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Memory Management

➢ Memory is an essential part of a computer system and 
stores instructions and data.

➢ These days, memory is almost always byte-addressed.

➢ So, we have an array of bytes at our disposal. 
Sometimes, many, many bytes.

➢ How does on Operating System manage this?

- The OS implementer decides what data is stored where in this 
huge array of bytes.

- Memory is a finite resource, what to do in case of conflicting 
requests?
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A hardware perspective

➢ CPU accesses memory through load/store instructions, 
memory accesses typically take 100+ clock cycles.

➢ Memory modules essentially receive read/write requests 
for certain memory addresses.

- A controller on a module lacks context. It does not know what 
addresses belong to which process.

- The controller simply has to obey the request.

- Implication: controllers on memory modules cannot enforce 
memory protection of separate processes.

➢ To be able to effectively implement memory protection, 
hardware support in the CPU is needed.
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A simple protection scheme

➢ A very simple hardware-based memory 
protection scheme uses base and limit 
registers.

➢ These registers indicate the lower and 
upper memory address (logical address 
space) the currently running (user mode) 
process may access.

➢ These registers are set (and only set) by 
the OS kernel. Privileged registers!

➢ For each memory access that is performed, 
the CPU checks it is within the set bounds.

- It is clear that such checks cannot be performed 
in software due to the huge performance 
implications.
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A simple protection scheme (2)

➢ For each memory access that is performed, the CPU checks it is 
within the set bounds.

- It is clear that such checks cannot be performed in software due to the huge 
performance implications.
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Address binding

➢ Can we load a program at any location in memory?

➢ This depends on how instructions and data are bound to 
actual memory addresses: Address Binding

- Absolute addressing

In this case, the program must be loaded at the same memory 
location every time.

- Relative/relocatable addressing

All memory addresses are relative (e.g. relative to a value in a 
register) or a program's instructions can be “patched” at load 
time. Both allow a program to be loaded at a location we desire.



Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen

Compiler, Linker, Loader
➢ Compiler: translates source code into object files.

cc -c main.c

➢ Linker (linkage editor): “Combines and edits modules 
to produce a single module that can be brought into 
memory”

ld -o main main.o -lc /path/to/compiler_rt.a

➢ Loader: Stores a program into main memory.

- Binary vs. relocating loaders.

- Linking at loading time: “linking loaders”
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Compiler, Linker, Loader (2)

➢ Also note that the address 
scheme that is used by a 
program changes along the way:

- Symbolic: Initially in source code, 
identifiers are used to refer to 
“memory locations”.

- Relocatable: in object files often 
relative addresses are used. These 
can in a later staged be relocated.

- Executable: in a non-relocatable 
executable all addresses are fixed 
and absolute.
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Address Binding (2)

From the figure follows that instructions and data can be bound 
to memory addresses at three different stages.

➢ Compile time: A memory location can be fixed at compile 
time, allowing the compiler to immediately produce code that 
uses absolute addressing. A change of memory location 
requires a full re-compilation.

➢ Load time: if the location is not known at compile time, 
relocatable code can be generated. The relocation can be 
performed when linking or loading.

➢ Execution time: the binding is done at run-time when a 
memory reference is being performed.
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Address Binding (3)
➢ Note that with compile-time and load-time binding a 

program cannot be relocated after it has been loaded and 
started.

➢ Execution-time binding allows bindings to be modified 
during the course of program execution.
- This allows the program to be moved to another memory location 

during run-time.

- Hardware support is required. Comes in the form of a MMU (Memory 
Management Unit).

- In fact, because a MMU is used, the program itself is not changed.

- What happens is that addresses generated by the program are being 
transparently translated to the actual address that is accessed.

- The original addresses go unmodified, but we can change the 
corresponding actual addresses.
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Address Spaces
➢ More formally, the “original” addresses as generated by 

the program are referred to as virtual or logical 
addresses.

➢ The “actual” addresses are referred to as physical 
addresses.

- The memory controller only sees these physical addresses.

➢ We say that the set of logical addresses (logical address 
space) is translated to a set of physical addresses 
(physical address space) by the MMU.

- And the mapping from logical to physical can be dynamically 
updated.

- Logical address space is unmodified; absolute addressing can be 
used within this address space if we want.
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Memory Management Unit (MMU)

➢ The MMU is the part of the CPU that is capable of 
performing a run-time translation of an address from 
the logical to the physical address space.

- This mapping can be implemented in different ways, as we will 
discuss shortly.

➢ A simple scheme is to generalize the base-register 
method that was introduced for memory protection.

- The base register is renamed to relocation register.

- The relocation register value is added to every address 
generated by the program.

➢ Note that user programs never see the actual physical 
addresses. They live in their happy virtual address 
space.
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Relocation register example
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Dynamic Loading

➢ We so far considered processes to be loaded into 
memory in their entirety.

➢ This is not always desirable:

- A process (and its data) may be larger than available physical 
memory.

- Not all parts of a process are needed at all times. By partly 
loading processes, we keep more processes into memory.
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Dynamic Loading (2)
➢ One way to only partly load processes is Dynamic Loading.

➢ In this case, routines and data are loaded on-demand.

➢ Routines are stored on disk in a relocatable format, such that 
a routine can be relocated to an available memory location 
when being loaded.

➢ Plug-ins that are loaded at run-time can also be seen as a 
form of dynamic loading.

➢ Dynamic loading does not require explicit support from the 
OS.

- It can be fully done in user-space.

- An OS could provide a helper library to implement this however.
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Dynamic Linking
➢ Contrast with static linking: in this case an executable is 

combined with all dependent libraries at load time (so prior 
to execution). A single binary image is formed.

➢ In the case of dynamic linking, linking is performed at 
execution time.

- So, linking can be performed against libraries that are detected on the 
system at run-time.

- Libraries can be updated without having to recompile all dependent 
programs.

- Concept is also known as shared libraries.

➢ Used in all modern systems:
- Windows DLL: Dynamic Link Library

- UNIX .so: shared object

- macOS .dylib: dynamic library
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Dynamic Linking (2)

➢ How does it work?

➢ In a nutshell:

- All calls to functions not known at load time are compiled as a 
call to a stub routine.

- The first time the function is called, the stub routine is called.

- The stub routine will attempt to locate the actual function and 
make sure it is loaded into the address space.

- When successful, the call to the stub routine is replaced with a 
call to the actual function.
• When unsuccessful an exception is raised (“DLL NOT FOUND”).

- The next time, the correct function is called immediately.

➢ Seems easy enough, but the details are very tricky.
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Dynamic Linking (2)
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➢ Continue with the slides provided by the textbook, 
Chapter 8, starting at topic “Swapping”:

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html
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End of Chapter 8.


