Operating Systems 2016 Assignment 3: Virtual Memory

Deadline: Friday, April 29 before 23:59 hours.

1 Introduction

The Virtual Memory subsystem is a critical subsystem of modern operating system kernels. Each
process has its own virtual memory address space. The pages allocated in this virtual memory
area are either backed by a page in physical memory (RAM) or by a page stored on secondary
storage (such as a hard disk)ﬂ The operating system kernel must keep track of the virtual memory
address space of each process and is responsible for setting up “page tables” that will be used by
the Memory Management Unit (MMU) of the CPU to perform the address translations.

The operating system kernel that we use in this lab has been written for an ARM CPU. On this
CPU, hierarchical page tables are implemented that comprise two levels, see Figure [I] The TTBR
register points to the level 1 page table. This page table can have a size up to 16 KB, containing
4096 entries. In our case each of these entries (also called a page table descriptor (PTD)) may
point to a level 2 page tableﬂ The level 2 page table contains 256 entries and is 1 KB in size.
Each entry in the level 2 page table points to a single page of 4096 and is called a page table entry
(PTE). We leave it as an exercise to the reader to verify that a full 4 GB address space can be
described by this page table setup.

Virtual address: | | |

TTBR register

L1
page > L2
table page > v
table

Page

Figure 1: A simplified overview of two-level page tables as used on ARM architectures.

In the kernel the address range 0x80000000 - Oxffffffff (comprising 2 GB) has been re-
served for the kernel. The range 0x0 - 0x7fffffff, also 2 GB in size, is reserved for user space
pages. So, a user-space process is given an address space of 2 GB. In fact, the page tables are
split in two and two TTBR registers are used: TTBRO points to the level 1 page table for user-space
processes (so the bottom range) and TTBR1 to the level 1 page table for kernel-space. On context
switch, only TTBRO is changed and as a consequence the kernel-space pages are always mapped in.

For reasons that will soon become apparent, currently more than 2 MB of memory must be
allocated for each process in the system. In this assignment, it will be your task to improve this
by significantly decreasing the amount of memory that must be allocated for each process. The
main reason why this amount of memory is currently allocated is because all L2 page tables are
pre-allocated for each process. You will improve this by allocating L2 page tables on demand.
For each process also a stack is allocated, consisting of 32 pages. As a further improvement, you
will modify the implementation to start with a stack of a single page and allocate additional stack
pages on demand.

1However, note that the kernel we use for this lab does not support paging to secondary storage.
2The CPU also has support for large pages and sections, but we will not consider these in this assignment.

2 Requirements

We expect the following to be achieved:
e Implement on-demand allocation of L2 page tables for user-space processes:

— Initially only the L1 table is allocated, all L.2 page tables are allocated on demand.

— L2 tables are released (and invalidated in the L1 table) when no longer necessary.
Detection whether L2 tables are still in use is done in an efficient manner.

All bytes of an allocated 4096 byte physical page are used to allocate L2 page tables.

It is ascertained all L2 tables belonging to a process’ page table are released when a
process is unmapped.

e Implement lazy allocation of stack pages for user-space processes:

— Initially, only a single page is allocated as stack area.

— Page faults for user-space processes are checked to see whether an memory accesses was
attempted within the stack area. If so, the allocated stack area must be extended.

— The stack size remains maximized at 32 pages. Processes attempting to use stack space
beyond 32 pages must be terminated as they are now.

e Your submission should include a concise report (not more than two pages A4) which details
the data structures that have been designed and reports the number of processes that could
be launched at a time using proclaunch before and after the modifications. In other words:
were the modifications that have been made successful?

3 Submission and Grading

You may work in teams of at most 2 persons. Make sure that all files that you have modified
contain your names and student IDs. Please send us a “unified diff” that contains all modifications
compared to the starting point. Have an unmodified copy of the starting point extracted as
assignment3.orig and run:

diff -upr assignment3.orig/ assignment3/ > assignment3-sYYYYYYY-sXXXXXXX.diff

Check whether the diff-file contains all of the changes you have made and want to submit (open
the diff-file in an editor). Submit the diff-file together with your PDF report by e-mail to 0s2016
(at) handin (dot) liacs (dot) nl and make sure the subject of the e-mail equals “OS2016 Assign-
ment 3”. Include your names and student IDs in the e-mail.

Deadline: We expect your submissions before Friday, April 29 before 23:59. No exceptions;
deliveries after the deadline will not be graded!.

The grade is determined based on whether the program correctly implements the functionali-
ties listed in the specification above and whether the source code looks adequate: good structure,
consistent indentation, error handling, correct memory handling and comments where these are
required. Comments are usually required if the code is not immediately obvious, which often
means you had to make a deliberate decision or trade-off. Document these decisions, trade-offs
and why in the source code. Commenting on the obvious is superfluous and bad style. Note that
we may always invite teams to elaborate on their submission in an interview in case parts of the
source code need further explanation.

The maximum grade that can be obtained for this assignment is 10. The points are distributed as
follows: Code Layout & Quality (1 / 10), Report (1.5 / 10), L2 page table allocation (4.5 / 10),
Lazy stack allocation (3 / 10).

4 Kernel

We will use the same kernel as with the second assignment, however, you will be provided with a
new starting point. For more information about the kernel and programming language, please see
the text of the second assignment and the additional information on the course website.

5 Assignment

The assignment consists of two parts: (1) implement on-demand allocation of level 2 (L2) page
tables for user-space processes, (2) implement lazy allocation of user-space stack pages. In the
following two subsections we briefly detail what must be done and where modifications should be
made.

5.1 On-demand Allocation of L2 Page Tables

As has been mentioned in the introduction, the size of the user-space address space is 2 GB. So,
only half of the page tables are necessary to map this space: 8 KB (out of 16 KB) for the L1 table
and 2048 L2 tables, a total size of 8 KB + 2 MB. To test your understanding: verify this and also
verify 2 GB of memory can be mapped using this page table.

Operating system code that sets up and modifies page tables is CPU-specific code. The code
that manages ARM page tables can be found in kernel/src/arch/arm/mmu.c. A number of
important functions can be found in this file:

e hw_alloc_page_table — This function is called upon creation of a new process to allocate
the page tables.

e hw_map — Adds an address mapping (virtual, physical address pair) to the page tables.

e get_11_table — Determines the pointer to the L1 page table for a given memory map and
virtual address.

e get_12_table — Determines the pointer to the L2 page table for a given memory map and
virtual address.

e hw_unmap — Removes an address mapping from the page tables.

The memory map is a structure of the type vm_map_t, which represents a virtual memory
address range (or address space). A vm_map_t is associated with each process. The map ob-
jects contain a list of vm_region_t objects, each vm_region_t object represents a mapped virtual
memory address region within the map object. The pmap_region_t object represents a physi-
cal memory region (mapped or not), so one or more consecutive physical pages. The platform
independent code to manage vm_map_t types can be found in kernel/src/vm.c.

Before you start to implement the necessary changes we very strongly recommended you to
first study and understand the current implementation! Start in hw_alloc_page_table where
the page tables are allocated. Then study the get_12_table function where the L2 page tables
are accessed. In particular, understand how the pagetable_pa and pagetable_va pointers are
computed and why this is correct given the initial allocation in hw_alloc_page_table. Finally,
study how the get_12_table function is used in hw_map to create page table mappings.

The assignment is to remove the pre-allocation of all L2 page tables and to allocate these on
demand instead. Note: this only has to be done for user-space processes! All code dealing with
page tables for kernel-space can be left as it is. To start the implementation: modify the function
hw_alloc_proc_table to only allocate the L1 table and modify get_12_table to allocate L2
tables on demand. Pages can be allocated using the vm_map function, see also the Appendix, and
keep in mind that vm_map gives you pointers to virtual addresses. Page table entries must use
physical addresses!

Remember that the L2 table size is 1024 bytes, so one page fits 4 L2 tables. You will need to
write a number of supporting functions and you might want to introduce a “L2 table descriptor”
structure which can be used to point to L2 tables that are available (free) and that are in use.
You probably want to maintain a list of L2 tables that are in use in the vm_map_t data structure,
next to the page table pointers that are already there (see kernel/include/vm.h). We do not
specify what this data structure should look like: this is entirely up to you. You are free to use
the linked list type that is available, see the Appendix for an overview of the macros. But this is
not required at all.

You do not need to implement any special handling for out-of-memory situations. If the system
is out of memory, simply assert or call panic.

In hw_unmap you need to free L2 tables that are no longer used. If you maintain a list of
available L2 tables, you can put the L2 table that is no longer in use on this list. Do not forget to
invalidate the correct entry in the L1 table (simply by setting the value to zero). Design a method
to efficiently determine whether an L2 table is in use. You can for example bookkeep some data
in a “L2 table descriptor”.

5.2 Lazy Allocation of Stack Pages

For the second part of the assignment, we will improve the mechanism by which the stack of a
process is allocated. Currently, the entire stack consisting of 32 pages is allocated all at once.
This is done in the function hw_proc_create_user_stack in kernel/src/arch/arm/process.c.
STACK_SIZE is defined to be 32 times the page size at the top of this source code file. This is quite
a waste, as many processes will only use a small fraction of this stack space.

The idea is to only allocate a single page for the stack to start with and to allocate additional
pages when this is necessary. When is additional stack necessary? This is the case when memory
outside the currently allocated stack, but within the valid stack range, is accessed. What happens
when memory outside the currently allocated stack is accessed? This area is not mapped in the
process’ address space, so a page fault will occur. On ARM systems, the page fault handler is
called the “data abort handler”. You can find this handler as the function mmu_data_abort in
the file kernel/arch/arm/mmu.c. Note that this function is called for all page faults, so for both
kernel-space and user-space code.

Your task is to write a function that will extend the allocated stack area. Put this function in
kernel/src/arch/arm/process.c and call this function from the data abort handler. Determine
whether it is valid to continue to grow the stack, we will continue to enforce a strict limit of 32
pages (if a process needs more stack space, run the usual data abort handler code to terminate
the process). If you need to add data members to the process structure, do so in cpu_helper_t
which can be found in kernel/include/arch/arm/arch-process.h and can be accessed using
p->cpu_helper. with p of type proc_tx*.

6 Test programs
We have provided a number of test programs to help test your modifications:

e mmaptest - performs a number of memory allocations of varying sizes. Should cause various
L2 tables to be allocated.

e proclaunch <n> — takes an integer argument n and launches this amount of processes. So,
it causes n processes to be allocated and be active at the same time. Given the unmodified
code approximately 55 processes can be launched before running out of memory. To test
your implementation, can you try significantly larger numbers: 200, 300, etc.

e fibo <n> — takes an integer argument n and computes the n-th Fibonacci number using
recursive function calls. n = 20 and higher are guaranteed to need more than a single page
of stack space.

7 Report

Together with the code you will hand in, we expect you to hand in a concise report, not more
than two pages A4. Describe the data structure you have designed and implemented to point to
L2 page tables, to maintain sequences of L2 page tables and to determine whether a L2 table is
still in use or can be released.

Furthermore, we would like you to describe how many processes could be started prior to
modification and after implementing the first and second parts. Why (or why not) does this
number correspond with what you would expect? Does implementation of the lazy stack allocation
give additional benefits? You could also perform a quick test with only the second modification
enabled and the first part disabled.

A Linked List API

The kernel has a header file called 1ist.h which contains macros for the definition of linked lists
and their operations (insert, remove etc.).
The most important operations here are:

e LIST_HEAD(T) which expands to a list head type (a structure with a head and a tail pointer).
To declare a list of say pmap_region_t structures, write LIST_HEAD (pmap_region_t) mylist;.
Do not forget to set the head and tail pointers to NULL!

e LIST_ENTRY(T) which expands to a link type containing a next and previous pointer.
e LIST_EMPTY(L) is a predicate that checks if the list L is empty or not.
e LIST_FIRST(L) returns the first entry in the list L.

e LIST_NEXT(E, LNK) returns the next list entry after the entry E. LNK is the name of the link
in the type of E.

e LIST_REMOVE(L, E, LNK) removes entry E from the list L, where LNK is the name of the link
in the type of E.

e LIST_APPEND(L, E, LNK) appends an entry E to the list L.

B VM Memory Allocation Functions

You will notice that the following functions are used to perform memory allocations in the source
code you need to modify:

e vm_get_kernel_map returns a vim_map_t object with the given name (see the kernel_region_type_t
enum), usually you use this to get the VM map for the kernel heap.

e vm_map is the main memory allocation function for the kernel, it allocates virtual and physical
pages (number computed from len which is in bytes) using an optional address. The user
may supply flags to the function that indicate the access privileges of the allocated pages
(i.e. read, write, execute) and other properties such as whether the pages are to be device
memory, wired, contiguous or shared.

e vm_map_align same as vm_map but the memory will be aligned at the user specified align-
ment.

e vm_unmap unmaps and frees the virtual memory segment associated with the given address
and map.

	Introduction
	Requirements
	Submission and Grading
	Kernel
	Assignment
	On-demand Allocation of L2 Page Tables
	Lazy Allocation of Stack Pages

	Test programs
	Report
	Linked List API
	VM Memory Allocation Functions

