
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System 
Concepts

Ch. 8: Memory 
Management Strategies

Silberschatz, Galvin & Gagne



Universiteit Leiden. Bij ons leer je de wereld kennen

Memory Management

➢ Memory is an essential part of a computer system and 
stores instructions and data.

➢ These days, memory is almost always byte-addressed.

➢ So, we have an array of bytes at our disposal. 
Sometimes, many, many bytes.

➢ How does on Operating System manage this?

- The OS implementer decides what data is stored where in this 
huge array of bytes.

- Memory is a finite resource, what to do in case of conflicting 
requests?



Universiteit Leiden. Bij ons leer je de wereld kennen

A hardware perspective

➢ CPU accesses memory through load/store instructions, 
memory accesses typically take 100+ clock cycles.

➢ Memory modules essentially receive read/write requests 
for certain memory addresses.

- A controller on a module lacks context. It does not know what 
addresses belong to which process.

- The controller simply has to obey the request.

- Implication: controllers on memory modules cannot enforce 
memory protection of separate processes.

➢ To be able to effectively implement memory protection, 
hardware support in the CPU is needed.



Universiteit Leiden. Bij ons leer je de wereld kennen

A simple protection scheme

➢ A very simple hardware-based memory 
protection scheme uses base and limit 
registers.

➢ These registers indicate the lower and 
upper memory address (logical address 
space) the currently running (user mode) 
process may access.

➢ These registers are set (and only set) by 
the OS kernel. Privileged registers!

➢ For each memory access that is performed, 
the CPU checks it is within the set bounds.

- It is clear that such checks cannot be performed 
in software due to the huge performance 
implications.



Universiteit Leiden. Bij ons leer je de wereld kennen

A simple protection scheme (2)

➢ For each memory access that is performed, the CPU checks it is 
within the set bounds.

- It is clear that such checks cannot be performed in software due to the huge 
performance implications.



Universiteit Leiden. Bij ons leer je de wereld kennen

Address binding

➢ Can we load a program at any location in memory?

➢ This depends on how instructions and data are bound to 
actual memory addresses: Address Binding

- Absolute addressing

In this case, the program must be loaded at the same memory 
location every time.

- Relative/relocatable addressing

All memory addresses are relative (e.g. relative to a value in a 
register) or a program's instructions can be “patched” at load 
time. Both allow a program to be loaded at a location we desire.



Universiteit Leiden. Bij ons leer je de wereld kennen



Universiteit Leiden. Bij ons leer je de wereld kennen

Compiler, Linker, Loader
➢ Compiler: translates source code into object files.

cc -c main.c

➢ Linker (linkage editor): “Combines and edits modules 
to produce a single module that can be brought into 
memory”

ld -o main main.o -lc /path/to/compiler_rt.a

➢ Loader: Stores a program into main memory.

- Binary vs. relocating loaders.

- Linking at loading time: “linking loaders”



Universiteit Leiden. Bij ons leer je de wereld kennen

Compiler, Linker, Loader (2)

➢ Also note that the address 
scheme that is used by a 
program changes along the way:

- Symbolic: Initially in source code, 
identifiers are used to refer to 
“memory locations”.

- Relocatable: in object files often 
relative addresses are used. These 
can in a later staged be relocated.

- Executable: in a non-relocatable 
executable all addresses are fixed 
and absolute.



Universiteit Leiden. Bij ons leer je de wereld kennen

Address Binding (2)

From the figure follows that instructions and data can be bound 
to memory addresses at three different stages.

➢ Compile time: A memory location can be fixed at compile 
time, allowing the compiler to immediately produce code that 
uses absolute addressing. A change of memory location 
requires a full re-compilation.

➢ Load time: if the location is not known at compile time, 
relocatable code can be generated. The relocation can be 
performed when linking or loading.

➢ Execution time: the binding is done at run-time when a 
memory reference is being performed.



Universiteit Leiden. Bij ons leer je de wereld kennen

Address Binding (3)
➢ Note that with compile-time and load-time binding a 

program cannot be relocated after it has been loaded and 
started.

➢ Execution-time binding allows bindings to be modified 
during the course of program execution.
- This allows the program to be moved to another memory location 

during run-time.

- Hardware support is required. Comes in the form of a MMU (Memory 
Management Unit).

- In fact, because a MMU is used, the program itself is not changed.

- What happens is that addresses generated by the program are being 
transparently translated to the actual address that is accessed.

- The original addresses go unmodified, but we can change the 
corresponding actual addresses.



Universiteit Leiden. Bij ons leer je de wereld kennen

Address Spaces
➢ More formally, the “original” addresses as generated by 

the program are referred to as virtual or logical 
addresses.

➢ The “actual” addresses are referred to as physical 
addresses.

- The memory controller only sees these physical addresses.

➢ We say that the set of logical addresses (logical address 
space) is translated to a set of physical addresses 
(physical address space) by the MMU.

- And the mapping from logical to physical can be dynamically 
updated.

- Logical address space is unmodified; absolute addressing can be 
used within this address space if we want.



Universiteit Leiden. Bij ons leer je de wereld kennen

Memory Management Unit (MMU)

➢ The MMU is the part of the CPU that is capable of 
performing a run-time translation of an address from 
the logical to the physical address space.

- This mapping can be implemented in different ways, as we will 
discuss shortly.

➢ A simple scheme is to generalize the base-register 
method that was introduced for memory protection.

- The base register is renamed to relocation register.

- The relocation register value is added to every address 
generated by the program.

➢ Note that user programs never see the actual physical 
addresses. They live in their happy virtual address 
space.



Universiteit Leiden. Bij ons leer je de wereld kennen

Relocation register example



Universiteit Leiden. Bij ons leer je de wereld kennen

Dynamic Loading

➢ We so far considered processes to be loaded into 
memory in their entirety.

➢ This is not always desirable:

- A process (and its data) may be larger than available physical 
memory.

- Not all parts of a process are needed at all times. By partly 
loading processes, we keep more processes into memory.



Universiteit Leiden. Bij ons leer je de wereld kennen

Dynamic Loading (2)
➢ One way to only partly load processes is Dynamic Loading.

➢ In this case, routines and data are loaded on-demand.

➢ Routines are stored on disk in a relocatable format, such that 
a routine can be relocated to an available memory location 
when being loaded.

➢ Plug-ins that are loaded at run-time can also be seen as a 
form of dynamic loading.

➢ Dynamic loading does not require explicit support from the 
OS.

- It can be fully done in user-space.

- An OS could provide a helper library to implement this however.



Universiteit Leiden. Bij ons leer je de wereld kennen

Dynamic Linking
➢ Contrast with static linking: in this case an executable is 

combined with all dependent libraries at load time (so prior 
to execution). A single binary image is formed.

➢ In the case of dynamic linking, linking is performed at 
execution time.

- So, linking can be performed against libraries that are detected on the 
system at run-time.

- Libraries can be updated without having to recompile all dependent 
programs.

- Concept is also known as shared libraries.

➢ Used in all modern systems:
- Windows DLL: Dynamic Link Library

- UNIX .so: shared object

- macOS .dylib: dynamic library



Universiteit Leiden. Bij ons leer je de wereld kennen

Dynamic Linking (2)

➢ How does it work?

➢ In a nutshell:

- All calls to functions not known at load time are compiled as a 
call to a stub routine.

- The first time the function is called, the stub routine is called.

- The stub routine will attempt to locate the actual function and 
make sure it is loaded into the address space.

- When successful, the call to the stub routine is replaced with a 
call to the actual function.
• When unsuccessful an exception is raised (“DLL NOT FOUND”).

- The next time, the correct function is called immediately.

➢ Seems easy enough, but the details are very tricky.



Universiteit Leiden. Bij ons leer je de wereld kennen

Dynamic Linking (2)

➢ How does it work?

➢ In a nutshell:

- All calls to functions not known at load time are compiled as a 
call to a stub routine.

- The first time the function is called, the stub routine is called.

- The stub routine will attempt to locate the actual function and 
make sure it is loaded into the address space.

- When successful, the call to the stub routine is replaced with a 
call to the actual function.
• When unsuccessful an exception is raised (“DLL NOT FOUND”).

- The next time, the correct function is called immediately.

➢ Seems easy enough, but the details are very tricky.



Universiteit Leiden. Bij ons leer je de wereld kennen

➢ Continue with the slides provided by the textbook, 
Chapter 8, starting at topic “Swapping”:

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html



Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 8.


