
Leiden University. The university to discover.	

Recent (2014) vulnerabilities
in SSL implementations

Leiden University. The university to discover.	

Introduction	

l  We will discuss two vulnerabilities in SSL

implementations that were found in 2014:	

-  The “Apple” bug, affecting recent Mac OS X and
iOS devices.	

-  The “heartbleed” bug concerning misuse of TLS
protocol.	

l  First, some more background on SSL/TLS
connections is discussed.	

Leiden University. The university to discover.	

Server authentication	

l  In SSL/TLS, server authentication is performed

using a server's certificate.	

l  The certificate contains among other things the
hostname of the server and a signature.	

l  Client must check the hostname it connected to
matches the hostname in the certificate.	

l  Client must check signature in the certificate.	

Leiden University. The university to discover.	

Public Key Certificate���
	

l  These certificates are generated as follows:	

-  A public/private key pair is generated for the
server.	

-  The public key is submitted to the CA as part of
the CSR (certificate signing request).	

-  The private key is kept private, not even the CA
gets to see it.	

-  CA generates a certificate containing the public
key and a signature by the CA.	

Leiden University. The university to discover.	

SSL/TLS handshake���
	

l  Recall the handshake used to establish secure

connection between two hosts:	

-  Server sends its certificate, random value, etc.	

-  Client authenticates server	

-  Client generates pre-master secret and encrypts
this with server's public key (obtained from
server certificate)	

-  Server decrypts with its private key and the
master (shared) secret is established	

Leiden University. The university to discover.	

Problem���
	

l  Imagine the server's private key has been

compromised by an attacker using any means and
previous SSL/TLS communication has been
recorded by this attacker.	

l  An attacker can now:	

-  Decrypt the pre-master secrets sent by clients.	

-  And thus derive the used master secrets.	

l  All previously recorded encrypted (“confidential”)
communications can now be decrypted!	

Leiden University. The university to discover.	

Cause and solution	

l  The server certificate is created only once based on just

one private key.	

l  All SSL/TLS handshakes with different clients are carried
out using the same certificate.	

l  Therefore, if the pre-master secret sent by these clients is
also recorded, an attacker can decrypt all these keys with
just this single private key.	

l  An attacker obtains all shared keys and can therefore
decrypt all previous messages.	

l  Solution: use another mechanism to agree on a shared key.	

	

Leiden University. The university to discover.	

Agreeing on shared secret	

l  We have discussed a protocol for this already: Diffie-

Hellman key exchange.	

l  In TLS: server generates its secret 'a' as a random number,
computes 'A' using 'a', and sends 'p', 'g' and 'A' values:
ServerKeyExchange message.	

l  These values are sent in the clear, but signed with the
server's private key.	

l  Client must validate the signature using the server's
public key (from the certificate) to be certain 'p', 'g' and 'A'
originate from this server.	

Leiden University. The university to discover.	

Signing	

9	

Leiden University. The university to discover.	

Verification of signed data	

The hash
function is
initially agreed
upon between
server and
client during
SSL/TLS
handshake,
when selecting
a cipher suite.
An example is
“SHA1”.

Leiden University. The university to discover.	

DH (Diffie-Hellman)
Ephemeral	

l  The described Diffie-Hellman exchange always
uses newly generated secrets “a” and “b”.	

l  This is referred to as Ephemeral Diffie-Hellman
(DHE).	

l  For each connection an ephemeral (“temporary”)
key is generated.	

Leiden University. The university to discover.	

Forward Secrecy	

l  With DHE we can achieve forward secrecy:	

-  if the private key of the server is comprised in
the future, past communication remains secret.	

l  Why not always enable this? It is costly to achieve.	

l  However, Google and Twitter do have this
enabled these days.	

Leiden University. The university to discover.	

The “Apple” bug	

l  Apple has their own implementation of the SSL

security protocol: “libsecurity”.	

l  Also referred to as “SecureTransport”.	

l  This is used on recent Mac OS X (10.9, used on
MacBooks, etc.) and iOS (used on iPhones, etc.).	

l  In February 2014 a large vulnerability was found:
the server signature for the shared secret was
never validated.	

Leiden University. The university to discover.	

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
 SSLBuffer signedParams,
 uint8_t *signature
 UInt16 signatureLen)
{
 OSStatus err;
 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 ...
 /* signature verification */
 ...

fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;
}

Leiden University. The university to discover.	

Verification of signed data	

SSLHashSHA1.final

Leiden University. The university to discover.	

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
 SSLBuffer signedParams,
 uint8_t *signature
 UInt16 signatureLen)
{
 OSStatus err;
 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 ...
 /* signature verification */
 ...

fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;
}

Leiden University. The university to discover.	

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
 SSLBuffer signedParams,
 uint8_t *signature
 UInt16 signatureLen)
{
 OSStatus err;
 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 ...
 /* signature verification */
 ...

fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err;
}

l  Third condition and further conditions
are never checked!

l  The signature is never verified!
l  Goto fail, with return value indicating

success.

Leiden University. The university to discover.	

Why is this a problem?	

l  Man-in-the-middle attacks on TLS connections are

possible!	

l  Consider communication with your bank.	

l  An adversary may send your bank's certificate, but
its own signed (or even unsigned!) secret.	

l  The “lock” in your browser window is shown,
even though you might not be DIRECTLY
communicating with your bank's server.	

Leiden University. The university to discover.	

XKCD Cartoon
(xkcd.com)	

l  Some programmers blame this on the use of goto (although
the goto use in this case can be seen as appropriate).

l  Other programmers re-iterate that you should always use
curly braces in if-statements in C.

Leiden University. The university to discover.	

The “heartbleed bug”	

l  Discovered and publicized in April 2014.	

l  Problem is in the “heartbeat” extension of TLS
(RFC 6520).	

l  Implementation in OpenSSL is buggy: allows
memory of system to be read.	

l  Linux and BSD systems rely on OpenSSL, so this
bug is VERY widespread.	

Leiden University. The university to discover.	

TLS heartbeat	

l  Send a packet requesting a response that echoes
the payload of the packet.	

l  Are you alive? If so, send back these n bytes from
my packet.	

Leiden University. The university to discover.	

Why was this introduced?	

§  From RFC 6520:	

The only mechanism available at the DTLS layer to figure out
if a peer is still alive is a costly renegotiation,
particularly when the application uses unidirectional
traffic. Furthermore, DTLS needs to perform path MTU (PMTU)
discovery but has no specific message type to realize it
without affecting the transfer of user messages.

 TLS is based on reliable protocols, but there is not necessarily a
 feature available to keep the connection alive without continuous
 data transfer.

Even in the case of TLS/TCP, this allows a check at a much
higher rate than the TCP keep-alive feature would allow.

DTLS is TLS for Datagrams (e.g. UDP)

Leiden University. The university to discover.	

Why was this introduced?	

l  Alternatively: you could always implement your
own keep-alive support in the application layer,
without needing to touch the SSL/TLS layer.	

Leiden University. The university to discover.	

TLS heartbeat packet
format	

l  The heartbeat protocol is defined on top of the TLS
“Record” layer.	

-  ContentType: 1 byte	

-  Protocol version: 2 bytes	

-  Length: 2 bytes	

-  Protocol message: “length” bytes	

Leiden University. The university to discover.	

TLS heartbeat packet format���
	

l  The heartbeat protocol is defined on top of the TLS

“Record” layer.	

-  ContentType: 1 byte	

-  Protocol version: 2 bytes	

-  Length: 2 bytes	

-  Protocol message: “length” bytes	

l  HeartbeatMessageType: 1 byte	

l  Payload length: 2 bytes	

l  Payload: “payload_length” bytes	

Leiden University. The university to discover.	

Cartoon	

Leiden University. The university to discover.	

Cartoon	

Leiden University. The university to discover.	

Cartoon	

Leiden University. The university to discover.	

TLS heartbeat packet format���
	

l  The heartbeat protocol is defined on top of the TLS

“Record” layer.	

-  ContentType: 1 byte	

-  Protocol version: 2 bytes	

-  Length: 2 bytes	

-  Protocol message: “length” bytes	

l  HeartbeatMessageType: 1 byte	

l  Payload length: 2 bytes	

l  Payload: “payload_length” bytes	

Leiden University. The university to discover.	

The problem	

l  Send a heartbeat packet with a payload of n bytes,
claiming the payload is m bytes with n < m.	

l  So “length” < “payload_length”.	

Leiden University. The university to discover.	

Code	

 /* Read type and payload length first */

 hbtype = *p++;

 n2s(p, payload);

 pl = p;

...

 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

 bp = buffer;

 *bp++ = TLS1_HB_RESPONSE;

 s2n(payload, bp);

 memcpy(bp, pl, payload);

 bp += payload;

Read 2 bytes from “p” and write into
“payload” variable.

At this point, the protocol message (heartbeat message) is parsed:

Leiden University. The university to discover.	

Code	

 /* Read type and payload length first */

 hbtype = *p++;

 n2s(p, payload);
 pl = p;

...

 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;

 *bp++ = TLS1_HB_RESPONSE;

 s2n(payload, bp);

 memcpy(bp, pl, payload);
 bp += payload;

The payload value received in the packet is never checked!

Copy “payload” bytes from p1 to bp

Here, a reply to the heartbeat message is formed:

Leiden University. The university to discover.	

The bug	

l  OpenSSL:	

-  Did check the “length” field.	

-  Did not check the “payload_length” field.	

l  This allows packets with n < m to be processed!	

l  This triggered a memory read overrun!	

Leiden University. The university to discover.	

Fixed Code	

/* Read type and payload length first */

if (1 + 2 + 16 > s->s3->rrec.length)

 return 0; /* silently discard */

hbtype = *p++;

n2s(p, payload);

if (1 + 2 + payload + 16 > s->s3->rrec.length)

 return 0; /* silently discard per RFC 6520 sec. 4 */

pl = p;

(s->s3->rrec.length is the length field of the TLS packet).

Leiden University. The university to discover.	

References	

l  Cartoons: http://www.xkcd.com/	

l  RFC 5246	

l  https://www.imperialviolet.org/2014/02/22/applebug.html	

l  https://polarssl.org/kb/cryptography/ephemeral_diffie_hellman	

l  http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html	

l  https://gotofail.com/faq.html	

	

l  RFC 6520	

l  http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902	

l  http://www.theregister.co.uk/2014/04/09/heartbleed_explained/	

	

