
Discover the world at Leiden UniversityDiscover the world at Leiden University

Modeling

Programmeertechnieken, Tim Cocx

Discover the world at Leiden University

Software development Lifecycle
•  (Requirements) analysis:

-  Requirements gathering and description

-  Construction of analysis model(s)

-  [“What is supposed to be done”]

•  Design
-  Construction of design model(s)

-  [“How are we going to approach it”]

•  Coding:
-  Programming/ (unit) testing

•  Deploy:
-  Start using the software

•  Support
-  Usage and maintenance

Discover the world at Leiden University

Analysis
•  Requirements gathering (elicitation)
•  Create analysis model

-  Denotes What the system does, not how.

-  Is (more or less) understandable by the domain

-  Domain: customers/ users/ usage environment

-  Shows the domain’s needs

-  Models reality / the domain

-  In this course: class diagram

-  Target group: the domain and developers

Discover the world at Leiden University

Design
•  Determine the way the software is going to be built

-  First major structural decisions, later; details

•  Create design model
-  Shows how the system is built

-  For yourself (thinking aid) and co-workers (discussion aid)

-  For later (when changes come): documentation

-  In this course: class diagram

-  Target group: developers

Discover the world at Leiden University

Modeling steps

Problem
domain

Solution
domain

Analysis
model

Design
model

Discover the world at Leiden University

Modeling

What is this?

Discover the world at Leiden University

Modeling
•  Create an image of a piece of reality

-  With a certain purpose

-  According to a pre-determined technique

-  Depending on the purpose, details can be omitted

Discover the world at Leiden University

Example model
•  Model of a railroad:

Discover the world at Leiden University

Example model
•  Conceptual model of a database

student	
 (idcode,	
 	
 naam,	
 adres,	
 wpl,	
 geboortedat,	
 d_code)	

d_code	
 is	
 vreemde	
 sleutel,	
 verwijst	
 naar	
 d_code	
 in	
 docent,	
 	

null	
 is	
 toegestaan.	

	
 	

docent	
 (dcode,	
 naam,	
 adres,	
 wpl,	
 salaris)	

	
 	

module	
 (moduleCode,	
 	
 moduleNaam,	
 studiepunten,	
 coordinator)	

coordinator	
 is	
 vreemde	
 sleutel,	
 verwijst	
 naar	
 d_code	
 in	
 docent,	
 	

null	
 is	
 NIET	
 toegestaan.	

	
 	
 	

tentamen	
 (idcode,	
 modulecode)	

idcode	
 is	
 vreemde	
 sleutel,	
 verwijst	
 naar	
 idcode	
 in	
 student,	
 	

null	
 niet	
 toegestaan	

modulecode	
 is	
 vreemde	
 sleutel,	
 verwijst	
 naar	
 modulecode	
 in	
 module,	
 	

null	
 niet	
 toegestaan.

Discover the world at Leiden University

Example model
•  Graphical design model of a website (‘wireframe’, ‘mock-up’)

Discover the world at Leiden University

Unified Modeling Language
•  De Unified Modeling Language (UML) is the ‘de facto’

standard to model software.
-  Class diagram

-  Use Case diagram

-  Sequence diagram

-  State Transition diagram

-  Activity diagram

-  Etc.

•  UML is a ‘drawing-language’ showing how to create these
diagrams

Discover the world at Leiden University

Class diagram
•  A class diagram is a blueprint

Class diagram

As systemmodel
•  Describes the

interaction
between objects

Discover the world at Leiden University

Case 1: Mario

Wat are the objects?

Discover the world at Leiden University

Case 1: Mario

Discover the world at Leiden University

Case 1: Mario

•  Mario
•  Luigi
•  Toad1
•  Toad2
•  Yoshi Groen
•  Yoshi Rood
•  Hammerman 1
•  Hammerman 2
•  Hammer 1
•  Hammer 2
•  Hammer 3
•  Coin 1
•  Coin 2
•  Coin 3

•  Mushroom
•  Mystery block
•  Row of blocks 1

–  Block1
–  Etc.

•  Row of blocks 2
–  Block1
–  Etc.

•  Floor
•  Roof
•  Platform 1
•  Platform 2
•  Platform 3
•  Platform 4

Bad way

Discover the world at Leiden University

Case 1: Mario
•  Making a list with objects becomes a little bit unruly quite

-  Imagine you have 200 coins in one level!

-  What if we also want to describe the properties (e.g.: location) of every object?

•  A lot of object are (approximately) the same!
-  Lets combine those objects under one ‘blueprint’!

-  This is a class.

Discover the world at Leiden University

Class
•  A class describes a blueprint for a collection of individual objects

•  Example: The class ‘Human’ describes all of us.
-  We are ‘objects of the class Human’ (notice the capital letter ‘H’!)

•  A class describes:
-  Attributes: properties

-  Methods: skills

•  Methods for Human:
-  Walk, talk, sit

-  Methods are exactly the same for every object of the class

•  Attributes Human:
-  Color of hair, length, weight

-  Attributes (can) differ per object

Discover the world at Leiden University

Class UML syntax

Human
-  colorOfHair
-  length
-  weight
-  Walk
-  Talk
-  sit

Discover the world at Leiden University

Coin
-  location
-  value

Mysteryblock
-  location
-  contents

-  yieldPrice

Block
-  location

-  break

Platform
-  location
-  height
-  width

Roof
-  location
-  width
-  height
-  angle

Floor
-  Location
-  numberOfHoles

Hammer
-  location
-  speed
-  direction
-  kill

Mushroom
-  location
-  direction

-  eat

Case 1: Mario

Hammerman
-  location
-  height
-  walk
-  jump
-  throwHammer
-  kill

Yoshi
-  location
-  color
-  rider
-  ride
-  extendTongue
-  eat
-  lose

Toad
-  location
-  color
-  status
-  jump
-  getYoshi
-  die
-  hitBlock
-  getCoin

Luigi
-  location
-  status

-  jump
-  getYohsi
-  die
-  hitBlock
-  getCoin

Mario
-  location
-  status

-  jump
-  getYoshi
-  die
-  hitBlock
-  getCoin

Better Can Improve

Discover the world at Leiden University

•  A child:
-  Has a length, weight, color of hair and favorite toy

-  Can walk, talk, sit, play and go to school

•  An adult:
-  Has a length, weight, color of hair, job

-  Can walk, talk, sit, vote, drive a car

Inheritance

Child

-  colorOfHair
-  length
-  weight
-  favoriteToy

-  walk
-  talk
-  sit
-  play
-  goToSchool

Adult

-  colorOfHair
-  length
-  weight
-  job

-  walk
-  Talk
-  sit
-  vote
-  driveACar

What can be done better?

Discover the world at Leiden University

Inheritance UML syntax

Child
-  favoriteToy

-  goToSchool
-  play

Adult
-  job

-  Vote
-  driveACar

Human
-  colorOfHair
-  length
-  weight
-  walk
-  talk
-  sit

•  A Human is a Child ór an Adult
•  A Child is a specific kind of

Human
•  An Adult is a specific kind of

Human

Superclass or
parent class

Subclass of
Child class

Discover the world at Leiden University

Inheritance theory
•  inheritance: also Generalization
•  A subclass inherits all attributes of its super class(es).

-  Can be more (grandfather class)

•  A subclass inherits all methods of its super class(es)
•  ‘Downwards’: specialization

•  ‘Upwards’: generalization

Discover the world at Leiden University

Case 1: Mario

GameElement

Moving

SelfMoving

Enemy Player

Humans Toads

Yoshi

Hammer

Hammerman

Active

Coin

Platform

Mushroom

This is not finished!
•  Where to put the methods?
•  Where to put the attributes
•  There are classes missing
•  Exercise!

Discover the world at Leiden University

Class Diagram: procedure
•  Read the analysis report
•  Nouns

-  Class

-  Attribute

-  Don’t model

•  Verbs
-  Methods

-  Something else

-  Don’t model

Discover the world at Leiden University

Case 2: College

The following data needs to be entered for new students: name, student code, date of birth and study coach
(at the time of registration every student gets assigned a teacher as his or her coach). Students have a list of
grades, study and do exams. After every period, the grades for the courses and the date of the exam must be
entered. The system calculates the average result of the grades. Teachers have a name, date of birth and
building. They grade exams and assess students

Discover the world at Leiden University

Case 2: College

The following data needs to be entered for new students: name, student code, date of birth and study
coach (at the time of registration every student gets assigned a teacher as his or her coach).
Students have a list of grades, study and do exams. After every period, the grades for the courses
and the date of the exam must be entered. The system calculates the average result of the grades.
Teachers have a name, date of birth and building. They grade exams and assess students

Discover the world at Leiden University

Case 2: College

noun:

•  students

•  code

•  data

•  name

•  date of birth

•  coach

•  list of grades

•  teacher

•  period

•  Grade

•  course

•  date of the exam

•  system

•  average

•  building

verb:
•  entered
•  gets assigned
•  have
•  do exames
•  study
•  enter
•  calculate
•  grade exam
•  Assess students

What
is

what?

Discover the world at Leiden University

•  Student
– name
– date of birth
– code
– coach
–  list of grades
– do exam
– study

•  Teacher
–  coach-kids
– name
– date of birth
–  building
– assess students
– grade exam

•  Result
–  grade
– Date of exam
–  course

Case 2: College

Discover the world at Leiden University

Case 2: College
Person

-  name
-  dateOfBirth

Student
-  code
-  coach
-  listOfGrades
-  study
-  doExam

Teacher
-  building
-  coachKids

-  gradeExams
-  assessStudents

Result
-  course
-  dateOfExam
-  grade

Discover the world at Leiden University

Case 1: Mario

Interaction??

Discover the world at Leiden University

Case 1: Mario

Which objects interact?

Discover the world at Leiden University

Case 1: Mario
•  Mysteryblock contains Mushroom
•  Player rides Yoshi (ßparent class!)
•  Hammerman throws Hammer

•  Hammer ‘kills’ Player
•  Player gets Coin

•  Etc.

•  How do we model that?

Discover the world at Leiden University

Two Choices
•  A short term relation (one night stand):

-  One of the classes depends on the existence of the other class to do its job

Dependency

•  A long term relation
-  The classes are involved with each other for a longer time, remember each others existence and are therefore associated

Association

Discover the world at Leiden University

Dependency UML Syntax
•  A dependency is denoted by a dotted arrow
•  A dependency always has a stereotype attached: what kind of dependency it is.

-  Syntax << stereotype>>

•  If there is no text with it a << use >> dependency is assumed

<< parameter >>

Discover the world at Leiden University

Dependencies: usage stereotypes
•  << use >>: the class is being used in an unspecified manner

-  Rather not, unless it’s used as local variable

•  << parameter >>: the class is a parameter in one of the other classes methods

•  << create >>: the class is created by the other class

Discover the world at Leiden University

Dependencies: Examples

Hammer Hammerman
<< create >>

Coin Player
<< parameter >>

Discover the world at Leiden University

Association UML syntax
•  When two classes ‘know’ one another they are associated
•  Associations are (naturally) inherited by sub classes
•  Notation is a line.

Player Yoshi

Discover the world at Leiden University

Association UML syntax
•  An association always has a description

-  This is a name with reading direction, ór

-  A division of roles on both sides

Mushroom MysteryBlock contains

Mushroom MysteryBlock contains

Mushroom MysteryBlock container
contents Yoshi

Player

rides

Discover the world at Leiden University

Case 1: Mario

Can Mario ride multiple
Yoshis (at the same time)?

Can a mystery block contain
multiple mushrooms?

Can a hammerman throw
multiple hammers?

Discover the world at Leiden University

Multiplicity UML syntax
•  Multiplicity shows the quantities in an association:

-  1 à exactly 1

-  99 à exactly 99

-  5..55 à a value between 5 and 55

-  * à multiple(=potentially infinite, but also 0)

-  4..* à 4 or more

•  A dependency has no multiplicity (nothing is remembered)!

•  Multiplicity is given on both sides

Discover the world at Leiden University

Multiplicity UML syntax

Coin MysteryBlock contains

Yoshi

Player

rides

* 0..1

•  A MysteryBlock contains 0 or more Coins
•  A Coin is stored in 0 or 1 MysteryBlocks

0..1

0..1

•  A player rides 0 or 1 Yoshis
•  A Yoshi is ridden by 0 or 1 Players

Discover the world at Leiden University

Class diagram: procedure
•  Nouns

-  Class

-  Attribute

-  Don’t model

•  Verbs
-  Methods

-  Something else

-  Don’t model

Associatie !
(dependency)

Discover the world at Leiden University

Case 2: College

The following data needs to be entered for new students: name, student code, date of birth and study
coach (at the time of registration every student gets assigned a teacher as his or her coach).
Students have a list of grades, study and do exams. After every period, the grades for the courses
and the date of the exam must be entered. The system calculates the average result of the grades.
Teachers have a name, date of birth and building. They grade exams and assess students

Discover the world at Leiden University

•  Student
– name
– date of birth
– code
– coach
–  list of grades
– do exam
– study

•  Teacher
–  coach-kids
– name
– date of birth
–  building
– assess students
– grade exam

•  Result
–  grade
– Date of exam
–  course

Case 2: College

Discover the world at Leiden University

•  Student
– naam
– Geboortedatum
– Studentcode
– Slb’er
– cijferlijst
– Inschrijven
– Tentamen maken
– studeren

•  Docent
–  SLB-studenten
– Naam
– Geboortedatum
– Vestiging
–  Student beoordelen
– Cijfers berekenen

•  Resultaat
– Cijfer
– Toetsdatum
– Blok

Case 2: Studeren

Discover the world at Leiden University

Case 2: Studeren
Person

-  name
-  dateOfBirth

Student
-  Code

-  study
-  doExam

Teacher
-  building

-  gradeExam
-  assesStudent

Result
-  course
-  dateOfExam
-  grade

determines

gets

Freshman

coach 1

1..*

1

*

* 1

<< parameter >>

Discover the world at Leiden University

-  gradeExam
-  assessStudent

Teacher
-  building
-  coachKids

Associations: observations and rules
•  Associations can also refer to the same class: unary association.

-  A student has 2 or more friends

-  A teacher manages other teachers

•  Every class in the diagram is connected to at least one other class
•  If a class references another class in the diagram it’s always an association, not an attribute

X Student
-  code

-  study
-  doExam

2..*

2..*

Is friend of 1

*

Is boss of

Teacher
-  building

-  gradeExam
-  assessStudent

Discover the world at Leiden University

Properties of multiplicity
•  Sometimes you want to assign a property to a *-association

-  The list must be sorted (not possible to show ‘on what’)

-  Every object is represented in the association only once.

•  Such a property is denoted by {property}

-  Ordered / unordered à sorting

-  unique / nonunique à unicity

Discover the world at Leiden University

Case 3: Kebab
DönerKings is a large brand of kebab-bakers. Every branch has at least 2 employees, with a certain salary and a
name. They are hired to bake, fill and sell buns. Some employees manage 2 other employees. It is possible to
have more than one boss. Branches sell buns and Turkish pizzas (we know the price of both). Buns have a certain
content (chicken or veal) and pizzas are sold with different diameters. Both can be eaten. Sometimes branches
expand, which means hiring more employees. Buns and pizzas always contain 3 ingredients,that have a certain
expiration date, sometimes they spoil. Oh yes! Branches have an owner. That is one of the employees.

Discover the world at Leiden University

Case 3: Kebab
DönerKings is a large brand of kebab-bakers. Every branch has at least 2 employees, with a certain
salary and a name. They are hired to bake, fill and sell buns. Some employees manage 2 other employees.
It is possible to have more than one boss. Branches sell buns and Turkish pizzas (we know the price of
both). Buns have a certain content (chicken or veal) and pizzas are sold with different diameters. Both
can be eaten. Sometimes branches expand, which means hiring more employees. Buns and pizzas always
contain 3 ingredients, that have a certain expiration date, sometimes they spoil. Oh yes! Branches have an
address and owner. That is one of the employees.

Discover the world at Leiden University

Case 3: Kebab
•  DönerKings
•  brand

•  Kebab-bakers

•  Branch

•  Employees

•  Salary

•  Name

•  buns

•  Boss

•  Turkish Pizzas

•  Price

•  Content

•  Chicken
•  Veal

•  Pizzas

•  Diameter

•  Both

•  Ingredients

•  Expiration date

•  Address

•  Owner

First get rid of synonyms
and superfluous words

Discover the world at Leiden University

Case 3: Kebab
Name of customer
Explanation of customer
synonym

Part of verb
synonym

Possible value of attribute
Possible value of attribute

Language construct(hint!)

Now: make singular
and sort

•  DönerKings
•  brand

•  Kebab-bakers

•  Branch

•  Employees

•  Salary

•  Name

•  buns

•  Boss

•  Turkish Pizzas

•  Price

•  Content

•  Chicken
•  Veal

•  Pizzas

•  Diameter

•  Both

•  Ingredients

•  Expiration date

•  Address

•  Owner

Discover the world at Leiden University

Case 3: Kebab

•  Branch
–  address
–  owner

•  Employee
–  salary
–  name
–  subordinates

•  Product
–  price

•  Bun
–  content

•  Turkish Pizza
–  diameter

•  Ingredient
–  expirationDate

Super class!

References another class
(àAssociation)

Discover the world at Leiden University

Case 3: Kebab

•  Has employees= hire
•  Bake
•  Sell
•  Fill buns
•  Manage= have boss
•  Sell
•  Know
•  Be eaten
•  Expand
•  hire
•  have
•  spoil
•  contain

Different? •  Branch
–  address
–  owner

•  Employee
–  salary
–  name
–  subordinates

•  Product
–  price

•  Bun
–  content

•  Turkish Pizza
–  diameter

•  Ingredient
–  expirationDate

Discover the world at Leiden University

Case 3: Kebab

Associations / Dependencies:
–  Employeeßà branch

•  hire
•  owner

–  Employee ßà Employee
•  manage

–  Branch ßà Product
•  sell

–  Product ßà Ingredient
•  contain

•  Branch
–  address
–  expand
–  hire

•  Employee
–  salary
–  Name
–  bake
–  sell
–  fillBuns

•  Product
–  price
–  eat

•  Bun
–  content

•  Turkish Pizza
–  diameter

•  Ingredient
–  expirationDate
–  spoil

Discover the world at Leiden University

Product
-  price

-  eat

TurkishPizza
-  diameter

Bun
-  contents

Case 3: Kebab

Employee
-  name
-  salary

-  bake
-  sell
-  fillBuns

Branch
-  address
-  expand
-  hire

Ingredient
-  expDate
-  spoil

sells

owner

contains

hires

*

2..*

*

1..*

1

*

0..1 3

property

2

1

Doubt…

NB!
(also *?)

NB!
This is wrong

Boss of

Discover the world at Leiden University

Next up…
•  Start assignment 3

