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Process Concept

➢ Recall:

- Program: passive entity stored on secondary storage 
(executable files); instructions & initialization data.

- Process: active entity; program in execution.

➢ Programs can be started in various ways:

- By the system itself (system start up, periodic tasks)

- By the user through a user interface (command line based, 
graphical)

- For batch systems: job submission and the job reaches the front 
of the queue.
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Process Structure
➢ Processes consist of multiple parts:

- Text section: program code, the instructions.

- Data section: initialization data for global variables

- Stack: contains temporary data, used during program 
execution to create local variables, pass function 
arguments, etc.

- Heap: contains dynamic memory allocations (new, 
malloc)

- Stack and heap are placed at opposite ends and grow 
towards each other.

- Current CPU register state, including program counter.

➢ All these parts must be prepared when the 
program is loaded in memory.

Source: Silberschatz et al., 
Operating System 
Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Process State
➢ With each process a state is associated. The following states are 

(roughly) distinguished:
- new: process is being created

- ready: process is ready to be run (waiting to be put on CPU)

- running: process is running, so executing instructions

- waiting: process is waiting for some event to occur / request to complete

- terminate: process is being terminated

➢ Note: names and availability of states differs per system.
➢ Current state of a process can be seen in e.g. top utility.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Bookkeeping Processes
It is the responsibility of the Operating System to keep 
track of:
➢ the processes that are active in the system; for instance a 

table or linked list of processes is maintained;

➢ various information associated with a process:

- allocated memory segments

- register state when process is not active (suspended/waiting)

- open files, network connections

- process identifier (pid)

- process state

- process owner

- scheduling information

- consumed CPU cycles

- etc., etc.
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Bookkeeping Processes (2)
➢ The information associated with a process 

is stored in a Process Control Block.

- Typically a C-structure.

- Linux has a struct task_struct of approx. 
500 lines.

Source: Silberschatz et al., 
Operating System Concepts, 9th 
Edition

Source: Robert Love, Linux Kernel Development, 2nd Edition
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Switching Between Processes

➢ An important capability of multiprogramming/timesharing 
systems is that of switching between different processes.

➢ This entails suspending the process that is currently running 
on the CPU and resuming another.

- Suspend: storing necessary information (“its state”) in the process 
control block. Think of program counter & register state!

- Resume: restoring information from process control block to CPU 
register.

- So, the entire state of the process is temporarily stored in memory!

➢ This is a routine that is implemented in the OS kernel and 
runs in kernel mode.

➢ We refer to this procedure as context switching.
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Switching Between Processes (2)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Switching Between Processes (3)

➢ In case of multi-core systems, processes can be separately 
switched per core.

➢ The context switch routine is hardware-dependent. It 
depends on the underlying hardware platform since it has to 
save/restore specific CPU registers.

- This implies that the amount of work this routine has to perform and 
its time duration depend on the hardware platform.

- On some systems caches need to be (partly) flushed, on others this is 
not necessary. Need to check architecture reference manuals!

➢ Context switch time is pure overhead, no useful work is done.

- So, you don't want to switch too often.

- But only switching every few minutes leads to non-interactive systems. 
An important trade-off to make.
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Threads

➢ Up till now, we considered a single process state, 
program counter and registers to be associated with a 
process.

- A single thread of execution.

➢ When speaking of multiple threads, we have a single 
process that contains multiple threads of execution.

- Every thread of execution needs a program counter, register 
state to be (re)stored and a stack.

- Process Control Block is extended or organized differently to 
accommodate this.

➢ See also Chapter 4 on Multi-Threading.
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Process Scheduling
➢ Assume we have 1 CPU available and multiple processes in 

our process list. Which process do we assign to the CPU? 
How do we decide? Who decides?

➢ The kernel decides and uses an algorithm referred to as the 
CPU scheduling algorithm.

➢ Objective of this algorithm:

- We have a resource, the CPU, and we want to maximize the use of this 
CPU.

- We have a picky user and we want to maximize responsiveness of the 
graphical user interface.

- Sometimes conflicting interests: for super computers differently tuned 
algorithms are used compared to smart phones.

- But underlying principles are the same!
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Process Scheduling (2)

➢ In an OS we commonly have multiple lists or queues of 
processes.

- An overall list of tasks registered in the system (job queue).

- A queue of processes that are ready for execution and are not 
blocking on anything (ready queue).

- A per-device queue of processes waiting for service (device 
queue, wait queue).

- A queue of processes that suspended itself (sleeping); in fact 
these are waiting for an appropriate timer interrupt.

➢ Processes migrate between the different queues.
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Process Scheduling (3)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Process Scheduling (4)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Process Scheduling (5)
➢ Within a system different schedulers can be distinguished:

- Short-term CPU scheduler:
• Present in all timesharing systems.

• Invoke e.g. when the current process blocks and needs to decide what 
process from the ready queue is to be assigned to the CPU next.

• Needs to make a scheduling decision every ~100 ms, so needs to be fast.

- Long-term (job) scheduler:
• Decides what jobs to be loaded into memory and when.

• Common in the past and still seen in cluster computer setups: batch job 
schedulers.

• Batch jobs run for a long time (hours to weeks/months). Scheduling 
decisions are infrequent and therefore the algorithm can be more 
sophisticated / may take more time.

• Because this scheduler decides how many jobs are brought in memory at the 
same time, it controls the degree of multiprogramming.
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Process Scheduling (6)
➢ Processes can be characterized as follows:

- I/O bound: regularly blocking on I/O operations or system calls. 
These are processes that perform many more system calls compared to 
computations. Many short CPU bursts.

- Compute bound: processes that mainly perform computations and 
not much I/O. These are almost always ready to run and do not spend 
much time in wait-queues. Few long CPU bursts.

➢ Note that processes sometimes migrate between different 
phases:
- For example a process first reads a lot of data into memory (I/O 

bound).
- When the data load is completed, it starts the computation (compute 

bound).

➢ To maximize use of the available resources, you want a good 
process mix consisting of both I/O-bound and compute-
bound processes.
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Process Scheduling (7)
➢ When a system supports process swapping, it can temporarily 

unload a process from memory and store its state on secondary 
storage.

- Frees up main memory, decreases degree of multiprogramming.

➢ Now a medium-term scheduler is necessary to decide what process 
is unloaded and what process is brought back into memory.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Creation of processes

➢ On creation, each process is given a number: the process 
identifier (short: pid).

➢ A parent process can create child processes.

- Who creates the first parent? The kernel does, it creates the first 
process and loads a program.

- The children can in turn create processes too, leading to a tree 
of processes.
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An example tree of processes

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Linux “pstree” command output
$ pstree
init-+-acpid
     |-auditd---{auditd}
     |-automount---4*[{automount}]
     |-avahi-daemon
     |-console-kit-dae---64*[{console-kit-da}]
     |-cron
     |-cupsd
…
     |-rpc.statd
     |-rpcbind
     |-rsyslogd---4*[{rsyslogd}]
     |-screen---2*[tcsh]
     |-ssh-agent
     |-sshd-+-2*[sshd---sshd---bash]
     |      |-sshd---sshd---tcsh---less
     |      |-sshd---sshd---tcsh---telnet
     |      |-sshd---sshd---bash---pstree
     |      `-sshd---sshd
     |-udevd---2*[udevd]
     |-udisks-daemon-+-udisks-daemon
     |               `-{udisks-daemon}
     |-upowerd---{upowerd}
     `-ypbind---2*[{ypbind}]
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Creation of processes (2)

➢ Many choices can be made when creating new 
processes:

- Should all resources of the parent be shared with the child? Or 
only a subset, or nothing?

- Should the parent wait (block) until the child has finished? Or 
may both processes execute concurrently?

- What about open files? Network connections?

- What if the parent terminates while the child is still active?
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Process creation on UNIX

➢ Process creation on UNIX is done through the fork() 
and execv() system calls.

- fork() creates a new process and sets up a copy of the parent's 
address space (so running the same program).

- execv() replaces the executable image loaded into the address 
space.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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fork() system call

➢ fork() creates a new process.

- “The child process is an exact copy of the calling process.”

- “Except for process ID, parent process ID”.

➢ Return value of fork():

- < 0: operation failed.

- == 0: returned to the child process.

- > 0: returned to the parent process, indicates process ID of 
child.
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exec() system call

➢ exec(): “replace the process image”.

- Text, data segment, stack, heap.

- File descriptor state not modified!

➢ So, for instance,  load  the program “/bin/ls”  in 
memory.
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Process creation on UNIX (2)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Process Termination

➢ Process termination is invoked either voluntarily or 
involuntarily.

- Voluntarily: process performs exit() system call.

• OS kernel will deallocate all resources held by this process and free 
the task struct.

• If a parent process was waiting (wait() system call) it is informed 
of the termination and the return value (status code) is 
communicated.

– If no parent is waiting the process becomes a zombie process 
until it is cleaned up by the parent.

- In many systems return from main will return to a special 
routine in the startup code (e.g. _start) from which the 
exit() system call will be performed.
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Process Termination (2)

➢ Process termination is invoked either voluntarily or 
involuntarily.

- Involuntarily: a parent process request a child to be 
terminated. This can be done using the kill() system call.

- Some reasons for doing so:

• Task is no longer needed (user quit the program).

• Task is behaving incorrectly (when debugging).

• Task has exhausted assigned/admitted resources.

• The parent is exiting (or being involuntarily terminated itself) and 
the system does not support child processes without a parent to 
continue execution (cascading termination)

– If supported, a child without parent is called an orphan.
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Interprocess Communication
➢ Processes are either:

- Independent: cannot affect or be affected by other processes in the 
system.

Example: process which does not share data with any other process. The 
control flow of this process cannot be influenced by other processes.

- Cooperating: the opposite, so a process that can affect / be affected by 
others. Broad consequences: any process that shares data is cooperating.

➢ Communication between cooperating processes is required:

- Information sharing: control concurrent access to files.

- Computation speedup: divide the work, merge the results.

- Modularity: communication between modules (e.g. pipelining).

➢ Processes may exchange information through Interprocess 
Communication (IPC) mechanisms.

- Two important models are: shared memory and message passing.
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IPC examples
➢ UNIX pipelines: process A sends data to B through a pipe. A 

pipe can be seen as IPC mechanism.

- Example of a producer – consumer system.

➢ Modern web browser implementation:

- In the past web browsers were a single process: if a tab crashed, the 
entire browser crashed.

- These days a separate process per tab, if a tab crashes, only that tab 
crashes.

- Tab processes communicate with the master process through IPC 
mechanisms.

➢ Apache web server can start multiple processes to serve 
incoming requests; takes advantages of multi-processor 
systems.
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Interprocess Communication (2)

Two models: message passing (a) vs. shared memory (b)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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IPC: shared memory

➢ Idea: allocate a block of memory that is accessible by 
multiple processes.

- How this can be done with respect to isolation will be discussed 
in a later chapter.

➢ Processes can then communicate through this shared 
memory.

- Who writes what and where? This is all under the control of the 
processes themselves, without OS kernel involvement.

- What if multiple processes write to the same location at the 
same time?

• Not the problem of the OS kernel.

• The OS kernel does provide mechanisms to help with this: 
Synchronization primitives which are covered in Chapter 5.
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IPC: Message Passing

➢ Idea: provide system calls to send and receive messages.

- No shared memory needed.

- Because system calls are used, the actual copying of the data 
from one process to the other is performed by the OS kernel.

- Besides communication, message passing is also used for 
process synchronization.

➢ Typically two calls are present:

- send(message)

- recv(message)

- message is either fixed size or variable-size.
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IPC: Message Passing (2)

➢ Various choices can be made when providing message 
passing primitives:

- Direct vs. indirect communication

- Synchronous vs. asynchronous communication

• Blocking vs. non-blocking

- Bounded vs. unbounded buffers
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IPC: Direct Communication

➢ With direct communication the sender must explicitly 
name the recipient, and the recipient must name the 
sender:

- send(P, message)      send message to P

- recv(Q, message)       receive message from Q

➢ This results in a communication link with the following 
properties:

- Matching send/receive calls automatically establish a link

- A link always consists of (exactly one) pair of processes

- The link may the unidirectional as well as bi-directional
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IPC: Indirect Communication

➢ In this case processes do not name each other explicitly, but 
communication is done (indirectly) through a mailbox.

➢ The mailbox has an ID. Processes can only communicate 
when they share the mailbox with the same ID.

- Note that more than two processes can take part in this 
communication.

➢ Properties of the communication link:

- A link is established once processes share a common mailbox.

- More than two processes may be associated with a link.

- A pair of processes can communicate through more than one mailbox.

- Again the link may be unidirectional as well as bi-directional.
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IPC: Indirect Communication (2)

➢ Example:

- create(A)                   create a mailbox A

- send(A, message)    send a message to mailbox A

- recv(A, message)  receive a message from mailbox A

➢ Problem!!

- L and M are trying to receive a message from A. K sends a single 
message to A. Who receives the message?
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IPC: Indirect Communication (2)

➢ Example:

- create(A)                   create a mailbox A

- send(A, message)    send a message to mailbox A

- recv(A, message)  receive a message from mailbox A

➢ Problem!!

- L and M are trying to receive a message from A. K sends a single 
message to A. Who receives the message?

- Implementor must choose (and make clear in documentation):

• Allow at most two processes to be associated with a mailbox.

• Allow at most one process to perform a recv() on a mailbox at the 
same time.

• The OS kernel arbitrarily choses a recipient.
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IPC: Synchronization

➢ Synchronous or blocking communication:

- With a blocking send, the sender blocks until the recipient has 
received the message (using a recv() call).

- Blocking receive: block until a sender sends a message.

- By pairing blocking send with blocking receive a 
synchronization primitive can be built: rendezvous messaging.

• A process can only continue execution from the rendezvous point if 
the other process has reached that point as well. So they must meet 
before either can continue.
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IPC: Synchronization (2)

➢ On the other hand we have asynchronous or non-
blocking communication:

- Non-blocking send: send the message and continue.

- Non-blocking receive: try to receive, if a message is waiting then 
this message is received otherwise an empty message.

• Often associated with a timeout: wait for a period of time, if no 
message comes in, return an empty message.

➢ Some systems support various combinations, you can 
perform non-blocking sends and blocking receives, and 
so on.
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IPC: Buffering

➢ In the case of non-blocking communication, the OS 
kernel must buffer the messages.

➢ Three options:

- Unbounded buffer: the buffer is “unlimited” in size (of course 
until system memory is full).

- Bounded buffer: the buffer has a fixed set. A non-blocking send 
to a full buffer is turned into a blocking send (or send failure).

- Zero capacity buffer (or no buffer): in this case send and 
receive calls must match up (rendezvous messaging).
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IPC across the network
➢ Naturally, IPC can be extended to involve processes 

running on different systems.

➢ These systems may even run different operating 
systems, as long as they agree on a set of (network) 
protocols.

➢ Low-level network communication is done using the 
TCP/IP and UDP/IP protocols.

- Other network protocols are built on top of this: HTTP, SMTP, 
SSH, IRC.

- See also the bachelor course “Netwerken”, 3rd year.
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IPC across the network (2)
➢ Networking is typically defined 

in terms of sockets.

- A socket is a communication 
endpoint. A connection can be 
“plugged in”.

- It consists of an IP address and a 
port number (2 bytes).

- You can either have a listening 
socket or connecting socket. You can 
use a connecting socket to connect 
to a listening socket. In case of 
TCP/IP, a reliable connection 
between the two sockets is formed.

- UDP is a datagram protocol and 
does not support the notion of 
established connections.

Source: Silberschatz et al., Operating System Concepts, 9th 
Edition
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Remote Procedure Calls

➢ Easy way to do IPC over the network.

➢ Instead of local procedure call, call a function on a 
different machine.

➢ Transfer of function arguments, return value over the 
network all handled for you.

➢ Structured messages, structure already defined.

➢ Also frequently used to implement “web services”: XML-
RPC, SOAP, JSON-RPC.
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Pipes

➢ Pipes are commonly used as a local IPC mechanism.

➢ Ordinary pipes support producer-consumer 
communication and provide a unidirectional link.

- Everything that is written to the write-end of the pipe and be 
read from the read-end.

- An ordinary pipe only exists within the process in which it was 
created.

- How to use a pipe with multiple processes? We fork! This 
duplicates the parent process including any pipes that were 
created. Parent can write to write-end, child can read from 
read-end.

- Implication: parent-child relationship required.
- In Windows systems these are referred to as anonymous pipes.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Named Pipes

➢ Next to ordinary/anonymous pipes, some systems also 
support named pipes.

➢ These pipes are accessible through a file created on the 
file system.

➢ More than two processes can access this pipe.

➢ Communication is bidirectional.

➢ Named pipes are for example used to communicate with 
a database daemon (DBMS) that is running on the local 
machine.

- In such a case, we do not have to wrap all our queries (and 
results) in TCP/IP packets.
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End of Chapter 3.


