## Multiplexing

"From one channel to multiple channels"

How to share one medium while facilitating multiple channels of communication:



**Frequency Division and Time Division Multiplexing** 

# Frequency Division Multiplexing (FDM alla FSK)



## Standards

| # voice<br>channel | bandwidth | spectrum       | US/AT&T                    | ITU_T                      |
|--------------------|-----------|----------------|----------------------------|----------------------------|
| 12                 | 48 kHz    | 60-108 kHz     | Group                      | Group                      |
| 60                 | 240 kHz   | 312-552 kHz    | Super Group                | Super Group                |
| 300                | I,23 MHz  | 812-2044 kHz   | Super Group                | Master Group               |
| 600                | 2,52 MHz  | 564-3084 kHz   | Master Group               | Master Group               |
| 900                | 3,87 MHz  | 8,52-12.39 MHz | Master Group               | Super Master<br>Group      |
| 3600               | 16,98 MHz | 0.56-17,55 MHz | Jumbo Group                | Jumbo Group                |
| 10800              | 57,44 MHz | 3,12-60,57 MHz | Jumbo Group<br>Multiplexed | Jumbo Group<br>Multiplexed |

## Example: ADSL

**ADSL** Asymmetric Digital Subscriber Line

Originally for Video-on-Demand: less control going up – lots of image going down

Very similar to internet usage !!!!!!!

Multiple "regular" phone connections at the same time on which QAM (Quadratic Amplitude Modulation) is implemented

- Reserve lowest 25 kHz for Voice (POTS,
   Plain Old Telephone Service) 25 instead of
   5 to prevent cross talk between voice&data
- Facilitate two bands: small upstream / big downstream
- Use FDM within upstream and downstream band

## ADSL 4 kHz channels



## ADSL standards

| Version | Standard name               | Common name           | Downstream * | Upstream + | Approved in |
|---------|-----------------------------|-----------------------|--------------|------------|-------------|
| ADSL    | ANSI T1.413-1998<br>Issue 2 | ADSL                  | 8.0 Mbit/s   | 1.0 Mbit/s | 1998        |
| ADSL    | ITU G.992.1                 | ADSL (G.DMT)          | 12.0 Mbit/s  | 1.3 Mbit/s | 1999-07     |
| ADSL    | ITU G.992.1 Annex A         | ADSL over<br>POTS     | 12.0 Mbit/s  | 1.3 Mbit/s | 2001        |
| ADSL    | ITU G.992.1 Annex B         | ADSL over ISDN        | 12.0 Mbit/s  | 1.8 Mbit/s | 2005        |
| ADSL    | ITU G.992.2                 | ADSL Lite<br>(G.Lite) | 1.5 Mbit/s   | 0.5 Mbit/s | 1999-07     |
| ADSL2   | ITU G.992.3                 | ADSL2                 | 12.0 Mbit/s  | 1.3 Mbit/s | 2002-07     |
| ADSL2   | ITU G.992.3 Annex J         | ADSL2                 | 12.0 Mbit/s  | 3.5 Mbit/s |             |
| ADSL2   | ITU G.992.3 Annex L         | RE-ADSL2              | 5.0 Mbit/s   | 0.8 Mbit/s |             |
| ADSL2   | ITU G.992.4                 | splitterless<br>ADSL2 | 1.5 Mbit/s   | 0.5 Mbit/s | 2002-07     |
| ADSL2+  | ITU G.992.5                 | ADSL2+                | 24.0 Mbit/s  | 1.1 Mbit/s | 2003-05     |
| ADSL2+  | ITU G.992.5 Annex M         | ADSL2+M               | 24.0 Mbit/s  | 3.3 Mbit/s | 2008        |

### Time Division Multiplexing(TDM)



Synchronous TDM: not synchronous but frames are fixed and slots are always filled

### How is framing implemented

#### Added digit framing



#### **Pulse Stuffing**

Frequency  $> \Sigma$  (freq. of the sources)

additional bits are added at fixed position in the frame

### Relationship with data link framing

$$F_1f_2A_1F_2C_1A_2d_1C_2d_1d_2...$$

for

$$\begin{array}{c|c} F_{l}f_{l}f_{l}d_{l}d_{l}C_{l}A_{l}F_{l} \text{ in characters} \\ \psi & \downarrow & \psi \\ \text{flag} & \downarrow & \text{control} \\ \text{FCS} & \downarrow & \text{address} \end{array}$$

# Example: Telephony

#### **DS-I** transmission format

```
Voice → PCM (8000 samples per second, 8-bit)

TDM-frame = 24 (channels) x 8 bits +1 (frame bit)

= 193 bits

Data rate: 8000 x 193 = 1.544 Mbps

DATA only 23 out of 24 channels used,

24<sup>th</sup> channel has special SYNC BYTE

per channel 1 bit for user/system data

→ 7 x 23 x 8000 = 56 x 23 kbps = 56 kbps p. channel
```

# Standards Telephony

| US/JAPAN |            |         | ITU-T |           |         |
|----------|------------|---------|-------|-----------|---------|
|          | # channels | Mbps    | Level | #channels | Mbps    |
| DS-I     | 24         | 1.544   | I     | 30        | 2.048   |
| DS-IC    | 48         | 3.152   | 2     | 120       | 8.448   |
| DS-2     | 96         | 6.312   | 3     | 480       | 34.368  |
| DS-3     | 672        | 44.736  | 4     | 1920      | 139.264 |
| DS-4     | 4032       | 274.176 | 5     | 7680      | 565.148 |

### Network SWITCHING

Next to multiplexing: **switching** is required to realize multi to multi connections

Especially needed in Wide Area Networks (WAN)

Also present in Local Area Networks (LAN) or in multi processors architectures.

## Circuit Switching



- A dedicated path between two end stations is realized or channel (TDM/FDM)
- 2. Data is being transmitted (Switches don't inspect data)
- 3. Path is broken up

# Circuit switching

#### **IMPORTANT CHARACTERISTIC:**

#### **BLOCKING VS NON-BLOCKING**

Connection cannot be realized because all paths are occupied

Connection can always be realized and at any time

# Space Division Switching: non-blocking Crossbar Switch



Very costly: N<sup>2</sup> switches

# Multistage Networks

Use many small crossbar switches and connect them wisely.

Blocking can occur!!!!!



## Omega Networks

(based on Perfect Shuffles)



2logN + I stages: non blocking with O(NlogN switches)

# Variants of PS networks Cube Network



## Butterfly Network



## Fat Tree Network



# Time Division Switching Do not confuse with TDM !!!



Bandwidth of Bus >  $\Sigma$  indiv. bandw. Then non-blocking!

# Routing in Circuit Switched Networks

- Alternate Routing
  - → Each switching node has its own routing table

|        | First choice | Second choice |
|--------|--------------|---------------|
| A to B | Via switch i | Via switch j  |
| A to C | Via switch j | Via switch k  |

- Fixed Alternate Routing
   Routing tables do not change
- Dynamic Alternate Routing
   Depending on time (e.g. time of the day) routing tables will change
- Adaptive Routing
   Central Controller gets status of all switches and gives routing updates to all switches

## Packet Switching

Data is sent by packets (usually < 1000 octets), Every switching nodes has buffers

#### Datagram

Every packet is routed independently

- → As a consequence packets can arrive out of order
- Virtual Circuit (Wormhole)

Before communication is initiated a Call-Request packet is sent on the network, which fixates a virtual path between sender and receiver.

→ Packets arrive in order, but it not as flexible as datagram

# Summarizing



## Different Combinations

- External Virtual Circuit & Internal Virtual Circuit
- External Virtual Circuit & Internal Datagram
- External Datagram & Internal Virtual Circuit
- External Datagram & Internal Datagram

Which one makes sense?

# Routing Trade Offs



# Routing for Packet Switched Networks

Like circuit switching can we differentiate between: Fixed Routing and Alternate Routing

No difference between datagram and virtual circuit

#### **Random Routing**

Every node chooses randomly outgoing link, based on some prob. Distribution, e.g.

$$P_i = R_i / \sum R_j$$

with R<sub>i</sub> data rate possible on link i.

Flooding (very inefficient, very reliable) Every node puts incoming packet on every outgoing link, except the incoming link

- → Exponential growth
  - I. Every node logs all the packets
    If packets arrives a second time: **discard**
  - 2. Every packet, contains counter: hop-count lf hop-count > threshold: **discard**

Adaptive Routing (Central vs Distributed) Every node gets network status information

- Local, e.g. queue length of the outgoing links
- Adjacent nodes
- > All nodes

## ARPANET

based on Adaptive Routing, Distr. & Adjacent Nodes

First Version: 1969

Based on **Bellman-Ford Algorithm** 

Every node i has two vectors:

$$D_{i} = \begin{pmatrix} d_{i1} \\ d_{i2} \\ \vdots \\ d_{iN} \end{pmatrix} \qquad S_{i} = \begin{pmatrix} s_{i1} \\ s_{i2} \\ \vdots \\ s_{iN} \end{pmatrix}$$

$$D_{i} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ \vdots \\ d_{iN} \end{bmatrix}$$

$$S_{i} = \begin{bmatrix} s_{i1} \\ s_{i2} \\ \vdots \\ s_{iN} \end{bmatrix}$$

$$N = \# nodes$$

$$d_{ij} = estimated delay from node i to j$$

$$s_{ij} = next node on the route i to j$$

Every 128 ms every node exchanges delay vector with adjacent nodes. Then every node k:  $d_{ki} = Min_{i \in A} [d^{new}_{ii} + d_{ki}]$  and  $s_{ki} = i$ , the node i which minimizes dki. Link delays are the queue length for that link.

Disadvantages: Link delays were not accurate Thrashing would occur

#### 2<sup>de</sup> Generation (1979)

#### Every node:

- > Timestamp on incoming message (arrival time)
- > Departure time recorded
- ➤ If pos. ACK is received: delay = (dept. time arrival time)

Every 10 sec: every node computes the average delay per link If delay is different: **FLOODING** is used to inform all the other nodes

#### 3<sup>de</sup> Generation (1987)

#### When load is heavy:

Observed delay under old routing # delay under new routing

- → Oscillation effects
- → Instead of BEST route: a "good" route

#### **Smoothening** of link costs (delays)

Every 10 seconds:

 $\rho$  = link utilization

(Queuing theory)  $\rho = 2(s-t)/(s-2t)$ , with t = measured delay

s = service time

 $U(n+1) = 0.5\rho(n+1) = 0.5U(n)$ , U(n) average utilization

New delays are computed based on U(n),

terrestrial: I Hop for U(n)<0.5, 2 Hops for U(n)>0.8

sattelite: 2 Hops for U(n)<0.8

Otherwise the same as 2-de generation