Parallel Programming
Paradigms

A Long History

IVTRAN (Parallel Fortran) language for the ILLIAC
IV (1966-1970)

Several other Fortran language based
programming languages followed (Fortran D,
KAP, Vienna Fortran, Paraphrase, Polaris etc. etc.)

Experimental new approaches: Linda, Irvine
Dataflow (ld), Decoupled Access Execute

Vector Languages: Cray Fortran, FX/Fortran

Most Commonly Used

VIPI: Message Passing Interface
— ARPA, NSF, Esprit
Pthreads: POSIX Threads Linux Standard

— Portable Operating-System Interface (IEEE, the
Open Group)

OpenMP: Open Multi-Processing

— AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC,
Red Hat, Texas Instruments, Oracle Corporation,
and more.

CUDA: Compute Unified Device Architecture
— Nvidia

MPI

« Communication between processes in a
distributed program is typically implemented
using MPI: Message Passing Interface.

o MPI is a generic AP| that can be implemented
in different ways:

- Using specific interconnect hardware, such as
InfiniBand.

- Using TCP/IP over plain Ethernet.

- Or even used (emulated) on Shared Memory for
inter process communication on the same node.

Some MPI basic functions

#include <mpi.h>

Initialize library:
MPI Init (&argc, é&argv);

Determine number of processes that take part:
int n procs;

MPI Comm size (MPI COMM WORLD,
&N pProcs) ; - -

(MPI_COMM_WORLD is the initially defined universe intracommunicator
for all processes)

Determine ID of this process:

int i1id;

MPI Comm rank (MPI COMM WORLD, &id);

Sending Messages

MPI Send (buffer, count,datatype,dest, tag, comm) ;
~ buffer: pointer to data buffer.

> count: number of items to send.

Y

datatype: data type of the items (see next slide).
- All items must be of the same type.

dest: rank number of destination.

Y

tag: message tag (integer), may be 0.
- You can use this to distinguish between different messages.

A\

> comm: communicator, for instance MPI_COMM_WORLD.
.Note: this is a blocking send!

MPI data types

*You must specify a data type when performing
MPI transmissions.

o For instance for built-in C types:
- "int" translates to MPI_INT
- "unsigned int" to MPI_UNSIGNED
- "double" to MPI_DOUBLE, and so on.

e You can define your own MPI data types, for
example if you want to send/receive custom
structures.

Other calls

MPI Recv ()

MPI Isend(), MPI Irecv ()

- Non-blocking send/receive

MPI Scatter (), MPI Gather ()
MPI Bcast ()

MPI Reduce ()

Shutting down

e MPI Finalilze ()

Pthreads

Pthreads defines a set of C programming language types, functions
and constants. It is implemented with a pthread.h header and a
thread library.

There are around 100 Pthreads procedures, all prefixed "pthread_"
and they can be categorized into four groups:

 Thread management - creating, joining threads etc.
* Mutexes
* Condition variables

* Synchronization between threads using read/write locks and
barriers

The POSIX semaphore APl works with POSIX threads but is not part of threads
standard, having been defined in the POSIX.1b, Real-time extensions (IEEE Std
1003.1b-1993) standard. Consequently the semaphore procedures are prefixed by
"sem_" instead of "pthread ".

« Program is a collection of threads of control.
— Can be created dynamically, mid-execution, in some
languages
« Each thread has a set of private variables, e.g., local stack
variables
« Also a set of shared variables, e.g., static variables, shared
common blocks, or global heap.
— Threads communicate implicitly by writing and reading
shared variables.
— Threads coordinate by synchronizing on shared variables

Shared memory

it 2 i:5 Private i8
|
o

Pthreads Supports

» Creating parallelism

»Synchronizing

No explicit support for communication,
oecause shared memory is implicit; a
oointer to shared data is passed to a
thread

“Forking” Threads

Signature:

int pthread create(pthread t *thread 1id,
const pthread attr t *thread attribute,
void * (*thread fun) (void *),
void *funarqg);

Example call:

errcode = pthread create (&thread 1d, &thread attribute,
thread fun, &fun arg);

thread id is the thread id or handle (used to halt, etc.)

thread attribute various attributes
Standard default values obtained by passing a NULL pointer
Sample attribute: minimum stack size

thread fun the function to be run (takes and returns void®)
fun_arg an argument can be passed to thread fun when it starts
errorcode will be set nonzero if the create operation fails

Example

void* SayHello (void *foo{ {
printf("Hello, world!\n");
return NULL;

}

int main() {
pthread t threads[16];
int tn;
for (tn=0; tn<l6; tn++) {

pthread create(&threads[tn], NULL, SayHello,
NULL) ;

}
for (tn=0; tn<l6 ; tn++) {

pthread join(&threads[tn], NULL) ;
} —

return 0;

}

Some More Functions

* pthread yield();

— Informs the scheduler that the thread is willing to yield its
quantum, requires no arguments.

* pthread exit(void *value);
— Exit thread and pass value to joining thread (if exists)

* pthread join(pthread t *thread, void **result);
— Wait for specified thread to finish. Place exit value into *result.

Others:
* pthread t me; me = pthread self();

— Allows a pthread to obtain its own identifier pthread _t thread;
* pthread detach(thread);

— Informs the library that the threads exit status will not be needed by
subsequent pthread_join calls resulting in better threads
performance. For more information consult the library or the man
pages, e.g., man -k pthread..

Shared Data and Threads

Variables declared outside of main are shared

Object allocated on the heap may be shared (if pointer is
passed)

Variables on the stack are private: passing pointer to these
around to other threads can cause problems

Often done by creating a large “thread data” struct
— Passed into all threads as argument
— Simple example:

char *message = "Hello World!\n";

pthread create(&threadl,
NULL,
print fun,
(void*) message) ;

Basic Types of Synchronization: Barrier

— Especially common when running multiple copies of the
same function in parallel

« SPMD “Single Program Multiple Data”

— simple use of barriers -- all threads hit the same one
work on my subgrid() ;
barrier;
read neighboring values();
barrier;

— more complicated -- barriers on branches (or loops)
if (tid % 2 == 0) {
workl () ;

barrier
} else { barrier }

— barriers are not provided in all thread libraries

Creating and Initializing a Barrier

To (dynamically) initialize a barrier, use code similar to
this (which sets the number of threads to 3):

pthread barrier t b;
pthread barrier init(&b,NULL,3);

The second argument specifies an attribute object for
finer control; using NULL yields the default attributes.

To walit at a barrier, a process executes:
pthread barrier wait(é&b);

Basic Types of Synchronization: Mutexes

— Threads are working mostly independently

— There Is a need to access common data structure
lock *1 = alloc and init(); /* shared */
acquire(1l) ;

access data
release (1) ;

— Locks only affect processors using them:

* If a thread accesses the data without doing the acquire/
release, locks by others will not help

— Semaphores generalize locks to allow the use of the
same locks across different processes

Mutexes in POSIX Threads

To create a mutex:
#include <pthread.h>

pthread mutex t amutex =
PTHREAD MUTEX INITIALIZER;

// or pthread mutex init(&amutex, NULL) ;
To use it:
int pthread mutex lock (amutex) ;
int pthread mutex unlock (amutex) ;

To deallocate a mutex
int pthread mutex destroy(pthread mutex t *mutex);

Multiple mutexes may be held, but can lead to problems:

threadl thread2
lock (a) lock (b)
lock (b) lock (a)

Deadlock results if both threads acquire one of their locks,
so that neither can acquire the second

Summary of Programming with Threads

« POSIX Threads are based on OS features

— Can be used from multiple languages (need
appropriate header)

— Familiar language for most of program
— Abillity to shared data is convenient

* OpenMP is commonly used today as an
alternative

Introduction to OpenMP

 What is OpenMP?

— Open specification for Multi-Processing

— “Standard” API for defining multi-threaded
shared-memory programs

— openmp.org — Talks, examples, forums, etc.

* High-level API

— Preprocessor (compiler) directives (~ 80%)
— Library Calls (~ 19%)
— Environment Variables (~ 1%)

A Programmer’'s View of OpenMP

OpenMP is a portable, t,breaded, shared-memory programming
specification with “light” syntax

— Exact behavior depends on OpenMP implementation!
— Requires compiler support (C or Fortran)
OpenMP will:

— Allow a programmer to separate a program into serial regions
and parallel regions, rather than T concurrently-executing
threads.

— Hide stack management

— Provide synchronization constructs
OpenMP will not:

— Parallelize automatically

— Guarantee speedup

— Provide freedom from data races

Programming Model — Concurrent Loops

 OpenMP easily parallelizes loops

— Requires: No data dependencies (reads/write or
write/write pairs) between iterations!

* Preprocessor calculates loop bounds for each thread
directly from serial source

#pragma omp parallel for

for(i=0; i < 25; i++)
{

printf (“Foo”) ;

Programming Model — Loop Scheduling

 Schedule Clause determines how loop iterations are
divided among the thread team

— static ([chunk]) divides iterations statically between
threads

« Each thread receives [chunk] iterations, rounding as
necessary to account for all iterations

 Default [chunk] iSceil(# iterations / # threads)
— dynamic ([chunk]) allocates [chunk] iterations per
thread, allocating an additional [chunk] iterations when a
thread finishes
* Forms a logical work queue, consisting of all loop iterations
* Default [chunk] is 1
— guided ([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

Data Sharing

PThreads:

e Global-scoped
variables are shared

e Stack-allocated
variables are private

OpenMP:

e shared variables are
shared

e private variables are
private

OpenMP Synchronization

— OpenMP Ciritical Sections
 Named or unnamed
* No explicit locks / mutexes

— Barrier directives

— Single-thread regions within parallel regions
* master, single directives

CUDA NVIDIA

g)
Programming
Approaches “Drop-in” Easily Accelerate Maximum Flexibilit

\ Acceleration Apps aximu e y)

(. ~

Nsight IDE CUDA-GDB

Development Linux, Mac and Windows debugger
Environment GPU Debugging and NVIDIA Visual

- Profiling Profiler)

Open Compller
Tool Chain

ALLVM

L L RUN 8
WM e

_

Hardware
Capabilities

Dynamic
Parallelism

(I I 1 0

[\ |
M [mm

GPUDirect)

NVIDIA GPU Platform

Device
* Ascalable array of Mulrocsesor N
multithreaded Streaming :
Multiprocessors (SMs), pultprocessor®
each SM consists of Hltprocessert
— 8 Scalar Processor (SP)
cores

— 2 special function units for . N B -
Processor ** Processor M

Unit
transcendentals

— A multithreaded
instruction unit B

— On-chip shared memory
* GDDR3 SDRAM*

* PCleinterface

Peripheral Component
Interconnect Express

* Graphics Double Data Rate Synchronous Dynamic Random Access Memory (DDR3 Vs
DDR2: larger prefetch buffer, ie 8 bits instead of 2 bits)

Sample Platforms
NVIDIA GeForce9400M G GPU

= * 16 streaming processors
: — } arranged as 2 streaming
sm_ || su multiprocessors
e At 0.8 GHz this provides
L
— 54 GFLOPS in single-
precision (SP)

Texture units

e 128-bit interface to off-
Text'ureu chip GDDR3 memory

jrobfmercomnec — 21 GB/s bandwidth

L2 ROP| ROP L2 Render
Output
Unit (ROP)

Sample Platforms
NVIDIA Tesla C1060 GPU

TPC1 TPC 10
Geometry controller I | Geometry controller |
SMC | | SMC |
SM SM S SM SM
[_tcache I cache [_tcache [_tcache icache | | cache
B8
£ ENNEIENNED £ EREd
SFU ' SFU SFU| SFU SFU SFU SFU | SFU SFU | SFU SFU ' SFU
ety memey emory Pemory memey emory
Texture units Texture units
[Texture L1]] Texture L1]
I I
| 512-bit memory interconnect
| B | -
L2 | ROP LA ROP | L2

e 240 streaming

processors arranged

as 30 streaming Distributed
- over 10

multiprocessors

Texture
e At 1.3 GHz this Processor
provides Clusters
— 1 TFLOPS SP

— 86.4 GFLOPS DP
512-bit interface to
off-chip GDDR3
memory

— 102 GB/s bandwidth

Sample Platforms

NVIDIA Tesla S1070 Computing Server

* 4710 GPUs

Power

=

Ll
=
]
£
@
)
[}
c
©
E

System

supply

monitoring

4 GB GDDR3

SDRAM

Tesla GPU

Tesla GPU

4 GB GDDR3

SDRAM

4 GB GDDR3

SDRAM

Tesla GPU

Tesla GPU

4 GB GDDR3

SDRAM

NVIDIA
SWITCH

NVIDIA
SWITCH

PCl x16

How to program GPU'’s

Let’s take Vector Addition written in C for a CPU:

void vecAdd(int N, float* A, float* B, float* C) {
for (inti=0; i< N;i++) C[i] = A[i] + B[i];
}

. — Computational kernel

int main(int argc, char **argv)

{
int N = 16384; // default vector size

float *A = (float*)malloc(N * sizeof(float)); _
float *B = (float*)malloc(N * sizeof(float)); | Memory allocation

float *C = (float*)malloc(N * sizeof(float));

Kernel invocation
vecAdd(N, A, B, C); // call compute kernel e—

. Memory de-allocation

free(A); free(B); free(C);

How to get the GPU involved

Host GPU card
CPU GPU
Host Device
Memory Memory
A = gA
B — gB
C C——— gC

Memory Spaces

 CPU and GPU have separate memory spaces

Data is moved across PCle bus
Use functions to allocate/set/copy memory on GPU

* Host (CPU) manages device (GPU) memory

cudaMalloc(void** pointer, size_t nbytes)
cudaFree(void* pointer)
cudaMemcpy(void* dst, void* src, size_t nbytes, enum

cudaMemcpyKind direction);

* returns after the copy is complete
* blocks CPU thread until all bytes have been copied
* does not start copying until previous CUDA calls complete

enum cudaMemcpyKind
 cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
* cudaMemcpyDeviceToDevice

Example

int main(int argc, char **argv)

{
int N =16384; // default vector size

Memory allocation

ﬂoat *A - (float*)ma"OC(N * SiZEOf(ﬂoat)); on the GPU Card

float *B = (float*)malloc(N * sizeof(float));
float *C = (float*)malloc(N * sizeof(float));

float *devPtrA, *devPtrB, *devPtrC; Copy data from the
CPU (host) memory
cudaMalloc((void**)&devPtrA, N * sizeof(float)); to the GPU (device)
cudaMalloc((void**)&devPtrB, N * sizeof(float)); memory
cudaMalloc((void**)&devPtrC, N * sizeof(float)); /

cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(devPtrB, B, N * sizeof(float), cudaMemcpyHostToDevice);

Example continued

L — Kernel invocation
vecAdd<<<N/512, 512>>>(devPtrA, devPtrB, devPtrC);

cudaMemcpy(C, devPtrC, N * sizeof(float), cudaMemcpyDeviceToHost);

N

cudaFree(devPtrA); Coov results from

cudaFree(devPtrB); de\F/)i\ée memory to

cudaFree(devPtrC); the host memory
] Device memory

free(A); de-allocation

free(B);

free(C);

Example continued: VecAdd

* CPU version
void vecAdd(int N, float* A, float* B, float* C)

{
for (inti=0;i<N;i++)
C[i] = A[i] + BJi];
}

* GPU version
__global__ void vecAdd(float* A, float* B, float* C)

{

int i = blockldx.x * blockDim.x + threadldx.x;
C[i] = A[i] + B[i];
}

Example continued: Threads

* A CUDA kernel is executed by

an array of threads

— All threads run the same code (SPMD)

threadID

MMM

— Each thread has an ID that it uses

to compute memory addresses and

make control decisions
* Threads are arranged as a grid of thread blocks

— Threads within
a block have access
to a segment of
shared memory

Grid
Thread Block 0

S5

float x = input[threadID];
float y = func(x);
output[threadID] = y;

Thread Block 1

S5

AN

Thread Block N-1

JIS

Shared memory

Shared memory

Shared memory

Example continued: Kernel Invocation

grid & thread block dimensionality
vecAdd<<{§§, 512>>>(devPtrA, devPtrB, devPtrC);

)|

T I -

int i = blockldx.x * blockDim.x + threadldx.x;

block ID within a grid number of threads per block thread ID within a thread block

Mapping Threads to the Hardware

* Blocks of threads are transparently * Blocks must be independent
assigned to SMs — Any possible interleaving of blocks
— Ablock of threads executes on one should be valid
SM & does not migrate — Blocks may coordinate but not
— Several blocks can reside synchronize
concurrently on one SM — Thread blocks can run in any order

o [
‘/--\‘—
o sats s mr

Block® Block? ¢ime
Each block can execute in any

order relative to other blocks.

Mapping Threads to the Hardware

* 1D grid
— 2 thread blocks

1D block
— 2 threads

Grid of 2 thread blocks

block 0 block 1
Shared memory Shared memory
registers registers registers registers

thread 0

thread 1

thread 0 thread 1

Global memory

I

Constant memory

GPU Memory Hierarchy (Summary)

Host Device
CPU DRAM S
ANMuldinrarncenr
chipset local Multiprocessor |
global registers shared |
I memory
constant

DRAM texture } | constant and texture caches

Register On-chip One thread Thread
Local Off-chip No R/W One thread Thread
Shared On-chip N/A R/W All threads in a block Block
Global Off-chip No R/W All threads + host Application
Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

Other Parallel Programming Paradigms

* Parallel Functional Programming

* MapReduce: HADOOP

* Coordination Languages: Linda

* Platform Specific: OCCAM (Transputer)

