the DS1 and DS2 datasets, respectively. The lines

represent the mean coherence scores from 3 runs where the

number of topics was varied from 1 to 40. A visual inspection

of Fig. 3a shows that LDA models created with full-text data

from the DS1 dataset achieve higher mean coherence scores

among all values of K, a result that is not visible for DS2

(Fig. 3b).

Table II displays the actual coherence score values for

uncovered topics from abstract and full-text data for both

datasets. It shows the mean CV coherence score (X̄), the

standard deviation (s), and the difference between mean values

(X̄2 − X̄1) calculated from all three runs for K = {2, ..., 40}.

Positive differences between mean values indicate a higher

achieved coherence score for full-text data. We furthermore

calculate the significance (p < 0.05, p < 0.01, and p < 0.001)

between X̄1 and X̄2 with an independent two-sample t-test as

Levene’s test for homoscedasticity assumes equal variances

for all K values.

A. DS1 Dataset

Although every X̄2 (full-text) outperforms X̄1 (abstract), not

all differences are statistically significant. For k = 3 and k =
6, the differences between coherence scores are not significant

but are still very close to the 5% significance threshold. The

largest difference between mean values is achieved at k = 2
(two-topic LDA model), although it is only significant at p <
0.05. Looking at all K values, three runs achieve p < 0.05
significance, 18 achieve p < 0.01 significance, and 16 achieve

p < 0.001 significance. The choice of full-text data results

in overall topics with higher coherence for all K values, and

these differences are significant for all but two LDA models.

The abstract data achieved the optimal coherence score (via
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TABLE II
CALCULATED COHERENCE SCORE FOR ABSTRACT AND FULL-TEXT DATA FOR BOTH DATASETS. X̄ = MEAN COHERENCE SCORE, s = STANDARD

DEVIATION COHERENCE SCORE, X̄2 − X̄1 = DIFFERENCE IN MEAN COHERENCE SCORES, t = CALCULATED T-STATISTIC, p = TWO-TAILED P-VALUE,
K = NUMBER OF TOPICS

Dataset DS1 (4,417 documents) Dataset DS2 (15,004 documents)

Abstract1 Full-text2 Statistics (t-test) Abstract1 Full-text2 Statistics (t-test)

K X̄1 s1 X̄2 s2 X̄2 − X̄1 t p X̄1 s1 X̄2 s2 X̄2 − X̄1 t p

2 0.392 0.040 0.547 0.058 0.156 -3.14 0.0350∗ 0.448 0.016 0.490 0.004 0.041 -3.47 0.0255∗

3 0.454 0.032 0.536 0.034 0.082 -2.49 0.0671 0.434 0.016 0.517 0.024 0.084 -4.04 0.0156∗

4 0.433 0.027 0.556 0.012 0.123 -5.88 0.0042∗∗ 0.482 0.020 0.522 0.014 0.040 -2.37 0.0772

5 0.454 0.028 0.575 0.012 0.121 -5.67 0.0048∗∗ 0.484 0.016 0.520 0.016 0.035 -2.19 0.0938

6 0.479 0.044 0.572 0.020 0.093 -2.71 0.0534 0.488 0.017 0.543 0.010 0.055 -3.92 0.0172∗

7 0.503 0.009 0.560 0.001 0.057 -8.98 0.0009∗∗∗ 0.507 0.029 0.529 0.002 0.022 -1.07 0.3433

8 0.509 0.024 0.567 0.017 0.058 -2.83 0.0474∗ 0.496 0.010 0.518 0.019 0.022 -1.40 0.2336

9 0.492 0.016 0.576 0.013 0.084 -5.86 0.0042∗∗ 0.527 0.015 0.531 0.007 0.004 -0.36 0.7350

10 0.475 0.008 0.566 0.017 0.091 -6.90 0.0023∗∗ 0.536 0.007 0.538 0.013 0.002 -0.19 0.8593

11 0.473 0.015 0.578 0.008 0.105 -8.87 0.0009∗∗∗ 0.539 0.010 0.536 0.011 -0.002 0.24 0.8238

12 0.491 0.010 0.572 0.010 0.081 -7.99 0.0013∗∗ 0.550 0.013 0.545 0.006 -0.005 0.53 0.6255

13 0.484 0.010 0.591 0.009 0.107 -11.08 0.0004∗∗∗ 0.538 0.007 0.533 0.003 -0.004 0.84 0.4469

14 0.515 0.014 0.568 0.006 0.052 -5.03 0.0074∗∗ 0.536 0.014 0.548 0.003 0.012 -1.15 0.3129

15 0.475 0.022 0.583 0.008 0.107 -6.40 0.0031∗∗ 0.558 0.017 0.555 0.008 -0.003 0.24 0.8195

16 0.485 0.021 0.585 0.006 0.100 -6.59 0.0028∗∗ 0.542 0.007 0.561 0.010 0.019 -2.22 0.0902

17 0.489 0.015 0.590 0.022 0.101 -5.40 0.0057∗∗ 0.562 0.022 0.557 0.009 -0.005 0.27 0.7997

18 0.506 0.035 0.592 0.015 0.086 -3.24 0.0315∗ 0.558 0.015 0.550 0.005 -0.008 0.66 0.5441

19 0.493 0.009 0.589 0.011 0.096 -9.92 0.0006∗∗∗ 0.543 0.017 0.553 0.011 0.010 -0.73 0.5081

20 0.493 0.007 0.584 0.009 0.091 -11.54 0.0003∗∗∗ 0.550 0.019 0.561 0.006 0.011 -0.82 0.4574

21 0.504 0.020 0.579 0.004 0.076 -5.37 0.0058∗∗ 0.569 0.014 0.560 0.014 -0.009 0.67 0.5398

22 0.497 0.012 0.576 0.009 0.079 -7.51 0.0017∗∗ 0.559 0.016 0.564 0.006 0.005 -0.41 0.7012

23 0.486 0.009 0.572 0.022 0.086 -5.09 0.0070∗∗ 0.562 0.006 0.562 0.012 -0.000 0.04 0.9733

24 0.489 0.001 0.584 0.015 0.095 -9.14 0.0008∗∗∗ 0.552 0.008 0.564 0.006 0.012 -1.63 0.1794

25 0.471 0.006 0.567 0.011 0.096 -10.95 0.0004∗∗∗ 0.548 0.006 0.564 0.011 0.016 -1.84 0.1392

26 0.490 0.016 0.589 0.019 0.099 -5.72 0.0046∗∗ 0.554 0.018 0.564 0.011 0.010 -0.67 0.5403

27 0.482 0.013 0.573 0.009 0.091 -8.15 0.0012∗∗ 0.553 0.010 0.561 0.010 0.008 -0.79 0.4720

28 0.488 0.009 0.585 0.007 0.097 -12.22 0.0003∗∗∗ 0.552 0.004 0.567 0.014 0.015 -1.43 0.2267

29 0.500 0.017 0.590 0.002 0.090 -7.50 0.0017∗∗ 0.543 0.015 0.560 0.003 0.018 -1.68 0.1682

30 0.475 0.010 0.583 0.002 0.108 -14.37 0.0001∗∗∗ 0.558 0.007 0.557 0.012 -0.001 0.14 0.8980

31 0.478 0.010 0.584 0.009 0.105 -11.41 0.0003∗∗∗ 0.557 0.014 0.568 0.006 0.011 -1.03 0.3628

32 0.488 0.007 0.588 0.006 0.100 -15.40 0.0001∗∗∗ 0.553 0.002 0.557 0.003 0.004 -1.61 0.1825

33 0.484 0.013 0.581 0.000 0.097 -10.57 0.0005∗∗∗ 0.541 0.009 0.564 0.004 0.023 -3.26 0.0311∗

34 0.488 0.002 0.594 0.010 0.107 -14.57 0.0001∗∗∗ 0.554 0.010 0.565 0.013 0.011 -0.97 0.3885

35 0.502 0.011 0.584 0.013 0.082 -6.78 0.0025∗∗ 0.550 0.002 0.568 0.014 0.018 -1.77 0.1521

36 0.481 0.002 0.578 0.002 0.097 -59.63 0.0000∗∗∗ 0.550 0.016 0.573 0.010 0.023 -1.69 0.1667

37 0.491 0.015 0.591 0.009 0.100 -8.17 0.0012∗∗ 0.545 0.009 0.576 0.005 0.031 -4.18 0.0139∗

38 0.476 0.008 0.580 0.010 0.105 -12.07 0.0003∗∗∗ 0.550 0.008 0.565 0.003 0.014 -2.26 0.0867

39 0.483 0.024 0.576 0.008 0.094 -5.26 0.0063∗∗ 0.546 0.019 0.577 0.005 0.032 -2.32 0.0814

40 0.494 0.007 0.586 0.008 0.092 -12.55 0.0002∗∗∗ 0.569 0.016 0.574 0.009 0.004 -0.33 0.7560
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

elbow method) at k = 14, and the full-text data achieved this

at k = 13.

B. DS2 Dataset

The DS2 dataset with 15,004 research articles from 12

top-tier fisheries journals show that only 5 LDA models are

significantly different at the 5% significance threshold; k = 2,

3, 6, 33, and 37. Looking at the actual coherence scores, most

LDA models show a slightly higher coherence score (shown

in bold) for full-text data compared to abstract data. However,

the large difference in coherence scores and significance levels

are not similar to the DS1 dataset. The LDA model with the

optimal coherence score for abstract data is at k = 17, and

for full-text data at k = 16.

C. Human Topic Ranking

Table III shows the results of the human topic ranking

by a fisheries domain expert. For an equal comparison, the

LDA models with optimal coherence scores were ranked and

compared. The LDA model from DS1 abstract data (k = 14)
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(a) DS1 dataset

(b) DS2 dataset

Fig. 3. Calculated CV topic coherence score for LDA models with K =
{1, ..., 40} for (a) DS1 and (b) DS2. The coherence score is the mean score
for all 3 runs. Scores for DS1 with 4,417 documents shows that full-text
data achieves a higher topic coherence score for all k-values. In contrast,
DS2 with 15,004 documents show similar coherence scores. Individual lines
for each run are not shown for clarity.

contains 50% high-quality topics, 36% medium-quality topics,

and 14% low-quality topics. In contrast, the LDA model

from full-text data (k = 13) contains 92% high-quality, 8%

medium-quality, and no low-quality topics. DS2 abstract and

full-text data show similar ranking scores; almost 90% high-

quality topics with just two topics ranked as medium-quality.

Table IV provides an example of high- medium- and low-

quality topics, the top 15 words, and the incorrect terms

that caused the topics to be ranked lower for DS1. A two-

dimensional inter-topic distance map for the LDA models

is displayed in Fig. 4. This two-dimensional representation

is obtained by computing the distance between topics [41]

and applying multidimensional scaling [42]. It displays the

similarity between topics with respect to their probability

distribution over words. Furthermore, it shows the topic label

that best captures the semantics of the top 15 words. The color

TABLE III
MANUAL TOPIC RANKING FOR DS1 AND DS2 DATASETS FOR ABSTRACT

AND FULL-TEXT. H = HIGH-QUALITY, M = MEDIUM-QUALITY, AND

L = LOW-QUALITY TOPICS.

DS1 DS2

Abstract Full-text Abstract Full-text

H 7/14 (50.0%) 12/13 (92.3%) 15/17 (88.2%) 14/16 (87.5%)

M 5/14 (35.7%) 1/13 (7.7%) 2/17 (11.8%) 2/16 (12.5%)

L 2/14 (14.3%) 0/13 (0%) 0/17 (0%) 0/16 (0%)

coding indicates the quality of the topics based on human

interpretation (see Section III-D for ranking method). It shows

that, overall, more high-quality topics are obtained from full-

text data than from the abstract counterpart for DS1, and

similar topic rankings are achieved for DS2.

V. DISCUSSION

The coherence of a topic is based on the topic’s top 15 words

and shows how strongly pairs of these top 15 words support

each other within the corpus. Such an approach, drawing on

the philosophical premise that a set of statements or facts is

said to be coherent if its statements or facts support each other,

informs us about the understandability and interpretability of

topics from a human perspective. The LDA models obtained

from DS1 full-text data, compared to DS1 abstract data, show

a higher coherence overall, with the test statistics showing that

these differences are significant for all but two LDA models.

On the other hand, such significant differences are not present

within the DS2 dataset when comparing abstract and full-text

data, although full-text data achieved more topics with a higher

coherence score.

Additionally, topic ranking by a fisheries domain expert

shows similar, or even greater, improvements in results for

the DS1 full-text data; topics uncovered from full-text data

contain 92% high-quality topics compared to 50% high-quality

topics from abstract data. The quality of topics from a human

perspective was lowered by the inclusion of incorrect terms

in the top 15 words. Such terms, however, are not related

to the biological, ecological, or socio-ecological meanings of

those topics but can be seen as noise terms: using, used, use,

within, total, two, among, and within. There is little to no

specific semantic meaning behind these terms, and although

they are important in written text, they are less important

when uncovering latent semantic structures (i.e. topics) from

documents. This issue may be potentially rectified by a part-of-

speech (POS) tagger to eliminate the verbs or prepositions that

crop up as noise among the topic’s top words. However, one

should proceed carefully in cases where verbs are important

cues for understanding the semantics of the top words. For

example, Table IV shows that fishing and feeding are among

the top 15 words, and in these cases, the verbs are important

terms that are necessary for the understanding of the semantic

context. In such cases, one might proceed with a domain-

specific stop word list to prevent such terms from becoming

part of the topic-word distribution. A lower ranked topic
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Fig. 4. Inter-topic distance map showing a two-dimensional representation (via multi-dimensional scaling) of the latent topics. The distance between the nodes
represents the topic similarity with respect to the distributions of words. The surface of the nodes represents the prevalence of the topic within the corpus.
Color coding is used to display the topic ranking: green = high-quality topic, orange = medium-quality topic, and red = low-quality topic.

TABLE IV
A SELECTION OF TOPICS FROM DS1 WITH THE 15 MOST PROBABLE WORDS, TOPIC LABEL, AND RANKING DATA. TEXT IN BOLD INDICATES INCORRECT

TERMS.

Dataset Label Top 15 words Ranking

Abstract fish distribution fishing, distribution, data, species, areas, catch, abundance, spatial, habitat, model,
fishery, effort, fish, water, sea

High

Population models model, data, mortality, stock, fish, population, fishing, models, recruitment, cod, esti-
mates, using, size, rates, used

Medium

Population genetics genetic, populations, population, among, lake, fish, loci, microsatellite, two, structure,
diversity, within, samples, species, river

Low

Full-text Salmon population dynamics salmon, trout, prey, growth, atlantic, temperature, water, rate, juvenile, salmo, feeding,
wild, density, food, populations

High

Population genetics genetic, populations, population, river, samples, loci, salmon, among, dna, atlantic,
sample, sea, microsatellite, structure, alleles

Medium
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caused by noise terms is not as apparent for full-text data,

nor does it seem to hold for abstract data from the DS2

dataset. Such noise terms seem less of an issue when document

frequency, word length, or vocabulary size increases.

Also worth noting is an increased level of detailed topics

within DS1 full-text data (Fig. 4b) compared to DS1 abstract

data (Fig. 4a). For example, the topics salmon population
dynamics and salmon reproduction were uncovered from full-

text data, whereas the single topic salmon was uncovered from

abstract data. Similarly, the topics dealing with lakes are split

into three topics (lake nutrients and algae, lake sediments,

and lake ecology) from full-text data, compared to two (lake
tropic level interaction and lake nutrients and algae) from

the abstract data. Lastly, the topics dealing with models were

split into three (estimation models, stock assessment models,

and reproduction models) from full-text data in contrast to

an overarching population model topic from abstract data.

Such a clear difference between low and high granularity

topics is not present within the DS2 dataset. Although the

differences in word length and vocabulary size exists, similarly

to DS1, it seems that a higher number of documents makes

up for these differences in granularity. A comparison between

other LDA models (not presented) shows similar granularity

between abstract and full-text for DS2. Although the article’s

abstract aims to provide a complete but succinct description

of the whole paper, it is often restricted by a limitation on

the number of words. Such word limitation, with a relatively

small number of documents, has practical effects on the level

of detail (i.e. granularity) of uncovered LDA topics.

Besides topic coherence, topic ranking, and the level of

detail, Fig. 4 shows a number of uncovered topics that are

present in abstract data but absent in full-text data. Within

DS1 for example, the topics temperature effects, cod genetics,

management, and fish abundance were not found within full-

text data, and neither were related topics showing semantic

resemblance to these absent topics. Although we identified

similar and detailed topics, there remains an inconsistency

between some uncovered topics from both datasets. Knowing

that abstracts were retrieved from full-text articles and are

thus, in essence, a subset of the full-text data, one might

question why these differences exist. One reason might be that

manual topic labeling is limited to the subjectivity inherent in

human interpretation and an analysis of the topics by others

could yield opposite results, explaining away any differences

between the two datasets. On the other hand, topic labeling is

usually performed by inspection of the topic words with the

highest probabilities (top 10 or 15). Such an approach might

up-weight terms that have high probability under all topics.

Other approaches to identify the terms that best describe a

topic exist (e.g. [7], [43]) and could yield different results.

Finally, abstract data, being restricted by the limited number of

words, fail to adequately convey the heterogeneity of research

ideas or topics that are part of a document. Uncovered latent

topics might thus not completely resemble the document

collection and, as a result, provide a limited or even incorrect

view of the underlying thematic structure.

VI. CONCLUSION

In this paper, we presented a comparison between topic

coherence scores and human topic ranking when creating

LDA topics from abstract and full-text data. Two datasets

were compared, DS1 consisting of a single fisheries journal

with 4,417 scientific research articles that span 20 years of

scientific output, and DS2 consisting of 12 fisheries journals,

15,004 articles, and span 16 years of research. The two types

of data, abstract and full-text, combined with two different

datasets, a single journal and a set of journals, allow for

comparison on a variety of characteristics, such as document

length, document frequency, and vocabulary size. Topics were

statistically compared by adopting the CV coherence measure

that shows the highest correlation with all available human

topic-ranking data. Furthermore, the LDA models with the

optimal coherence scores were manually inspected and ranked

by a fisheries domain expert.

Our results show that uncovering LDA models from a single

journal with, relatively speaking, a low number of documents

are very prone to noise terms that crop up into the topic’s top

words—the words that are often used to capture the semantics

of the topic—for abstract data. Such noise terms require

special attention when dealing with abstract data with, e.g. an

increased cleaning phase, POS filtering, or a domain-specific

stop word list. Our results show that full-text data seem

less affected by such words, thus increasing the coherence

and manual topic ranking. On the other hand, increasing the

number of document (e.g. DS2) results in fewer noise terms,

thus an improvement in coherence and human topic ranking

for both abstract and full-text data. Furthermore, on a small

dataset (e.g. DS1) abstract topic distributions capture more

broad topics, with full-text topics achieving more fine-grained

results. These differences in detail are not present for bigger

datasets containing a higher number of documents, regardless

the choice for abstract or full-text data.

We identified a number of topics that were uncovered from

abstract data but were absent among the topics uncovered from

full-text data. A detailed analysis of the reasons behind these

differences would yield interesting results and would be a

possible direction for future research.
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[19] M. Röder, A. Both, and A. Hinneburg, “Exploring the Space of Topic
Coherence Measures,” in Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining - WSDM ’15. New York,
New York, USA: ACM Press, 2015, pp. 399–408.

[20] K. Stevens, P. Kegelmeyer, D. Andrzejewski, and D. Buttler, “Exploring
Topic Coherence over Many Models and Many Topics,” in Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, no. July.
Association for Computational Linguistics, 2012, pp. 952–961.

[21] D. O’Callaghan, D. Greene, J. Carthy, and P. Cunningham, “An analysis
of the coherence of descriptors in topic modeling,” Expert Systems with
Applications, vol. 42, no. 13, pp. 5645–5657, 2015.

[22] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2-3, pp.
146–162, aug 1954.

[23] W. L. Buntine, “Operations for Learning with Graphical Models,”
Journal of Artificial Intelligence Research, vol. 2, pp. 159–225, nov
1994.

[24] D. M. Blei, “Probabilistic topic models,” in Communications of the
ACM, vol. 55, no. 4, apr 2012, pp. 77–84.

[25] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed infer-
ence for latent dirichlet allocation,” in Advances in Neural Information
Processing Systems, vol. 20, 2007, pp. 1081–1088.

[26] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, “Fast Collapsed Gibbs Sampling For Latent Dirichlet
Allocation,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008, p. 569.

[27] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process
mixtures,” Bayesian Analysis, vol. 1, no. 1, pp. 121–143, mar 2006.

[28] Y. W. Teh, D. Newman, M. Welling, and D. Neaman, “A Collapsed
Variational Bayesian Inference Algorithm for Latent Dirichlet Alloca-
tion,” in Advances in Neural Information Processing Systems 19 (NIPS
2006), 2007, pp. 1353–1360.

[29] C. Wang, J. Paisley, and D. M. Blei, “Online Variational Inference for the
Hierarchical Dirichlet Process,” in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, vol. 15, 2011, pp.
752–760.

[30] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On Smoothing
and Inference for Topic Models,” Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, no. Ml, pp. 27–
34, may 2012.

[31] D. Wallach, Hanna M., Murray, Iain, Salakhutdinov, Ruslan and Mimno,
“Evaluation Methods for Topic Models,” in ICML ’09 Proceedings of
the 26th Annual International Conference on Machine Learning, 2009,
pp. 1105–1112.

[32] J. Chang, S. Gerrish, C. Wang, and D. M. Blei, “Reading Tea Leaves:
How Humans Interpret Topic Models,” in Advances in Neural Informa-
tion Processing Systems 22, 2009, pp. 288–296.

[33] D. Newman, J. Lau, K. Grieser, and T. Baldwin, “Automatic evaluation
of topic coherence,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, no. June. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2010, pp. 100–108.

[34] I. Douven and W. Meijs, “Measuring coherence,” Synthese, vol. 156,
no. 3, pp. 405–425, 2007.

[35] G. Bouma, “Normalized (Pointwise) Mutual Information in Collocation
Extraction,” in Proceedings of German Society for Computational Lin-
guistics (GSCL 2009), 2009, pp. 31–40.
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