MIDIoke

transforming human singing to digital music

Georgios Kyziridis, giorgos.zapata@gmail.com , s2077981
Geerten Verweij, geertex@gmail.com, $1420062

January 19, 2018

Abstract

MIDIoke is made to transform human singing to a MIDI signal. It uses
fast Fourier transformation and autocorrelation to get the fundamental
frequency from the input. It outputs a MIDI file that can be used in other
software. MIDIoke’s limitations are; the constant note length, the lack of
directly streaming MIDI and the lack of consonant filtering.

1 The Idea

The goal was to create a way to transform singing to a MIDI signal and to be
able to have an instrumental representation of what was sung. We had several
steps in mind for the implementation. Firstly the pitch needs to be extracted
from an input signal. Then this has to be transformed to a MIDI signal. Then
that signal needs to be transferred to some software or a device that can play
MIDI.

2 Implementation

2.1 Pitch Detection

Pitch detection procedure started with a simple implementation of fast Fourier
transformation for the raw input signal. In the early stages of developing MIDIoke
we followed the naive approach of simple fft according to the standard formula
below.

1€ = [swe i

That standard-initial approach of fast fourier transformation was producing too
many different frequencies that did not match the users sung input melody which
was a significant obstacle in usage of the midi-output representation. Fast Fourier

transformation detected many other harmonics apart from the fundamental
frequency, of the voice-singing melody, which were distorting the midi output.
In order to avoid that we tried to implement an upgraded fft by convolving the
original raw signal and the reversed one using autocorrelation. The result of this
approach was significantly better than the old one with respect on the clarity
of segmented pitches we extracted for the midi output. The autocorrelation
function is a measure of similarity between a signal and itself delayed by 7 as
the formula below.

o0
0 (T) = / x(r)x*(t — 7)dt
We finally used the that approach in order to extract the midi output which
included fewer harmonics that distort the original midi signal.

2.2 Generating MIDI

Once a solid pitch estimation in Hertz is acquired it must be converted to a
MIDI note. To get the MIDI pitch value we use this standard formula:

freqValue

440

The input frequency is also limited to be between 20 and 4000 Hz. This is
done to remove any noisy surrounding frequencies. The window of 20 to 4000
Hz matches the expected input from the user. The energy of the signal is also
calculated by taking the root mean square of a chunk of input. This energy value
is then used to determine if the input is loud enough to be considered wanted
input. A threshold value of 10 (there is not really a unit of measure for this)
was found to do the job but this is of course dependent on the hardware used.
MIDI notes will only be generated if the energy of a chunk of input surpasses
the threshold. The MIDI notes are outputted to a file which the user can then
load into any software that takes MIDI files, for playback.

midiValue = 69 + 12 x log,

3 The Result

3.1 The Experiment

Our experiment with MIDIoke was quite simple. We sang a basic melody, put
the output file into a MIDI sequencer and then checked if the result matched
our intended melody. As it can be observed in Figure [I} we can see the actual
pitch distribution according to what was already sung. We can also see the
power(energy) of our sung melody according to the pitch. Moreover, we can
define that the energy is independent from the pitch. The green line in Figure
is the default-constant threshold, MIDI notes will only be generated if the
energy surpasses this threshold. Figure [2| shows the outputted file loaded into a
sequencer. The time axis is reversed compared to Figure [l You can see that the
pattern of the pitch in both images match.

120 ~

100 ~

80 4

60 1

40 1

204

—— Pitch
—— Energy
—— Threshold

vV

40

60

80

100

Figure 1: This is what the user sees when using MIDIoke, the values on the axis
have arbitrary values

Figure 2: MIDI pattern resulting from the recording from Figurd]]

3.2 Performance

The pitch of the produced MIDI file did match the melody that was sung when
we demonstrated MIDIoke. Occasionally some extra notes are added that do not
fall within the melody which are probably created by consonants or background
noises.

3.3 Limitations

The current version of MIDIoke has a set length for each note, when a singer
produces a longer note this will simply become a sequence of the same note
with short durations. It would be much more desirable to have the length of the
output notes match the length of the input notes. This will be discussed in the
Would Haves section below.

4 Would Haves

Our final implementation of MIDIoke does not contain everything that we
initially wanted to put into our project. Here are some parts that are missing
which we would like to add to MIDIoke in the future.

4.1 Matching Note Length

To get the note lengths in the output to match the note length of the input
MIDIoke would have to keep track of the last sung note and only output if a
note ends. Then it could output that note with the correct length. Implementing
this would not be very complex. However the reason why it is not implemented
is twofold; Firstly is of course the time constraint on a project like this. Secondly,
and more importantly, it is because in the final form we would want MIDIoke to
be this would not be needed. In the final form we want streaming MIDI, which
we will now discuss.

4.2 Streaming MIDI

By streaming MIDI to other software that does the audio synthesis based on
the MIDI signal, MIDIoke would work just like a MIDI-keyboard as input. And
if this works the matching note length problem would be fixed as well. The
notes played by a MIDI-keyboard are only played as long as the key for that
note is pressed. If this could be implemented for MIDIoke the length of the
notes produced would match the length of the notes that are sung. Another big
advantage streaming MIDI would give is the possibility to have live synthesis
of the MIDI output of MIDIoke. This would make it truly like karaoke. The
user would then hear a live version of what he/she is singing generated by a
synthesizer of choice.

4.3 Portable Hardware Version

If the code for MIDIoke could be executed on an Arduino or Raspberry-Pi which
would than output the MIDI signal through USB the MIDIoke project would
truly be in it’s ultimate form. Then the user could take the MIDIoke-device to
any place and plug it into a digital audio workstation to sing some synthesizers.
The code for MIDIoke might be too heavy for an Arduino but perhaps with
the right hardware on the Arduino and some optimizations it might be possible.
This would be preferable over running it on a Raspberry-Pi since the Arduino
tends to have less latency. But this would be a whole new project in and of itself.

5 Conclusion

The result of our work gives the opportunity to users to convert their singing
melody into a midi.output which can be used as an input to every digital audio
workstation and then be processed according to the user’s demands. The MIDI
signal of the output is sufficient with respect to the fundamental frequency. The
output signal will include some frequencies that are useless, which might come
from the users consonants. Making the note lengths match the input would be a
very nice improvement for future versions of MIDIoke.

6 References

Correlation and Autocorrelation using FFT

Fast Fourier Transformation

Signal Processing Python Documentation

Simple Frequency Estimation Methods in Python

http://www.aip.de/groups/soe/local/numres/bookcpdf/c13-2.pdf
http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
https://docs.scipy.org/doc/scipy/reference/signal.html
https://gist.github.com/endolith/255291

	The Idea
	Implementation
	Pitch Detection
	Generating MIDI

	The Result
	The Experiment
	Performance
	Limitations

	Would Haves
	Matching Note Length
	Streaming MIDI
	Portable Hardware Version

	Conclusion
	References

