
Discover the world at Leiden UniversityDiscover the world at Leiden University

Android

Programmeertechnieken, Tim Cocx

Discover the world at Leiden University

Android

l What is Android?
l Dalvik virtual machine
l Android SDK
l Anatomy of an Android application
l Excercises

Discover the world at Leiden University

What is Android ?

l Android is a mobile operating system that is based on a modified version of
Linux.

l  It was originally developed by a company with the same name (android,
Inc.).

l Google purchased this company in 2005 and took over its development
work and development team.

l Since then Android has become the most popular mobile operating system.
l Android is an open and free mobile operating system.
l As a result it can be used on different mobile devices of different vendors.

Discover the world at Leiden University

What is Android (2)

l Android is based on a Linux 2.6 kernel.
l  It thus includes basic operating system capabilities such as memory

management and process management.
l Some enhancements are made in order to let the operating system

function optimally on a mobile device.
l On top of the adjusted kernel runs a Dalvik virtual machine.
l As a result Java programs can be run on android devices.

Discover the world at Leiden University

Architecture of Android
l As with most other operating systems Android can be roughly divided

into layers:

l Notice the position of the Dalvik virtual machine;

it will be important later on.

Discover the world at Leiden University

Dalvik virtual machine

l Written by one person, Dan Bornstein
l Dalvik is a small village in Iceland where ancestors of Bornstein lived.

l To run the Java code, it is first compiled to special byte code that can be
interpreted by the Dalvik virtual machine.

l Dalvik is optimized for the android platform. It can execute byte code faster
and with less power consumption, because it contains some hardware
dependent optimizations.

l Third party (some preinstalled) applications are also interpreted by the
Dalvik virtual machine.

Discover the world at Leiden University

Android versions

l There have been quite a number of android releases. As a result there
are a lot of different versions. For example:

l Each new version contains bug fixes and new functionality, but more

importantly also support for new devices such as tablets.

(date of figure: July 2012)

Discover the world at Leiden University

API's

l Third-party programs need to interact with the android operating
system.

l Solution: Use API's (Application Programmers Interface) which are
provided by the Android operating system. These are just methods
from classes or objects which you can call from your Java program.

l  In every android release these API's change because of new
functionalities and improvements.

l Consequence: Every android release has a different set of API's
l You need to account for this when developing software!

Discover the world at Leiden University

API Levels

l To distinguish the different sets of API's each set is given a number.
This is called an API level.

l Often each new Android version has got changes in the API, so the
API level is increased.

l Overview of some different API levels:

Source: Wikipedia

Discover the world at Leiden University

Android SDK

l  In order for you to make android Java applications you need to use

the android SDK.
l The SDK includes for example:

l Software for compiling Dalvik virtual machine byte code
l Method and class signatures of the API's.
l Emulators for simulating your android programs

l The SDK can be integrated into a number of IDE’s

Discover the world at Leiden University

AVD (1)

l An Android Virtual Device (AVD) can be created once the SDK is
installed

l An AVD is a simulation (actually emulation) of a real device and
android operating system.

l You can use an AVD to test your own applications on different android
versions and hardware.

l Your application may behave different on various devices due to the
large number of android versions (API levels) and different hardware.

l  It is therefore a wise idea to test your application on different android
versions and hardware. An AVD allows you to do so.

Discover the world at Leiden University

AVD (2)
l The most important options for your AVD are:

l Android version (this means also the API level)
l Device RAM size
l Resolution and size of the
screen of the device
l Existence and type of
other hardware such as a
camera, accelerometer
keyboard etc.

l Options that are perhaps less

important:
l SD-card size

Discover the world at Leiden University

Anatomy of an android application

l The most important parts of an android application project are:
l src : contains Java source files
l gen: contains compiler generated files such as R.java
l res: contains all the resources using your application. This includes
for example images and layouts.
l bin: this folder contains the generated .apk file. An apk file is the
executable file which can be run by an android device. (comparable
with a jar file)
l Androidmanifest.xml : This is a file where important settings for your
application are defined.

Discover the world at Leiden University

Androidmanifest.xml (1)

l Androidmanifest.xml is an XML file where important settings for your
application are defined.

l  It is mostly generated by the Android SDK.
l  It contains detailed information about the application such as:

l The permissions the application needs to run. You can notice the
effects of this when you are installing an application and you need to
allow the application to use for example the camera.
l Which screens (activities) are in the application and which one to
start with.
l Application name and icons

Discover the world at Leiden University

Androidmanifest.xml (2)

l Example of an Androidmanifest.xml file
	

	

<?xml version="1.0" encoding="utf-8"?>	
<manifest xmlns:android="http://schemas.android.com/apk/res/android"	
 package="net.learn2develop.HelloWorld"	
 android:versionCode="1"	
 android:versionName="1.0" >	

		<uses-sdk android:minSdkVersion="13" />					

		<application	
 android:icon="@drawable/ic_launcher"	
 android:label="@string/app_name" >	
				<activity	
 android:label="@string/app_name"	
 android:name=".HelloWorldActivity" >	
						<intent-filter >	
										<action android:name="android.intent.action.MAIN" />	

										<category android:name="android.intent.category.LAUNCHER" />	
						</intent-filter>	
				</activity>	
		</application>	

</manifest>

	

	

-The file res/values/strings.xml contains constants
 which have values.
-@string is actually a reference to this particular
 XML file and app_name is the name of the constant
 within the XML file.
-These kind of constructions are often used in android Java
 applications!

-This means that this application needs API level 13.
-Android versions which only support API levels lower than 13
 will not be able to run this application.

Discover the world at Leiden University

A simple activity
l A piece of Java code which will present a layout with for example

buttons and labels is as follows:
	

l Notice that there is no code which directly

defines buttons, labels etc.!

public	class	HelloWorldActivity	extends	Activity	{	
				@Override	
				public	void	onCreate(Bundle	savedInstanceState)	{	
								super.onCreate(savedInstanceState);	
								setContentView(R.layout.main);	
				}	
}	

The Activity class is inherited, because we are
creating a screen of our own and we want to
use all the standard properties of the Activity
class.

For now it is enough to assume that the onCreate method is
called by the android OS when the activity (your program)
must be started.

Discover the world at Leiden University

R.java

l The statement which will show the buttons, labels etc. is:

	setContentView(R.layout.main);	

l R (R.java) is a class which is automatically generated and contains

constants with memory addresses.
l These addresses are ultimately used by setContentView to build the user

interface with buttons and labels.
l How is R composed? It is generated by interpreting all the XML files of the

project, so that Java code (which you can write) can reach the values that
are originally in these files.

l main is a constant in R which contains an address. On this address all the
information regarding the layout is stored.

l The data on this address is generated from
an XML file.

Discover the world at Leiden University

Layout in XML
l The layout of an activity is thus defined in an XML file (in res/layout)
l Example of an XML file defining the layout:

l Why would the layout be defined in XML and

not straight in Java code?

	

	

<?xml	version="1.0"	encoding="utf-8"?>	
<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"	
				android:layout_width="fill_parent"	
				android:layout_height="fill_parent"	
				android:orientation="vertical"	>	
				<TextView	
								android:layout_width="fill_parent"	
								android:layout_height="wrap_content"	
								android:text="@string/hello"	/>	
				<TextView	
								android:layout_width="fill_parent"	
								android:layout_height="wrap_content"	
								android:text="This	is	my	first	Android	Application!"	/>	
				<Button	
								android:layout_width="fill_parent"	
								android:layout_height="wrap_content"	
								android:text="And	this	is	a	clickable	button!"	/>	
</LinearLayout>	

This is a GUI container which contains our
components. (can be compared with a Jpanel in

Java)

Defines a label with some text

The width of the component is adjusted to the
width of the component where it is put in

Defines a button

Discover the world at Leiden University

Building the GUI

l GUI components (such as text lines and buttons) can easily be
created by introducing the corresponding XML tag in the GUI XML file.

l With properties of the XML tag you can adjust the component. (for
example the width or color)

l There are of course other GUI components (such as radio buttons,
spinners, progress bars etc.) which can also be shown by using the
corresponding tag.

l All these components are shown and explained at:
http://developer.android.com/guide/topics/ui/index.html

l Use this to see what a component does and what kind of properties it
has.

Discover the world at Leiden University

Activities
l Every activity you have in your application must be declared in the

AndroidManifest.xml.
l The reasons for this will be clear later on.

				<application	
	 	

								<activity	
 android:label="@string/app_name"	

 android:name=".Activity101Activity" >	
												<intent-filter >	
																<action android:name="android.intent.action.MAIN" />	
																<category android:name=	

	 	 	 	 	"android.intent.category.LAUNCHER" />	
												</intent-filter>	
								</activity>	
				</application>	
This line will cause the android operating system
to start with this activity.

Discover the world at Leiden University

Activity lifecycle (1)

l An activity has got various
stages it goes through.

l Shown are the various
stages and the
corresponding methods that
are called in a stage.

Source: http://developer.android.com/
reference/android/app/Activity.html

Discover the world at Leiden University

Activity lifecycle (2)
l From the previous image the following guidelines for the use of the

different methods can be derived:
l onCreate(): Use this method to create and instantiate the objects

you will be using in your application.
l onResume(): Use this one to start any services or code that needs

to run while your activity is in the foreground.
l onPause(): Use this one to stop any services or code that does not

need to run when your activity is not in the foreground.
l onDestroy(): This method can be used to free up resources before

your activity is destroyed.
l Note that you don't have any control on when these methods are

called! This is all determined
by the framework

Discover the world at Leiden University

How to start
1.  Start a new Android Studio Project
2.  Choose an Application name
3.  Choose a company domain

1.  Needed for official purposes like play store, rights to publish, financial matters, etc.

4.  Choose an SDK version

5.  Choose ‘Add Empty Activity’
6.  You now have:

1.  MainActivity.java ßcode

2.  Activity_main.xml ß layout with ‘hello world’ TextView

3.  AndroidManifest.xml

Discover the world at Leiden University

To run on real device
1.  Connect device ;-)
2.  Enable USB debugging on your device by going to Settings > Developer options.

1.  Note: On Android 4.2 and newer, Developer options is hidden by default. To make it available, go to Settings > About
phone and tap Build number seven times. Return to the previous screen to find Developer options

3.  Click the ‘Play’’ icon
1.  Select deployment targetà select the device

Discover the world at Leiden University

To Run on emulator
1.  Start the AVD manager by clicking
2.  Virtual Devices à create virtual device
3.  Select Hardware à select a phone device

4.  System Image à download an image
5.  Finish

6.  Virtual Devicesà Launch this AVD in the emulator
7.  Click the ‘Play’ icon

8.  Select Deployment target àemulator

Discover the world at Leiden University

Build an interface
[from Android Studio 2.3]
1.  Open app/res/layout/activity_main.xml
2.  If XML is showed click the design tab

3.  Click show blueprint
4.  Click device in editor and select the required device

Discover the world at Leiden University

Editor

Discover the world at Leiden University

Add controls
1.  Click Tekst in the Palette and select plain Text
2.  Click it in the design editor
3.  If you snap the arrow to the rulers it will stay at the top / right / left / bottom

Discover the world at Leiden University

Add a button
•  Do the same for a button
•  Snap it to the TextView
•  Align the tekst base using

Discover the world at Leiden University

Respond to button
public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 }

 /** Called when the user taps the Send button */
 public void sendMessage(View view) {
 // Do something in response to button

 }
}

In the Properties window, locate the onClick property and select sendMessage [MainActivity] from the drop-
down list.

