
Leiden University. The university to discover.	

1	

Data Encryption���
Not to be confused with Data Encodings!!!!!!	

•  Symmetric Encryption / Private Key: the same key
for both encryption and decryption	

•  Asymmetric Encryption/ Public Key Encryption:
one public key for encrypting and one local/private
key for decrypting	

Dorothy likes marmelade…	

 K*&-L%@#+	

Encryption	

Decryption	

Ciphertext	

Plain text	

Leiden University. The university to discover.	

In other words (pictures)	

2	

Public	

Bob	

Alice	

Decryption	

Encryption	

Private	

Bob	

Alice	

Encryption	

 Decryption	

Secret	

Leiden University. The university to discover.	

Symmetric-key cryptography	

•  Substitution ciphers: one symbol (character) at a time is
replaced with another symbol	

•  Monoalphabetic: a symbol is always replaced by the
same symbol regardless of its position	

•  Polyalphabetic: depending on its position symbol is
being replaced	

•  Transposition ciphers: permutes symbols in a block of
symbols	

3	

Traditionally as early as Ceasar (warfare)	

Leiden University. The university to discover.	

Quiz!!!!!	

Plaintext: HELLO	

Cyphertext: KHOOR	

What type of cipher?	

	

Plaintext: HELLO	

Cyphertext: ABNZF	

What type of cipher?	

	

Plaintext: HELLO	

Cyphertext: LOHEL	

What type of cipher?	

	

	

	

4	

Leiden University. The university to discover.	

Sample Ciphers	

Shift cipher (Ceasar cipher):	

A B C D E F G H I J K L M N O P ….	

	

A B C D E F G H I J K L M N O P ….	

Key is 4, four characters down.(Ceasar used 3.)	

	

5	

Leiden University. The university to discover.	

6	

XOR Cipher	

Plaintext	

Ciphertext	

Key	

Leiden University. The university to discover.	

7	

Rotation Cipher	

	

Plaintext	

Ciphertext	

Key = number of rotations	

Leiden University. The university to discover.	

8	

Substition Cipher (S-box)	

	

Function that matches N
inputs with M outputs	

N inputs	

M outputs	

Key-less	

S-box	

Leiden University. The university to discover.	

9	

Transposition Cipher (P-box)	

	

Straight P-box	

Expansion P-box	

 Compression P-box	

Leiden University. The university to discover.	

10	

Modern Round 	

Cipher: DES	

	

Data Encryption Standard:	

Ø First initial permutation (IP)	

Ø Bits are split up into 2 groups	

	

of 32 bits	

Ø First group is XOR-ed with	

	

F-function of the last 32 bits	

Ø  Initial last 32 bits are XOR-ed	

	

with F-function of result bits	

Ø Etc. etc. 16 rounds	

Ø Final permutation (FP)	

Leiden University. The university to discover.	

11	

DES: F-function	

	

Ø 32 bits are expanded to	

 48 bits(Expansion P-box)	

Ø These bits are XOR-ed

with 48 bits subkey and
divided in 8 groups of 6	

Ø Each group is substituted
by 4 bits (subst. box)	

Ø Final 32 bits are
permuted by straight P-
box	

Leiden University. The university to discover.	

12	

DES: key schedule	

	

Ø Permuted Choice (PC1)	

 selects 56 bits from 	

 original 64 bits	

Ø 56 bits are divided into	

 two halves of 28 bits	

Ø Each half is rotated left by	

 one or two bits	

Ø Two halves are merged	

 and PC2 selects 24 bits	

 from each half of 28 bits	

Ø This is being repeated 16	

 times.	

Leiden University. The university to discover.	

13	

DES: Security 	

Breakable by brute force:	

	

1977: Diffie and Hellman proposed a $20 Million machine to
	

 break the code in one day	

1993: Wiener proposed a $1 Million machine to break the 	

	

 code within 7 hours	

1998: A $250000 machine was build by the Electronic 	

	

 Frontier Foundation which could break DES in 2 days	

2006: COPACOBANA was build for $10000, SciEngines GmbH	

	

è Triple DES, apply DES three times with 2 different keys

2TDES or with 3 different keys 3TDES	

è AES (Advanced Encryption Standard) a new cipher was

issued by NIST in 2001	

Leiden University. The university to discover.	

Key Sharing!!!!!!!	

14	

Diffie–Hellman key exchange (D-H)	

two parties that have no prior knowledge of each other
jointly establish a shared secret key over an insecure
communications channel.	

Leiden University. The university to discover.	

In COLOURS	

15	

Leiden University. The university to discover.	

16	

Asymmetric-key cryptography	

Public	

Bob	

Alice	

Decryption	

Encryption	

Private	

Leiden University. The university to discover.	

17	

RSA (Rivest, Shamir and Adleman)	

A little history (The Code Book, by Simon Singh, Doubleday, 1999; pp. 279-92.)	

	

According to the British Government, public-key cryptography was originally
invented at the Government Communications Headquarters (GCHQ) in
Cheltenham, the top-secret establishment that was formed from the remnants of
Bletchley Park after the Second World War.	

	

Looking ahead to the 1970s, senior military officials imagined a scenario in which
miniaturization of radios and a reduction in cost meant that every soldier could be
in continual radio contact with his officer. The advantages of widespread
communication would be enormous, but communications would have to be
encrypted, and the problem of distributing keys would be insurmountable.	

	

At the beginning of 1969, the military asked James Ellis, one of Britain's foremost
government cryptographers, to look into ways of coping with the key-distribution
problem.	

Leiden University. The university to discover.	

18	

MEMORANDUM of Elliot: “Can we produce a secure encrypted message, readable by
the authorized recipient without any prior secret exchange of the key? This question
actually occurred to me in bed one night, and the proof of the theoretical possibility
took only a few minutes. We had an existence theorem. The unthinkable was actually
possible.”	

	

Ellis's ideas were very similar to those of Diffie, Hellman and Merkle, except that he
was several years ahead of them. However, nobody knew of Ellis's work because he
was an employee of the British Government and therefore sworn to secrecy. By the
end of 1969, Ellis appears to have reached the same impasse that the Stanford trio
would reach in 1975. He had proved to himself that public-key cryptography (or non-
secret encryption, as he called it) was possible.	

	

Then, in September 1973, a new mathematician joined the team. Clifford Cocks had
recently graduated from Cambridge University, where he had specialized in number
theory. Cocks was beginning to formulate what would be known as the RSA
asymmetric cipher. Rivest, Shamir and Adleman discovered their formula for public-key
cryptography in 1977, but four years earlier the young Cambridge graduate was going
through exactly the same thought processes. Cocks recalls: 'From start to finish, it
took me no more than half an hour. I was quite pleased with myself. I thought, "Ooh,
that's nice. I've been given a problem, and I've solved it." '	

	

	

Leiden University. The university to discover.	

Some basics	

Euler’s totient function: φ(n) is an arithmetic function that counts the
number of positive integers less than or equal to n that are relatively
prime to n. That is, if n is a positive integer, then φ(n) is the number
of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.	

For example let n = 9. Then gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) =
9. The other six numbers in the range 1 ≤ k ≤ 9, that is, 1, 2, 4, 5, 7
and 8, are relatively prime to 9. Therefore, φ(9) = 6.	

èφ(nm) = φ(n)φ(m), if gcd (n, m) = 1	

èφ(p) = p – 1, if p is prime	

	

19	

Leiden University. The university to discover.	

20	

Euler Phi Function:

October 10, 2012

1 The Euler Phi Function

This lecture is dedicated to the study of another multiplicative functions, the Euler phi
function.

Definition 1.1. Let n � 1 be an integer. Then we define the Euler phi function � by
�(n) =the number of positive integers less than n that are relatively prime to n.

So let us do some examples.

Example 1.2. �(1) = 1,�(2) = 1,�(3) = 2,�(4) = 2,�(5) = 4,�(6) = 2,�(15) = 8

The first observation is how �(n) behaves on the primes.

Observation 1. �(n) = n� 1 , n is prime.

Proof. �(n) = n� 1 , every integer in the set {1, 2, ..., (n� 1)} is relatively prime to n ,
No prime p with p < n divides n , n is prime.

So �(n) is capable of producting somewhat of a test to determine when a given integer
is a prime. Thus being able to calculate �(n) will be quite useful. The following theorem,
which might be quite surprising, facilitates this goal.

Theorem 1.3. The Euler phi function is multiplicative.

Proof. Let n and m be relatively prime integer. The statement clearly holds if n = 1 or
m = 1. So let us assume that n,m > 1. We would like to calculate �(nm) and so below we
arrange the integers from 1 to nm in m columns of n integers.

1 2 · · · r · · · m

m+ 1 m+ 2 · · · m+ r · · · 2m
2m+ 1 2m+ 2 · · · 2m+ r · · · 3m

...
...

...
...

(n� 1)m+ 1 (n� 1)m+ 2 · · · (n� 1)m+ r · · · nm

1So to calculate �(nm) we need to determine how many elements of this array are rela-
tively prime with nm, which are the elements that are relatively prime to both n and m.
So what was the point of us arranging the integers in such an array. We notice that since
gcd(km + r,m) =gcd(r,m) we see that an entry in the r

th column is relatively prime to
m if and only if r is relatively prime to m, and in this case then all of the entries of the
column are relatively prime to m. So looking at it this way, there are �(m) columns with
r’s that are relatively prime to n, and so we need to show that in each column there are
�(n) entries relatively prime to n and then we will be done.

So let us choose such a column, and let r be the corresponding element of the column
(mod m). So gcd(r,m)=1. The entries of this column are

r,m+ r, 2m+ r, ..., (n� 1)m+ r.

So we see that there are n integers in this column, so we would like to consider their
equivalence class module n.

Now if [km + r]
n

= [lm + r]
n

) [km]
n

= [lm]
n

) [k]
n

= [l]
n

since gcd(n,m)=1.
However, as we can see no two of the coe�ecients of m in the column are equivalent mod n.
Thus if we look at the column there are all of the equivalence classes modulo n. Therefore
the number of them that are relatively prime to n is �(n).

So we have divided the numbers that are relatively prime to nm into �(m) columns
where in each column with �(n) such numbers in each column. Thus the total amount of
such numbers is �(n)�(m)

We would like to get a formula for �(n), and now that we know that � is multiplicative
the we only need to determine it’s value on powers of primes.

Theorem 1.4. Let p be prime and k > 0, then

�(pk) = p

k � p

k�1 = p

k

✓
1� 1

p

◆
= p

k�1(p� 1) (1)

Proof. This can be proven by a simple counting argument. The only numbers between 1
and p

k that are not relatively prime to p

k are the ones that are divisible by p. There are
p

k

p

= p

k�1 of these. So we have that

�(pk) = p

k � k

k�1

With this knowledge we can completely calculate �(n)

Corollary 1.5. Let n be a positive integer with factorization given by n = p

n1
1 · · · pnk

k

. Then

�(n) is given by

�(n) =
Q

i

p

ni
i

⇣
1� 1

pi

⌘
= n

Q
i

⇣
1� 1

pi

⌘

Proof. This is immediate from theorem 1.4 so we leave the proof to the reader.

2

Leiden University. The university to discover.	

21	

So to calculate �(nm) we need to determine how many elements of this array are rela-
tively prime with nm, which are the elements that are relatively prime to both n and m.
So what was the point of us arranging the integers in such an array. We notice that since
gcd(km + r,m) =gcd(r,m) we see that an entry in the r

th column is relatively prime to
m if and only if r is relatively prime to m, and in this case then all of the entries of the
column are relatively prime to m. So looking at it this way, there are �(m) columns with
r’s that are relatively prime to n, and so we need to show that in each column there are
�(n) entries relatively prime to n and then we will be done.

So let us choose such a column, and let r be the corresponding element of the column
(mod m). So gcd(r,m)=1. The entries of this column are

r,m+ r, 2m+ r, ..., (n� 1)m+ r.

So we see that there are n integers in this column, so we would like to consider their
equivalence class module n.

Now if [km + r]
n

= [lm + r]
n

) [km]
n

= [lm]
n

) [k]
n

= [l]
n

since gcd(n,m)=1.
However, as we can see no two of the coe�ecients of m in the column are equivalent mod n.
Thus if we look at the column there are all of the equivalence classes modulo n. Therefore
the number of them that are relatively prime to n is �(n).

So we have divided the numbers that are relatively prime to nm into �(m) columns
where in each column with �(n) such numbers in each column. Thus the total amount of
such numbers is �(n)�(m)

We would like to get a formula for �(n), and now that we know that � is multiplicative
the we only need to determine it’s value on powers of primes.

Theorem 1.4. Let p be prime and k > 0, then

�(pk) = p

k � p

k�1 = p

k

✓
1� 1

p

◆
= p

k�1(p� 1) (1)

Proof. This can be proven by a simple counting argument. The only numbers between 1
and p

k that are not relatively prime to p

k are the ones that are divisible by p. There are
p

k

p

= p

k�1 of these. So we have that

�(pk) = p

k � k

k�1

With this knowledge we can completely calculate �(n)

Corollary 1.5. Let n be a positive integer with factorization given by n = p

n1
1 · · · pnk

k

. Then

�(n) is given by

�(n) =
Q

i

p

ni
i

⇣
1� 1

pi

⌘
= n

Q
i

⇣
1� 1

pi

⌘

Proof. This is immediate from theorem 1.4 so we leave the proof to the reader.

2

Leiden University. The university to discover.	

The first 1000 values of φ(n)	

22	

Leiden University. The university to discover.	

23	

The Algorithm	

Choose two distinct prime numbers p and q. For security purposes, the
integers p and q should be chosen at random, and should be of similar bit-length.	

Compute n = pq. n is used as the modulus for both public and private keys, its
length, usually expressed in bits, is the key length. 	

Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1), where φ is Euler’s totient
function. 	

Choose an integer e such that 1 < e < φ(n) and gcd(e,φ(n))=1, i.e. e

and φ(n) are coprime. 	

e is released as the public key exponent. e having a short bit-length i.e. 	

216 + 1 = 65537 results in more efficient encryption, but e should not be too small 	

Solve for d given de ≡ 1 (mod φ(n)). d is kept as the private key exponent.	

	

The public key consists of the modulus n and the public (or encryption) exponent e.
The private key consists of the modulus n and the private (or decryption) exponent
d, which must be kept secret. 	

p, q, and φ(n) must also be kept secret because they can be used to calculate d.	

Leiden University. The university to discover.	

24	

Encryption	

Alice transmits her public key (n, e) to Bob and keeps the private key
secret. Bob then wishes to send message M to Alice.	

He first turns M into an integer m, such that 0 ≤ m < n by using an
agreed-upon reversible protocol known as a padding scheme. He then
computes the ciphertext c corresponding to	

	

	

 	

 	

 	

c = me (mod n)	

	

Decryption	

Alice can recover m from c by using her private key exponent d via
computing	

	

 	

 	

 	

m = cd (mod n)	

	

Given m, she can recover the original message M by reversing the padding
scheme.	

Leiden University. The university to discover.	

25	

Why does this work???	

Lemma	

For any prime p:	

	

 	

 	

(x+y)p = xp+ yp (mod p)	

Proof	

(x+y)p = Σi=0, p xp-i yi, with = p! / ((p-i)! i!).	

The binomial coefficients are all integers and when 0 < i < p,
neither of the terms in the denominator includes a factor of
p, leaving the coefficient itself to possess a prime factor of p
which must exist in the numerator, implying that = 0 (mod
p). So the only remainder coefficients are i = 0 and i = p. ∎	

P	

i	

P	

i	

P	

i	

Leiden University. The university to discover.	

26	

Why does this work???	

Fermat’s Little Theorem	

If p is prime, then for all integer a:	

	

 	

 	

ap = a (mod p)	

Proof	

Assume kp = k (mod p), and consider (k+1)p. By the lemma we
have (k+1)p = kp +1p (mod p). Using the induction hypothesis, we
have that kp ≡ k (mod p), and, trivially, 1p = 1. Thus	

	

 	

 	

(k+1)p = k +1 (mod p)	

which is the statement of the theorem for a = k+1. ∎	

Leiden University. The university to discover.	

27	

Why does this work???	

Proof using Fermat's little theorem	

The proof of the correctness of RSA is based on Fermat's little theorem. This theorem states that if p is prime and p
does not divide an integer a then	

	

	

We want to show that (me)d ≡ m (mod pq) for every integer m when p and q are distinct prime numbers and e and d
are positive integers satisfying	

	

	

We can write	

	

	

for some nonnegative integer h.	

To check two numbers, like med and m, are congruent mod pq it suffices (and in fact is equivalent) to check they are
congruent mod p and mod q separately. To show med ≡ m (mod p), we consider two cases: m ≡ 0 (mod p) and m is
not equivalent to 0 (mod p). In the first case med is a multiple of p, so med ≡ 0 ≡ m (mod p). In the second case	

	

	

where we used Fermat's little theorem to replace mp−1 mod p with 1.	

The verification that med ≡ m (mod q) proceeds in a similar way, treating separately the cases m ≡ 0 (mod q) and m is
not equivalent to 0 (mod q), using Fermat's little theorem for modulus q in the second case.	

This completes the proof that, for any integer m,	

	

 ∎	

Leiden University. The university to discover.	

A simple Example	

28	

Leiden University. The university to discover.	

Efficient decrypting 	

29	

Leiden University. The university to discover.	

Security Considerations	

As of 2010, the largest (known) number factored by a general-purpose factoring
algorithm was 768 bits long (see RSA-768), using a state-of-the-art distributed
implementation. 	

If n is 300 bits or shorter, it can be factored in a few hours on a personal computer,
using software already freely available. Keys of 512 bits have been shown to be
practically breakable in 1999 when RSA-155 was factored by using several hundred
computers and are now factored in a few weeks using common hardware. 	

Exploits using 512-bit code-signing certificates that may have been factored were
reported in 2011. A theoretical hardware device named TWIRL and described by
Shamir and Tromer in 2003 called into question the security of 1024 bit keys. It is
currently recommended that n be at least 2048 bits long	

30	

Leiden University. The university to discover.	

31	

Harrys-MacBook-Pro:~ harryw$ openssl genrsa -out private_key.pem 1024	

Generating RSA private key, 1024 bit long modulus	

...................................++++++	

...++++++	

e is 65537 (0x10001)	

Harrys-MacBook-Pro:~ harryw$ openssl rsa -pubout -in private_key.pem -out
public_key.pem	

writing RSA key	

Harrys-MacBook-Pro:~ harryw$ openssl rsa -text -in private_key.pem	

Private-Key: (1024 bit)	

modulus:	

 00:de:c0:ef:f7:ed:10:6a:4f:1f:58:80:1f:4b:67:	

 d8:9d:64:71:01:21:d4:89:d1:3e:56:8e:e5:85:36:	

 1d:e7:6f:67:14:4e:fe:f9:35:64:ef:ab:32:01:e2:	

 63:ec:88:13:68:94:dc:55:2b:5f:3f:a6:0f:7d:3b:	

 3a:c8:fb:4b:92:d8:02:f0:80:72:cb:f5:2c:25:5b:	

 6b:20:01:1a:94:96:23:aa:f2:d8:19:0f:86:c5:0e:	

 da:02:4b:0f:31:6b:2a:0b:ef:8a:6e:a8:6d:8c:b7:	

 b4:bd:8f:52:3c:8f:0a:eb:44:05:74:50:09:c6:13:	

 8d:65:23:15:30:51:6c:82:23	

publicExponent: 65537 (0x10001)	

Example RSA generation	

Leiden University. The university to discover.	

32	

	

privateExponent:	

 00:c4:a4:b0:73:3e:dd:51:ec:1d:70:e4:52:3c:20:	

 25:b2:f4:5b:6a:33:72:4c:63:e2:d3:48:fc:c7:b7:	

 79:78:b8:f8:d7:8d:d1:3b:30:ee:b5:41:7d:38:fa:	

 a1:59:ca:da:cf:65:32:89:21:6b:c9:65:90:a0:ee:	

 2b:bc:07:53:b3:5d:a9:4d:90:86:86:30:8d:48:a0:	

 9d:0a:67:8b:75:3c:29:c6:f8:39:e4:bf:68:c9:24:	

 66:aa:91:3d:19:d0:87:52:c1:7c:79:cd:67:a6:34:	

 cb:70:e9:09:a3:10:1a:32:1d:f8:50:0e:8e:e8:f6:	

 c0:b3:f2:70:a2:1a:b5:65:59	

prime1:	

 00:f5:07:fc:cd:d0:0b:a7:f5:62:36:13:9e:31:74:	

 d9:a7:cf:bb:e1:4f:08:df:60:9f:13:7a:b9:ad:a4:	

 ea:5c:09:0c:63:5e:bc:97:99:dc:7b:67:63:c0:2b:	

 a1:34:06:84:9a:2d:68:fa:40:8c:a4:da:45:f2:14:	

 a1:7e:0e:ea:af	

prime2:	

 00:e8:b9:a7:42:59:a8:83:64:e8:87:0a:27:f6:3b:	

 94:32:8c:db:e9:cd:01:ca:ed:97:83:97:9b:97:17:	

 ef:69:c7:c1:a9:90:60:a0:75:cb:72:4a:97:4c:9d:	

 7a:eb:07:02:be:bc:76:cb:14:8a:bb:55:d2:17:94:	

 2d:72:43:ac:cd	

Leiden University. The university to discover.	

33	

exponent1:	

 61:66:6a:6c:59:6d:b8:b7:06:f2:1d:fc:3d:06:88:	

 da:76:ed:e5:12:e8:a0:fa:a4:61:36:e0:86:10:cf:	

 04:04:a8:c2:fb:4e:96:28:98:07:09:c3:12:09:85:	

 cb:cb:67:7c:6d:de:93:d3:82:d4:a8:db:32:ee:56:	

 7f:68:68:8b	

exponent2:	

 42:e5:0a:94:e1:dc:b4:58:0f:16:b1:ee:a6:b2:9d:	

 78:a2:50:9c:35:d7:6c:13:3b:58:11:fe:21:42:3a:	

 09:37:e8:0c:eb:79:3a:e6:61:22:6b:1a:6e:65:5d:	

 ed:ac:c8:37:37:49:16:3a:c3:5d:f1:df:3f:f3:d1:	

 d4:64:6b:89	

coefficient:	

 0e:30:15:15:74:5d:9b:ad:e4:7a:03:93:11:66:14:	

 e6:49:a8:23:82:be:3f:1f:7a:1a:79:78:c3:f8:48:	

 b2:8e:98:2e:f6:60:8c:be:54:34:51:c7:c9:41:3a:	

 82:b2:1f:ef:83:5a:d8:03:aa:bc:27:24:f7:35:13:	

 cd:d6:a9	

Leiden University. The university to discover.	

34	

writing RSA key	

-----BEGIN RSA PRIVATE KEY-----	

MIICWwIBAAKBgQDewO/37RBqTx9YgB9LZ9idZHEBIdSJ0T5WjuWFNh3nb2cUTv75	

NWTvqzIB4mPsiBNolNxVK18/pg99OzrI+0uS2ALwgHLL9SwlW2sgARqUliOq8tgZ	

D4bFDtoCSw8xayoL74puqG2Mt7S9j1I8jwrrRAV0UAnGE41lIxUwUWyCIwIDAQAB	

AoGBAMSksHM+3VHsHXDkUjwgJbL0W2ozckxj4tNI/Me3eXi4+NeN0Tsw7rVBfTj6	

oVnK2s9lMokha8llkKDuK7wHU7NdqU2QhoYwjUignQpni3U8Kcb4OeS/aMkkZqqR	

PRnQh1LBfHnNZ6Y0y3DpCaMQGjId+FAOjuj2wLPycKIatWVZAkEA9Qf8zdALp/Vi	

NhOeMXTZp8+74U8I32CfE3q5raTqXAkMY168l5nce2djwCuhNAaEmi1o+kCMpNpF	

8hShfg7qrwJBAOi5p0JZqINk6IcKJ/Y7lDKM2+nNAcrtl4OXm5cX72nHwamQYKB1	

y3JKl0ydeusHAr68dssUirtV0heULXJDrM0CQGFmamxZbbi3BvId/D0GiNp27eUS	

6KD6pGE24IYQzwQEqML7TpYomAcJwxIJhcvLZ3xt3pPTgtSo2zLuVn9oaIsCQELl	

CpTh3LRYDxax7qaynXiiUJw112wTO1gR/iFCOgk36AzreTrmYSJrGm5lXe2syDc3	

SRY6w13x3z/z0dRka4kCPw4wFRV0XZut5HoDkxFmFOZJqCOCvj8fehp5eMP4SLKO	

mC72YIy+VDRRx8lBOoKyH++DWtgDqrwnJPc1E83WqQ==	

-----END RSA PRIVATE KEY-----	

Harrys-MacBook-Pro:~ harryw$	

	

	

Leiden University. The university to discover.	

Base64 encoding	

35	

0 	

A 	

 	

16 	

Q 	

 	

32 	

g 	

 	

48 	

w 	

	

1 	

B 	

 	

17 	

R 	

 	

33 	

h 	

 	

49 	

x 	

	

2 	

C 	

 	

18 	

S 	

 	

34 	

i 	

 	

50 	

y 	

	

3 	

D 	

 	

19 	

T 	

 	

35 	

j 	

 	

51 	

z 	

	

4 	

E 	

 	

20 	

U 	

 	

36 	

k 	

 	

52 	

0 	

	

5 	

F 	

 	

21 	

V 	

 	

37 	

l 	

 	

53 	

1 	

	

6 	

G 	

 	

22 	

W 	

 	

38 	

m 	

 	

54 	

2 	

	

7 	

H 	

 	

23 	

X 	

 	

39 	

n 	

 	

55 	

3 	

	

8 	

I 	

 	

24 	

Y 	

 	

40 	

o 	

 	

56 	

4 	

	

9 	

J 	

 	

25 	

Z 	

 	

41 	

p 	

 	

57 	

5 	

	

10 	

K 	

 	

26 	

a 	

 	

42 	

q 	

 	

58 	

6 	

	

11 	

L 	

 	

27 	

b 	

 	

43 	

r 	

 	

59 	

7 	

	

12 	

M 	

 	

28 	

c 	

 	

44 	

s 	

 	

60 	

8 	

	

13 	

N 	

 	

29 	

d 	

 	

45 	

t 	

 	

61 	

9 	

	

14 	

O 	

 	

30 	

e 	

 	

46 	

u 	

 	

62 	

+ 	

	

15 	

P 	

 	

31 	

f 	

 	

47 	

v 	

 	

63 	

/ 	

	

	

Leiden University. The university to discover.	

36	

SSH at LIACS (via ssh-keygen)	

Leiden University. The university to discover.	

37	

HTTP Secure 	

Ø  HTTPS URLs begin with "https://" and use port 443 by default	

 (HTTP URLs begin with "http://" and use port 80 by default)	

Ø  HTTPS is not a separate protocol, but refers to use of 	

 ordinary HTTP over an encrypted SSL/TLS connection.	

Ø  To prepare a web server to accept HTTPS connections, 	

 the administrator must create a public key certificate 	

 for the web server.	

Ø  This certificate must be signed by a trusted certificate authority	

Ø  This is done by sending a certificate signing request (CSR)	

Ø  Before doing so the server creates private/public key openSSL 	

Ø  If the request is successful, the certificate authority will send	

 back an identity certificate that has been digitally signed with 	

 the private key of the certificate authority. 	

Leiden University. The university to discover.	

38	

Typical information required in a CSR	

Leiden University. The university to discover.	

39	

Sa
m

pl
e

C
er

tifi
ca

te
	

Leiden University. The university to discover.	

Certificate Authorities	

40	

More than 50 root certificates are trusted in the
most popular web browser versions. A W3Techs
survey from November 2012 shows:	

	

Ø  Symantec (which owns VeriSign, Thawte and

Geotrust) with 42.9% market share	

Ø Comodo with 26%	

Ø GoDaddy with 14%	

Ø GlobalSign with 7.7%	

Leiden University. The university to discover.	

SSL/TLS	

41	

Transport Layer Security (TLS) and its predecessor, 	

Secure Sockets Layer (SSL), are cryptographic protocols 	

that provide communication security over the Internet. They use 	

Ø  asymmetric cryptography for authentication of key exchange, 	

Ø  symmetric encryption for confidentiality and 	

Ø  message authentication codes for message integrity. 	

	

Several versions of the protocols are in widespread use in
applications such as 	

	

	

web browsing (HTTPS), electronic mail, Internet faxing, 	

	

instant messaging and voice-over-IP (VoIP).	

Leiden University. The university to discover.	

SSL/TLS handsake protocol	

42	

Ø  The client sends the server the client's SSL version number, cipher settings, session-specific data,
and other information that the server needs to communicate with the client using SSL.	

Ø  The server sends the client the server's SSL version number, cipher settings, session-specific data,
and other information that the client needs to communicate with the server over SSL. The server
also sends its own certificate, and if the client is requesting a server resource that requires client
authentication, the server requests the client's certificate.	

Ø  The client uses the information sent by the server to authenticate the server. If the server cannot
be authenticated, the user is warned of the problem and informed that an encrypted and
authenticated connection cannot be established. If the server can be successfully authenticated,
the client proceeds to the next step.	

Ø Using all data generated in the handshake thus far, the client (with the cooperation of the server,
depending on the cipher in use) creates the pre-master secret for the session, encrypts it with the
server's public key (obtained from the server's certificate, sent in step 2), and then sends the
encrypted pre-master secret to the server.	

Ø  If the server has requested client authentication (an optional step in the handshake), the client also
signs another piece of data that is unique to this handshake and known by both the client and
server. In this case, the client sends both the signed data and the client's own certificate to the
server along with the encrypted pre-master secret.	

Leiden University. The university to discover.	

43	

Ø  If the server has requested client authentication, the server attempts to authenticate the client. If
the client cannot be authenticated, the session ends. If the client can be successfully
authenticated, the server uses its private key to decrypt the pre-master secret, and then
performs a series of steps (which the client also performs, starting from the same pre-master
secret) to generate the master secret.	

Ø  Both the client and the server use the master secret to generate the session keys, which are
symmetric keys used to encrypt and decrypt information exchanged during the SSL session and
to verify its integrity (that is, to detect any changes in the data between the time it was sent and
the time it is received over the SSL connection).	

Ø  The client sends a message to the server informing it that future messages from the client will be
encrypted with the session key. It then sends a separate (encrypted) message indicating that the
client portion of the handshake is finished.	

Ø  The server sends a message to the client informing it that future messages from the server will
be encrypted with the session key. It then sends a separate (encrypted) message indicating that
the server portion of the handshake is finished.	

Leiden University. The university to discover.	

44	

Browser support for SSL/TLS	

Leiden University. The university to discover.	

45	

Freier, et al. Historic [Page 12]	

 	

RFC 6101 The SSL Protocol Version 3.0 August 2011	

	

	

 The session state includes the following elements:	

	

 session identifier: An arbitrary byte sequence chosen by the server	

 to identify an active or resumable session state.	

	

 peer certificate: X509.v3 [X509] certificate of the peer. This	

 element of the state may be null.	

	

 compression method: The algorithm used to compress data prior to	

 encryption.	

	

 cipher spec: Specifies the bulk data encryption algorithm (such as	

 null, DES, etc.) and a MAC algorithm (such as MD5 or SHA). It	

 also defines cryptographic attributes such as the hash_size. (See	

 Appendix A.7 for formal definition.)	

	

 	

Fragment of RFC 6101 specifying SSL 3.0	

Leiden University. The university to discover.	

46	

 master secret: 48-byte secret shared between the client and server.	

	

 is resumable: A flag indicating whether the session can be used to	

 initiate new connections.	

	

 The connection state includes the following elements:	

	

 server and client random: Byte sequences that are chosen by the	

 server and client for each connection.	

	

 server write MAC secret: The secret used in MAC operations on data	

 written by the server.	

	

 client write MAC secret: The secret used in MAC operations on data	

 written by the client.	

	

 server write key: The bulk cipher key for data encrypted by the	

 server and decrypted by the client.	

Leiden University. The university to discover.	

47	

	

 client write key: The bulk cipher key for data encrypted by the	

 client and decrypted by the server.	

	

 initialization vectors: When a block cipher in Cipher Block Chaining	

 (CBC) mode is used, an initialization vector (IV) is maintained	

 for each key. This field is first initialized by the SSL	

 handshake protocol. Thereafter, the final ciphertext block from	

 each record is preserved for use with the following record.	

	

 sequence numbers: Each party maintains separate sequence numbers for	

 transmitted and received messages for each connection. When a	

 party sends or receives a change cipher spec message, the	

 appropriate sequence number is set to zero. Sequence numbers are	

 of type uint64 and may not exceed 2^64-1.	

	

