
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System
Concepts

Ch. 6: Process Synchronization

Silberschatz, Galvin & Gagne

Universiteit Leiden. Bij ons leer je de wereld kennen

Motivation
➢ When processes share data, writes to this data must be

coordinated.

➢ In particular when pre-emptive scheduling is used.

- A process can be interrupted at any time.

- Also when it is in the midst of manipulating a shared data
structure, the data structure may be left in an inconsistent state
and may be accessed by the other process.

➢ This is also the case for kernel data structures that are
used to implement system calls.

- E.g. system-wide open file table.

Universiteit Leiden. Bij ons leer je de wereld kennen

Example Race Condition
➢ Consider the following (classical) example. The variables

buffer, in, out and counter are shared.

/* Producer */
while (true) {
 /* produce item in next_produced */

 while (counter == BUFFER_SIZE) ;
 /* do nothing */

 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
}

/* Consumer */
while (true) {
 while (counter == 0) ;
 /* do nothing */

 next_consumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;

 /* consume item in next_consumed */
}

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Example Race Condition (2)
➢ We must realize ourselves that counter increments

typically consist of multiple machine instructions:

 load r1,$counter
 r1 = r1 + 1
 store r1,$counter

➢ These are not guaranteed to be executed one after the
other, or in a single go. It is not an atomic sequence of
instructions.

➢ When does this become a problem?

Universiteit Leiden. Bij ons leer je de wereld kennen

Example Race Condition (3)
➢ We now execute the producer (P) and consumer (C)

processes. Recall that they may be pre-empted!
➢ The value of counter is initially 5.
➢ Example sequence of instructions:

P: load r1,$counter (value of r1 in P becomes 5)
P: r1 = r1 + 1 (value of r1 in P becomes 6)
C: load r1,$counter (value of r1 in C becomes 5)
C: r1 = r1 – 1 (value of r1 in C becomes 4)
P: store r1,$counter (value of counter becomes 6)
C: store r1,$counter (value of counter becomes 4)

➢ When first P is fully executed, followed by C, then the value of
counter would be 5!!!!

➢ Race Condition: both processes are “racing”, the last value
written remains in memory. This is thus dependent on
instruction order and time.

Universiteit Leiden. Bij ons leer je de wereld kennen

Critical Sections
➢ These problems can be solved using

critical sections.

- Each process defines a critical section.

- Only one process may be in its critical
section at any time.

- Manipulate shared resources (memory,
opened files) while within the critical
section.

➢ The entry section contains code to
decide if/when a process may enter its
critical section.

- Permission has to be asked, or turn awaited.

Source: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

do {

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

 } while (true);

Critical Sections (2)
➢ Classical solution of the problem: Peterson's solution.

- A solution for two processes and assumes load/store machine
instructions are atomic.

- int turn and boolean flag[2] are shared variables.

➢ Processes change turn.

➢ flag is used to indicate
process wants to enter
its critical section

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Critical Sections (3)
➢ Solutions of the critical sections problem must adhere to the

following properties:

- Mutual Exclusion: “if a process is executing its critical section, none of the other
processes may be in their critical section.”

- Progress: “if no process is executing its critical section and there exist some
processes that have indicated they want to enter their critical section, then the
selection of the process that will enter the critical section next cannot be
postponed indefinitely.”

Loosely: we must regularly select a process that may enter the critical section
next.

- Bounded Waiting: “a bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.”

Loosely: others must get a turn in due time.

➢ Refer to the textbook for more exact and detailed definitions

Universiteit Leiden. Bij ons leer je de wereld kennen

Modern Solutions
➢ Peterson's solution cannot always be implemented on modern

hardware.

- Think about pipelining, speculation, caching, etc., etc.

➢ To be able to implement synchronization, we need some guarantees
from the hardware.

➢ The hardware therefore commonly implements atomic instructions
that can be used to implement synchronization primitives.

- Atomic instructions are guaranteed to be executed as a whole and
cannot be interrupted.

- Hardware also guarantees that sequences of atomic instructions
emitted by different cores will be serialized.

➢ For old single processor systems it suffices to turn off interrupts,
which will disable pre-emption.

- Not always wanted and does not scale to multiprocessor systems.

Universiteit Leiden. Bij ons leer je de wereld kennen

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Modern Solutions (2)
➢ Modern solutions that are

implemented using hardware
support are always centered
around the concept of
locking.

- Entering a critical section:
acquire the lock.

- Leaving critical section: release
the lock.

➢ Locking is implemented in
different ways, depending on
the support provided by the
hardware.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Locking with test-and-set
➢ test-and-set instruction sets

value behind given pointer to
TRUE and returns the
original value.

- The pseudocode given is
implemented and executed as a
single, atomic instruction.

➢ To implement locking, the
test-and-set instruction is
used to manipulate a shared
boolean variable.

➢ Example: BTS (bit test and
set) instruction on x86,
prefixed with lock.

bool test_and_set (boolean *target)

{

 bool rv = *target;

 *target = TRUE;

 return rv;

}

do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

} while (true);

Example taken from: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Locking with compare-and-swap

➢ Returns original value behind
pointer target, if this equals
expected, value is overwritten with
new_value.

➢ Slightly different from test-and-set.

➢ Not difficult to adapt our locking
function.

int compare_and_swap(int *value,

 int expected, int new_value)

{

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

}

do {

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

} while (true);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Bounded Waiting
➢ We can also construct more

complicated primitives using
hardware support.

➢ Such as bounded waiting
mutual exclusion shown on
the right.

➢ Note that this code gives
every process a turn, so
complies with the bounded
waiting criterion.

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

Example taken from: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

User-space Locking
➢ There are a number of problems with the solutions that we

have discussed:

- They are platform-dependent, as they rely on specific machine
instructions.

- They are sometimes complicated and tricky to get right (depends on
platform).

- The machine instructions may not always be accessible by user-space
processes.

➢ To solve this OS kernels often implement locks that can be
used by application programmers e.g. through system calls.

- Well-known is the mutex lock (MUTual EXclusion).

- And its further generalization, the semaphore.

Universiteit Leiden. Bij ons leer je de wereld kennen

Mutex Locks
➢ Mutex locks consist of two calls: acquire() and

release().

➢ The locks are implemented within the OS kernel, usually
like the locking functions we have just seen.

- Note that this involves continuously running the loop until the
original value is what we expected.

- This is called busy waiting, the program is not making progress
(waiting), but is keeping the CPU busy spinning the loop.

- Mutex locks that are implemented this way are also often called
spin locks.

Universiteit Leiden. Bij ons leer je de wereld kennen

Mutex Locks (2)
➢ Implementation of calls (compare with e.g. test-and-set example):

acquire()
{
 while (!available)
 ; /* busy wait */
 available = false;
}

release()
{
 available = true;
}

➢ Example usage:

do {
 acquire();
 /* critical section */
 release();

 /* remainder section */
} while (true);

Example taken from: Silberschatz et al., Operating
System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Semaphores
➢ Synchronization primitive devised by Edsger Dijkstra.

➢ We have two atomic operations that may operate on an
integer variable S:

- wait() and signal()

- Dijkstra originally wrote P and V, probably from “proberen” and
“verhogen”.

wait(S)
{
 while (S <= 0)
 ; // busy wait
 S--;
}

signal(S)
{
 S++;
}

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Semaphores (2)
➢ Important consideration for the implementation: only

one process may execute wait() or signal() at the same
time.

- These implementations must be placed in critical sections.

- Problem: the busy wait loop in wait() will be made part of a
critical section and we don't want that.

- Time spent in critical sections must be as short as possible such
that other processes also get a chance.

➢ This problem is solved by putting a process to sleep
instead of busy waiting. Other processes can now make
progress.

Universiteit Leiden. Bij ons leer je de wereld kennen

Semaphores (3)
➢ When a process is put to

sleep, it is put on a waiting
queue (cf. waiting queues
for I/O).

➢ Waking up means process
is transferred from this
waiting queue to the ready
queue to await being
scheduled again.

typedef struct{
 int value;
 struct process *list;
} semaphore;

wait(semaphore *S)
{
 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
}

signal(semaphore *S)
{
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
}

Example taken from: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Semaphores (4)
➢ Two “kinds” of semaphores are distinguished:

- Counting semaphore: the integer variable may hold any value of a range
of integers.

- Binary semaphore: the integer variable is either one or zero (cf. mutex).

➢ Example: two processes A and B.

- S1 in A must happen before S2 in B.

- Initialize a semaphore S to zero.

A:

 S1;

 signal(S);

B:

 wait(S);

 S2;

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Deadlock and Starvation
➢ Getting concurrent code right is hard.

➢ Often occurring problem when you are not careful:
deadlock.

- Deadlock: two or more processes are waiting indefinitely for an
event that can only be caused by one of the waiting processes.

➢ Example: given two semaphores P and Q, initialized to 1.
A B

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Deadlock and Starvation (2)
➢ In case of starvation, a process may never be removed

from the waiting queue of a semaphore in which it is
suspended.

- Compare scheduling: process may never be removed from ready
queue, because higher priority processes are always picked first.

➢ Systems which implement priority scheduling can also be
struck by the priority inversion problem.

- A high-priority process needs a lock held by a low-priority process.

- This can, for example, be solved using a priority-inheritance
protocol.

Low-priority process may temporarily inherit priority of higher
priority process in order to quickly complete the work and release
the lock.

Universiteit Leiden. Bij ons leer je de wereld kennen

Classic Synchronization Problems

➢ Several classic (textbook) synchronization problems
exist that act as good illustrations of how to use
synchronization primitives.

➢ Study these yourself using pen and paper: only way to
get your head around it.

➢ Bounded buffer problem

- We have a buffer that can hold a total of n items maximum.

- We declare three semaphores: mutex (initialized 1), full
(initialized 0), empty (initialized n).

Universiteit Leiden. Bij ons leer je de wereld kennen

Bounded Buffer Solution
/* Producer process */
do {
 ...
 /* produce item in next_produced */
 ...
 wait(empty);
 wait(mutex);
 ...
 /* add next produced to buffer */
 ...
 signal(mutex);
 signal(full);
} while (true);

/* Consumer process */
do {
 wait(full);
 wait(mutex);
 ...
 /* remove item from buffer
 to next_consumed */
 ...
 signal(mutex);
 signal(empty);
 ...
 /* consume item in next consumed */
 ...
} while (true);

Example taken from: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Readers-Writers Problem
➢ Another often recurring problem is that of controlling

access to shared data where:

- you want to allow readers to access the data concurrently,

- you want to grant writers exclusive access (so no reader and
writer may access shared data at the same time).

- Where is this a problem? Consider for example database systems.

➢ The solution involves:

- Binary semaphore mutex (initialized 1).

- Binary semaphore rw_mutex (initialized 1).

- Counting semaphore read_count (initialized 0).

Universiteit Leiden. Bij ons leer je de wereld kennen

Readers-Writers Problem (2)

➢ Open question: give priority to readers
or writers?

- Different variations exist.

- How to avoid starvation?

➢ Some kernels provide reader/writer
locks.

- Linux RCU: Read-Copy Update

/* Writer process */
do {
 wait(rw_mutex);
 ...
 /* Exclusive access:
 writing is performed */
 ...
 signal(rw_mutex);
} while (true);

/* Reader process */
do {
wait(mutex);
read_count++;
if (read_count == 1)

 wait(rw_mutex);

signal(mutex);

...

/* Shared access:

 reading is performed */

...

wait(mutex);

read_count--;

if (read_count == 0)

 signal(rw_mutex);

signal(mutex);

} while (true);

Example taken from: Silberschatz et al., Operating
System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Dining Philosophers

➢ Philosophers think or eat.

➢ When a philosopher wants to eat: need to
pick up 2 chopsticks. Release when done.

- May acquire one chopstick at a time, want to avoid
deadlocks!!

➢ We have 5 philosophers and 5 chopsticks.

➢ Model using semaphores, bowl of rice is the
shared data, we have an array of semaphores
chopstick all initialized to 1.

➢ (There's also a variation that considers pasta
and forks).

Source: Silberschatz et al.,
Operating System Concepts, 9th
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Dining Philosophers (2)
➢ This solution may

deadlock.

➢ Other solutions:

- Allow maximum of 4
philosophers.

- Pick up both sticks within
critical section.

// Code for philosopher “i”

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (true);

Example taken from: Silberschatz et al., Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

High-level solutions
➢ Mistakes with semaphores are quickly made:

- signal/wait in wrong order,

- wrong pairing of signal/wait,

- accidental double wait,

- etc.

➢ We can ease the life of programmers by providing high-
level solutions.

- The high-level solutions use the lower-level primitives in their
implementations.

- Or perhaps a compiler generates lower-level code that uses
these primitives (like OpenMP does for threads).

Universiteit Leiden. Bij ons leer je de wereld kennen

High-level solutions (2)
➢ Monitors

- Imagine a class with internal variables.

- The internal variables may only be accessed from methods
within that class.

- Only one process may be inside the monitor at any time.

- May add condition variables, which have wait/signal methods.
wait suspends the calling process, signal wakes up a blocked
process.

- For example Java and C# provide implementations of monitors.

Universiteit Leiden. Bij ons leer je de wereld kennen

Alternative Approaches
➢ Also OpenMP includes support for critical sections.

- You can mark a block of code as a critical section using a pragma.

- The compiler generates the necessary mutexes/semaphores to correctly
implement the critical section.

➢ Another approach is transactional memory.

- Allows you to write blocks of code containing memory transactions that
will be executed atomically.

- Compare with database transactions (!).

- Hardware & software implementations possible.

- Modern Intel CPUs actually have special instructions to help
implement this (TSX: Transactional Synchronization Extensions).

Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 6.

Universiteit Leiden. Bij ons leer je de wereld kennen

What about Chapter 7?

Universiteit Leiden. Bij ons leer je de wereld kennen

Chapter 7
➢ In the introduction of Chapter 7 in the textbook is

written:

“… operating systems typically do not provide
deadlock-prevention facilities, and it remains the
responsibility of programmers to ensure that they
design deadlock-free programs.”

➢ So we will not discuss deadlock-prevention facilities in
this class.

