Operating System
Concepts
Ch. 8: Memory

Management Strategies

" Universiteit Leiden
£
1y The Netherlands

Universiteit Leiden. Bij ons leer je de wereld kennen .



Universiteit Leiden. Bij ons leer je de wereld kennen



A hardware perspective

> CPU accesses memory through load/store instructions,
memory accesses typically take 100+ clock cycles.

> Memory modules essentially receive read/write requests
for certain memory addresses.

- A controller on a module lacks context. It does not know what
addresses belong to which process.

- The controller simply has to obey the request.

- Implication: controllers on memory modules cannot enforce
memory protection of separate processes.

> To be able to effectively implement memory protection,
hardware support in the CPU is needed. L

Universiteit Leiden. Bij ons leer je de wereld kennen



A simple protection scheme

A very simple hardware-based memory

protection scheme uses base and limit 5
. operatin
: . 256000
These registers indicate the lower and
. process
upper memory address (logical address
space) the currently running (user mode) 300040
PTrocCess may acCcess. process
: 120900
These registers are set (and only set) by 420940
the OS kernel. Privileged registers! process

For each memory access that is performed, | st
the CPU checks it is within the set bounds. [0

- Itis clear that such checks cannot be performed .
in software due to the huge performance
implications.

Universiteit Leiden. Bij ons leer je de wereld kennen



A simple protection scheme (2)

> For each memory access that is performed, the CPU checks it is
within the set bounds.

- Itis clear that such checks cannot be performed in software due to the huge
performance implications.

address es es
CPU 0 ‘
no

no

trap to operating system .
monitor—addressing error memory

Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



Linkers and Loaders

LEON PRESSER anp JOHN R. WHITE

University of Califormia,*
Santa Barbara, Califorma 98106

trade-offs are pointed out.

Key words and phrases binary loaders, relocating loaders, linking loaders, linkers,
compilers, assemblers, relocation, program modularity, hbraries

CR calegories 411, 4,12, 4.30

1. INTRODUCTION

A computer system includes a set of soft-
ware and hardware facilities which super-
vises its operation, insures its coordination,
and facilitates its use. Such facilities are
referred to as the computer’s operating sys-
tem. From a funetional viewpoint it is jyusti-

Balla ¢t eoarnavatsa fTevarns tha anars tineg aratarm

This 18 a tutorial paper on the linking and loading stages of the language
transformation process First, loaders are classified and discussed Next, the
linking process 18 treated in terms of the various times at which it may oceur
(ie, binding to logical space). Finally, the hinking and loading functions are
explained 1n detail through a eareful examination of their implementation in the
IBM Bystem/360 Examples are presented, and a number of possible system

order to obtain flexibility and better utiliza-
tion of main memory, translators are re-
quired to generate relocatable code, that 1s,
code that can be loaded into any section of
main memory for execution Furthermore,
the eapability to combine subprograms into
a composite program, referred to as linking,
is of great value in modern operating sys-



Universiteit Leiden. Bij ons leer je de wereld kennen



Compiler, Linker, Loader (2)

source
program

compiler or
assembler

object
module

linkage
editor

~ load
module

loader

dynamically
loaded
system
_library

in-memory
dynamic binary
linking memory
image

> Also note that the address
scheme that is used by a
} i program changes along the way:

- Symbolic: Initially in source code,
identifiers are used to refer to
“memory locations”.

- Relocatable: in object files often
relative addresses are used. These
can in a later staged be relocated.

- Executable: in a non-relocatable
executable all addresses are fixed
and absolute.

execution
time (run
time)

Universiteit Leiden. Bij ons leer je de wereld kennen



Address Binding (2)

From the figure follows that instructions and data can be bound
to memory addresses at three different stages.

> Compile time: A memory location can be fixed at compile
time, allowing the compiler to immediately produce code that
uses absolute addressing. A change of memory location
requires a full re-compilation.

> Load time: if the location is not known at compile time,
relocatable code can be generated. The relocation can be
performed when linking or loading.

> Execution time: the binding is done at run-time when a
memory reference is being performed. .

Universiteit Leiden. Bij ons leer je de wereld kennen



Address Binding (3)

> Note that with compile-time and load-time binding a
program cannot be relocated after it has been loaded and
started.

> Execution-time binding allows bindings to be modified
during the course of program execution.

- This allows the program to be moved to another memory location
during run-time.

- Hardware support is required. Comes in the form of a MMU (Memory
Management Unit).

- In fact, because a MMU is used, the program itself is not changed.

- What happens is that addresses generated by the program are being
transparently translated to the actual address that is accessed. .

- The original addresses go unmodified, but we can change the
corresponding actual addresses.

Universiteit Leiden. Bij ons leer je de wereld kennen



Address Spaces

> More formally, the “original” addresses as generated by
the program are referred to as virtual or logical
addresses.

> The “actual” addresses are referred to as physical
addresses.

- The memory controller only sees these physical addresses.

> We say that the set of logical addresses (logical address
space) is translated to a set of physical addresses
(physical address space) by the MMU.

- And the mapping from logical to physical can be dynamically
updated. .

- Logical address space is unmodified; absolute addressing can be
used within this address space if we want.

Universiteit Leiden. Bij ons leer je de wereld kennen



Memory Management Unit (MMU)

> The MMU is the part of the CPU that is capable of
performing a run-time translation of an address from
the logical to the physical address space.

- This mapping can be implemented in different ways, as we will
discuss shortly.

> A simple scheme is to generalize the base-register
method that was introduced for memory protection.

- The base register is renamed to relocation register.

- The relocation register value is added to every address
generated by the program.

> Note that user programs never see the actual physical B
addresses. They live in their happy virtual address
space.

Universiteit Leiden. Bij ons leer je de wereld kennen



Relocation register example

relocation
register

logical physical

address address

Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



Dynamic Loading (2)

> One way to only partly load processes is Dynamic Loading.
> In this case, routines and data are loaded on-demand.

> Routines are stored on disk in a relocatable format, such that
a routine can be relocated to an available memory location
when being loaded.

> Plug-ins that are loaded at run-time can also be seen as a
form of dynamic loading.

> Dynamic loading does not require explicit support from the
OS.

- It can be fully done in user-space. .

- An OS could provide a helper library to implement this however.

Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



Dynamic Linking (2)

> How does it work?

> In a nutshell:

- All calls to functions not known at load time are compiled as a
call to a stub routine.

- The first time the function is called, the stub routine is called.

- The stub routine will attempt to locate the actual function and
make sure it is loaded into the address space.

- When successful, the call to the stub routine is replaced with a

call to the actual function.
* When unsuccessful an exception is raised (“DLL NOT FOUND?).

- The next time, the correct function is called immediately. .

> Seems easy enough, but the details are very tricky.

Universiteit Leiden. Bij ons leer je de wereld kennen



Dynamic Linking (2)

> How does it work?

call to the actual function.
* When unsuccessful an exception is raised (“DLL NOT FOUND?).

- The next time, the correct function is called immediately. .

> Seems easy enough, but the details are very tricky.

Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



