Encoding Information

- As we have seen earlier:
- Information: Digital \leftrightarrow Analog
- In the same way:
- Medium: Digital \leftrightarrow Analog
- Digital: Twisted pair, coax
- Analog: Fiber, wireless (and these days also twisted pair and coax)

Encoding Information

- This results in 4 cases:

Medium	Digital	Analog
Information	1	2
Analog	3	4

Case I: NRZL

- Non Return to Zero Level (NRZL)
- Transition of $0 \rightarrow 1$ and $\mathrm{I} \rightarrow 0$
- Non Return to Zero
 Invert
- Transition on "ones"

Case I: Bipolar AMI and Pseudo ternary

- Alternate Mark Inversion
- Bipolar AMI
- Alternate on I

- Pseudo ternary
- Alternate on 0

Case I: Manchester

- Manchester: Transit in middle.
- I: L $\rightarrow \mathrm{H}$
- $0: \mathrm{H} \rightarrow \mathrm{L}$

Case I: Differential Manchester

- Differential Manchester
- 0: Transition at the start
- I: No transition
- Always transition in middle

Synchronization

- Problem: Synchronisation! How to agree on when clock ticks occur for sender and receiver?
- Avoiding clock skew.

Synchronization

- Synchronisation:
- NRZL: At long sequences of 0 or long sequences of I.
- NRZI: At long sequences of 0
- Bipolar AMI: At long sequences of 0
- Pseudo Ternary: At long sequences of I

Scrambling

- For bipolar AMI the signal is scrambled

- B8ZS (bipolar 8-zero substitution): Substitute eight ' 0 ' with:

V:Violation
B: Balancing

Scrambling

- Bipolar AMI:

- HDB3 (High-Density Bipolar Order 3):

B8ZS and HDB3

- B8ZS: $00000000 \rightarrow 000 \mathrm{VB} 0 \mathrm{VB}$
- HDB3: $0000 \rightarrow 000 \mathrm{~V}$ (if odd number of ones between) or B00V
- B needed to balance the current flow

Self clocked

- Scrambling not possible on NRZL and NRZI.
- Manchester and differential manchester is self clocked but cost twice the bandwidth.

Fast Ethernet

- 10 Mbit/s Ethernet: Diff. Manchester.
- $100 \mathrm{Mbit} / \mathrm{s}$ Ethernet: Diff. Manchester not usable.
- STP/UTP(CAT5) $\leq 10^{8} \mathrm{~Hz}$
- Nyquist max 2×10^{8} bps $\sim 200 \mathrm{Mbit} / \mathrm{s}$, but twice as many transitions needed, so max $100 \mathrm{Mbit} / \mathrm{s}$. In practice lower!

MLT-3

- $100 \mathrm{Mbit} / \mathrm{s}$ Ethernet (100 BASE_TX) uses Multi Level Transmit, MLT-3 (NRZI-3)
- For 0 , do nothing.
- For I, transit $+0-0+0-0+0-\ldots$

MLT-3

- With MLT3, synchronization problem appears again.
- "Scrambling" done in different way.
- Every group of 4 bits of data is transmitted as 5 bits so that there are at least two transitions per 5 bits.
- Predetermined code words.

4b/5b

Data	$4 \mathrm{~b} / 5 \mathrm{~b}$ encoded
0000	11110
0001	01001
0010	10100
\ldots	\ldots.
1101	11011
1110	11100
1111	11101

The 5 bit encoded data is transmitted using MLT3

Gigabit Ethernet

Basically five standards available, including I000BASEX for optical fiber and I000BASE-T for twisted pair and IO00BASE-CX for Coax. More precisely:

Name
1000BASE-CX 1000BASE-KX 1000BASE-SX 1000BASE-LX 1000BASE-LX
IO00BASE-LXIO Single-mode fiber using $1,310 \mathrm{~nm}$ wavelength
IO00BASE-EX Single-mode fiber at I,310 nm wavelength
I000BASE-ZX Single-mode fiber at I,550 nm wavelength
IO00BASE-BXIO Single-mode fiber, over single-strand fiber: I,490/I,310 nm I000BASE-T Twisted-pair cabling (Cat-5, Cat-5e, Cat-6, or Cat-7) IO00BASE-TX Twisted-pair cabling (Cat-6, Cat-7)

Specified distance

25 meters
I meter
220 to 550 meters
550 meters
5 km
10 km
$\sim 40 \mathrm{~km}$
$\sim 70 \mathrm{~km}$
10 km
100 meters
100 meters

10 Gigabit (IOGE, IOGbE, or I0GigE) Ethernet also available but not for cat. 5e twisted pair 100 m cabling

I000BASE-T

- All four copper wires are used at the same time
- Every 8 bits are split up in 4 groups of 3 bits ensuring enough transitions
- Every three bits are mapped to a voltage level, for example:

3 bits	voltage
000	0
001	+1
010	+2
011	-1
100	0
101	+1
110	-2
111	-1

- These mappings changed during transmission (preventing DC current)

PAM-5 technique (Pulse Amplitude Modulation)

Case 2: Digital Data over Analog Medium

- Most common way to transmit digital data. Three primary techniques:
- Amplitude shift keying (ASK)
- Frequency shift keying (FSK)
- Phase shift keying (PSK)
- Used when transmitting data over fiber, wireless and telephone lines.

ASK

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{c} t\right) & 1 \\ 0 & 0\end{cases}
$$

< 1200 bps on telephone lines

FSK

$$
\begin{aligned}
& s(t)=\left\{\begin{array}{lll}
A \cos \left(2 \pi f_{1} t\right) & 1 & <1200 \text { bps on telephone lines } \\
A \cos \left(2 \pi f_{2} t\right) & 0 & \text { full duplex possible: }
\end{array}\right. \\
& \rightarrow 1070 \& 1270 \mathrm{~Hz} \\
& \leftarrow 2025 \& 2225 \mathrm{~Hz}
\end{aligned}
$$

f_{1} and f_{2} are offsets to a carrier

PSK

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{c} t+\pi\right) & 1 \\ A \cos \left(2 \pi f_{c} t\right) & 0\end{cases}
$$

FSK \& PSK example (I/3)

FSK

PSK

FSK \& PSK example (2/3)

FSK

FSK \& PSK example (3/3)

Note the following:

PSK

QPSK

Used for phone lines (modems and ADSL) when frequency > 1200 bps.

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{c} t+\pi / 4\right) & 11 \\ A \cos \left(2 \pi f_{c} t+3 \pi / 4\right) & 10 \\ A \cos \left(2 \pi f_{c} t+5 \pi / 4\right) & 00 \\ A \cos \left(2 \pi f_{c} t+7 \pi / 4\right) & 01\end{cases}
$$

QPSK (2)

Include Amplitude Modulation

Total of 16 points $=4$ bits

QAM (I)

QAM (quadratic amplitude modulation) Higher bit rates possible

$$
s(t)=I(t) \cos \left(2 \pi f_{c} t\right)+Q(t) \sin \left(2 \pi f_{c} t\right)
$$

Sufficiently different in phase so that $\mathrm{I}(\mathrm{t})$ and $\mathrm{Q}(\mathrm{t})$ can be isolated.

QAM (2)

16-QAM

Rectangular constellation

QAM (3)

Circular 16-QAM

Circular constellation

QAM (3)

- Infinite possibilities with different characteristic
- Error sensitivity
- Circular constellation better, but harder to modulate and demodulate, than rectangular constellation.

Case 3: Analog Data over Digital Medium

Two reasons

I. Nothing else possible, available medium is digital.
2. Preventing errors.

Case 3: Analog Data over Digital Medium

Analog NRZ-L
\rightarrow Digitiser $\rightarrow \square \square \square$

Digitisers

- Pulse Code Modulation (PCM)
- Delta Modulation (DM)

PCM (1/2)

Signal

Bandwidth: B

Pulse Amplitude Modulation

Sampling Rate: 2B

PCM (2/2)

Approximate amplitude with n bits (e.g. $n=3$)

Output: OlIOIIIIOIOIIO0010100...

Delta Modulation

(More efficient than PCM)

T_{s} : sample time
δ step up: I
δ step down: 0

Example: Voice 4 kHz

PCM

- 8000 samples/s
- 128 quant. levels: 7 bits
- 56 kbps
- (Nyquist) 28 kHz DM
- 8000 samples/s
- I bit/sample
- 8 kbps
- (Nyquist) 4 kHz

Digital Transmission

Advantages:

- Repeaters instead of amplifiers (more exact)
- Time Division Multiplexing (TDM) instead of Frequency Division Multiplexing (FDM) (less inter modular noise)
- Digital switching technology is more advanced.

Case 4: Analog Data Over Analog Medium

Using AM (Amplitude Modulation), FM (Frequency Modulation) and PM (Phase Modulation), comparable to ASK, FSK and PSK

Amplitude Modulation (AM)

$$
s(t)=\left[1+n_{a} x(t)\right] \cos \left(2 \pi f_{e} t\right)
$$

$x(\mathrm{t})$: the signal

$$
m(t)=n_{a} x(t) \text { : normalized } x(t) \text { so that: }
$$

$$
\left|\mathrm{n}_{\mathrm{a}} \mathrm{x}(\mathrm{t})\right|<\mathrm{l}, \forall \mathrm{t}
$$

AM

Normalisation needed

AM

Spectrum:
B: bandwidth of $x(t)$

$V \equiv W$, so all frequencies between $f_{c}-B$ and f_{c} can be filtered away.
Single Sided Band (SSB) instead of Double Sided Band Transmitter Carrier (DSBTC)

Frequency and Phase Modulation (FM \& PM)

$$
s(t)=A \cos \left(2 \pi f_{c} t+\phi(t)\right)
$$

$\phi(\mathrm{t})$: angle modulation

- PM: $\phi(\mathrm{t})=\mathrm{n}_{\mathrm{p}} \times \mathrm{m}(\mathrm{t})$
- FM: $\phi^{\prime}(\mathrm{t})=\mathrm{n}_{\mathrm{f}} \times \mathrm{m}(\mathrm{t})$

Thus with PM, the phase change in $s(t)$ is proportional with the change in $m(t)(x(t))$, for $F M, m(t)$ is proportional with the frequency change.

FM \& PM

Change in frequency of $s(t)$:

$$
\frac{d}{d t}\left[2 \pi f_{c}+\varphi(t)\right]=2 \pi f_{c}+\varphi^{\prime}(t)
$$

For:

PM: $\phi(\mathrm{t})=\ldots \sin (\mathrm{t})$
FM: $\phi(\mathrm{t})=\ldots \cos (\mathrm{t}) \quad \overline{d t} \cos (t)=\sin (t)$

FM \& PM

AM

FM

PM

Thus, PM is shifted FM in the case $x(t)$ is a sine wave. See also the PSK/FSK relation.

