
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System
Concepts

Ch. 3: Processes

Silberschatz, Galvin & Gagne

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Concept

➢ Recall:

- Program: passive entity stored on secondary storage
(executable files); instructions & initialization data.

- Process: active entity; program in execution.

➢ Programs can be started in various ways:

- By the system itself (system start up, periodic tasks)

- By the user through a user interface (command line based,
graphical)

- For batch systems: job submission and the job reaches the front
of the queue.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Structure
➢ Processes consist of multiple parts:

- Text section: program code, the instructions.

- Data section: initialization data for global variables

- Stack: contains temporary data, used during program
execution to create local variables, pass function
arguments, etc.

- Heap: contains dynamic memory allocations (new,
malloc)

- Stack and heap are placed at opposite ends and grow
towards each other.

- Current CPU register state, including program counter.

➢ All these parts must be prepared when the
program is loaded in memory.

Source: Silberschatz et al.,
Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process State
➢ With each process a state is associated. The following states are

(roughly) distinguished:
- new: process is being created

- ready: process is ready to be run (waiting to be put on CPU)

- running: process is running, so executing instructions

- waiting: process is waiting for some event to occur / request to complete

- terminate: process is being terminated

➢ Note: names and availability of states differs per system.
➢ Current state of a process can be seen in e.g. top utility.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Bookkeeping Processes
It is the responsibility of the Operating System to keep
track of:
➢ the processes that are active in the system; for instance a

table or linked list of processes is maintained;

➢ various information associated with a process:

- allocated memory segments

- register state when process is not active (suspended/waiting)

- open files, network connections

- process identifier (pid)

- process state

- process owner

- scheduling information

- consumed CPU cycles

- etc., etc.

Universiteit Leiden. Bij ons leer je de wereld kennen

Bookkeeping Processes (2)
➢ The information associated with a process

is stored in a Process Control Block.

- Typically a C-structure.

- Linux has a struct task_struct of approx.
500 lines.

Source: Silberschatz et al.,
Operating System Concepts, 9th
Edition

Source: Robert Love, Linux Kernel Development, 2nd Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Switching Between Processes

➢ An important capability of multiprogramming/timesharing
systems is that of switching between different processes.

➢ This entails suspending the process that is currently running
on the CPU and resuming another.

- Suspend: storing necessary information (“its state”) in the process
control block. Think of program counter & register state!

- Resume: restoring information from process control block to CPU
register.

- So, the entire state of the process is temporarily stored in memory!

➢ This is a routine that is implemented in the OS kernel and
runs in kernel mode.

➢ We refer to this procedure as context switching.

Universiteit Leiden. Bij ons leer je de wereld kennen

Switching Between Processes (2)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Switching Between Processes (3)

➢ In case of multi-core systems, processes can be separately
switched per core.

➢ The context switch routine is hardware-dependent. It
depends on the underlying hardware platform since it has to
save/restore specific CPU registers.

- This implies that the amount of work this routine has to perform and
its time duration depend on the hardware platform.

- On some systems caches need to be (partly) flushed, on others this is
not necessary. Need to check architecture reference manuals!

➢ Context switch time is pure overhead, no useful work is done.

- So, you don't want to switch too often.

- But only switching every few minutes leads to non-interactive systems.
An important trade-off to make.

Universiteit Leiden. Bij ons leer je de wereld kennen

Threads

➢ Up till now, we considered a single process state,
program counter and registers to be associated with a
process.

- A single thread of execution.

➢ When speaking of multiple threads, we have a single
process that contains multiple threads of execution.

- Every thread of execution needs a program counter, register
state to be (re)stored and a stack.

- Process Control Block is extended or organized differently to
accommodate this.

➢ See also Chapter 4 on Multi-Threading.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling
➢ Assume we have 1 CPU available and multiple processes in

our process list. Which process do we assign to the CPU?
How do we decide? Who decides?

➢ The kernel decides and uses an algorithm referred to as the
CPU scheduling algorithm.

➢ Objective of this algorithm:

- We have a resource, the CPU, and we want to maximize the use of this
CPU.

- We have a picky user and we want to maximize responsiveness of the
graphical user interface.

- Sometimes conflicting interests: for super computers differently tuned
algorithms are used compared to smart phones.

- But underlying principles are the same!

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (2)

➢ In an OS we commonly have multiple lists or queues of
processes.

- An overall list of tasks registered in the system (job queue).

- A queue of processes that are ready for execution and are not
blocking on anything (ready queue).

- A per-device queue of processes waiting for service (device
queue, wait queue).

- A queue of processes that suspended itself (sleeping); in fact
these are waiting for an appropriate timer interrupt.

➢ Processes migrate between the different queues.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (3)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (4)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (5)
➢ Within a system different schedulers can be distinguished:

- Short-term CPU scheduler:
• Present in all timesharing systems.

• Invoke e.g. when the current process blocks and needs to decide what
process from the ready queue is to be assigned to the CPU next.

• Needs to make a scheduling decision every ~100 ms, so needs to be fast.

- Long-term (job) scheduler:
• Decides what jobs to be loaded into memory and when.

• Common in the past and still seen in cluster computer setups: batch job
schedulers.

• Batch jobs run for a long time (hours to weeks/months). Scheduling
decisions are infrequent and therefore the algorithm can be more
sophisticated / may take more time.

• Because this scheduler decides how many jobs are brought in memory at the
same time, it controls the degree of multiprogramming.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (6)
➢ Processes can be characterized as follows:

- I/O bound: regularly blocking on I/O operations or system calls.
These are processes that perform many more system calls compared to
computations. Many short CPU bursts.

- Compute bound: processes that mainly perform computations and
not much I/O. These are almost always ready to run and do not spend
much time in wait-queues. Few long CPU bursts.

➢ Note that processes sometimes migrate between different
phases:
- For example a process first reads a lot of data into memory (I/O

bound).
- When the data load is completed, it starts the computation (compute

bound).

➢ To maximize use of the available resources, you want a good
process mix consisting of both I/O-bound and compute-
bound processes.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Scheduling (7)
➢ When a system supports process swapping, it can temporarily

unload a process from memory and store its state on secondary
storage.

- Frees up main memory, decreases degree of multiprogramming.

➢ Now a medium-term scheduler is necessary to decide what process
is unloaded and what process is brought back into memory.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Creation of processes

➢ On creation, each process is given a number: the process
identifier (short: pid).

➢ A parent process can create child processes.

- Who creates the first parent? The kernel does, it creates the first
process and loads a program.

- The children can in turn create processes too, leading to a tree
of processes.

Universiteit Leiden. Bij ons leer je de wereld kennen

An example tree of processes

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Linux “pstree” command output
$ pstree
init-+-acpid
 |-auditd---{auditd}
 |-automount---4*[{automount}]
 |-avahi-daemon
 |-console-kit-dae---64*[{console-kit-da}]
 |-cron
 |-cupsd
…
 |-rpc.statd
 |-rpcbind
 |-rsyslogd---4*[{rsyslogd}]
 |-screen---2*[tcsh]
 |-ssh-agent
 |-sshd-+-2*[sshd---sshd---bash]
 | |-sshd---sshd---tcsh---less
 | |-sshd---sshd---tcsh---telnet
 | |-sshd---sshd---bash---pstree
 | `-sshd---sshd
 |-udevd---2*[udevd]
 |-udisks-daemon-+-udisks-daemon
 | `-{udisks-daemon}
 |-upowerd---{upowerd}
 `-ypbind---2*[{ypbind}]

Universiteit Leiden. Bij ons leer je de wereld kennen

Creation of processes (2)

➢ Many choices can be made when creating new
processes:

- Should all resources of the parent be shared with the child? Or
only a subset, or nothing?

- Should the parent wait (block) until the child has finished? Or
may both processes execute concurrently?

- What about open files? Network connections?

- What if the parent terminates while the child is still active?

Universiteit Leiden. Bij ons leer je de wereld kennen

Process creation on UNIX

➢ Process creation on UNIX is done through the fork()
and execv() system calls.

- fork() creates a new process and sets up a copy of the parent's
address space (so running the same program).

- execv() replaces the executable image loaded into the address
space.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

fork() system call

➢ fork() creates a new process.

- “The child process is an exact copy of the calling process.”

- “Except for process ID, parent process ID”.

➢ Return value of fork():

- < 0: operation failed.

- == 0: returned to the child process.

- > 0: returned to the parent process, indicates process ID of
child.

Universiteit Leiden. Bij ons leer je de wereld kennen

exec() system call

➢ exec(): “replace the process image”.

- Text, data segment, stack, heap.

- File descriptor state not modified!

➢ So, for instance, load the program “/bin/ls” in
memory.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process creation on UNIX (2)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Termination

➢ Process termination is invoked either voluntarily or
involuntarily.

- Voluntarily: process performs exit() system call.

• OS kernel will deallocate all resources held by this process and free
the task struct.

• If a parent process was waiting (wait() system call) it is informed
of the termination and the return value (status code) is
communicated.

– If no parent is waiting the process becomes a zombie process
until it is cleaned up by the parent.

- In many systems return from main will return to a special
routine in the startup code (e.g. _start) from which the
exit() system call will be performed.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Termination (2)

➢ Process termination is invoked either voluntarily or
involuntarily.

- Involuntarily: a parent process request a child to be
terminated. This can be done using the kill() system call.

- Some reasons for doing so:

• Task is no longer needed (user quit the program).

• Task is behaving incorrectly (when debugging).

• Task has exhausted assigned/admitted resources.

• The parent is exiting (or being involuntarily terminated itself) and
the system does not support child processes without a parent to
continue execution (cascading termination)

– If supported, a child without parent is called an orphan.

Universiteit Leiden. Bij ons leer je de wereld kennen

Interprocess Communication
➢ Processes are either:

- Independent: cannot affect or be affected by other processes in the
system.

Example: process which does not share data with any other process. The
control flow of this process cannot be influenced by other processes.

- Cooperating: the opposite, so a process that can affect / be affected by
others. Broad consequences: any process that shares data is cooperating.

➢ Communication between cooperating processes is required:

- Information sharing: control concurrent access to files.

- Computation speedup: divide the work, merge the results.

- Modularity: communication between modules (e.g. pipelining).

➢ Processes may exchange information through Interprocess
Communication (IPC) mechanisms.

- Two important models are: shared memory and message passing.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC examples
➢ UNIX pipelines: process A sends data to B through a pipe. A

pipe can be seen as IPC mechanism.

- Example of a producer – consumer system.

➢ Modern web browser implementation:

- In the past web browsers were a single process: if a tab crashed, the
entire browser crashed.

- These days a separate process per tab, if a tab crashes, only that tab
crashes.

- Tab processes communicate with the master process through IPC
mechanisms.

➢ Apache web server can start multiple processes to serve
incoming requests; takes advantages of multi-processor
systems.

Universiteit Leiden. Bij ons leer je de wereld kennen

Interprocess Communication (2)

Two models: message passing (a) vs. shared memory (b)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: shared memory

➢ Idea: allocate a block of memory that is accessible by
multiple processes.

- How this can be done with respect to isolation will be discussed
in a later chapter.

➢ Processes can then communicate through this shared
memory.

- Who writes what and where? This is all under the control of the
processes themselves, without OS kernel involvement.

- What if multiple processes write to the same location at the
same time?

• Not the problem of the OS kernel.

• The OS kernel does provide mechanisms to help with this:
Synchronization primitives which are covered in Chapter 5.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Message Passing

➢ Idea: provide system calls to send and receive messages.

- No shared memory needed.

- Because system calls are used, the actual copying of the data
from one process to the other is performed by the OS kernel.

- Besides communication, message passing is also used for
process synchronization.

➢ Typically two calls are present:

- send(message)

- recv(message)

- message is either fixed size or variable-size.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Message Passing (2)

➢ Various choices can be made when providing message
passing primitives:

- Direct vs. indirect communication

- Synchronous vs. asynchronous communication

• Blocking vs. non-blocking

- Bounded vs. unbounded buffers

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Direct Communication

➢ With direct communication the sender must explicitly
name the recipient, and the recipient must name the
sender:

- send(P, message) send message to P

- recv(Q, message) receive message from Q

➢ This results in a communication link with the following
properties:

- Matching send/receive calls automatically establish a link

- A link always consists of (exactly one) pair of processes

- The link may the unidirectional as well as bi-directional

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Indirect Communication

➢ In this case processes do not name each other explicitly, but
communication is done (indirectly) through a mailbox.

➢ The mailbox has an ID. Processes can only communicate
when they share the mailbox with the same ID.

- Note that more than two processes can take part in this
communication.

➢ Properties of the communication link:

- A link is established once processes share a common mailbox.

- More than two processes may be associated with a link.

- A pair of processes can communicate through more than one mailbox.

- Again the link may be unidirectional as well as bi-directional.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Indirect Communication (2)

➢ Example:

- create(A) create a mailbox A

- send(A, message) send a message to mailbox A

- recv(A, message) receive a message from mailbox A

➢ Problem!!

- L and M are trying to receive a message from A. K sends a single
message to A. Who receives the message?

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Indirect Communication (2)

➢ Example:

- create(A) create a mailbox A

- send(A, message) send a message to mailbox A

- recv(A, message) receive a message from mailbox A

➢ Problem!!

- L and M are trying to receive a message from A. K sends a single
message to A. Who receives the message?

- Implementor must choose (and make clear in documentation):

• Allow at most two processes to be associated with a mailbox.

• Allow at most one process to perform a recv() on a mailbox at the
same time.

• The OS kernel arbitrarily choses a recipient.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Synchronization

➢ Synchronous or blocking communication:

- With a blocking send, the sender blocks until the recipient has
received the message (using a recv() call).

- Blocking receive: block until a sender sends a message.

- By pairing blocking send with blocking receive a
synchronization primitive can be built: rendezvous messaging.

• A process can only continue execution from the rendezvous point if
the other process has reached that point as well. So they must meet
before either can continue.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Synchronization (2)

➢ On the other hand we have asynchronous or non-
blocking communication:

- Non-blocking send: send the message and continue.

- Non-blocking receive: try to receive, if a message is waiting then
this message is received otherwise an empty message.

• Often associated with a timeout: wait for a period of time, if no
message comes in, return an empty message.

➢ Some systems support various combinations, you can
perform non-blocking sends and blocking receives, and
so on.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC: Buffering

➢ In the case of non-blocking communication, the OS
kernel must buffer the messages.

➢ Three options:

- Unbounded buffer: the buffer is “unlimited” in size (of course
until system memory is full).

- Bounded buffer: the buffer has a fixed set. A non-blocking send
to a full buffer is turned into a blocking send (or send failure).

- Zero capacity buffer (or no buffer): in this case send and
receive calls must match up (rendezvous messaging).

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC across the network
➢ Naturally, IPC can be extended to involve processes

running on different systems.

➢ These systems may even run different operating
systems, as long as they agree on a set of (network)
protocols.

➢ Low-level network communication is done using the
TCP/IP and UDP/IP protocols.

- Other network protocols are built on top of this: HTTP, SMTP,
SSH, IRC.

- See also the bachelor course “Netwerken”, 3rd year.

Universiteit Leiden. Bij ons leer je de wereld kennen

IPC across the network (2)
➢ Networking is typically defined

in terms of sockets.

- A socket is a communication
endpoint. A connection can be
“plugged in”.

- It consists of an IP address and a
port number (2 bytes).

- You can either have a listening
socket or connecting socket. You can
use a connecting socket to connect
to a listening socket. In case of
TCP/IP, a reliable connection
between the two sockets is formed.

- UDP is a datagram protocol and
does not support the notion of
established connections.

Source: Silberschatz et al., Operating System Concepts, 9th
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Remote Procedure Calls

➢ Easy way to do IPC over the network.

➢ Instead of local procedure call, call a function on a
different machine.

➢ Transfer of function arguments, return value over the
network all handled for you.

➢ Structured messages, structure already defined.

➢ Also frequently used to implement “web services”: XML-
RPC, SOAP, JSON-RPC.

Universiteit Leiden. Bij ons leer je de wereld kennen

Pipes

➢ Pipes are commonly used as a local IPC mechanism.

➢ Ordinary pipes support producer-consumer
communication and provide a unidirectional link.

- Everything that is written to the write-end of the pipe and be
read from the read-end.

- An ordinary pipe only exists within the process in which it was
created.

- How to use a pipe with multiple processes? We fork! This
duplicates the parent process including any pipes that were
created. Parent can write to write-end, child can read from
read-end.

- Implication: parent-child relationship required.
- In Windows systems these are referred to as anonymous pipes.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Named Pipes

➢ Next to ordinary/anonymous pipes, some systems also
support named pipes.

➢ These pipes are accessible through a file created on the
file system.

➢ More than two processes can access this pipe.

➢ Communication is bidirectional.

➢ Named pipes are for example used to communicate with
a database daemon (DBMS) that is running on the local
machine.

- In such a case, we do not have to wrap all our queries (and
results) in TCP/IP packets.

Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 3.

