Operating System
Concepts
Ch. 3: Processes

= Universiteit Leiden
The Netherlands

Universiteit Leiden. Bij ons leer je de wereld kennen .

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Structure

> Processes consist of multiple parts:
- Text section: program code, the instructions.
- Data section: initialization data for global variables

- Stack: contains temporary data, used during program
execution to create local variables, pass function
arguments, etc.

- Heap: contains dynamic memory allocations (new,
malloc)

- Stack and heap are placed at opposite ends and grow
towards each other.

- Current CPU register state, including program counter.

Source: Silberschatz et al.,
Operating System
Concepts, 9™ Edition

> All these parts must be prepared when the
program is loaded in memory.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process State

> With each process a state is associated. The following states are
(roughly) dlstlngulshed

new: process is being created
- ready: process is ready to be run (waiting to be put on CPU)
- running: process is running, so executing instructions

- waiting: process is waiting for some event to occur / request to complete

- terminate: process is being terminated

> Note: names and availability of states differs per system.
> Current state of a process can be seen in e.g. top utility.

admitted interrupt i

scheduler dispatch

I/O or event completion I/0O or event wait

Source: Silberschatz et al., Operating System Concepts, 9™ Edition d kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Bookkeeping Processes (2)

> The information associated with a process

is stored in a Process Control Block. process state
- Typically a C-structure. process number
- Linux hasastruct task struct of approx.

500 lines program counter

struct task_struct .
— registers

struct task_ struct

struct task_struct

memory limits

struct task_struct

list of open files

unsigned long state;

int prio;

‘ unsigned long policy;
struct task_struct *parent;
struct list_head tasks;

process descriptor pid_t pid;

Source: Silberschatz et al.,
Operating System Concepts, 9™
Edition

%{—J

the task list

Source: Robert Love, Linux Kernel Development, 2nd Edition . .
DIIVe 0 clden. Bij ons leer je de wereld kennen

Switching Between Processes

> An important capability of multiprogramming/timesharing
systems is that of switching between different processes.

> This entails suspending the process that is currently running
on the CPU and resuming another.

- Suspend: storing necessary information (“its state”) in the process
control block. Think of program counter & register state!

- Resume: restoring information from process control block to CPU
register.

- So, the entire state of the process is temporarily stored in memory!

> 'This is a routine that is implemented in the OS kernel and
runs in kernel mode.

> i

We refer to this procedure as context switching.

Universiteit Leiden. Bij ons leer je de wereld kennen

Switching Between Processes (2)

process P, operating system process P,

interrupt or system call

executing ﬂ /
k

save state into PCB,

reload state from PCB,

1

interrupt or system call l executing

save state into PCB;

=~

> idle

reload state from PCB,

executing y¥

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Switching Between Processes (3)

> In case of multi-core systems, processes can be separately
switched per core.

> The context switch routine is hardware-dependent. It
depends on the underlying hardware platform since it has to
save/restore specific CPU registers.

- This implies that the amount of work this routine has to perform and
its time duration depend on the hardware platform.

- On some systems caches need to be (partly) flushed, on others this is
not necessary. Need to check architecture reference manuals!

> Context switch time is pure overhead, no useful work is done.

- So, you don't want to switch too often.

- But only switching every few minutes leads to non-interactive systems.
An important trade-off to make.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling

> Assume we have 1 CPU available and multiple processes in
our process list. Which process do we assign to the CPU?
How do we decide? Who decides?

> The kernel decides and uses an algorithm referred to as the
CPU scheduling algorithm.

> Objective of this algorithm:

- We have a resource, the CPU, and we want to maximize the use of this
CPU.

- We have a picky user and we want to maximize responsiveness of the
graphical user interface.

- Sometimes conflicting interests: for super computers differently tuned
algorithms are used compared to smart phones. .

- But underlying principles are the same!

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (3)

queue header

R

mag
g | _head -
unit 0 “

ma
fog | head -
unit 1 “

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (4)

ready queue

I/O queue 1/O request

time slice
expired

child
executes
interrupt wait for an
OCCurs interrupt

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (5)

> Within a system different schedulers can be distinguished:

- Short-term CPU scheduler:
* Present in all timesharing systems.

* Invoke e.g. when the current process blocks and needs to decide what
process from the ready queue is to be assigned to the CPU next.

* Needs to make a scheduling decision every ~100 ms, so needs to be fast.

- Long-term (job) scheduler:
* Decides what jobs to be loaded into memory and when.

* Common in the past and still seen in cluster computer setups: batch job
schedulers.

* Batch jobs run for a long time (hours to weeks/months). Scheduling
decisions are infrequent and therefore the algorithm can be more
sophisticated / may take more time.

* Because this scheduler decides how many jobs are brought in memory at the

same time, it controls the degree of multiprogramming.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (6)

> Processes can be characterized as follows:

- I/0 bound: regularly blocking on I/O operations or system calls.
These are processes that perform many more system calls compared to
computations. Many short CPU bursts.

- Compute bound.: processes that mainly perform computations and
not much I/O. These are almost always ready to run and do not spend
much time in wait-queues. Few long CPU bursts.

> Note that processes sometimes migrate between different
phases:

- For example a process first reads a lot of data into memory (I/O
bound).

- When the data load is completed, it starts the computation (compute
bound).

> To maximize use of the available resources, you want a good .
process mix consisting of both I/0-bound and compute-
bound processes.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (7)

> When a system supports process swapping, it can temporarily
unload a process from memory and store its state on secondary
storage.

- Frees up main memory, decreases degree of multiprogramming.

> Now a medium-term scheduler is necessary to decide what process
is unloaded and what process is brought back into memory.

swap in partially executed swap out
swapped-out processes

@

I/O waiting
queues

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

An example tree of processes

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash khelper pdflush sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
emacs tesch
pid = 9204 pid = 4005

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

pid = 9298

Universiteit Leiden. Bij ons leer je de wereld kennen

Linux “pstree” command output

$ pstree
init-+-acpid

| —-auditd---{auditd}

| -automount---4*[{automount}]
-avahi-daemon
-console-kit-dae---64*[{console-kit-da}]

| -rpc.statd

| -rpcbind

| -rsyslogd---4*[{rsyslogd}]

| -screen---2*[tcsh]

| -ssh-agent

| -sshd-+-2*[sshd---sshd---bash]

| | -sshd---sshd---tcsh---1less

| | -sshd---sshd---tcsh---telnet
| | -sshd---sshd---bash---pstree
| "-sshd---sshd

| ~-udevd---2*[udevd]

| —-udisks-daemon-+-udisks-daemon

| "-{udisks-daemon}

| -upowerd---{upowerd}
“-ypbind---2*[{ypbind}]

kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Process creation on UNIX

> Process creation on UNIX is done through the fork()
and execv() system calls.

- fork() creates a new process and sets up a copy of the parent's
address space (so running the same program).

- execv() replaces the executable image loaded into the address
space.

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Process creation on UNIX (2)

#include <sys/types.h>
#include <stdio.h=>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition Id kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Termination (2)

> Process termination is invoked either voluntarily or
involuntarily.

- Involuntarily: a parent process request a child to be
terminated. This can be done using the kill() system call.

- Some reasons for doing so:
* Task is no longer needed (user quit the program).
* Task is behaving incorrectly (when debugging).
* Task has exhausted assigned/admitted resources.

* The parent is exiting (or being involuntarily terminated itself) and
the system does not support child processes without a parent to
continue execution (cascading termination)

— If supported, a child without parent is called an orphan. .

Universiteit Leiden. Bij ons leer je de wereld kennen

Interprocess Communication

> Processes are either:
- Independent: cannot affect or be affected by other processes in the
system.

Example: process which does not share data with any other process. The
control flow of this process cannot be influenced by other processes.

- Cooperating: the opposite, so a process that can affect / be affected by
others. Broad consequences: any process that shares data is cooperating.

> Communication between cooperating processes is required:

- Information sharing: control concurrent access to files.
- Computation speedup: divide the work, merge the results.

- Modularity: communication between modules (e.g. pipelining).

> Processes may exchange information through Interprocess .
Communication (IPC) mechanisms.

- Two important models are: shared memory and message passing.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Interprocess Communication (2)

Two models: message passing (a) vs. shared memory (b)

I process A | . process A

shared memory

process B
- h

Mo|M4|Ma[Mg| ... My

(a)

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: shared memory

> Idea: allocate a block of memory that is accessible by
multiple processes.

- How this can be done with respect to isolation will be discussed
in a later chapter.

> Processes can then communicate through this shared
memory.

- Who writes what and where? This is all under the control of the
processes themselves, without OS kernel involvement.

- What if multiple processes write to the same location at the
same time?

* Not the problem of the OS kernel.

* The OS kernel does provide mechanisms to help with this:
Synchronization primitives which are covered in Chapter 5.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Indirect Communication

> In this case processes do not name each other explicitly, but
communication is done (indirectly) through a mailbox.

> The mailbox has an ID. Processes can only communicate
when they share the mailbox with the same ID.

- Note that more than two processes can take part in this
communication.

> Properties of the communication link:
- Alink is established once processes share a common mailbox.
- More than two processes may be associated with a link.
- A pair of processes can communicate through more than one mailbox. .

- Again the link may be unidirectional as well as bi-directional.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC across the network (2)

> Networking is typically defined
in terms of sockets.

- A socket is a communication host X
. . (146.86.5.20)
endpoint. A connection can be
“plugged in”.
socket
- It consists of an IP address and a (146.86.5.20:1625)
web server
port number (2 bytes). (161.25.19.8)

- You can either have a listening
socket or connecting socket. You can socket
use a connecting socket to connect (161.25.19.8:80)
to a listening socket. In case of
TCP / IP, a reliable connection Source: Silberschatz et al., Operating System Concepts, 9™
between the two sockets is formed. Edition

- UDP is a datagram protocol and
does not support the notion of
established connections.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

parent child
fd[O] fd[1] fd[O] fd[1]

Pipes

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

> Pipes are commonly used as a local IPC mechanism.

> Ordinary pipes support producer-consumer
communication and provide a unidirectional link.

- Everything that is written to the write-end of the pipe and be
read from the read-end.

- An ordinary pipe only exists within the process in which it was
created.

- How to use a pipe with multiple processes? We fork! This
duplicates the parent process including any pipes that were
created. Parent can write to write-end, child can read from

read-end. .

- Implication: parent-child relationship required.
- In Windows systems these are referred to as anonymous pipes.

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

