Multiplexing

"From one channel to multiple channels"
How to share one medium while facilitating multiple channels of communication:

Frequency Division and Time Division Multiplexing

Frequency Division Multiplexing (FDM alla FSK)

Standards

\# voice channel	bandwidth	spectrum	US/AT\&T	ITU_T
12	48 kHz	$60-108 \mathrm{kHz}$	Group	Group
60	240 kHz	$312-552 \mathrm{kHz}$	Super Group	Super Group
300	$1,23 \mathrm{MHz}$	$812-2044 \mathrm{kHz}$	Super Group	Master Group
600	$2,52 \mathrm{MHz}$	$564-3084 \mathrm{kHz}$	Master Group	Master Group
900	$3,87 \mathrm{MHz}$	$8,52-12.39 \mathrm{MHz}$	Master Group	Super Master Group
3600	$16,98 \mathrm{MHz}$	$0.56-17,55 \mathrm{MHz}$	Jumbo Group	Jumbo Group
10800	$57,44 \mathrm{MHz}$	$3,12-60,57 \mathrm{MHz}$	Jumbo Group Multiplexed	Jumbo Group Multiplexed

Example: ADSL

ADSL Asymmetric Digital Subscriber Line

Originally for Video-on-Demand: less control going up - lots of image going down
Very similar to internet usage !!!!!!!

Multiple "regular" phone connections at the same time on which QAM (Quadratic Amplitude Modulation) is implemented

- Reserve lowest 25 kHz for Voice (POTS, Plain Old Telephone Service) 25 instead of 5 to prevent cross talk between voice\&data
- Facilitate two bands: small upstream / big downstream
- Use FDM within upstream and downstream band

ADSL 4 kHz channels

Frequency plan for ADSL Annex A. Red $\square \square$ area is the frequency range used by normal voice telephony (PSTN), the green (upstream) and blue (downstream) areas are used for ADSL.

ADSL standards

Version	Standard name	Common name	Downstream rate	-	Upstream rate	$\stackrel{\rightharpoonup}{*}$	Approved in
ADSL	ANSI T1.413-1998 Issue 2	ADSL	8.0 Mbit/s		1.0 Mbit/s		1998
ADSL	ITU G.992.1	ADSL (G.DMT)	12.0 Mbit/s		1.3 Mbit/s		1999-07
ADSL	ITU G.992.1 Annex A	ADSL over POTS	12.0 Mbit/s		1.3 Mbit/s		2001
ADSL	ITU G.992.1 Annex B	ADSL over ISDN	12.0 Mbit/s		1.8 Mbit/s		2005
ADSL	ITU G.992.2	ADSL Lite (G.Lite)	1.5 Mbit/s		0.5 Mbit/s		1999-07
ADSL2	ITU G.992.3	ADSL2	12.0 Mbit/s		1.3 Mbit/s		2002-07
ADSL2	ITU G.992.3 Annex J	ADSL2	$12.0 \mathrm{Mbit} / \mathrm{s}$		3.5 Mbit/s		
ADSL2	ITU G.992.3 Annex L	RE-ADSL2	5.0 Mbit/s		0.8 Mbit/s		
ADSL2	ITU G.992.4	splitterless ADSL2	1.5 Mbit/s		0.5 Mbit/s		2002-07
ADSL2+	ITU G.992.5	ADSL2+	24.0 Mbit/s		1.1 Mbit/s		2003-05
ADSL2+	ITU G.992.5 Annex M	ADSL2+M	$24.0 \mathrm{Mbit} / \mathrm{s}$		3.3 Mbit/s		2008

Time Division Multiplexing(TDM)

Synchronous TDM: not synchronous but frames are fixed
and slots are always filled

How is framing implemented

Added digit framing

Pulse Stuffing
Frequency $>\sum$ (freq. of the sources)
additional bits are added at fixed position in the frame

Relationship with data link framing

$$
\begin{aligned}
& F_{1} f_{2} A_{1} F_{2} C_{1} A_{2} d_{1} C_{2} d_{1} d_{2} \ldots \ldots \ldots \ldots \\
& \text { for } \\
& F_{1} f_{1} f_{1} d_{1} d_{1} d_{1} C_{1} A_{1} F_{1} \text { in characters } \\
& \stackrel{\downarrow}{\text { flag }} \underset{\text { FCS }}{\downarrow} \downarrow \text { control } \downarrow \\
& \text { information }
\end{aligned}
$$

Example: Telephony

DS-I transmission format
Voice \rightarrow PCM (8000 samples per second, 8 -bit)
TDM-frame $=24$ (channels) $\times 8$ bits +1 (frame bit)
$=193$ bits
Data rate: $8000 \times 193=\mathbf{I} .544$ Mbps
DATA only 23 out of 24 channels used, $24^{\text {th }}$ channel has special SYNC BYTE per channel I bit for user/system data
$\rightarrow 7 \times 23 \times 8000=56 \times 23 \mathrm{kbps}=56$ kbps p. channel

Standards Telephony

| US/JAPAN | ITU-T | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \# channels | Mbps | Level | \#channels | Mbps |
| DS-I | 24 | 1.544 | 1 | 30 | 2.048 |
| DS-IC | 48 | 3.152 | 2 | 120 | 8.448 |
| DS-2 | 96 | 6.312 | 3 | 480 | 34.368 |
| DS-3 | 672 | 44.736 | 4 | 1920 | 139.264 |
| DS-4 | 4032 | 274.176 | 5 | 7680 | 565.148 |

Network SWITCHING

Next to multiplexing: switching is required to realize multi to multi connections

Especially needed in Wide Area Networks (WAN)
Also present in Local Area Networks (LAN) or in multi processors architectures.

Circuit Switching

I. A dedicated path between two end stations is realized or channel (TDM/FDM)
2. Data is being transmitted (Switches don't inspect data)
3. Path is broken up

Circuit switching

IMPORTANT CHARACTERISTIC:

BLOCKING VS NON-BLOCKING

Connection cannot be realized because all paths are occupied

Connection can always be realized and at any time

Space Division Switching: non-blocking Crossbar Switch

Very costly: $\mathbf{N}^{\mathbf{2}}$ switches

Multistage Networks

Use many small crossbar switches and connect them wisely.

Blocking can occur!!!!!

5 cannot be connected to 2

Omega Networks

(based on Perfect Shuffles)

$2 \log \mathbf{N}+$ I stages: non blocking with $\mathbf{O}(\mathbf{N} \log \mathbf{N}$ switches)

Variants of PS networks Cube Network

Butterfly Network

Fat Tree Network

Copynght Quadnics, Ltd. May not be copied wthout the prior witten consent of Quadrics, Ltd. Reproduced here wth permission of Quadncs, Ltd.

Time Division Switching

Do not confuse with TDM !!!

Bandwidth of Bus >
Σ indiv. bandw.

Then non-blocking!

Routing in Circuit Switched Networks

- Alternate Routing
\rightarrow Each switching node has its own routing table

	First choice	Second choice
A to B	Via switch i	Via switch j
A to C	Via switch j	Via switch k

- Fixed Alternate Routing

Routing tables do not change

- Dynamic Alternate Routing

Depending on time (e.g. time of the day) routing tables will change

- Adaptive Routing

Central Controller gets status of all switches and gives routing updates to all switches

Packet Switching

Data is sent by packets (usually < 1000 octets), Every switching nodes has buffers

- Datagram

Every packet is routed independently
\rightarrow As a consequence packets can arrive out of order

- Virtual Circuit (Wormhole)

Before communication is initiated a Call-Request packet is sent on the network, which fixates a virtual path between sender and receiver.
\rightarrow Packets arrive in order, but it not as flexible as datagram

Summarizing

Circuit Switch

Virtual Circuit

Datagram

Different Combinations

- External Virtual Circuit \& Internal Virtual Circuit
- External Virtual Circuit \& Internal Datagram
- External Datagram \& Internal Virtual Circuit
- External Datagram \& Internal Datagram

Which one makes sense?

Routing Trade Offs

Routing for Packet Switched Networks

Like circuit switching can we differentiate between: Fixed Routing and Alternate Routing
\rightarrow No difference between datagram and virtual circuit

Random Routing

Every node chooses randomly outgoing link, based on some prob. Distribution, e.g.

$$
P_{i}=R_{i} / \sum R_{i}
$$

with R_{i} data rate possible on link i.

Flooding (very inefficient, very reliable)

Every node puts incoming packet on every outgoing link, except the incoming link
\rightarrow Exponential growth
I. Every node logs all the packets If packets arrives a second time: discard
2. Every packet, contains counter: hop-count If hop-count > threshold: discard

Adaptive Routing (Central vs Distributed)

Every node gets network status information
> Local, e.g. queue length of the outgoing links
$>$ Adjacent nodes
> All nodes

ARPANET

based on Adaptive Routing, Distr. \& Adjacent Nodes

First Version: 1969

Based on Bellman-Ford Algorithm
Every node i has two vectors:

$N=$ \#nodes
$\mathrm{d}_{\mathrm{ij}}=$ estimated delay from node i to j
$s_{i j}=$ next node on the route i to j

Every 128 ms every node exchanges delay vector with adjacent nodes.
Then every node k : $\quad \mathrm{d}_{\mathrm{kj}}=\operatorname{Min}_{\mathrm{i} \varepsilon \mathrm{A}}\left[\mathrm{d}^{\text {new }}{ }_{\mathrm{ij}}+\mathrm{d}_{\mathrm{ki}}\right]$ and $\mathrm{s}_{\mathrm{kj}}=\mathrm{i}$, the node i which minimizes d_{kj}. Link delays are the queue length for that link.

Disadvantages: Link delays were not accurate Thrashing would occur

2de Generation (1979)

Every node:
> Timestamp on incoming message (arrival time)
$>$ Departure time recorded
> If pos. ACK is received: delay = (dept. time - arrival time)
Every 10 sec: every node computes the average delay per link If delay is different: FLOODING is used to inform all the other nodes
Every node gets status of the whole network!!!!!!!!!
Dijkstra's shortest path algorithm is used to compute new routing table

$3^{\text {de }}$ Generation (1987)

When load is heavy:
Observed delay under old routing \neq delay under new routing
\rightarrow Oscillation effects
\rightarrow Instead of BEST route: a "good" route

Smoothening of link costs (delays)
Every 10 seconds: $\quad \rho=$ link utilization
I. (Queuing theory) $\rho=2(\mathrm{~s}-\mathrm{t}) /(\mathrm{s}-2 \mathrm{t})$, with $\begin{aligned} & \mathrm{t}=\text { measured delay } \\ & \mathrm{s}=\text { service time }\end{aligned}$
2. $U(n+I)=0.5 \rho(n+I)=0.5 U(n), U(n)$ average utilization
3. New delays are computed based on $U(n)$,
terrestrial: I Hop for $U(n)<0.5,2$ Hops for $U(n)>0.8$ sattelite: 2 Hops for $U(n)<0.8$
Otherwise the same as 2 -de generation

