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An Operating System

➢ What?

➢ Why?

➢ Where?

➢ Definition?

➢ How?
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What?

➢ What is an Operating System? The textbooks answers:

“A program that acts as an intermediary between a user of a 
computer and the computer hardware”

➢ A single program or software package? Hard to define.
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Why?

What are the goals of an Operating System? Why are these 
developed?

➢ Make a computer system convenient to use.

- Imagine everybody has to write their own drivers and write bare-metal 
software ...

➢ Use computer hardware in an efficient manner.

- Share available resources

➢ So, combined: allow a system to be used by multiple users 
and provide an interface to write programs against.
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Structure of computer systems

➢ The textbook divides a computer system into 4 main 
components:

- Hardware, providing the resources used for computing: CPU, 
main memory, disk drives, network interfaces.

- Operating System, which controls and coordinates the use of 
the hardware and provides an abstract interface to the 
hardware.

• Note: situated between hardware and application programs.

- Application Programs, programs that run on top of the 
operating systems and solve the user's problems. 

- Users of the system, people but also other computers and 
machines.
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Structure of computer systems (2)

➢ Schematically:

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Where?

➢ Operating Systems are implemented and optimized for 
different purposes.

- Desktop computers: easy of use, good performance. Energy 
consumption or inefficient use of the hardware not immediately 
a concern.

- Smartphones: modern UI, low response times, good battery life.

- (Classical) shared computers: good performance, 
responsiveness, efficient use of available resources, fair 
scheduling.

• This is in fact where it all started: mainframe computers, later 
minicomputers and microcomputers.

- Various embedded systems, which do not have a clear user 
interface. These typically take action in response to observed 
sensor inputs.
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Mainframe

Source: https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH3165.html
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Minicomputer

Source: http://nl.wikipedia.org/wiki/Minicomputer#mediaviewer/File:Pdp-11-40.jpg
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Microcomputer

Source: http://www.tpsoft.com/museum_images/IBM%20PC.JPG
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Towards a definition
➢ There is in fact no universally accepted definition of 

“Operating System”.

➢ Often much more than a single “program”. What is counted 
as part of the OS? What isn't?

➢ An OS typically consists of:

- A kernel: a program (executable) that is always loaded in memory and 
in control in the background.

- System programs that support the kernel.

➢ Some systems come with various application programs 
(Notepad, Patience, various Linux packages) that one would 
not count as part of the OS.

- And what about web browsers? Part of major lawsuit in the past!
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Main responsibilities

An Operating System has two main responsibilities:

- Resource allocation
• The system manages and operates available resources (CPU cycles, 

main memory, space on disk drives, etc.)

• Ensures efficient and fair use: has policies in place to decide what 
to do in case of conflicting requests.

- Control & isolation
• It controls the execution of programs to prevent errors, harm to the 

computer and other users.
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How?
➢ To be able to discuss how operating systems are implemented, we 

must understand the underlying hardware organization.

➢ Why? Because an operating system controls and operates the 
hardware comprising a computer system.

➢ The hardware available influences the design of the operating 
system!

- For instance, what is the backing store from which programs are 
loaded? Tape? Hard drive? SSD? Non-volatile storage?

- And on the other hand, the operating system must supply device 
drivers that can control/operate these devices.
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Organization of computer systems
➢ As we know from computer architecture: it all starts with CPU(s) 

and main memory. These are connected by a memory bus.

➢ Next to this, there are many peripherals.

- These either share the same memory bus, or are connected with an additional 
bus.

- CPUs and devices operate concurrently

- CPUs and devices compete for access to main memory.

Source: Silberschatz et al., 
Operating System 
Concepts, 9th Edition
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Source: http://tazalink.blogspot.nl/2011/02/some-useful-parts-of-your-pc.html
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Source: 
http://en.wikipedia.org/wiki/No
rthbridge_%28computing%29
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Operation of computer systems

➢ When the system is powered on, a bootstrap program is 
loaded.

- Often stored in a ROM or EEPROM chip on the mainboard.

- BIOS, EFI, OpenFirmwire, ...

- Its purpose is to perform low-level initialization of the system 
and to load the kernel into memory and jump to it.

➢ The kernel further initializes all devices and internal 
data structures.

➢ After that, it sits idle awaiting commands.

- From the user, system programs, or other computers.
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Operation of computer systems (2)

➢ How does the kernel receive commands?

- Interrupts; raised by devices.

- Exceptions or traps; raised by software due to an error or to put 
a request.

➢ Example interrupts

- Keyboard controller: When key strokes are present in the internal 
buffer, the keyboard controller generates an interrupt.

- Disk drive: OS requests transfer of disk blocks. Once completed, disk 
I/O controller generates an interrupt.

- Networking: When a network packet is received, an interrupt is 
generated.
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Device Interrupts

➢ Each device has a controller (typically). These 
controllers and the CPU execute concurrently.

➢ The controller has a local data buffer in which (some) 
data can be stored that is currently processed.

➢ At some point, this data needs to be transferred to main 
memory (or vice versa).

➢ Using an interrupt, service is requested from the CPU to 
transfer this data.

- Nowadays Direct-Memory Access (DMA) is more common.
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Device Interrupts (2)

➢ An interrupts raises a line on the CPU, causing it to 
suspend its current task (and save state: registers & 
program counter) and jump to an interrupt service 
routine (ISR).

➢ Which routine to jump to?

- Either poll an interrupt controller to find out,

- or we have a vectored interrupt system.

➢ From an interrupt vector follows a pointer of an ISR to 
jump to, which will handle this interrupt.

➢ ISRs are installed by the operating system.
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Direct Memory Access (DMA)
➢ DMA allows device controllers to access main memory directly, 

without involvement of the CPU.

➢ So, the CPU can do something useful while the device controller 
performs the data transfer to/from memory.

➢ The device controller signals the CPU when the entire transfer is 
completed, instead of when its local data buffer is full and needs 
transfer.

Source: Silberschatz et al., 
Operating System Concepts, 
9th Edition
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Storage structure

➢ The CPU can directly access main memory.

- Load/store instructions. Random access.

- Important: volatile, switch off power and all contents are lost.

➢ A secondary storage level is present that is non-volatile 
and has greater capacity.

- Classically: tape storage.

- Hard drives: glass platters with magnetic recording material. 
The platters spin at high RPM and disk heads move.

- Flash memory & Solid State Drives (SSDs).

• Faster than hard drives, no moving parts.

• Various formats / packages.
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Storage structure (2)

➢ Storage systems are organized in a hierarchy:

- Trade-offs: speed, cost, capacity, volatility.

➢ Different storage systems have different controllers and 
require different device drivers.
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Storage Device Hierarchy

Source: Silberschatz et al., Operating System Concepts, 9th Edition



Universiteit Leiden. Bij ons leer je de wereld kennen

Caching
➢ We already discussed the concept of caching in the Computer 

Architecture course:

- The focus was on caching contents of the “slow” RAM.

- Multiple level cache: L1, L2, L3. Associativity. Inclusive vs. Exclusive.

➢ Caching is in fact a generic concept:

- Temporarily store data from a slower storage level in a faster storage 
level.

• Often a copy, but as as saw in CA this is not necessarily required.

- Faster storage level has less capacity, so only part of the slower level 
can be cached.

- Therefore, we need policies for management & sizing of the cache and 
replacement of cache contents.

- This happens at many, many places in modern computer systems! Not 
only in hardware, but also in software.
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Caching (2)
➢ Example caches:

- Disk block cache in main memory (RAM).

- Web browser cache (caches data retrieved from web server over 
network).

- Font cache (cache of all fonts installed on a system)

- Flash-based cache of hard disk-based RAID array.

➢ Cache operating like the “RAM cache”:

- First check if requested data is available in the cache.

- If not, fetch it from the slower storage level.

- Note: this can in fact trigger a chain of caching! (See later on).
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Caching (3)
➢ An example of data migration from lower to higher storage levels in 

the cache of disk access:

- OS requests a disk read: data is transferred from hard disk to buffer 
cache in main memory (RAM).

- Program performs load/store instruction from/to this data buffer:

• Data is loaded into a CPU register.

• Along the way, the data will be cached in CPU cache.

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Caching (4)
➢ Caching can become very complicated:

- Caching in a multi-core processor: cache coherency (see CA).

- Software caches accesses by multiple processes.

- Caches of data stored on another computer over the network 
(distributed systems).

➢ Sizing (can be dynamic), when to replace/remove 
entries, when to write back, etc.

There are only two hard things in Computer Science: cache invalidation and 
naming things.

    -- Phil Karlton
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Example Quantification of Different 
Storage Levels

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Source: Systems Performance: Enterprise and the Cloud, Brendan Gregg.
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Computer System Architecture

Computer systems can be organized in different ways.

➢ Single-processor system

- Only general-purpose CPUs are counted.

- Becoming harder to come by! All smartphones, laptops, desktops are 
now multi-core.

➢ Multi-processor system

- Choice of multiple “cores” on one chip, or multiple CPUs within a 
single system (or both!).

➢ Clustered system

- Combine multiple computers (nodes) into a single system, interconnect 
with high-speed network.

- Require specially written software (parallelized software).



Universiteit Leiden. Bij ons leer je de wereld kennen

Computer System Architecture (2)

➢ Multi-processor systems

- First appeared in server systems dual or quad CPUs on a single 
motherboard.

- These days also common in desktops, laptops and smartphones.

- Typical core counts:

• Smartphones: 2 – 6 cores. Combination of “small” and “large” 
cores becoming widespread as well (e.g. ARM big.LITTLE).

• Laptops: up to 4 cores.

• Desktops: 4 – 6 cores.

• Servers: up to 20 – 24 cores per CPU, 2 CPUs per server is very 
common.
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Computer System Architecture (3)

➢ Why multi-processor systems?
- Increased throughput

• More cores: do more work in less time.

• Recall Amdahl's Law! N processors does often not result in N times 
speedup.

- Economy of scale
• One 4o-core computer cheaper to acquire and operate than 40 single-core 

computers.
– In particular, also think of cooling in data centers!

• Disks, power supplies, etc. can be shared.

- Increased reliability
• Some systems can continue operation when one CPU fails. In this case 

multi-processor systems lead to more reliable systems.

• Unfortunately not the case for common Intel-based servers ....

➢ Most common structure: Symmetric MultiProcessing (SMP)
- All CPUs are “equal”: then can all perform the same kind of work.
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Operating System Structure

➢ Very simple Operating Systems only support one user, 
one program at a time.

- DOS comes to mind.

- Only the very basics of an environments in which programs can 
be executed are provided.

➢ A single user & single program cannot make efficient 
use of all available hardware resources.

- Also think about the time mainframes were used.

- A single program cannot keep the CPU and all I/O devices busy 
all the time.



Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Structure (2)
➢ To allow for more efficient use of the 

hardware, multiprogramming 
systems were designed.

- These were batch systems: there was a 
queue of jobs that were processed one 
after the other.

- Multiprogramming systems keep multiple 
jobs in memory.

- A job scheduler determines the next job 
to load into memory.

- When a job blocks on I/O (tape drive) or 
otherwise, the system can switch to 
another job. The CPU is kept busy at all 
times.

Source: Silberschatz et al., 
Operating System Concepts, 9th 
Edition
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Operating System Structure (3)
➢ When computers became more powerful, supervisors could 

interrupt batch processing to run an interactive job (e.g. for 
debugging).

➢ This was later further extended to timesharing (multitasking) 
systems.

- The CPU rapidly switches jobs, allowing each of them to make progress 
for a short period of time.

- Users have the impression the computer is running multiple jobs 
(tasks) at the same time.

- Short response times (< 1 second), resulting in multiple interactive 
programs running “at the same time”.

- For instance, mainframes could now execute many different interactive 
programs for different users. (Think of old-school reservation systems).

- Swapping & Virtual memory are techniques to be able to deal with 
process mixes that do not entirely fit in main memory.
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Operating System Structure (4)

➢ Imagine a system with multiple programs active that all 
have equal & unrestricted access to the hardware 
resources.

- Uncoordinated writes to for instance hard drives.

- Interleaved writes to printers.

- Active programs can write in each others main memory.

➢ Clearly, there must be an entity with more privileges 
that is in control.

- This is the Operating System kernel.

- Control and isolation responsibility.
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Operating System Organization

➢ An Operating System relies on dual-mode operation.

- User-mode and kernel-mode.

- Hardware maintains a mode bit (often in a system register), 
which indicates whether the current instruction is executed in 
user-mode or kernel-mode.

- Privileged instructions can only be executed in kernel-mode.

- So, the kernel is protected from user-mode processes and only 
the kernel can directly control hardware and control user 
processes through the privileged instructions.
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Operating System Organization (2)

➢ When the kernel boots, it is running in kernel-mode.

➢ Once the first instruction of an ordinary program is run, the 
system switches to user-mode.

➢ How do we get back into kernel-mode?

- Recall: interrupt-driven system.

- Hardware interrupt: interrupt service routine is a kernel routine that 
executes in kernel-mode.

- Software interrupt: because of a fault (division by zero), or system 
call request (trap mechanism).

- When the HW/SW interrupt handler returns, the system switches back 
to user-mode.
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Operating System Organization (3)
➢ Schematic overview of system call invocation:

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Operating System Organization (3)
➢ Schematic overview of system call invocation:

➢ Assembly example (recall Security course):



Universiteit Leiden. Bij ons leer je de wereld kennen

Operating System Organization (4)

➢ Hardware interrupts are important besides software 
interrupts (traps).

- What if no program ever performs a system call? But simply 
executes an infinite loop?

➢ Modern hardware contains a programmable timer 
controller.

- This generates interrupts at set times.

- The OS kernel is guaranteed to periodically obtain control of the 
system this way.

- Clearly, we only want the OS kernel to be able to program this 
timer controller, hence another reason to have privileged 
instructions.
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Organization System Organization (5)

➢ Now, a very quick tour of the main components of 
Operating System kernels:

- Process Management

- Memory Management

- File Management

- Mass-Storage Management

- I/O Subsystem

- Protection & Security
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Process Management

➢ A program is a passive entity on a storage device. It 
consists of simply instructions (code) and initialization 
data.

➢ When a program is loaded into memory:

- a stack and heap are also allocated

- it will maintain state in CPU registers (most notably the 
program counter!)

- may open files and other resources

- is now an active entity that we refer to as a process.
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Process Management (2)

➢ Typical tasks:

- Creation of processes

- Termination of processes

- Suspend / resume of processes (process control)

- Setting scheduler properties

- Providing primitives for communication between processes 
(InterProcess Communication: IPC)
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Memory Management

➢ Programs and associated data must be loaded into main 
memory for execution.

- The CPU can only access main memory directly.

➢ But where?

- The OS kernel must manage the main memory and keep track of 
what parts are in use and what parts are free.

- Processes may request additional memory allocations, these 
must be handled appropriately.

- When more memory space is requested than is available, what 
to do?

• Perhaps temporarily move processes (or part thereof) out of the 
main memory onto secondary storage.
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File Management

➢ Data is organized in terms of files and directories.

- The OS kernel must provide this uniform and logical view.

- And regardless of actual storage device (hard disk, floppy, SD 
card, etc.)

➢ Tasks include:

- Organization of files into directories / Virtual File System
• Manipulation thereof: creating/remove files/directories.

- Access control

- Mapping VFS onto secondary storage.
• How are directories, directory entries and metadata encoded on the 

actual disk?
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Mass-Storage Management

➢ The devices on which files are stored must be managed 
and operated.

➢ Non-volatile devices that are used for long term and 
large-scale data storage.

➢ As these devices are typically significantly slower than 
main memory, good datastructures and algorithms are 
paramount for good performance of the computer 
system as a whole.

➢ Tasks:

- Disk scheduling (disk arm movement)

- Free-space management & block allocation
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I/O subsystem

➢ Provide a generic interface for accessing I/O devices.

- For instance, in UNIX “everything is a file”. For every device a 
file is present in /dev through which it can be accessed.

➢ Provide a generic device driver interface, such that 
device drivers can be written and provided by third-
parties.

➢ Provide generic implementations of buffering, caching 
and spooling.

- Spooling is the temporal storage of output data for a certain 
device, before it is sent to that device.

- Typically done for devices that do not allow random access, 
such as printers and tape drives.
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Protection & Security

➢ Protection: Controlling access to resources provided by 
OS.

- Notion of user IDs and group IDs.

- These IDs are associated with active processes, files stored on 
file systems, etc.

- ID verification is performed when attempting to access a certain 
resource (access control).

➢ Security: defending a system from internal and external 
attacks.

➢ We do not go into detail in this course: we have a 
separate course on Security in the bachelor.
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Computing Environments

➢ Operating Systems are used in many different 
computing environment – a brief overview.

➢ Traditional:

- Originally: mainframes with terminals attached

- '90s: file/print servers with stand-alone PCs connected as 
clients through an office network.

- Now: networking & internet ubiquitous (wireless & 4G LTE). 
Access to interactive web services from desktops, laptops, 
tablets, smartphones, watches.
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Computing Environments (2)
➢ Client-Server computing

- A client connects with a server to request a service.
• Could be a file or compute service.

- Servers respond to requests generated by clients.

- Although this dates back to original office networks, this model is still 
in use today: websites & in particular web services.

➢ Distributed computing
- A collection of (possibly different) machines connected by a network

- Together, these machines provide services to users.

- Modern websites invoke many different components running on 
different machines to complete requests. Microservices.

- In the past, Network Operating Systems have been developed that 
combine a collection of computers into a single entity.

- Peer-to-peer computing: dynamic systems, all nodes are equal.
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Computing Environments (3)
➢ Virtualization: allow an Operating System to be executed as a 

(guest) process within a host Operating System.

- Very widely used these days: data centers (consolidation), but also in 
development: testing & QA.

- Virtualization services are provided by a Virtual Machine Manager 
(VMM).

- Guest Operating System must have been compiled for same 
architecture. Code is run directly on the CPU.

- Some systems extend the mode bit mechanism such that guest OS 
obtains lower privilege level than host OS.

➢ When the guest OS is compiled for a different architecture 
than the host, we consider this to be emulation. The 
instructions of the guest OS must be interpreted to be able to 
execute it (= slow).
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Computing Environments (4)

Source: Silberschatz et al., Operating System Concepts, 9th Edition
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Computing Environments (5)

➢ Compute, storage resources available “through the 
cloud”, “as a service”.

- Can (temporarily) rent compute and storage services from 
vendors. Pay for what you use.

- Not important where these resources are physically located.

• (Although, the closer, the lower the latency).
- Based on virtualization technology.

- SaaS: Software as a Service: “rent” use of software through a 
subscription.

- Vendors: Amazon EC2, Google Cloud Engine, Rackspace, and 
many many more.
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Computing Environment (6)

➢ Real-time Operating Systems

- Special purpose and limited OS. Specially designed and tuned 
for the final application.

- Often used in embedded devices.

- Not always a clear UI. Trigger actions in response to sensor 
data.

• And these actions must be triggered within a set deadline. This 
MUST be guaranteed, otherwise the system is not of much use.

- Very widespread!

- Think cars, airbag controllers, airplanes, digital TV receivers, ...
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Open Source Operating Systems

➢ Many Operating Systems are “Open Source”.

- Examples: Linux, FreeBSD, OpenBSD, Minix, Haiku, ReactOS, 
Contiki.

- The source code of such systems is freely available.

- Contrary to e.g. Microsoft Windows and parts of macOS.

• (macOS is in fact based on an Open Source kernel).
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Source: http://en.wikipedia.org/wiki/Unix-like
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UNIX, Linux, FreeBSD, POSIX, ...

What are the differences between UNIX and Linux?

➢ First UNIX was developed end of '60, beginning of '70.

➢ Late '70s/beginning 80's, many derivatives of the original 
UNIX system appeared: BSD, Solaris, HP-UX, AIX, etc.

➢ Are these different systems compatible?

➢ People started to work on standardization:

- Single UNIX Specification (SUS)

- POSIX

- Common definition of SUS and POSIX: Open Group Base specification
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UNIX, Linux, FreeBSD, POSIX, … (2)

So when is a system a UNIX?

➢ Officially, only these systems that are SUS certified (and thus 
compliant) may be called UNIX systems.

➢ All others that try to adhere to these standards are "UNIX-
like".

Linux, FreeBSD, etc are UNIX-like operating systems

➢ E.g. Linux: implemented from scratch but tries to be fully 
compliant.

➢ Linux is just the kernel!

➢ System utilities typically the GNU utilities.

➢  (This is why Debian is called GNU/Linux).
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UNIX, Linux, FreeBSD, POSIX, … (3)

Practical differences between UNIX and UNIX-like:

➢ Differences in file system organization. Some things are 
put at different locations.

➢ Subtle differences in command line tools. GNU tools 
often have more options and are easier to use (less 
picky).

- For example, BSD “cp” does not allow options to be 
specified after the file names, GNU “cp” does.

➢ GNU sometimes has extensions to the C library. Such 
extensions are not available on other systems.
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End of Chapter 1.


