Operating System
Concepts
Ch. 3: Processes

= Universiteit Leiden
The Netherlands

Universiteit Leiden. Bij ons leer je de wereld kennen .



Universiteit Leiden. Bij ons leer je de wereld kennen



Process Structure

> Processes consist of multiple parts:
- Text section: program code, the instructions.
- Data section: initialization data for global variables

- Stack: contains temporary data, used during program
execution to create local variables, pass function
arguments, etc.

- Heap: contains dynamic memory allocations (new,
malloc)

- Stack and heap are placed at opposite ends and grow
towards each other.

- Current CPU register state, including program counter.

Source: Silberschatz et al.,
Operating System
Concepts, 9™ Edition

> All these parts must be prepared when the
program is loaded in memory.
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Process State

> With each process a state is associated. The following states are
(roughly) dlstlngulshed

new: process is being created
- ready: process is ready to be run (waiting to be put on CPU)
- running: process is running, so executing instructions

- waiting: process is waiting for some event to occur / request to complete

- terminate: process is being terminated

> Note: names and availability of states differs per system.
> Current state of a process can be seen in e.g. top utility.

admitted interrupt i

scheduler dispatch

I/O or event completion I/0O or event wait

Source: Silberschatz et al., Operating System Concepts, 9™ Edition d kennen



Universiteit Leiden. Bij ons leer je de wereld kennen



Bookkeeping Processes (2)

> The information associated with a process

is stored in a Process Control Block. process state
- Typically a C-structure. process number
- Linux hasastruct task struct of approx.

500 lines program counter

struct task_struct .
— registers

struct task_ struct

struct task_struct

memory limits

struct task_struct

list of open files

unsigned long state;

int prio;

‘ unsigned long policy;
struct task_struct *parent;
struct list_head tasks;

process descriptor pid_t pid;

Source: Silberschatz et al.,
Operating System Concepts, 9™
Edition

%{—J

the task list

Source: Robert Love, Linux Kernel Development, 2nd Edition . .
DIIVe 0 clden. Bij ons leer je de wereld kennen



Switching Between Processes

> An important capability of multiprogramming/timesharing
systems is that of switching between different processes.

> This entails suspending the process that is currently running
on the CPU and resuming another.

- Suspend: storing necessary information (“its state”) in the process
control block. Think of program counter & register state!

- Resume: restoring information from process control block to CPU
register.

- So, the entire state of the process is temporarily stored in memory!

> 'This is a routine that is implemented in the OS kernel and
runs in kernel mode.

> i

We refer to this procedure as context switching.
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Switching Between Processes (2)

process P, operating system process P,

interrupt or system call

executing ﬂ /
k

save state into PCB,

reload state from PCB,

1

interrupt or system call l executing

save state into PCB;

=~

> idle

reload state from PCB,

executing y¥

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Switching Between Processes (3)

> In case of multi-core systems, processes can be separately
switched per core.

> The context switch routine is hardware-dependent. It
depends on the underlying hardware platform since it has to
save/restore specific CPU registers.

- This implies that the amount of work this routine has to perform and
its time duration depend on the hardware platform.

- On some systems caches need to be (partly) flushed, on others this is
not necessary. Need to check architecture reference manuals!

> Context switch time is pure overhead, no useful work is done.

- So, you don't want to switch too often.

- But only switching every few minutes leads to non-interactive systems.
An important trade-off to make.
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Process Scheduling

> Assume we have 1 CPU available and multiple processes in
our process list. Which process do we assign to the CPU?
How do we decide? Who decides?

> The kernel decides and uses an algorithm referred to as the
CPU scheduling algorithm.

> Objective of this algorithm:

- We have a resource, the CPU, and we want to maximize the use of this
CPU.

- We have a picky user and we want to maximize responsiveness of the
graphical user interface.

- Sometimes conflicting interests: for super computers differently tuned
algorithms are used compared to smart phones. .

- But underlying principles are the same!
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Process Scheduling (3)

queue header

R

mag
g | _head -
unit 0 “

ma
fog | head -
unit 1 “

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Process Scheduling (4)

ready queue

I/O queue 1/O request

time slice
expired

child
executes
interrupt wait for an
OCCurs interrupt

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Process Scheduling (5)

> Within a system different schedulers can be distinguished:

- Short-term CPU scheduler:
* Present in all timesharing systems.

* Invoke e.g. when the current process blocks and needs to decide what
process from the ready queue is to be assigned to the CPU next.

* Needs to make a scheduling decision every ~100 ms, so needs to be fast.

- Long-term (job) scheduler:
* Decides what jobs to be loaded into memory and when.

* Common in the past and still seen in cluster computer setups: batch job
schedulers.

* Batch jobs run for a long time (hours to weeks/months). Scheduling
decisions are infrequent and therefore the algorithm can be more
sophisticated / may take more time.

* Because this scheduler decides how many jobs are brought in memory at the

same time, it controls the degree of multiprogramming.
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Process Scheduling (6)

> Processes can be characterized as follows:

- I/0 bound: regularly blocking on I/O operations or system calls.
These are processes that perform many more system calls compared to
computations. Many short CPU bursts.

- Compute bound.: processes that mainly perform computations and
not much I/O. These are almost always ready to run and do not spend
much time in wait-queues. Few long CPU bursts.

> Note that processes sometimes migrate between different
phases:

- For example a process first reads a lot of data into memory (I/O
bound).

-  When the data load is completed, it starts the computation (compute
bound).

> To maximize use of the available resources, you want a good .
process mix consisting of both I/0-bound and compute-
bound processes.
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Process Scheduling (7)

> When a system supports process swapping, it can temporarily
unload a process from memory and store its state on secondary
storage.

- Frees up main memory, decreases degree of multiprogramming.

> Now a medium-term scheduler is necessary to decide what process
is unloaded and what process is brought back into memory.

swap in partially executed swap out
swapped-out processes

@

I/O waiting
queues

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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An example tree of processes

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash khelper pdflush sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
emacs tesch
pid = 9204 pid = 4005

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

pid = 9298
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Linux “pstree” command output

$ pstree
init-+-acpid

| —-auditd---{auditd}

| -automount---4*[{automount}]
-avahi-daemon
-console-kit-dae---64*[{console-kit-da}]

| -rpc.statd

| -rpcbind

| -rsyslogd---4*[{rsyslogd}]

| -screen---2*[tcsh]

| -ssh-agent

| -sshd-+-2*[sshd---sshd---bash]

| | -sshd---sshd---tcsh---1less

| | -sshd---sshd---tcsh---telnet
| | -sshd---sshd---bash---pstree
| "-sshd---sshd

| ~-udevd---2*[udevd]

| —-udisks-daemon-+-udisks-daemon

| "-{udisks-daemon}

| -upowerd---{upowerd}
“-ypbind---2*[{ypbind}]

kennen
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Process creation on UNIX

> Process creation on UNIX is done through the fork()
and execv() system calls.

- fork() creates a new process and sets up a copy of the parent's
address space (so running the same program).

- execv() replaces the executable image loaded into the address
space.

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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Process creation on UNIX (2)

#include <sys/types.h>
#include <stdio.h=>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

}

Source: Silberschatz et al., Operating System Concepts, 9™ Edition Id kennen
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Process Termination (2)

> Process termination is invoked either voluntarily or
involuntarily.

- Involuntarily: a parent process request a child to be
terminated. This can be done using the kill( ) system call.

- Some reasons for doing so:
* Task is no longer needed (user quit the program).
* Task is behaving incorrectly (when debugging).
* Task has exhausted assigned/admitted resources.

* The parent is exiting (or being involuntarily terminated itself) and
the system does not support child processes without a parent to
continue execution (cascading termination)

— If supported, a child without parent is called an orphan. .
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Interprocess Communication

> Processes are either:
- Independent: cannot affect or be affected by other processes in the
system.

Example: process which does not share data with any other process. The
control flow of this process cannot be influenced by other processes.

- Cooperating: the opposite, so a process that can affect / be affected by
others. Broad consequences: any process that shares data is cooperating.

> Communication between cooperating processes is required:

- Information sharing: control concurrent access to files.
- Computation speedup: divide the work, merge the results.

- Modularity: communication between modules (e.g. pipelining).

> Processes may exchange information through Interprocess .
Communication (IPC) mechanisms.

- Two important models are: shared memory and message passing.
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Interprocess Communication (2)

Two models: message passing (a) vs. shared memory (b)

I process A | . process A

shared memory

process B
- h

Mo|M4|Ma[Mg| ... My

(a)

Source: Silberschatz et al., Operating System Concepts, 9™ Edition
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IPC: shared memory

> Idea: allocate a block of memory that is accessible by
multiple processes.

- How this can be done with respect to isolation will be discussed
in a later chapter.

> Processes can then communicate through this shared
memory.

- Who writes what and where? This is all under the control of the
processes themselves, without OS kernel involvement.

- What if multiple processes write to the same location at the
same time?

* Not the problem of the OS kernel.

* The OS kernel does provide mechanisms to help with this:
Synchronization primitives which are covered in Chapter 5.
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IPC: Indirect Communication

> In this case processes do not name each other explicitly, but
communication is done (indirectly) through a mailbox.

> The mailbox has an ID. Processes can only communicate
when they share the mailbox with the same ID.

- Note that more than two processes can take part in this
communication.

> Properties of the communication link:
- Alink is established once processes share a common mailbox.
- More than two processes may be associated with a link.
- A pair of processes can communicate through more than one mailbox. .

- Again the link may be unidirectional as well as bi-directional.
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IPC across the network (2)

> Networking is typically defined
in terms of sockets.

- A socket is a communication host X
. . (146.86.5.20)
endpoint. A connection can be
“plugged in”.
socket
- It consists of an IP address and a (146.86.5.20:1625)
web server
port number (2 bytes). (161.25.19.8)

- You can either have a listening
socket or connecting socket. You can socket
use a connecting socket to connect (161.25.19.8:80)
to a listening socket. In case of
TCP / IP, a reliable connection Source: Silberschatz et al., Operating System Concepts, 9™
between the two sockets is formed. Edition

- UDP is a datagram protocol and
does not support the notion of
established connections.
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parent child
fd[O] fd[1] fd[O] fd[1]

Pipes

Source: Silberschatz et al., Operating System Concepts, 9™ Edition

> Pipes are commonly used as a local IPC mechanism.

> Ordinary pipes support producer-consumer
communication and provide a unidirectional link.

- Everything that is written to the write-end of the pipe and be
read from the read-end.

- An ordinary pipe only exists within the process in which it was
created.

- How to use a pipe with multiple processes? We fork! This
duplicates the parent process including any pipes that were
created. Parent can write to write-end, child can read from

read-end. .

- Implication: parent-child relationship required.
- In Windows systems these are referred to as anonymous pipes.
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