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Data Encryption���
Not to be confused with Data Encodings!!!!!!	


•  Symmetric Encryption / Private Key: the same key 
for both encryption and decryption	


•  Asymmetric Encryption/ Public Key Encryption: 
one public key for encrypting and one local/private 
key for decrypting	


Dorothy likes marmelade…	
 K*&-L%@#+	


Encryption	


Decryption	

Ciphertext	
Plain text	
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In other words (pictures)	
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Public	


Bob	
Alice	


Decryption	
Encryption	


Private	


Bob	
Alice	


Encryption	
 Decryption	


Secret	
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Symmetric-key cryptography	


•  Substitution ciphers: one symbol  (character) at a time is 
replaced with another symbol	


•  Monoalphabetic: a symbol is always replaced by the 
same symbol regardless of its position	


•  Polyalphabetic: depending on its position symbol is 
being replaced	


•  Transposition ciphers: permutes symbols in a block of 
symbols	
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Traditionally as early as Ceasar (warfare)	
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Quiz!!!!!	


Plaintext: HELLO	

Cyphertext: KHOOR	

What type of cipher?	

	

Plaintext: HELLO	

Cyphertext: ABNZF	

What type of cipher?	

	

Plaintext: HELLO	

Cyphertext: LOHEL	

What type of cipher?	
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Sample Ciphers	


Shift cipher (Ceasar cipher):	


A B C D E F G H I J K L M N O P ….	


	


A B C D E F G H I J K L M N O P ….	


Key is 4, four characters down.(Ceasar used 3.)	
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XOR Cipher	


Plaintext	


Ciphertext	


Key	
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Rotation Cipher	

	


Plaintext	


Ciphertext	


Key = number of rotations	
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Substition Cipher (S-box)	

	


Function that matches N 
inputs with M outputs	


N inputs	


M outputs	

Key-less	


S-box	
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Transposition Cipher (P-box)	

	


Straight P-box	


Expansion P-box	
 Compression P-box	
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Modern Round 	

Cipher: DES	


	

Data Encryption Standard:	

Ø First initial permutation (IP)	

Ø Bits are split up into 2 groups	

	
of 32 bits	


Ø First group is XOR-ed with	

	
F-function of the last 32 bits	


Ø  Initial last 32 bits are XOR-ed	

	
with F-function of result bits	


Ø Etc. etc. 16 rounds	

Ø Final permutation (FP)	
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DES: F-function	

	


Ø 32 bits are expanded to	

    48 bits(Expansion P-box)	

Ø These bits are XOR-ed 

with 48 bits subkey and 
divided in 8 groups of 6	


Ø Each group is substituted 
by 4 bits (subst. box)	


Ø Final 32 bits are 
permuted by straight P-
box	
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DES: key schedule	

	
Ø Permuted Choice (PC1)	


    selects 56 bits from 	

    original 64 bits	

Ø 56 bits are divided into	

    two halves of 28 bits	

Ø Each half is rotated left by	

    one or two bits	

Ø Two halves are merged	

    and PC2 selects 24 bits	

    from each half of 28 bits	

Ø This is being repeated 16	

    times.	
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DES: Security 	


Breakable by brute force:	

	

1977: Diffie and Hellman proposed a $20 Million machine to 
	
  break the code in one day	


1993:  Wiener proposed a $1 Million machine to break the 	
  
	
  code within 7 hours	


1998:  A $250000 machine was build by the Electronic 	

	
  Frontier Foundation which could break DES in 2 days	


2006: COPACOBANA was build for $10000, SciEngines GmbH	

	

è Triple DES, apply DES three times with 2 different keys          

2TDES or with 3 different keys 3TDES	

è AES (Advanced Encryption Standard) a new cipher was 

issued by NIST in 2001	
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Key Sharing!!!!!!!	
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Diffie–Hellman key exchange (D-H)	


two parties that have no prior knowledge of each other 
jointly establish a shared secret key over an insecure 
communications channel.	
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In COLOURS	
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Asymmetric-key cryptography	


Public	


Bob	
Alice	


Decryption	
Encryption	


Private	
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RSA (Rivest, Shamir and Adleman)	


A little history (The Code Book, by Simon Singh, Doubleday, 1999; pp. 279-92. )	

	

According to the British Government, public-key cryptography was originally 
invented at the Government Communications Headquarters (GCHQ) in 
Cheltenham, the top-secret establishment that was formed from the remnants of 
Bletchley Park after the Second World War.	

	

Looking ahead to the 1970s, senior military officials imagined a scenario in which 
miniaturization of radios and a reduction in cost meant that every soldier could be 
in continual radio contact with his officer.  The advantages of widespread 
communication would be enormous, but communications would have to be 
encrypted, and the problem of distributing keys would be insurmountable.	

	

At the beginning of 1969, the military asked James Ellis, one of Britain's foremost 
government cryptographers, to look into ways of coping with the key-distribution 
problem.	
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MEMORANDUM of Elliot: “Can we produce a secure encrypted message, readable by 
the authorized recipient without any prior secret exchange of the key? This question 
actually occurred to me in bed one night, and the proof of the theoretical possibility 
took only a few minutes. We had an existence theorem. The unthinkable was actually 
possible.”	

	

Ellis's ideas were very similar to those of Diffie, Hellman and Merkle, except that he 
was several years ahead of them. However, nobody knew of Ellis's work because he 
was an employee of the British Government and therefore sworn to secrecy. By the 
end of 1969, Ellis appears to have reached the same impasse that the Stanford trio 
would reach in 1975. He had proved to himself that public-key cryptography (or non-
secret encryption, as he called it) was possible.	

	

Then, in September 1973, a new mathematician joined the team. Clifford Cocks had 
recently graduated from Cambridge University, where he had specialized in number 
theory. Cocks was beginning to formulate what would be known as the RSA 
asymmetric cipher. Rivest, Shamir and Adleman discovered their formula for public-key 
cryptography in 1977, but four years earlier the young Cambridge graduate was going 
through exactly the same thought processes. Cocks recalls: 'From start to finish, it 
took me no more than half an hour. I was quite pleased with myself. I thought, "Ooh, 
that's nice. I've been given a problem, and I've solved it." '	
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Some basics	

Euler’s totient function: φ(n) is an arithmetic function that counts the 
number of positive integers less than or equal to n that are relatively 
prime to n. That is, if n is a positive integer, then φ(n) is the number 
of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.	


For example let n = 9. Then gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) = 
9. The other six numbers in the range 1 ≤ k ≤ 9, that is, 1, 2, 4, 5, 7 
and 8, are relatively prime to 9. Therefore, φ(9) = 6.	


èφ(nm) = φ(n)φ(m), if gcd (n, m) = 1	


èφ(p) = p – 1, if p is prime	
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Euler Phi Function:

October 10, 2012

1 The Euler Phi Function

This lecture is dedicated to the study of another multiplicative functions, the Euler phi
function.

Definition 1.1. Let n � 1 be an integer. Then we define the Euler phi function � by
�(n) =the number of positive integers less than n that are relatively prime to n.

So let us do some examples.

Example 1.2. �(1) = 1,�(2) = 1,�(3) = 2,�(4) = 2,�(5) = 4,�(6) = 2,�(15) = 8

The first observation is how �(n) behaves on the primes.

Observation 1. �(n) = n� 1 , n is prime.

Proof. �(n) = n� 1 , every integer in the set {1, 2, ..., (n� 1)} is relatively prime to n ,
No prime p with p < n divides n , n is prime.

So �(n) is capable of producting somewhat of a test to determine when a given integer
is a prime. Thus being able to calculate �(n) will be quite useful. The following theorem,
which might be quite surprising, facilitates this goal.

Theorem 1.3. The Euler phi function is multiplicative.

Proof. Let n and m be relatively prime integer. The statement clearly holds if n = 1 or
m = 1. So let us assume that n,m > 1. We would like to calculate �(nm) and so below we
arrange the integers from 1 to nm in m columns of n integers.

1 2 · · · r · · · m

m+ 1 m+ 2 · · · m+ r · · · 2m
2m+ 1 2m+ 2 · · · 2m+ r · · · 3m

...
...

...
...

(n� 1)m+ 1 (n� 1)m+ 2 · · · (n� 1)m+ r · · · nm

1So to calculate �(nm) we need to determine how many elements of this array are rela-
tively prime with nm, which are the elements that are relatively prime to both n and m.
So what was the point of us arranging the integers in such an array. We notice that since
gcd(km + r,m) =gcd(r,m) we see that an entry in the r

th column is relatively prime to
m if and only if r is relatively prime to m, and in this case then all of the entries of the
column are relatively prime to m. So looking at it this way, there are �(m) columns with
r’s that are relatively prime to n, and so we need to show that in each column there are
�(n) entries relatively prime to n and then we will be done.

So let us choose such a column, and let r be the corresponding element of the column
(mod m). So gcd(r,m)=1. The entries of this column are

r,m+ r, 2m+ r, ..., (n� 1)m+ r.

So we see that there are n integers in this column, so we would like to consider their
equivalence class module n.

Now if [km + r]
n

= [lm + r]
n

) [km]
n

= [lm]
n

) [k]
n

= [l]
n

since gcd(n,m)=1.
However, as we can see no two of the coe�ecients of m in the column are equivalent mod n.
Thus if we look at the column there are all of the equivalence classes modulo n. Therefore
the number of them that are relatively prime to n is �(n).

So we have divided the numbers that are relatively prime to nm into �(m) columns
where in each column with �(n) such numbers in each column. Thus the total amount of
such numbers is �(n)�(m)

We would like to get a formula for �(n), and now that we know that � is multiplicative
the we only need to determine it’s value on powers of primes.

Theorem 1.4. Let p be prime and k > 0, then

�(pk) = p

k � p

k�1 = p

k

✓
1� 1

p

◆
= p

k�1(p� 1) (1)

Proof. This can be proven by a simple counting argument. The only numbers between 1
and p

k that are not relatively prime to p

k are the ones that are divisible by p. There are
p

k

p

= p

k�1 of these. So we have that

�(pk) = p

k � k

k�1

With this knowledge we can completely calculate �(n)

Corollary 1.5. Let n be a positive integer with factorization given by n = p

n1
1 · · · pnk

k

. Then

�(n) is given by

�(n) =
Q

i

p

ni
i

⇣
1� 1

pi

⌘
= n

Q
i

⇣
1� 1

pi

⌘

Proof. This is immediate from theorem 1.4 so we leave the proof to the reader.

2
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The first 1000 values of φ(n)	
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The Algorithm	


Choose two distinct prime numbers p and q. For security purposes, the 
integers p and q should be chosen at random, and should be of similar bit-length.	


Compute n = pq. n is used as the modulus for both public and private keys, its 
length, usually expressed in bits, is the key length. 	


Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1), where φ is Euler’s totient 
function. 	


Choose an integer e such that 1 < e < φ(n) and gcd(e,φ(n))=1, i.e. e 

and φ(n) are coprime. 	

e is released as the public key exponent. e having a short bit-length i.e. 	

216 + 1 = 65537 results in more efficient encryption, but e should not be too small 	


Solve for d given de ≡ 1 (mod φ(n)).  d is kept as the private key exponent.	

	

The public key consists of the modulus n and the public (or encryption) exponent e. 
The private key consists of the modulus n and the private (or decryption) exponent 
d, which must be kept secret. 	

p, q, and φ(n) must also be kept secret because they can be used to calculate d.	
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Encryption	

Alice transmits her public key (n, e) to Bob and keeps the private key 
secret. Bob then wishes to send message M to Alice.	

He first turns M into an integer m, such that 0 ≤ m < n by using an 
agreed-upon reversible protocol known as a padding scheme. He then 
computes the ciphertext c corresponding to	

	

	
 	
 	
 	
c = me (mod n)	


	

Decryption	

Alice can recover m from c by using her private key exponent d via 
computing	


	
 	
 	
 	
m = cd (mod n)	

	

Given m, she can recover the original message M by reversing the padding 
scheme.	
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Why does this work???	

Lemma	

For any prime p:	

	
 	
 	
(x+y)p = xp+ yp (mod p)	


Proof	

(x+y)p = Σi=0, p      xp-i yi, with      = p! / ((p-i)! i!).	

The binomial coefficients are all integers and when 0 < i < p, 
neither of the terms in the denominator includes a factor of 
p, leaving the coefficient itself to possess a prime factor of p 
which must exist in the numerator, implying that    = 0 (mod 
p). So the only remainder coefficients are i = 0 and i = p. ∎	


P	

i	


P	

i	


P	

i	
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Why does this work???	


Fermat’s Little Theorem	

If p is prime, then for all integer a:	

	
 	
 	
ap = a (mod p)	


Proof	

Assume kp = k (mod p), and consider (k+1)p. By the lemma we 
have (k+1)p = kp +1p (mod p). Using the induction hypothesis, we 
have that kp ≡ k (mod p), and, trivially, 1p = 1. Thus	

	
 	
 	
(k+1)p = k +1 (mod p)	


which is the statement of the theorem for a = k+1. ∎	
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Why does this work???	

Proof using Fermat's little theorem	

The proof of the correctness of RSA is based on Fermat's little theorem. This theorem states that if p is prime and p 
does not divide an integer a then	

	

	

We want to show that (me)d ≡ m (mod pq) for every integer m when p and q are distinct prime numbers and e and d 
are positive integers satisfying	

	

	

We can write	

	

	

for some nonnegative integer h.	

To check two numbers, like med and m, are congruent mod pq it suffices (and in fact is equivalent) to check they are 
congruent mod p and mod q separately.  To show med ≡ m (mod p), we consider two cases: m ≡ 0 (mod p) and m is 
not equivalent to  0 (mod p). In the first case med is a multiple of p, so med ≡ 0 ≡ m (mod p). In the second case	

	

	

where we used Fermat's little theorem to replace mp−1 mod p with 1.	

The verification that med ≡ m (mod q) proceeds in a similar way, treating separately the cases m ≡ 0 (mod q) and m is 
not equivalent to 0 (mod q), using Fermat's little theorem for modulus q in the second case.	

This completes the proof that, for any integer m,	


	
  ∎	
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A simple Example	
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Efficient decrypting 	
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Security Considerations	


As of 2010, the largest (known) number factored by a general-purpose factoring 
algorithm was 768 bits long (see RSA-768), using a state-of-the-art distributed 
implementation. 	


If n is 300 bits or shorter, it can be factored in a few hours on a personal computer, 
using software already freely available. Keys of 512 bits have been shown to be 
practically breakable in 1999 when RSA-155 was factored by using several hundred 
computers and are now factored in a few weeks using common hardware. 	


Exploits using 512-bit code-signing certificates that may have been factored were 
reported in 2011. A theoretical hardware device named TWIRL and described by 
Shamir and Tromer in 2003 called into question the security of 1024 bit keys. It is 
currently recommended that n be at least 2048 bits long	


30	
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Harrys-MacBook-Pro:~ harryw$ openssl genrsa -out private_key.pem 1024	

Generating RSA private key, 1024 bit long modulus	

...................................++++++	

...............................................................++++++	

e is 65537 (0x10001)	

Harrys-MacBook-Pro:~ harryw$ openssl rsa -pubout -in private_key.pem -out 
public_key.pem	

writing RSA key	

Harrys-MacBook-Pro:~ harryw$ openssl rsa -text -in private_key.pem	

Private-Key: (1024 bit)	

modulus:	

    00:de:c0:ef:f7:ed:10:6a:4f:1f:58:80:1f:4b:67:	

    d8:9d:64:71:01:21:d4:89:d1:3e:56:8e:e5:85:36:	

    1d:e7:6f:67:14:4e:fe:f9:35:64:ef:ab:32:01:e2:	

    63:ec:88:13:68:94:dc:55:2b:5f:3f:a6:0f:7d:3b:	

    3a:c8:fb:4b:92:d8:02:f0:80:72:cb:f5:2c:25:5b:	

    6b:20:01:1a:94:96:23:aa:f2:d8:19:0f:86:c5:0e:	

    da:02:4b:0f:31:6b:2a:0b:ef:8a:6e:a8:6d:8c:b7:	

    b4:bd:8f:52:3c:8f:0a:eb:44:05:74:50:09:c6:13:	

    8d:65:23:15:30:51:6c:82:23	

publicExponent: 65537 (0x10001)	


Example RSA generation	
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privateExponent:	

    00:c4:a4:b0:73:3e:dd:51:ec:1d:70:e4:52:3c:20:	

    25:b2:f4:5b:6a:33:72:4c:63:e2:d3:48:fc:c7:b7:	

    79:78:b8:f8:d7:8d:d1:3b:30:ee:b5:41:7d:38:fa:	

    a1:59:ca:da:cf:65:32:89:21:6b:c9:65:90:a0:ee:	

    2b:bc:07:53:b3:5d:a9:4d:90:86:86:30:8d:48:a0:	

    9d:0a:67:8b:75:3c:29:c6:f8:39:e4:bf:68:c9:24:	

    66:aa:91:3d:19:d0:87:52:c1:7c:79:cd:67:a6:34:	

    cb:70:e9:09:a3:10:1a:32:1d:f8:50:0e:8e:e8:f6:	

    c0:b3:f2:70:a2:1a:b5:65:59	

prime1:	

    00:f5:07:fc:cd:d0:0b:a7:f5:62:36:13:9e:31:74:	

    d9:a7:cf:bb:e1:4f:08:df:60:9f:13:7a:b9:ad:a4:	

    ea:5c:09:0c:63:5e:bc:97:99:dc:7b:67:63:c0:2b:	

    a1:34:06:84:9a:2d:68:fa:40:8c:a4:da:45:f2:14:	

    a1:7e:0e:ea:af	

prime2:	

    00:e8:b9:a7:42:59:a8:83:64:e8:87:0a:27:f6:3b:	

    94:32:8c:db:e9:cd:01:ca:ed:97:83:97:9b:97:17:	

    ef:69:c7:c1:a9:90:60:a0:75:cb:72:4a:97:4c:9d:	

    7a:eb:07:02:be:bc:76:cb:14:8a:bb:55:d2:17:94:	

    2d:72:43:ac:cd	
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exponent1:	

    61:66:6a:6c:59:6d:b8:b7:06:f2:1d:fc:3d:06:88:	

    da:76:ed:e5:12:e8:a0:fa:a4:61:36:e0:86:10:cf:	

    04:04:a8:c2:fb:4e:96:28:98:07:09:c3:12:09:85:	

    cb:cb:67:7c:6d:de:93:d3:82:d4:a8:db:32:ee:56:	

    7f:68:68:8b	

exponent2:	

    42:e5:0a:94:e1:dc:b4:58:0f:16:b1:ee:a6:b2:9d:	

    78:a2:50:9c:35:d7:6c:13:3b:58:11:fe:21:42:3a:	

    09:37:e8:0c:eb:79:3a:e6:61:22:6b:1a:6e:65:5d:	

    ed:ac:c8:37:37:49:16:3a:c3:5d:f1:df:3f:f3:d1:	

    d4:64:6b:89	

coefficient:	

    0e:30:15:15:74:5d:9b:ad:e4:7a:03:93:11:66:14:	

    e6:49:a8:23:82:be:3f:1f:7a:1a:79:78:c3:f8:48:	

    b2:8e:98:2e:f6:60:8c:be:54:34:51:c7:c9:41:3a:	

    82:b2:1f:ef:83:5a:d8:03:aa:bc:27:24:f7:35:13:	

    cd:d6:a9	




Leiden University. The university to discover.	
34	


writing RSA key	

-----BEGIN RSA PRIVATE KEY-----	

MIICWwIBAAKBgQDewO/37RBqTx9YgB9LZ9idZHEBIdSJ0T5WjuWFNh3nb2cUTv75	

NWTvqzIB4mPsiBNolNxVK18/pg99OzrI+0uS2ALwgHLL9SwlW2sgARqUliOq8tgZ	

D4bFDtoCSw8xayoL74puqG2Mt7S9j1I8jwrrRAV0UAnGE41lIxUwUWyCIwIDAQAB	

AoGBAMSksHM+3VHsHXDkUjwgJbL0W2ozckxj4tNI/Me3eXi4+NeN0Tsw7rVBfTj6	

oVnK2s9lMokha8llkKDuK7wHU7NdqU2QhoYwjUignQpni3U8Kcb4OeS/aMkkZqqR	

PRnQh1LBfHnNZ6Y0y3DpCaMQGjId+FAOjuj2wLPycKIatWVZAkEA9Qf8zdALp/Vi	

NhOeMXTZp8+74U8I32CfE3q5raTqXAkMY168l5nce2djwCuhNAaEmi1o+kCMpNpF	

8hShfg7qrwJBAOi5p0JZqINk6IcKJ/Y7lDKM2+nNAcrtl4OXm5cX72nHwamQYKB1	

y3JKl0ydeusHAr68dssUirtV0heULXJDrM0CQGFmamxZbbi3BvId/D0GiNp27eUS	

6KD6pGE24IYQzwQEqML7TpYomAcJwxIJhcvLZ3xt3pPTgtSo2zLuVn9oaIsCQELl	

CpTh3LRYDxax7qaynXiiUJw112wTO1gR/iFCOgk36AzreTrmYSJrGm5lXe2syDc3	

SRY6w13x3z/z0dRka4kCPw4wFRV0XZut5HoDkxFmFOZJqCOCvj8fehp5eMP4SLKO	

mC72YIy+VDRRx8lBOoKyH++DWtgDqrwnJPc1E83WqQ==	

-----END RSA PRIVATE KEY-----	

Harrys-MacBook-Pro:~ harryw$	
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SSH at LIACS (via ssh-keygen)	
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HTTP Secure 	


Ø  HTTPS URLs begin with "https://" and use port 443 by default	

     (HTTP URLs begin with "http://" and use port 80 by default)	

Ø  HTTPS is not a separate protocol, but refers to use of 	

      ordinary HTTP over an encrypted SSL/TLS connection.	

Ø  To prepare a web server to accept HTTPS connections, 	

      the administrator must create a public key certificate 	

      for the web server.	

Ø  This certificate must be signed by a trusted certificate authority	

Ø  This is done by sending a certificate signing request (CSR)	

Ø  Before doing so the server creates private/public key openSSL   	

Ø  If the request is successful, the certificate authority will send	

      back an identity certificate that has been digitally signed with 	

      the private key of the certificate authority.  	
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Typical information required in a CSR	
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More than 50 root certificates are trusted in the 
most popular web browser versions. A W3Techs 
survey from November 2012 shows:	

	

Ø  Symantec (which owns VeriSign, Thawte and 

Geotrust) with 42.9% market share	

Ø Comodo with 26%	

Ø GoDaddy with 14%	

Ø GlobalSign with 7.7%	
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Transport Layer Security (TLS) and its predecessor, 	

Secure Sockets Layer (SSL), are cryptographic protocols 	

that provide communication security over the Internet. They use 	

Ø  asymmetric cryptography for authentication of key exchange, 	

Ø  symmetric encryption for confidentiality and 	

Ø  message authentication codes for message integrity. 	

	

Several versions of the protocols are in widespread use in 
applications such as 	

	

	
web browsing (HTTPS), electronic mail, Internet faxing, 	

	
instant messaging and voice-over-IP (VoIP).	
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Ø  The client sends the server the client's SSL version number, cipher settings, session-specific data, 
and other information that the server needs to communicate with the client using SSL.	


Ø  The server sends the client the server's SSL version number, cipher settings, session-specific data, 
and other information that the client needs to communicate with the server over SSL. The server 
also sends its own certificate, and if the client is requesting a server resource that requires client 
authentication, the server requests the client's certificate.	


Ø  The client uses the information sent by the server to authenticate the server. If the server cannot 
be authenticated, the user is warned of the problem and informed that an encrypted and 
authenticated connection cannot be established. If the server can be successfully authenticated, 
the client proceeds to the next step.	


Ø Using all data generated in the handshake thus far, the client (with the cooperation of the server, 
depending on the cipher in use) creates the pre-master secret for the session, encrypts it with the 
server's public key (obtained from the server's certificate, sent in step 2), and then sends the 
encrypted pre-master secret to the server.	


Ø  If the server has requested client authentication (an optional step in the handshake), the client also 
signs another piece of data that is unique to this handshake and known by both the client and 
server. In this case, the client sends both the signed data and the client's own certificate to the 
server along with the encrypted pre-master secret.	
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Ø  If the server has requested client authentication, the server attempts to authenticate the client. If 
the client cannot be authenticated, the session ends. If the client can be successfully 
authenticated, the server uses its private key to decrypt the pre-master secret, and then 
performs a series of steps (which the client also performs, starting from the same pre-master 
secret) to generate the master secret.	


Ø  Both the client and the server use the master secret to generate the session keys, which are 
symmetric keys used to encrypt and decrypt information exchanged during the SSL session and 
to verify its integrity (that is, to detect any changes in the data between the time it was sent and 
the time it is received over the SSL connection).	


Ø  The client sends a message to the server informing it that future messages from the client will be 
encrypted with the session key. It then sends a separate (encrypted) message indicating that the 
client portion of the handshake is finished.	


Ø  The server sends a message to the client informing it that future messages from the server will 
be encrypted with the session key. It then sends a separate (encrypted) message indicating that 
the server portion of the handshake is finished.	
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Browser support for SSL/TLS	
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Freier, et al.                  Historic                       [Page 12]	

 	

RFC 6101              The SSL Protocol Version 3.0           August 2011	

	

	

   The session state includes the following elements:	

	

   session identifier:  An arbitrary byte sequence chosen by the server	

      to identify an active or resumable session state.	

	

   peer certificate:  X509.v3 [X509] certificate of the peer.  This	

      element of the state may be null.	

	

   compression method:  The algorithm used to compress data prior to	

      encryption.	

	

   cipher spec:  Specifies the bulk data encryption algorithm (such as	

      null, DES, etc.) and a MAC algorithm (such as MD5 or SHA).  It	

      also defines cryptographic attributes such as the hash_size.  (See	

      Appendix A.7 for formal definition.)	

	

  	


Fragment of RFC 6101 specifying SSL 3.0	
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 master secret:  48-byte secret shared between the client and server.	

	

   is resumable:  A flag indicating whether the session can be used to	

      initiate new connections.	

	

   The connection state includes the following elements:	

	

   server and client random:  Byte sequences that are chosen by the	

      server and client for each connection.	

	

   server write MAC secret:  The secret used in MAC operations on data	

      written by the server.	

	

   client write MAC secret:  The secret used in MAC operations on data	

      written by the client.	

	

   server write key:  The bulk cipher key for data encrypted by the	

      server and decrypted by the client.	
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   client write key:  The bulk cipher key for data encrypted by the	


      client and decrypted by the server.	

	


   initialization vectors:  When a block cipher in Cipher Block Chaining	

      (CBC) mode is used, an initialization vector (IV) is maintained	


      for each key.  This field is first initialized by the SSL	

      handshake protocol.  Thereafter, the final ciphertext block from	


      each record is preserved for use with the following record.	

	


   sequence numbers:  Each party maintains separate sequence numbers for	

      transmitted and received messages for each connection.  When a	


      party sends or receives a change cipher spec message, the	

      appropriate sequence number is set to zero.  Sequence numbers are	


      of type uint64 and may not exceed 2^64-1.	


	



