
Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System
Concepts

Ch. 1: Introduction

Silberschatz, Galvin & Gagne

Universiteit Leiden. Bij ons leer je de wereld kennen

An Operating System

➢ What?

➢ Why?

➢ Where?

➢ Definition?

➢ How?

Universiteit Leiden. Bij ons leer je de wereld kennen

What?

➢ What is an Operating System? The textbooks answers:

“A program that acts as an intermediary between a user of a
computer and the computer hardware”

➢ A single program or software package? Hard to define.

Universiteit Leiden. Bij ons leer je de wereld kennen

Why?

What are the goals of an Operating System? Why are these
developed?

➢ Make a computer system convenient to use.

- Imagine everybody has to write their own drivers and write bare-metal
software ...

➢ Use computer hardware in an efficient manner.

- Share available resources

➢ So, combined: allow a system to be used by multiple users
and provide an interface to write programs against.

Universiteit Leiden. Bij ons leer je de wereld kennen

Structure of computer systems

➢ The textbook divides a computer system into 4 main
components:

- Hardware, providing the resources used for computing: CPU,
main memory, disk drives, network interfaces.

- Operating System, which controls and coordinates the use of
the hardware and provides an abstract interface to the
hardware.

• Note: situated between hardware and application programs.

- Application Programs, programs that run on top of the
operating systems and solve the user's problems.

- Users of the system, people but also other computers and
machines.

Universiteit Leiden. Bij ons leer je de wereld kennen

Structure of computer systems (2)

➢ Schematically:

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Where?

➢ Operating Systems are implemented and optimized for
different purposes.

- Desktop computers: easy of use, good performance. Energy
consumption or inefficient use of the hardware not immediately
a concern.

- Smartphones: modern UI, low response times, good battery life.

- (Classical) shared computers: good performance,
responsiveness, efficient use of available resources, fair
scheduling.

• This is in fact where it all started: mainframe computers, later
minicomputers and microcomputers.

- Various embedded systems, which do not have a clear user
interface. These typically take action in response to observed
sensor inputs.

Universiteit Leiden. Bij ons leer je de wereld kennen

Mainframe

Source: https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH3165.html

Universiteit Leiden. Bij ons leer je de wereld kennen

Minicomputer

Source: http://nl.wikipedia.org/wiki/Minicomputer#mediaviewer/File:Pdp-11-40.jpg

Universiteit Leiden. Bij ons leer je de wereld kennen

Microcomputer

Source: http://www.tpsoft.com/museum_images/IBM%20PC.JPG

Universiteit Leiden. Bij ons leer je de wereld kennen

Towards a definition
➢ There is in fact no universally accepted definition of

“Operating System”.

➢ Often much more than a single “program”. What is counted
as part of the OS? What isn't?

➢ An OS typically consists of:

- A kernel: a program (executable) that is always loaded in memory and
in control in the background.

- System programs that support the kernel.

➢ Some systems come with various application programs
(Notepad, Patience, various Linux packages) that one would
not count as part of the OS.

- And what about web browsers? Part of major lawsuit in the past!

Universiteit Leiden. Bij ons leer je de wereld kennen

Main responsibilities

An Operating System has two main responsibilities:

- Resource allocation
• The system manages and operates available resources (CPU cycles,

main memory, space on disk drives, etc.)

• Ensures efficient and fair use: has policies in place to decide what
to do in case of conflicting requests.

- Control & isolation
• It controls the execution of programs to prevent errors, harm to the

computer and other users.

Universiteit Leiden. Bij ons leer je de wereld kennen

How?
➢ To be able to discuss how operating systems are implemented, we

must understand the underlying hardware organization.

➢ Why? Because an operating system controls and operates the
hardware comprising a computer system.

➢ The hardware available influences the design of the operating
system!

- For instance, what is the backing store from which programs are
loaded? Tape? Hard drive? SSD? Non-volatile storage?

- And on the other hand, the operating system must supply device
drivers that can control/operate these devices.

Universiteit Leiden. Bij ons leer je de wereld kennen

Organization of computer systems
➢ As we know from computer architecture: it all starts with CPU(s)

and main memory. These are connected by a memory bus.

➢ Next to this, there are many peripherals.

- These either share the same memory bus, or are connected with an additional
bus.

- CPUs and devices operate concurrently

- CPUs and devices compete for access to main memory.

Source: Silberschatz et al.,
Operating System
Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Source: http://tazalink.blogspot.nl/2011/02/some-useful-parts-of-your-pc.html

Universiteit Leiden. Bij ons leer je de wereld kennen

Source:
http://en.wikipedia.org/wiki/No
rthbridge_%28computing%29

Universiteit Leiden. Bij ons leer je de wereld kennen

Universiteit Leiden. Bij ons leer je de wereld kennen

Operation of computer systems

➢ When the system is powered on, a bootstrap program is
loaded.

- Often stored in a ROM or EEPROM chip on the mainboard.

- BIOS, EFI, OpenFirmwire, ...

- Its purpose is to perform low-level initialization of the system
and to load the kernel into memory and jump to it.

➢ The kernel further initializes all devices and internal
data structures.

➢ After that, it sits idle awaiting commands.

- From the user, system programs, or other computers.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operation of computer systems (2)

➢ How does the kernel receive commands?

- Interrupts; raised by devices.

- Exceptions or traps; raised by software due to an error or to put
a request.

➢ Example interrupts

- Keyboard controller: When key strokes are present in the internal
buffer, the keyboard controller generates an interrupt.

- Disk drive: OS requests transfer of disk blocks. Once completed, disk
I/O controller generates an interrupt.

- Networking: When a network packet is received, an interrupt is
generated.

Universiteit Leiden. Bij ons leer je de wereld kennen

Device Interrupts

➢ Each device has a controller (typically). These
controllers and the CPU execute concurrently.

➢ The controller has a local data buffer in which (some)
data can be stored that is currently processed.

➢ At some point, this data needs to be transferred to main
memory (or vice versa).

➢ Using an interrupt, service is requested from the CPU to
transfer this data.

- Nowadays Direct-Memory Access (DMA) is more common.

Universiteit Leiden. Bij ons leer je de wereld kennen

Device Interrupts (2)

➢ An interrupts raises a line on the CPU, causing it to
suspend its current task (and save state: registers &
program counter) and jump to an interrupt service
routine (ISR).

➢ Which routine to jump to?

- Either poll an interrupt controller to find out,

- or we have a vectored interrupt system.

➢ From an interrupt vector follows a pointer of an ISR to
jump to, which will handle this interrupt.

➢ ISRs are installed by the operating system.

Universiteit Leiden. Bij ons leer je de wereld kennen

Direct Memory Access (DMA)
➢ DMA allows device controllers to access main memory directly,

without involvement of the CPU.

➢ So, the CPU can do something useful while the device controller
performs the data transfer to/from memory.

➢ The device controller signals the CPU when the entire transfer is
completed, instead of when its local data buffer is full and needs
transfer.

Source: Silberschatz et al.,
Operating System Concepts,
9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Storage structure

➢ The CPU can directly access main memory.

- Load/store instructions. Random access.

- Important: volatile, switch off power and all contents are lost.

➢ A secondary storage level is present that is non-volatile
and has greater capacity.

- Classically: tape storage.

- Hard drives: glass platters with magnetic recording material.
The platters spin at high RPM and disk heads move.

- Flash memory & Solid State Drives (SSDs).

• Faster than hard drives, no moving parts.

• Various formats / packages.

Universiteit Leiden. Bij ons leer je de wereld kennen

Storage structure (2)

➢ Storage systems are organized in a hierarchy:

- Trade-offs: speed, cost, capacity, volatility.

➢ Different storage systems have different controllers and
require different device drivers.

Universiteit Leiden. Bij ons leer je de wereld kennen

Storage Device Hierarchy

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Caching
➢ We already discussed the concept of caching in the Computer

Architecture course:

- The focus was on caching contents of the “slow” RAM.

- Multiple level cache: L1, L2, L3. Associativity. Inclusive vs. Exclusive.

➢ Caching is in fact a generic concept:

- Temporarily store data from a slower storage level in a faster storage
level.

• Often a copy, but as as saw in CA this is not necessarily required.

- Faster storage level has less capacity, so only part of the slower level
can be cached.

- Therefore, we need policies for management & sizing of the cache and
replacement of cache contents.

- This happens at many, many places in modern computer systems! Not
only in hardware, but also in software.

Universiteit Leiden. Bij ons leer je de wereld kennen

Caching (2)
➢ Example caches:

- Disk block cache in main memory (RAM).

- Web browser cache (caches data retrieved from web server over
network).

- Font cache (cache of all fonts installed on a system)

- Flash-based cache of hard disk-based RAID array.

➢ Cache operating like the “RAM cache”:

- First check if requested data is available in the cache.

- If not, fetch it from the slower storage level.

- Note: this can in fact trigger a chain of caching! (See later on).

Universiteit Leiden. Bij ons leer je de wereld kennen

Caching (3)
➢ An example of data migration from lower to higher storage levels in

the cache of disk access:

- OS requests a disk read: data is transferred from hard disk to buffer
cache in main memory (RAM).

- Program performs load/store instruction from/to this data buffer:

• Data is loaded into a CPU register.

• Along the way, the data will be cached in CPU cache.

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Caching (4)
➢ Caching can become very complicated:

- Caching in a multi-core processor: cache coherency (see CA).

- Software caches accesses by multiple processes.

- Caches of data stored on another computer over the network
(distributed systems).

➢ Sizing (can be dynamic), when to replace/remove
entries, when to write back, etc.

There are only two hard things in Computer Science: cache invalidation and
naming things.

 -- Phil Karlton

Universiteit Leiden. Bij ons leer je de wereld kennen

Example Quantification of Different
Storage Levels

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Source: Systems Performance: Enterprise and the Cloud, Brendan Gregg.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computer System Architecture

Computer systems can be organized in different ways.

➢ Single-processor system

- Only general-purpose CPUs are counted.

- Becoming harder to come by! All smartphones, laptops, desktops are
now multi-core.

➢ Multi-processor system

- Choice of multiple “cores” on one chip, or multiple CPUs within a
single system (or both!).

➢ Clustered system

- Combine multiple computers (nodes) into a single system, interconnect
with high-speed network.

- Require specially written software (parallelized software).

Universiteit Leiden. Bij ons leer je de wereld kennen

Computer System Architecture (2)

➢ Multi-processor systems

- First appeared in server systems dual or quad CPUs on a single
motherboard.

- These days also common in desktops, laptops and smartphones.

- Typical core counts:

• Smartphones: 2 – 6 cores. Combination of “small” and “large”
cores becoming widespread as well (e.g. ARM big.LITTLE).

• Laptops: up to 4 cores.

• Desktops: 4 – 6 cores.

• Servers: up to 20 – 24 cores per CPU, 2 CPUs per server is very
common.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computer System Architecture (3)

➢ Why multi-processor systems?
- Increased throughput

• More cores: do more work in less time.

• Recall Amdahl's Law! N processors does often not result in N times
speedup.

- Economy of scale
• One 4o-core computer cheaper to acquire and operate than 40 single-core

computers.
– In particular, also think of cooling in data centers!

• Disks, power supplies, etc. can be shared.

- Increased reliability
• Some systems can continue operation when one CPU fails. In this case

multi-processor systems lead to more reliable systems.

• Unfortunately not the case for common Intel-based servers

➢ Most common structure: Symmetric MultiProcessing (SMP)
- All CPUs are “equal”: then can all perform the same kind of work.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Structure

➢ Very simple Operating Systems only support one user,
one program at a time.

- DOS comes to mind.

- Only the very basics of an environments in which programs can
be executed are provided.

➢ A single user & single program cannot make efficient
use of all available hardware resources.

- Also think about the time mainframes were used.

- A single program cannot keep the CPU and all I/O devices busy
all the time.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Structure (2)
➢ To allow for more efficient use of the

hardware, multiprogramming
systems were designed.

- These were batch systems: there was a
queue of jobs that were processed one
after the other.

- Multiprogramming systems keep multiple
jobs in memory.

- A job scheduler determines the next job
to load into memory.

- When a job blocks on I/O (tape drive) or
otherwise, the system can switch to
another job. The CPU is kept busy at all
times.

Source: Silberschatz et al.,
Operating System Concepts, 9th
Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Structure (3)
➢ When computers became more powerful, supervisors could

interrupt batch processing to run an interactive job (e.g. for
debugging).

➢ This was later further extended to timesharing (multitasking)
systems.

- The CPU rapidly switches jobs, allowing each of them to make progress
for a short period of time.

- Users have the impression the computer is running multiple jobs
(tasks) at the same time.

- Short response times (< 1 second), resulting in multiple interactive
programs running “at the same time”.

- For instance, mainframes could now execute many different interactive
programs for different users. (Think of old-school reservation systems).

- Swapping & Virtual memory are techniques to be able to deal with
process mixes that do not entirely fit in main memory.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Structure (4)

➢ Imagine a system with multiple programs active that all
have equal & unrestricted access to the hardware
resources.

- Uncoordinated writes to for instance hard drives.

- Interleaved writes to printers.

- Active programs can write in each others main memory.

➢ Clearly, there must be an entity with more privileges
that is in control.

- This is the Operating System kernel.

- Control and isolation responsibility.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization

➢ An Operating System relies on dual-mode operation.

- User-mode and kernel-mode.

- Hardware maintains a mode bit (often in a system register),
which indicates whether the current instruction is executed in
user-mode or kernel-mode.

- Privileged instructions can only be executed in kernel-mode.

- So, the kernel is protected from user-mode processes and only
the kernel can directly control hardware and control user
processes through the privileged instructions.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization (2)

➢ When the kernel boots, it is running in kernel-mode.

➢ Once the first instruction of an ordinary program is run, the
system switches to user-mode.

➢ How do we get back into kernel-mode?

- Recall: interrupt-driven system.

- Hardware interrupt: interrupt service routine is a kernel routine that
executes in kernel-mode.

- Software interrupt: because of a fault (division by zero), or system
call request (trap mechanism).

- When the HW/SW interrupt handler returns, the system switches back
to user-mode.

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization (3)
➢ Schematic overview of system call invocation:

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization (3)
➢ Schematic overview of system call invocation:

➢ Assembly example (recall Security course):

Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization (4)

➢ Hardware interrupts are important besides software
interrupts (traps).

- What if no program ever performs a system call? But simply
executes an infinite loop?

➢ Modern hardware contains a programmable timer
controller.

- This generates interrupts at set times.

- The OS kernel is guaranteed to periodically obtain control of the
system this way.

- Clearly, we only want the OS kernel to be able to program this
timer controller, hence another reason to have privileged
instructions.

Universiteit Leiden. Bij ons leer je de wereld kennen

Organization System Organization (5)

➢ Now, a very quick tour of the main components of
Operating System kernels:

- Process Management

- Memory Management

- File Management

- Mass-Storage Management

- I/O Subsystem

- Protection & Security

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Management

➢ A program is a passive entity on a storage device. It
consists of simply instructions (code) and initialization
data.

➢ When a program is loaded into memory:

- a stack and heap are also allocated

- it will maintain state in CPU registers (most notably the
program counter!)

- may open files and other resources

- is now an active entity that we refer to as a process.

Universiteit Leiden. Bij ons leer je de wereld kennen

Process Management (2)

➢ Typical tasks:

- Creation of processes

- Termination of processes

- Suspend / resume of processes (process control)

- Setting scheduler properties

- Providing primitives for communication between processes
(InterProcess Communication: IPC)

Universiteit Leiden. Bij ons leer je de wereld kennen

Memory Management

➢ Programs and associated data must be loaded into main
memory for execution.

- The CPU can only access main memory directly.

➢ But where?

- The OS kernel must manage the main memory and keep track of
what parts are in use and what parts are free.

- Processes may request additional memory allocations, these
must be handled appropriately.

- When more memory space is requested than is available, what
to do?

• Perhaps temporarily move processes (or part thereof) out of the
main memory onto secondary storage.

Universiteit Leiden. Bij ons leer je de wereld kennen

File Management

➢ Data is organized in terms of files and directories.

- The OS kernel must provide this uniform and logical view.

- And regardless of actual storage device (hard disk, floppy, SD
card, etc.)

➢ Tasks include:

- Organization of files into directories / Virtual File System
• Manipulation thereof: creating/remove files/directories.

- Access control

- Mapping VFS onto secondary storage.
• How are directories, directory entries and metadata encoded on the

actual disk?

Universiteit Leiden. Bij ons leer je de wereld kennen

Mass-Storage Management

➢ The devices on which files are stored must be managed
and operated.

➢ Non-volatile devices that are used for long term and
large-scale data storage.

➢ As these devices are typically significantly slower than
main memory, good datastructures and algorithms are
paramount for good performance of the computer
system as a whole.

➢ Tasks:

- Disk scheduling (disk arm movement)

- Free-space management & block allocation

Universiteit Leiden. Bij ons leer je de wereld kennen

I/O subsystem

➢ Provide a generic interface for accessing I/O devices.

- For instance, in UNIX “everything is a file”. For every device a
file is present in /dev through which it can be accessed.

➢ Provide a generic device driver interface, such that
device drivers can be written and provided by third-
parties.

➢ Provide generic implementations of buffering, caching
and spooling.

- Spooling is the temporal storage of output data for a certain
device, before it is sent to that device.

- Typically done for devices that do not allow random access,
such as printers and tape drives.

Universiteit Leiden. Bij ons leer je de wereld kennen

Protection & Security

➢ Protection: Controlling access to resources provided by
OS.

- Notion of user IDs and group IDs.

- These IDs are associated with active processes, files stored on
file systems, etc.

- ID verification is performed when attempting to access a certain
resource (access control).

➢ Security: defending a system from internal and external
attacks.

➢ We do not go into detail in this course: we have a
separate course on Security in the bachelor.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environments

➢ Operating Systems are used in many different
computing environment – a brief overview.

➢ Traditional:

- Originally: mainframes with terminals attached

- '90s: file/print servers with stand-alone PCs connected as
clients through an office network.

- Now: networking & internet ubiquitous (wireless & 4G LTE).
Access to interactive web services from desktops, laptops,
tablets, smartphones, watches.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environments (2)
➢ Client-Server computing

- A client connects with a server to request a service.
• Could be a file or compute service.

- Servers respond to requests generated by clients.

- Although this dates back to original office networks, this model is still
in use today: websites & in particular web services.

➢ Distributed computing
- A collection of (possibly different) machines connected by a network

- Together, these machines provide services to users.

- Modern websites invoke many different components running on
different machines to complete requests. Microservices.

- In the past, Network Operating Systems have been developed that
combine a collection of computers into a single entity.

- Peer-to-peer computing: dynamic systems, all nodes are equal.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environments (3)
➢ Virtualization: allow an Operating System to be executed as a

(guest) process within a host Operating System.

- Very widely used these days: data centers (consolidation), but also in
development: testing & QA.

- Virtualization services are provided by a Virtual Machine Manager
(VMM).

- Guest Operating System must have been compiled for same
architecture. Code is run directly on the CPU.

- Some systems extend the mode bit mechanism such that guest OS
obtains lower privilege level than host OS.

➢ When the guest OS is compiled for a different architecture
than the host, we consider this to be emulation. The
instructions of the guest OS must be interpreted to be able to
execute it (= slow).

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environments (4)

Source: Silberschatz et al., Operating System Concepts, 9th Edition

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environments (5)

➢ Compute, storage resources available “through the
cloud”, “as a service”.

- Can (temporarily) rent compute and storage services from
vendors. Pay for what you use.

- Not important where these resources are physically located.

• (Although, the closer, the lower the latency).
- Based on virtualization technology.

- SaaS: Software as a Service: “rent” use of software through a
subscription.

- Vendors: Amazon EC2, Google Cloud Engine, Rackspace, and
many many more.

Universiteit Leiden. Bij ons leer je de wereld kennen

Computing Environment (6)

➢ Real-time Operating Systems

- Special purpose and limited OS. Specially designed and tuned
for the final application.

- Often used in embedded devices.

- Not always a clear UI. Trigger actions in response to sensor
data.

• And these actions must be triggered within a set deadline. This
MUST be guaranteed, otherwise the system is not of much use.

- Very widespread!

- Think cars, airbag controllers, airplanes, digital TV receivers, ...

Universiteit Leiden. Bij ons leer je de wereld kennen

Open Source Operating Systems

➢ Many Operating Systems are “Open Source”.

- Examples: Linux, FreeBSD, OpenBSD, Minix, Haiku, ReactOS,
Contiki.

- The source code of such systems is freely available.

- Contrary to e.g. Microsoft Windows and parts of macOS.

• (macOS is in fact based on an Open Source kernel).

Universiteit Leiden. Bij ons leer je de wereld kennen

Source: http://en.wikipedia.org/wiki/Unix-like

Universiteit Leiden. Bij ons leer je de wereld kennen

UNIX, Linux, FreeBSD, POSIX, ...

What are the differences between UNIX and Linux?

➢ First UNIX was developed end of '60, beginning of '70.

➢ Late '70s/beginning 80's, many derivatives of the original
UNIX system appeared: BSD, Solaris, HP-UX, AIX, etc.

➢ Are these different systems compatible?

➢ People started to work on standardization:

- Single UNIX Specification (SUS)

- POSIX

- Common definition of SUS and POSIX: Open Group Base specification

Universiteit Leiden. Bij ons leer je de wereld kennen

UNIX, Linux, FreeBSD, POSIX, … (2)

So when is a system a UNIX?

➢ Officially, only these systems that are SUS certified (and thus
compliant) may be called UNIX systems.

➢ All others that try to adhere to these standards are "UNIX-
like".

Linux, FreeBSD, etc are UNIX-like operating systems

➢ E.g. Linux: implemented from scratch but tries to be fully
compliant.

➢ Linux is just the kernel!

➢ System utilities typically the GNU utilities.

➢ (This is why Debian is called GNU/Linux).

Universiteit Leiden. Bij ons leer je de wereld kennen

UNIX, Linux, FreeBSD, POSIX, … (3)

Practical differences between UNIX and UNIX-like:

➢ Differences in file system organization. Some things are
put at different locations.

➢ Subtle differences in command line tools. GNU tools
often have more options and are easier to use (less
picky).

- For example, BSD “cp” does not allow options to be
specified after the file names, GNU “cp” does.

➢ GNU sometimes has extensions to the C library. Such
extensions are not available on other systems.

Universiteit Leiden. Bij ons leer je de wereld kennen

End of Chapter 1.

