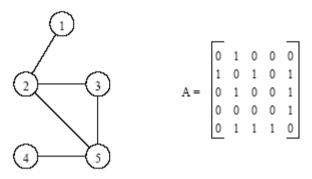
Parallel Graph Algorithms

Basic Definitions

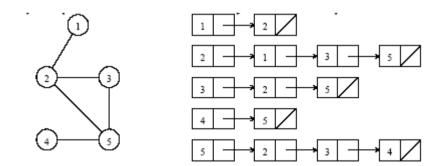
- An *undirected graph G* is a pair (*V*,*E*), where *V* is a finite set of points called *vertices* and *E* is a finite set of *edges*.
- An edge e ∈ E is an <u>unordered</u> pair (u,v), where u and v ∈ V.
- In a directed graph, the edge e is an <u>ordered</u> pair (u,v).
 An edge (u,v) is *incident from / outgoing edge of* vertex u and is *incident to / incoming edge of* vertex v.
- A *path* from a vertex v to a vertex u is a sequence $\langle v_0, v_1, v_2, ..., v_k \rangle$ of vertices, where $v_0 = v, v_k = u$, and $(v_i, v_{i+1}) \in E$ for i = 0, 1, ..., k-1.
- The length of a path is defined as the number of edges in the path.

Representations (Undirected Graphs)

Adjacency matrix representation



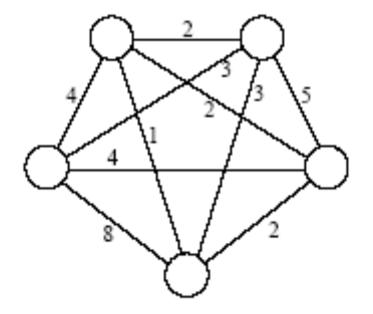
Adjacency list representation

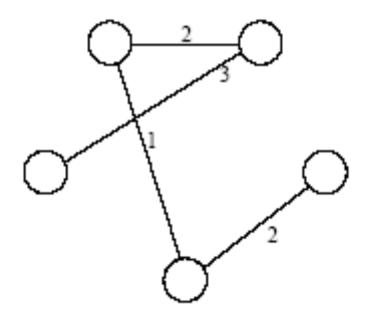


Problem 1: Minimum Spanning Tree

- A *spanning tree* of an <u>undirected</u> graph *G* is a subgraph of *G*, which is a tree containing all the vertices of *G*. So the spanning tree does not contain necessarily all the edges of *G* but a subset.
- In a weighted graph, the weight of a sub-graph is the sum of the weights of the edges in the sub-graph.
- A *minimum spanning tree* (MST) for a weighted undirected graph is a spanning tree with minimum weight.

In a Picture





•

Relationship with Traveling Salesman Problem (TSP)

- Normally for TSP complete graphs are used (there is always a route in between two cities no matter how long it takes)
- An incomplete graph for MST can be completed by adding edges with a very large weight (note that this will not have any effect on the solution)
- A solution of the TSP yields a cycle with minimal weight. By deleting any edge this would result in a spanning tree
- So a solution of TSP cannot have less weight than the weight of the MST
- So the weight of MST is a lower bound on the weight of TSP

Sequential Algorithms for MST

- Borůvka's algorithm (1926), Kruskal's algorithm (1956) and Prim's algorithm (1957)
- (Historical note) Borůvska's algorithm was used in 1926 to construct an efficient electricity network in Moravia (Czech Republic)*
- Kruskal's and Prim's algorithm are both based on the selecting a single lightest weight edge in each step of the algorithm

*The algorithm was rediscovered by Choquet in 1938;^[4] again by Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki^[5] in 1951; and again by Sollin ^[6] in 1965. Because Sollin was the only computer scientist in this list living in an English speaking country, this algorithm is frequently called Sollin's algorithm.

Light-Edge Property

Given a weighted undirected graph G = (V, E), then for any cut set S (S **C** E), the minimal weighted edge in S has to be an edge of the MST

A cut sets S cuts the graph into two sets U and V\U such that any path from a node x in U to a node y in V\U contains an edge from S

Proof: Assume we have a cut set S which contains an edge e=(x,y) with minimal weight, which is not part of the MST. Then there is a path P in MST, which connects x and y and which does not contain e. So, because x and y are on opposite sides of e, next to e there must be an edge e' in S with e' on the path P. Now add e to the MST = MST', then e and e' are part of a cycle in MST'. Delete e' from MST', and we obtain another MST with a lesser weight (w(e) ' < w(e')). Contradiction.

Kruskal's Algorithm

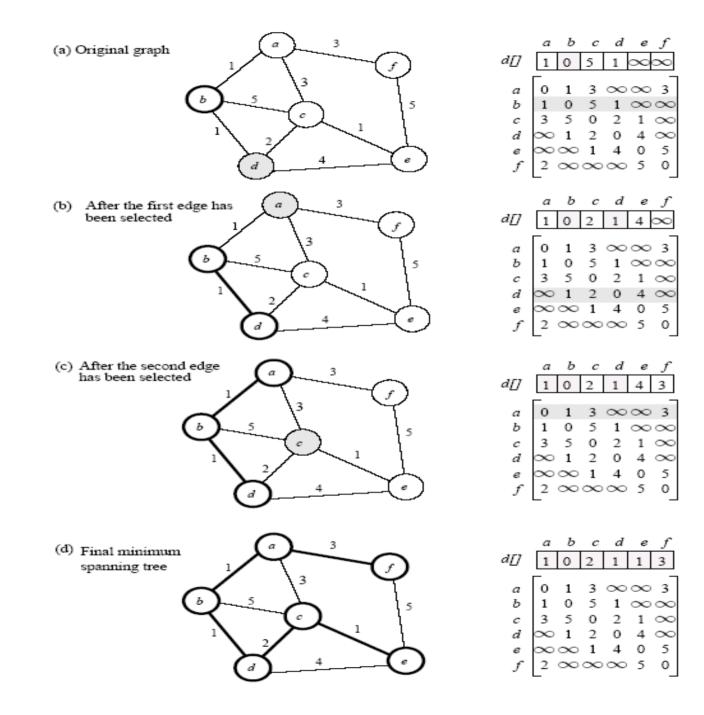
As decribed by Kruskal in 1956:

"Perform the following step as many times as possible: Among the edges of G not yet chosen, choose the shortest edge which does not form any loops with those edges already chosen"

Prim's Algorithm

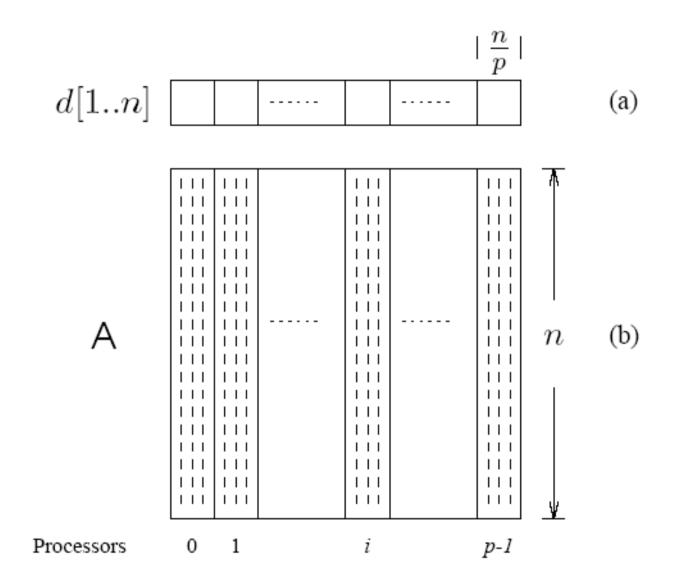
PRIM_MST(V, E, w, r): Given V, E, and w weight function, build MST starting from vertex r

```
1.
          procedure \mathsf{PRIM}_\mathsf{MST}(V, E, w, r)
2.
          begin
3.
               V_T := \{r\};
4.
               d[r] := 0;
5.
               for all v \in (V - V_T) do
                     if edge (r, v) exists set d[v] := w(r, v);
6.
7.
                     else set d[v] := \infty;
8.
               while V_T \neq V do
9.
                begin
10.
                     find a vertex u such that d[u] := \min\{d[v] | v \in (V - V_T)\};
11.
                     V_T := V_T \cup \{u\};
                     for all v \in (V - V_T) do
12.
                          d[v] := \min\{d[v], w(u, v)\};
13.
14.
                endwhile
15.
          end PRIM_MST
```



Prim's Algorithm: Parallel Formulation

- The algorithm works in *n* outer iterations it is hard to execute these iterations concurrently.
- The inner loop is relatively easy to parallelize. Let *p* be the number of processes, and let *n* be the number of vertices.
- The adjacency matrix is partitioned in a 1-D block fashion (column slices), with distance vector *d* partitioned accordingly. See next slide.
- In each step, each processor selects the locally closest node, followed by a global reduction to select globally closest node.
- This node is inserted into MST, and the choice is broadcasted to all processors.
- Each processor updates its part of the *d* vector locally.



•

Computational Aspects

- The cost to select the minimum entry is $O(n/p + \log p)$.
- The cost of a broadcast is O(log p).
- The cost of local update of the *d* vector is *O(n/p)*.
- The parallel time per iteration is $O(n/p + \log p)$.
- The total parallel time (n iterations) is given by O(n²/p + n log p).

Borůvka's Algorithm (1926)

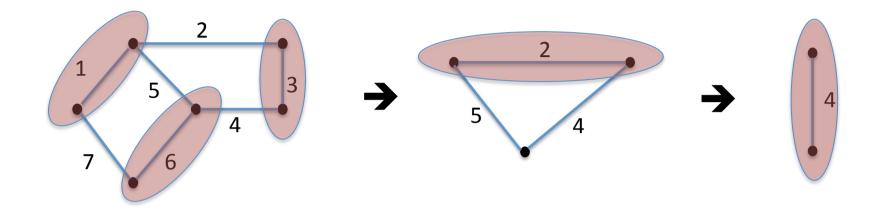
While there are edges remaining:

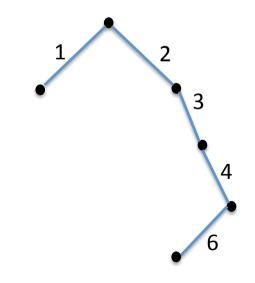
- (1) select the minimum weight edge out of each vertex and contract each connected component defined by these edges into a vertex;
- (2) remove self edges, and when there are redundant edges keep the minimum weight edge; and

(3) add all selected edges to the MST.

Note that this formulation is inherently parallel while computers were not invented at that time, or maybe **because** computers were not invented yet

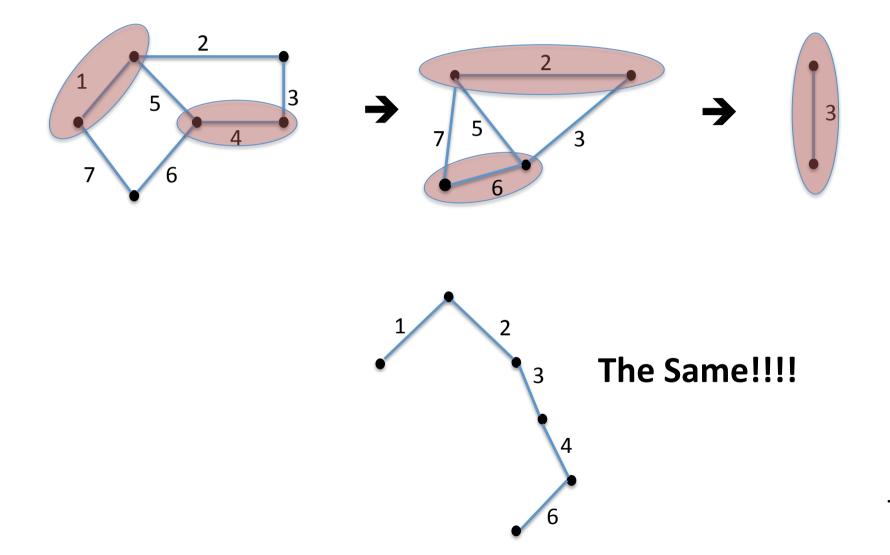
Example





•

Example (other execution order)



Notes to Borůvka's Algorithm

- At each step the contractions of nodes u and v with (u,v) a minimal edge can be executed in parallel with the contraction of nodes x and w with (x,w) a minimal edge, if v ≠ x and u ≠ w. (Note, u ≠ x and v ≠ w automatically holds)
- So at each step at least ½ |V| vertices are eliminated → at most log (n) steps are required
- However, also the amount of available parallelism is reduced by an half after each step
 → uneven load balance

Input Data Partitioning

- Recall separator sets (nested dissection) for undirected graphs, based on levellization (BFS).
- The set of nodes V is divided into P disjoint subsets and separator sets:

 $V = V_1 U S_2 U V_2 U S_3 \dots S_P U V_P$

P = number of processors and $|V_i|$ about equal for all i

• Distribute the edges E such that each processor i has

 $E_{i} = \{ (u,v) \mid u \in V_{i} \text{ and } v \in V_{i} \}, \text{ and}$ Left_E_i = { (u,v) | u \varepsilon S_{i} and v \varepsilon V_{i} }, and Right_E_i = { (u,v) | u \varepsilon V_{i} and v \varepsilon S_{i+1} }

- \rightarrow First phase every processor computes in parallel an MST for each E_i
- → Second these partial MST's are knitted together by synchronizing the choice of minimum weight edge of Left_E_i with Right_E_{i+1}

Problem 2: Single-Source Shortest Paths

- For a weighted graph G = (V,E,w,s), the singlesource shortest paths problem is to find the shortest paths from a vertex s ∈ V to all other vertices in V (w is the weigth function of the edges).
- Dijkstra's algorithm is similar to Prim's algorithm. It maintains a set of nodes for which the shortest paths are known.
- It grows this set based on the node closest to source using one of the nodes in the current shortest path set.

Dijkstra's Algorithm

1.	procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
2.	begin
3.	$V_T := \{s\};$
4.	for all $v \in (V - V_T)$ do
5.	if (s, v) exists set $l[v] := w(s, v)$;
6.	else set $l[v] := \infty$;
7.	while $V_T \neq V$ do
8.	begin
9.	find a vertex u such that $l[u] := \min\{l[v] v \in (V - V_T)\};$
10.	$V_T := V_T \cup \{u\};$
11.	for all $v \in (V - V_T)$ do
12.	$l[v] := \min\{l[v], l[u] + w(u, v)\};\$
13.	endwhile
14.	end DIJKSTRA_SINGLE_SOURCE_SP

•

Dijkstra's Algorithm: Parallel Formulation

- Very similar to the parallel formulation of Prim's algorithm for minimum spanning trees.
- The weighted adjacency matrix is partitioned using the 1-D block mapping (column slicing).
- Each process selects, locally, the node closest to the source, followed by a global reduction to select next node.
- The node is broadcast to all processors and the *I*-vector updated.

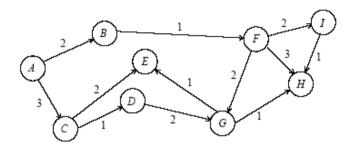
Problem 3: All-Pairs Shortest Paths

- Given a weighted graph G(V,E,w), the *all-pairs* shortest paths problem is to find the shortest paths between all pairs of vertices v_i , $v_i \in V$.
- A number of algorithms are known for solving this problem: Matrix-Multiplication Based algorithm, Dijkstra's algorithm, Floyd's algorithm.

Matrix-Multiplication Based Algorithm

- Consider the multiplication of the weighted adjacency matrix with itself - except, in this case, we replace the multiplication operation in matrix multiplication by addition, and the addition operation by minimization.
- Notice that the product of weighted adjacency matrix with itself returns a matrix that contains shortest paths of length 2 between any pair of nodes.
- It follows from this argument that Aⁿ contains all shortest paths.

In a Picture



$A^{1} = \begin{pmatrix} 0 & 2 & 3 & \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & \infty & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty & 2 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & \infty & 0 & 0 & 1 & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty &$	$A^{2} = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & 1 & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$
$A^{4} = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \end{pmatrix}$	$A^{8} = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \end{pmatrix}$

•

Computational Aspects

- For (semi) complete graphs and sequential execution:
 - Aⁿ is computed by doubling powers i.e., as A, A², A⁴, A⁸, and so on.
 - We need log n (dense) matrix multiplications, each taking time $O(n^3)$.
 - The serial complexity of this procedure is $O(n^3 \log n)$.
- For (semi) complete graphs and parallel execution:
 - Each of the *log n* matrix multiplications can be performed in parallel.
 - We can use $n^3/\log n$ processors to compute each matrix-matrix product in time $\log n$.
 - The entire process takes $O(log^2n)$ time.

Note that for incomplete graphs (leading to sparse matrices) this complexity does not change very much, because sparse x sparse matrix multiply very easily lead to full matrices.

Dijkstra's Algorithm for All-Pairs Shortest Paths

Sequential Execution:

- Execute *n* instances of the single-source shortest path problem, one for each of the *n* source vertices.
- Complexity is $O(n^3)$.

Parallel Execution:

- execute each of the *n* shortest path problems on a different processor (source partitioned), or
- use a parallel formulation of the shortest path problem to increase concurrency (source parallel)

Source Partitioned Formulation

- Use *n* processors, each processor *P_i* finds the shortest paths from vertex *v_i* to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.
- It requires no interprocess communication (provided that the adjacency matrix is replicated at all processes).
- The parallel run time of this formulation is: $O(n^2)$. $O(n^2)$ is the same time complexity as Prim's algorithm.
- While the algorithm is cost optimal, it can only use *n* processors.

Source Parallel Formulation

In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to n^2 processors.

Floyd's Algorithm

- For any pair of vertices v_i, v_j ∈ V, consider all paths from v_i to v_j whose intermediate vertices belong to the set {v₁, v₂,...,v_k}. Let p^(k)_{i,j} (of weight d^(k)_{i,j}) be the minimum-weight path among them.
- If vertex v_k is not in the shortest path from v_i to v_j , then $p_{i_j}^{(k)}$ is the same as $p_{i_j}^{(k-1)}$.
- If v_k is in p^(k)_{i,j}, then we can break p^(k)_{i,j} into two paths

 one from v_i to v_k and

- one from v_k to v_i

Each of these paths uses vertices from $\{v_1, v_2, ..., v_{k-1}\}$.

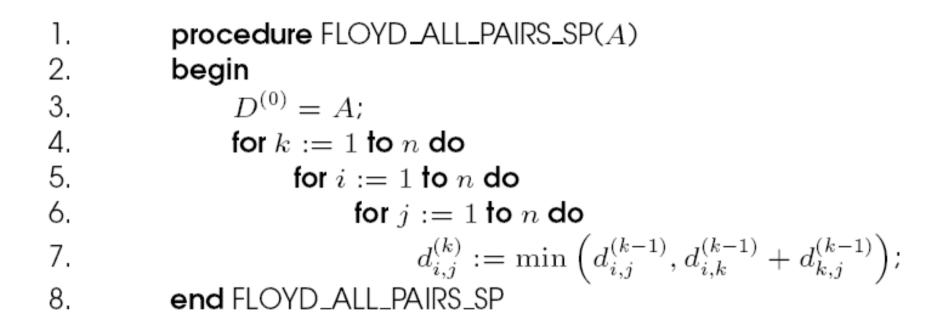
As a consequence:

From these observations, the following recurrence relation follows:

$$d_{i,j}^{(k)} = \begin{cases} w(v_i, v_j) & \text{if } k = 0\\ \min\left\{d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right\} & \text{if } k \ge 1 \end{cases}$$

This equation must be computed for each pair of nodes and for k = 1, n. The serial complexity is $O(n^3)$.

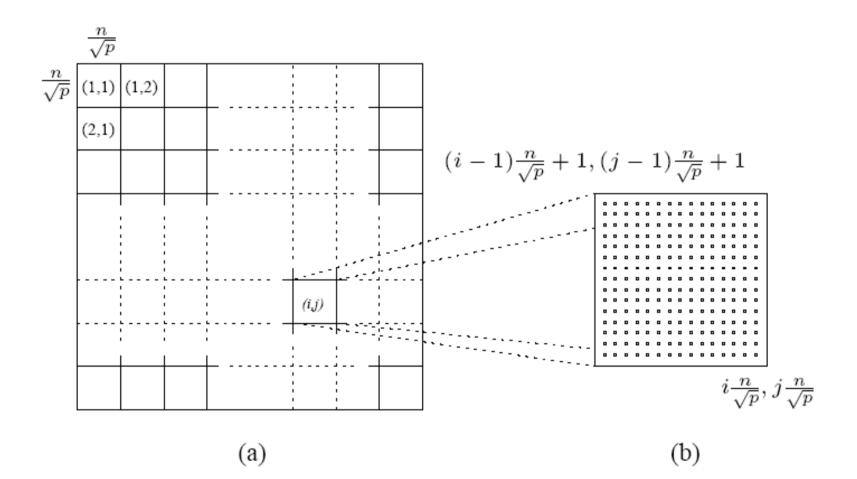
In (pseudo) code



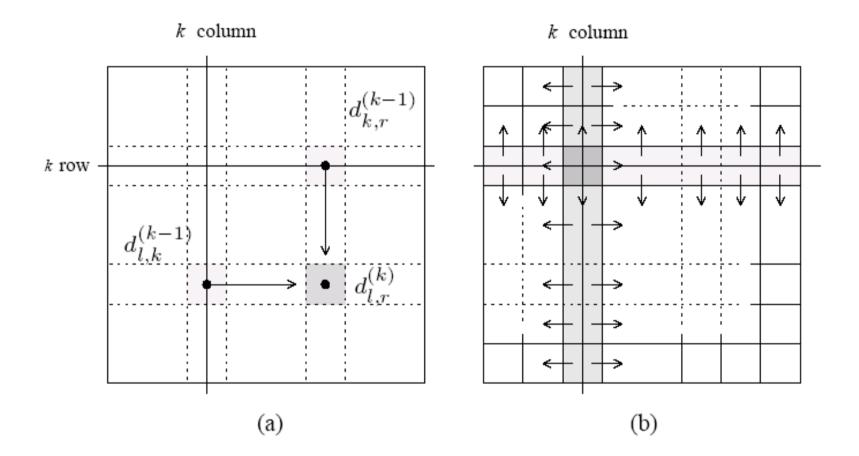
Floyd's Algorithm: Parallel Execution

- Matrix $D^{(k)}$ is divided into p blocks of size $(n / \sqrt{p}) x (n / \sqrt{p})$.
- Each processor updates its part of the matrix during each iteration.
- To compute $d_{l, r}^{(k-1)}$ processor $P_{i,j}$ must get $d_{l, k}^{(k-1)}$ for all $k \neq r$, and $d_{k, r}^{(k-1)}$ for all $k \neq l$.
- In general, during the kth iteration, each of the Vp processes containing part of the kth row send it to the Vp - 1 processes in the same column.
- Similarly, each of the Vp processes containing part of the kth column sends it to the Vp 1 processes in the same row.

In a Picture



In a Picture: continued



In (pseudo) code

1.	procedure FLOYD_2DBLOCK($D^{(0)}$)
2.	begin
3.	for $k := 1$ to n do
4.	begin
5.	each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$;
	broadcasts it to the $P_{*,j}$ processes;
6.	each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$;
	broadcasts it to the $P_{i,*}$ processes;
7.	each process waits to receive the needed segments;
8.	each process $P_{i,j}$ computes its part of the $D^{(k)}$ matrix;
9.	end
10.	end FLOYD_2DBLOCK

•

Computational Aspects

- During each iteration of the algorithm, the kth row and kth column of processors perform a one-to-all broadcast along their rows/columns.
- The size of this broadcast is n/Vp elements, taking time Θ((n log p)/Vp).
- The synchronization step takes time $\Theta(\log p)$.
- The computation time is $\Theta(n^2/p)$.
- The total parallel run time (*n* step) of the 2-D block mapping formulation of Floyd's algorithm is

$$T_P = \Theta\left(\frac{n^3}{p}\right) + \Theta\left(\frac{n^2}{\sqrt{p}}\log p\right).$$