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Introduction	


l  We will discuss two vulnerabilities in SSL 

implementations that were found in 2014:	



-  The “Apple” bug, affecting recent Mac OS X and 
iOS devices.	



-  The “heartbleed” bug concerning misuse of TLS 
protocol.	



l  First, some more background on SSL/TLS 
connections is discussed.	
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Server authentication	


l  In SSL/TLS, server authentication is performed 

using a server's certificate.	



l  The certificate contains among other things the 
hostname of the server and a signature.	



l  Client must check the hostname it connected to 
matches the hostname in the certificate.	



l  Client must check signature in the certificate.	
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Public Key Certificate���
	

l  These certificates are generated as follows:	



-  A public/private key pair is generated for the 
server.	



-  The public key is submitted to the CA as part of 
the CSR (certificate signing request).	



-  The private key is kept private, not even the CA 
gets to see it.	



-  CA generates a certificate containing the public 
key and a signature by the CA.	
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SSL/TLS handshake���
	

l  Recall the handshake used to establish secure 

connection between two hosts:	



-  Server sends its certificate, random value, etc.	



-  Client authenticates server	



-  Client generates pre-master secret and encrypts 
this with server's public key (obtained from 
server certificate)	



-  Server decrypts with its private key and the 
master (shared) secret is established	
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Problem���
	

l  Imagine the server's private key has been 

compromised by an attacker using any means and 
previous SSL/TLS communication has been 
recorded by this attacker.	



l  An attacker can now:	



-  Decrypt the pre-master secrets sent by clients.	



-  And thus derive the used master secrets.	



l  All previously recorded encrypted (“confidential”) 
communications can now be decrypted!	
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Cause and solution	


l  The server certificate is created only once based on just 

one private key.	



l  All SSL/TLS handshakes with different clients are carried 
out using the same certificate.	



l  Therefore, if the pre-master secret sent by these clients is 
also recorded, an attacker can decrypt all these keys with 
just this single private key.	



l  An attacker obtains all shared keys and can therefore 
decrypt all previous messages.	



l  Solution: use another mechanism to agree on a shared key.	
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Agreeing on shared secret	


l  We have discussed a protocol for this already: Diffie-

Hellman key exchange.	



l  In TLS: server generates its secret 'a' as a random number, 
computes 'A' using 'a', and sends 'p', 'g' and 'A' values: 
ServerKeyExchange message.	



l  These values are sent in the clear, but signed with the 
server's private key.	



l  Client must validate the signature using the server's 
public key (from the certificate) to be certain 'p', 'g' and 'A' 
originate from this server.	
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Signing	



9	
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Verification of signed data	



The hash 
function is 
initially agreed 
upon between 
server and 
client during 
SSL/TLS 
handshake, 
when selecting 
a cipher suite. 
An example is 
“SHA1”. 
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DH (Diffie-Hellman) 
Ephemeral	



l  The described Diffie-Hellman exchange always 
uses newly generated secrets “a” and “b”.	



l  This is referred to as Ephemeral Diffie-Hellman 
(DHE).	



l  For each connection an ephemeral (“temporary”) 
key is generated.	
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Forward Secrecy	



l  With DHE we can achieve forward secrecy:	



-  if the private key of the server is comprised in 
the future, past communication remains secret.	



l  Why not always enable this? It is costly to achieve.	



l  However, Google and Twitter do have this 
enabled these days.	
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The “Apple” bug	


l  Apple has their own implementation of the SSL 

security protocol: “libsecurity”.	



l  Also referred to as “SecureTransport”.	



l  This is used on recent Mac OS X (10.9, used on 
MacBooks, etc.) and iOS (used on iPhones, etc.).	



l  In February 2014 a large vulnerability was found: 
the server signature for the shared secret was 
never validated.	
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static OSStatus 
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
                                 SSLBuffer signedParams, 
                                 uint8_t *signature 
                                 UInt16 signatureLen) 
{ 
  OSStatus        err; 
  ... 
 
  if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) 
    goto fail; 
  if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) 
    goto fail; 
    goto fail; 
  if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0) 
    goto fail; 
  ... 
  /* signature verification */ 
  ... 
 
fail: 
  SSLFreeBuffer(&signedHashes); 
  SSLFreeBuffer(&hashCtx); 
  return err; 
} 
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Verification of signed data	



SSLHashSHA1.final 
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static OSStatus 
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
                                 SSLBuffer signedParams, 
                                 uint8_t *signature 
                                 UInt16 signatureLen) 
{ 
  OSStatus        err; 
  ... 
 
  if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) 
    goto fail; 
  if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) 
    goto fail; 
    goto fail; 
  if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0) 
    goto fail; 
  ... 
  /* signature verification */ 
  ... 
 
fail: 
  SSLFreeBuffer(&signedHashes); 
  SSLFreeBuffer(&hashCtx); 
  return err; 
} 
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static OSStatus 
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
                                 SSLBuffer signedParams, 
                                 uint8_t *signature 
                                 UInt16 signatureLen) 
{ 
  OSStatus        err; 
  ... 
 
  if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) 
    goto fail; 
  if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) 
    goto fail; 
    goto fail; 
  if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0) 
    goto fail; 
  ... 
  /* signature verification */ 
  ... 
 
fail: 
  SSLFreeBuffer(&signedHashes); 
  SSLFreeBuffer(&hashCtx); 
  return err; 
} 

l  Third condition and further conditions 
are never checked! 

l  The signature is never verified! 
l  Goto fail, with return value indicating 

success. 
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Why is this a problem?	


l  Man-in-the-middle attacks on TLS connections are 

possible!	



l  Consider communication with your bank.	



l  An adversary may send your bank's certificate, but 
its own signed (or even unsigned!) secret.	



l  The “lock” in your browser window is shown, 
even though you might not be DIRECTLY 
communicating with your bank's server.	
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XKCD Cartoon 
(xkcd.com)	



l  Some programmers blame this on the use of goto (although 
the goto use in this case can be seen as appropriate). 

l  Other programmers re-iterate that you should always use 
curly braces in if-statements in C. 
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The “heartbleed bug”	


l  Discovered and publicized in April 2014.	



l  Problem is in the “heartbeat” extension of TLS 
(RFC 6520).	



l  Implementation in OpenSSL is buggy: allows 
memory of system to be read.	



l  Linux and BSD systems rely on OpenSSL, so this 
bug is VERY widespread.	
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TLS heartbeat	



l  Send a packet requesting a response that echoes 
the payload of the packet.	



l  Are you alive? If so, send back these n bytes from 
my packet.	





Leiden University. The university to discover.	



Why was this introduced?	


§  From RFC 6520:	



The only mechanism available at the DTLS layer to figure out 
if a peer is still alive is a costly renegotiation, 
particularly   when the application uses unidirectional 
traffic.  Furthermore, DTLS needs to perform path MTU (PMTU) 
discovery but has no specific message type to realize it 
without affecting the transfer of user messages. 

   TLS is based on reliable protocols, but there is not necessarily a 
   feature available to keep the connection alive without continuous 
   data transfer. 
 

Even in the case of TLS/TCP, this allows a check at a much 
higher rate than the TCP keep-alive feature would allow. 

DTLS is TLS for Datagrams (e.g. UDP) 
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Why was this introduced?	



l  Alternatively: you could always implement your 
own keep-alive support in the application layer, 
without needing to touch the SSL/TLS layer.	
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TLS heartbeat packet 
format	



l  The heartbeat protocol is defined on top of the TLS 
“Record” layer.	



-  ContentType: 1 byte	



-  Protocol version: 2 bytes	



-  Length: 2 bytes	



-  Protocol message: “length” bytes	
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TLS heartbeat packet format���
	

l  The heartbeat protocol is defined on top of the TLS 

“Record” layer.	



-  ContentType: 1 byte	



-  Protocol version: 2 bytes	



-  Length: 2 bytes	



-  Protocol message: “length” bytes	



l  HeartbeatMessageType: 1 byte	



l  Payload length: 2 bytes	



l  Payload: “payload_length” bytes	
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Cartoon	
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TLS heartbeat packet format���
	

l  The heartbeat protocol is defined on top of the TLS 

“Record” layer.	



-  ContentType: 1 byte	



-  Protocol version: 2 bytes	



-  Length: 2 bytes	



-  Protocol message: “length” bytes	



l  HeartbeatMessageType: 1 byte	



l  Payload length: 2 bytes	



l  Payload: “payload_length” bytes	
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The problem	



l  Send a heartbeat packet with a payload of n bytes, 
claiming the payload is m bytes with n < m.	



l  So “length” < “payload_length”.	
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Code	


  /* Read type and payload length first */ 

  hbtype = *p++; 

  n2s(p, payload); 

  pl = p; 

 

... 

 

  buffer = OPENSSL_malloc(1 + 2 + payload + padding); 

  bp = buffer; 

 

  *bp++ = TLS1_HB_RESPONSE; 

  s2n(payload, bp); 

  memcpy(bp, pl, payload); 

  bp += payload; 

Read 2 bytes from “p” and write into 
“payload” variable. 

At this point, the protocol message (heartbeat message) is parsed: 
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Code	


  /* Read type and payload length first */ 

  hbtype = *p++; 

  n2s(p, payload); 
  pl = p; 
 

... 

 

  buffer = OPENSSL_malloc(1 + 2 + payload + padding); 
  bp = buffer; 

 

  *bp++ = TLS1_HB_RESPONSE; 

  s2n(payload, bp); 

  memcpy(bp, pl, payload); 
  bp += payload; 

The payload value received in the packet is never checked! 

Copy “payload” bytes from p1 to bp 

Here, a reply to the heartbeat message is formed: 



Leiden University. The university to discover.	



The bug	



l  OpenSSL:	



-  Did check the “length” field.	



-  Did not check the “payload_length” field.	



l  This allows packets with n < m to be processed!	



l  This triggered a memory read overrun!	
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Fixed Code	


/* Read type and payload length first */ 

if (1 + 2 + 16 > s->s3->rrec.length) 

  return 0; /* silently discard */ 

hbtype = *p++; 

n2s(p, payload); 

if (1 + 2 + payload + 16 > s->s3->rrec.length) 

  return 0; /* silently discard per RFC 6520 sec. 4 */ 

pl = p; 

 

 

 

 

 

(s->s3->rrec.length is the length field of the TLS packet). 
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