
Utilizing

the Topology Preserving Property

of Self�Organizing Maps

for Classi�cation

Peter van der Putten

Cognitive Arti�cal Intelligence

Utrecht University

March ��� ����

��Universiteit�Utrecht Supervisors�

Prof�dr� Joost N� Kok

Dr� Marc Bezem

Drs� S� Haring

Abstract

The Kohonen Self�Organizing Map �SOM� is a popular algorithm for constructing a nearest neigh�
bor codebook in pattern space� The algorithm utilizes a prede�ned ordering on the codebook to
distribute the codes proportionally on the input manifold� In the end this ordering should re�ect
the structure of the input� Prototypical application of the SOM uses the codebook but neglects the
ordering� We explore the practical possibilities for taking advantage of the ordering� concentrating
mainly on classi�cation tasks� We present three approaches� coding class boundaries with a duo
of SOMs� construction of radial basis function networks with ordering information and using a
SOM as a preprocessor for backpropagation networks� We obtain positive results on a number
of real world data sets from the �eld of medical diagnosis� speech� and image processing� From
this we conclude the ordering property of SOMs contains useful information� However� it is still
unclear how to pro�t from it in the best possible way�

Contents

� Introduction and Motivation �

� The Kohonen algorithm �
	�
 SOM architecture and dynamics �
	�	 Related Algorithms �
	�
 A closer look at the ordering property �
	�� SOM Applications �

� Classi�cation ��

�
 Introduction �
�

�	 Bayes Error �
�

�
 Nearest Neighbor Algorithms �
�

� Coding class boundaries ��
��
 Introduction �
�
��	 Coding with a Duo of SOMs �
�
��
 Related Work �
�
��� Experiments and Results �
�
��� Discussion � 	

� Constructing Radial Basis Function Networks ��
��
 Introduction � 	

��	 RBF Initialization with SOMs � 	�
��
 Related Work � 	�
��� Experiments and Results � 	�
��� Discussion � 	�

� Combining SOMs with Backpropagation Networks ��
��
 Introduction � 	�
��	 Transforming the Pattern Space with a SOM � 	�
��
 Related work � 	�
��� Experiments and Results � 	�
��� Discussion �
	

� Discussion ��

� Conclusion ��

A Benchmarks ��

B The MOvieS Simulator ��
B�
 MOvieS class library �
�
B�	 MOvieS graphical user interface �
�

Chapter �

Introduction and Motivation

Why use a Kohonen Self�Organizing Map �SOM� �Kohonen�
��	b���
Researchers interested in using neural networks for neurobiological modelling will stress the sim�
ilarity between SOMs and ordered neural structures like the somatosensory cortex� For other
applications however the only thing that counts is an objective scoring of the performance on a
certain task� for example the e�ciency of clustering or the speed of classi�cation� If used for these
kind of tasks the SOM reduces to nothing more than a simple look up table �also� codebook��
When a new input is presented all codebook vectors �codes� are compared to �nd the one most
similar to the input� The values of the codes are calculated using the prede�ned ordering on the
codebook� in a trained SOM codes that are next to each other in the codebook come to represent
similar values �see the next chapter for an introductory discussion of the SOM��
A previous survey showed that although ordering is necessary for SOM codebook formation it
is hardly used in SOM applications �van der Putten�
����� Because the ordering is a distinctive
feature over other look up algorithms �also called nearest neighbor algorithms� and we think it
contains useful information we want exploit this feature more� So the main aim of our research
becomes�

Investigate if the ordering property of SOMs can be utilized to improve performance�

We de�ne utilization of the ordering property as any use of ordering information other than in
normal SOM training� The e�ect of ordering on quality and speed in normal SOM training is
shown in a number of experiments performed by Ritter et al �Ritter et al��
��	��
Our central theme has an impact on both the utility of the ordering property for the SOM as on
the utility of the SOM as a neural algorithm� If utilization of the ordering property leads to better
results compared to standard SOM performance ordering will be seen as an important property of
a SOM rather than just a by product� And if using ordering information results in better outcomes
compared to other nearest neighbor algorithms the choice for a SOM will be con�rmed�
As an approach to our subject we developed various variants of the SOM algorithm which take
the ordering information into account� We ran a number of experiments to compare the objective
performance of our architectures to the basic SOM and other algorithms� The task we chose our
algorithm to perform was classi�cation because it is the most basic task in pattern recognition
and a common application for the SOM� All experiments were run on data taken from real world
problems to produce as realistic results as possible�
This paper starts with a description of the the SOM algorithm as a nearest neighbor algorithm�
without reference to neural network concepts that may work confusing �chapter 	�� In this chapter
we will also discuss and give de�nitions of the ordering property and show some SOM applica�
tions� Readers familiar with the SOM can skip this chapter� In chapter
 we will give a short
discussion on classi�cation and the limits of classi�cation error� The next three chapters describe
three di�erent �groups of� SOM variants which we developed and the experiments we performed
with them� Chapter � discusses coding class boundaries in pattern space with a second SOM� in

	

chapter � we construct radial basis function networks with SOMs and in chapter � we use a SOM
as a preprocessor for a backpropagation network� These chapters are followed by a discussion
�chapter �� and a conclusion �chapter ��� The paper ends with two appendices describing the data
�appendix A� and the software �appendix B� used in the experiments�

Acknowledgements This research was done as a �nal degree project to obtain a �doctorandus�
degree in Cognitive Arti�cial Intelligence� I would like to thank my supervisors prof�dr� Joost
N� Kok from the computer science department of Leiden University� dr� Marc Bezem from the
philosophy department of Utrecht University and drs� Sebastiaan Haring from the computer
science department of Utrecht University� Furthermore I would like to thank Jakub Zavrel for his
comments and Michiel van Wezel for supplying me with backpropagation source code�

Chapter �

The Kohonen algorithm

��� SOM architecture and dynamics

Although the Kohonen Self�Organizing Map �SOM� �Kohonen�
��	b� Kohonen�
����� is gener�
ally seen as a neural network� its workings can be readily understood without the usual neural
network concepts like nodes� links� weights� propagation and activation�

Actually� in prototypical application a SOM is nothing more or less than a codebook�
Let�s assume we want to model a certain amount of data consisting of records� all containing the
same �elds� We can see this data as a set of vectors x � X with X � RD and size n� D equals the
number of �elds� n equals the number of records� We call x an input vector� X the input manifold
and RD a pattern space� Now� in prototypical application a SOM reduces to nothing more or less
than a sort of look up table� a codebook� A codebook consists of a �nite set C of vectors m � RD

��codes�� or �reference vectors��� Every new input is mapped to the nearest code� In this way the
codebook divides pattern space in a so�called Voronoi tessellation �see �gure 	�
�� In more formal
notation�

De�nition �	�	�
Codebook� Nearest Neighbor� Let X be a set of observations x � RD �
Let C be a �nite set of n code vectors mi � RD� i �
 � � �n� We call C a codebook� Let d be a
distance metric de�ned on RD� Then mc is the nearest neighbor to x i� d�x�mc� � min

n
� d�x�mi��

The distance metric d is usually the Euclidean metric deucl�x� y� � kx� yk but it can in fact be

any metric� For instance it can be the Manhattan Block Distance dblock�x� y� �
PD

� jxi�yij which
is easily implementable in hardware� the negative of the inner product �d�x� y� � �x � y that is
more suited to a neural network implementation or just any other distance measure de�ned on
RD�
The prototypical function of the codebook is to divide pattern space in such way that the proba�
bility density of the input is re�ected� The quality of the codebook could be measured by testing
if the number of input vectors mapped to each code is equal� or that the mean distance of codes
to their nearest neighbors is minimized etc� These criteria are called clustering criteria� The basic
task a codebook performs is called clustering or coding� dividing pattern space into disjoint parts�
with respect to certain clustering criteria� We call this the clustering property of a SOM�
The key problem� of course� is how to form such a codebook� The Kohonen Algorithm de�nes
such a codebook formation procedure�
First some ordering L is de�ned on codebook C� On the presentation of an input vector x the
nearest neighbor mc is moved a little bit in the direction of x� Moreover� those codes that are
within a certain range from mc within L are also allowed to update their value� In the end this
ordering should re�ect the structure of the input� in other words codes that are next to each other
in L become to represent values that are near on X� This property is also called the ordering

�

Figure 	�
� Voronoi tessellation� A code�
book divides pattern space up into disjoint
Voronoi cells� All points in a Voronoi cell
are closer to the code in the center of the
cell than to every other code�

x

mi

i

c

Figure 	�	� The SOM as a neural net�
work� It is rendered as a lattice of units
and edges� Units represent code vectors�
edges between units represent the ordering
relation�

property or the topology preserving property�

To simplify computation of distance within L we assign a position li � ZE to each code mi � C�
i �
 � � �n� Ordering L then becomes a set of pairs �li� lj� with i� j � f
 � � �ng� mi is a direct
neighbor of mj in L i� �li� lj� � L� We call ZE a lattice space� Usually L is a regular L� � L�

ordering� with for example

L � f���� ��� �
� ���� ��
� ��� ������� ���� ��� ���
��� ����
�� ��� ���� � � � � ��L�� L��� �L�� L� �
��g�

In this case we can take Euclidian distance in lattice space Z� as the distance function de�ned on
L� One can de�ne any other ordering or distance measure if necessary� Now we can describe the
updating steps in more detail�

De�nition �	�	�
SOM updating rules� Let X � RD be a set of observations� Let M be a
pair �C�L� with C a codebook of size n and L a set of pairs �li� lj� with li� lj � ZE � i�j � f
 � � �ng�
We call M a SOM� Let mc � C be the nearest neighbor for a certain x � X� Then codebook C is
changed according to the following adaptation rules�

mi�t�
� � mi�t� � �h�c� i��x�t��mi�t��

with � � �� h�c� i� �
� � the learning speed and h�c� i� a neighborhood function�

The neighborhood function h�c� i� de�nes neighborhood shape� The most simple form is that of a
block function�

h��c� i� �

�

 if mi � Nc

� otherwise

with Nc a set of codes within certain distance � to c in ordering L�

Nc � fmi � C d�li� lc� � �g

with d a distance function de�ned on L�
The use of a block function implies that codes mi � Nc� i �� c move more towards x than mc does�
A popular neighborhood function used to correct this e�ect is the Gaussian �bubble� function�

h��c� i� � e
�klc�lik

�

���

�

We see that for scale � � � � h��c� i� � h��c� i� with � � �� Prototypically� SOM training is divided
in two phases� In the ordering phase� initial neighborhood size ��� �� and learning speed ��� are
large� these values decrease over time� In the second phase the map is �netuned with small � and
�� ��

Let�s illustrate all these de�nitions with a simulation example ��gure 	�
�� Assume input manifold
X consists of a Gaussian input distribution in two dimensional pattern space RD� We construct
a SOM with a two dimensional regular rectangular ordering L of
� �
� codes �each code has
eight neighbors�� The codebook is drawn in pattern space� every code is connected to its direct
neighbor in L�
At �rst the codes are initialized randomly in a rectangular area and the ordering seems to make
no sense� Then in the ordering phase the map starts to unfold� When this is �nished the ordering
re�ects the global structure of the input� Now neighborhood e�ects are reduced and the codebook
is slowly �netuned to the optimal values� In the end all codes cover the circle shaped input� with
more codes in the center than at the edges� So the clustering property is ful�lled� All codes are
connected in the right order too� So also the ordering property is ful�lled�

The SOM can also be seen as a neural network ��gure 	�	�� Usually a SOM is represented as a
regular two dimensional lattice of code units� With each code unit a code vector is associated�
Assuming the inner product is used as a distance measure �input patterns must be normalized to
constant length� we can de�ne an input layer that is totally connected to each code unit� For one
code unit� the weights on these connections constitute its code vector� The ordering L de�nes the
neighborhood relations� in this example we see that there are hexagonal ordering relations�
SOM dynamics can also be expressed within this framework� Inputs are coded as activity patterns
on the input layer� Activations are propagated to the code units through the weighted connec�
tions� Each code units computes its activation by applying a transfer function to the incoming
activation� Lateral inhibitory connections between units then extinguish activation so that one
�bubble� of activation remains� The unit with maximumactivation �the nearest neighbor � is called
the winner or best matching unit� In the adaptation step� Hebbian learning changes the weights
relative to the level of activation of the units�

The main aim of our study is to investigate whether the ordering property of SOMs can be utilized
to improve performance� It is not possible to check objectively whether some application assumes
the ordering property to hold� Therefore we say that any application that refers to ordering
information other than in normal SOM training� is utilizing the ordering property� Using our de�
scription of the SOM this can be rewritten more speci�cly� any algorithm that contains a reference
to a lattice position li apart from the normal SOM updating rules described in de�nition 	�
�	� is
utilizing the ordering property�

��� Related Algorithms

The SOM has two di�erent sources of inspiration� clustering � dimension reduction algorithms
from classical pattern recognition and neurobiological modelling�

Its most similar predecessor is the k�means clustering algorithm ��Loyd�
���� Linde et al��
������
which operates as a SOM without ordering� The basic steps are�

� Initialize the codebook to the �rst k training samples�

	� For each code compute the mean of all training samples for which it is nearest neighbor�

� Assign this mean to each code and repeat the previous step a few times�

Instead of this batch version there was also an early adaptive approach which� given a certain
input� shifts the mean of the nearest neighbor in the direction of the input by a small amount

�

Figure 	�
� Simulation example� �� � �� SOM learns � dimensional Gaussian distribution with linearly
decreasing neighborhood and learning speed and block neighborhood function� Di�erent stages in order�
ing are shown� random initialization �� input presentations	� ordering phase ���
� input presentations	�
ordering �nalized ���
� input presentations	 and �netuning �nalized ��
��� input presentations	�

�

�MacQueen�
���� Murtagh and Hern�andez�Pajares�
����� this corresponds to SOM adaptation
with neighborhood �� The most serious disadvantage of k�means clustering� which is partly solved
by the SOM� is that if one code covers an abnormally large portion of the input manifold then
it will be the nearest neighbor for practically all the inputs and block the distribution of the
other codes� Neighborhood training in the SOM ensures that groups of codes will be pulled in
the direction of areas where input is located� Other common codebook algorithms are Simple
Nearest Neighbor �Cover and Hart�
���� in which all train data is used as a codebook �see also
section
� and Learning Vector Quantization� a non�topological� supervised variant of the SOM
�Kohonen�
���� Kohonen�
����� A group of techniques which also construct an ordering on the
clusters is hierarchical clustering� Clusters are found iteratively by merging clusters that have
minimal distance or by splitting clusters in parts which have maximal distance� So a by�product
of these algorithms is that taxonomic ordering evolves on all the clusters formed in the process
�Kohonen�
�����
Another group of related algorithms are the so�called dimension reduction algorithms� The SOM
can be considered as an algorithm that maps a pattern space RD to lattice space ZE which usu�
ally has a lower dimension� A number of classical algorithms performs the same task� a�o� non�
metric multi dimensional scaling �Shepard�
��	�� Sammon�s mapping �Sammon�
����� the Elastic
Net �Durbin and Willshaw�
���� and MinimalWiring �Durbin and Mitchison�
����� These algo�
rithms have in common that they assume the mapping to be bijective� in other words no clustering
is performed �Goodhill et al��
����� So they only share the ordering property with SOMs and not
the clustering property�

Another source of inspiration were algorithms designed for neurobiological modelling� In ani�
mal and human cortex a number of di�erent topological maps are found �Knudsen et al��
�����
A vast collection of computational models was developed to give an account for the forma�
tion of such maps� of which the study of Whillshaw and von der Malsburg became classical
�Whillshaw and von der Malsburg�
���� Ritter et al��
��	�� The authors de�ne local chemical
mechanisms which lead to topological correspondence between two neural layers� In another clas�
sical theoretical study �Amari�
���� a system was developed based on a continuous neural sheet
instead of a discrete one and subjected his algorithm to thorough mathematical investigation�
Finally a number of biologically plausible variants of the SOM algorithm were developed one of
which �Sirosh and Miikkulainen�
���� is based on totally local algorithms �for nearest neighbor
search� adaptation� neighborhood selection� and emerging neighborhood relations�

��� A closer look at the ordering property

As we saw in the previous section ordering L should ultimately correspond to the ordering relations
in input manifoldX� This was called the topology preserving property or the ordering property� At
present there is no agreed mathematical de�nition for perfect topology preservation nor is there
a common evaluation measure to quantify the topology preserving quality of a certain mapping�
In this section we will give some illustrative examples of approaches to these problems and give a
practical evaluation measure of our own�

To illustrate the problems that can arise we will suggest a de�nition for perfect topology preser�
vation in any dimension�
For simplicity let us assume that input X is not a discrete set of points but a continuous manifold
in pattern space RD� Perfect topology preservation of a certain map will satisfy two conditions�
codes that are direct neighbor in the ordering should correspond to close points in pattern space
and vice versa� To translate this into more mathematical terms we �rst give a de�nition of a
Voronoi cell�

De�nition �	�	�
Voronoi cell� Let mi � C be a code� Its Voronoi cell Vi is de�ned as�

Vi � f x � RD 	mj � C � kx�mik � kx�mjk g

�

Note that in this de�nition the Voronoi tessellation is not longer a disjunctive division of pattern
space� Adjacent Voronoi cells will share their borders� Now our de�nition of perfect topology
preservation will be �adapted from �Martinetz�
��
� Martinetz and Schulten�
������

De�nition �	�	�
Perfect Topology Preservation� A map M��C�L� with input manifold X
is preserving topology perfectly if the following conditions hold�

�� 	mi�mj � C � if code mi is a direct neighbor of mj in ordering L �
 �li� lj� � L� then Vi is
adjacent to Vj �
 Vi � Vj �� ���

	� 	mi�mj � C� if Vi is adjacent to Vj �
 Vi � Vj �� �� and i �� j then mi is a direct neighbor
of mj in L �
 �li� lj� � L��

Let�s discuss these two conditions one by one�
The �rst condition is directly enforced by the Kohonen algorithm� Because codes neighboring
in ordering L are allowed to move to a certain input x if they are part of the neighborhood of
the nearest neighbor code� these codes will move towards each other in pattern space� � This
condition is violated for instance when a SOM is twisted �see �gure 	���� local topology is mainly
preserved� but global topology is violated� The crossing of the edges in the center of the indicates
that the Voronoi tiles of these codes probably do not overlap�
The second condition� in contrary to common opinion� is not explicitly enforced by the SOM
updating rules� Examples of SOMs violating this condition will occur frequently when trying to
map a pattern space by a SOM of lower dimension �see �gure 	���� which is the case in almost all
SOM applications�
Note that our de�nition is clearly restricted to local topology preservation� we do not want to add
any conditions for preservation of global topology� We only refer to codes or Voronoi tiles that are
direct neighbors� Any mapping that has a con�ict in local topology preservation will necessarily
fail global topology preservation� In the majority of cases the SOM will not be preserving topol�
ogy globally because of local optimal in global organisation ��gure 	��� or dimension reduction
��gure 	����

In general a certain mapping will not be preserving topology perfectly� Therefore� it is practically
relevant to de�ne a certain evaluation measure to quantify the quality of the map� Again there is
no general consensus on this de�nition�
One of the most straightforward de�nitions is valid for a certain subclass of SOMs� those with
linear ordering L and input manifold X lying in one dimensional pattern space RD� �

D �
nX
i��

�j mi �mi�� j�� j mn �m� j

Trivially� if the codes are sorted �ascending or descending�� the map is ordered and D � ��
This measure was used to prove convergence of ordering� In �Kohonen�
��	a� necessary and
su�cient conditions are given to lower D �one dimensionalRD� block neighborhood function hci��
It was shown that there are more training steps that decrease D than there are that increase
D� Furthermore it is proven that if D � �� D will not be changed by subsequent learning�
Under the same assumptions� the stronger result of convergence into an ordered state was proven
�Cottrell and Fort�
���� Kohonen�
����� The ordered states are shown to be absorbing states of a
Markov Process� Furthermore� it is shown that there must be a sequence with non zero probability
leading to an ordered state� Assuming random selection of inputs� this proves convergence into
an ordered state �Kangas�
����� These proofs were simpli�ed by rewriting D in the standard
formula for ellipsoids �Budinich and Taylor�
�����

�Consider a SOM with d Euclidean distance measure and block neighborhood� input x� nearest neighbor mc�
direct neighbormj� d�mc� x�� d�mj � x� will be lowered by factor �� angle between mc �mj is constant� so d�mc�mj�
will be lowered by factor ��

�In the following de�nitions assume L � f�l�� l��� �l�� l��� � � � � �ln��� ln�� �ln� ln���g

�

Figure 	��� One dimensional SOM maps
two dimensional Gaussian input� Both
ends of the SOM are close in pattern space
but distant in ordering L�

Figure 	��� SOM ��
��
	 maps rectangu�
lar input� The majority of local topology is
preserved� global topology is violated� In
the center neighborhood edges cross which
indicates the respective Voronoi tiles will
not overlap�

 D � ��kx� F�k� kx� F�k � 	a�

with foci F
� F	 and principal axis a�

F� � m� �
m� �m�

�

F� � m� �
m� �m�

�

	a �
km� �m
k

�
� km� �m�k� km� �m�k�

km� �m�k

�

D will only be lowered now if x is within the ellipsoid �see also �gure 	�
�� When the codes are
sorted� the ellipsoid will shrink to a line segment� Only in one dimensional pattern space this
segment has volume� So only in this case there is a probability that the algorithm converges�
In higher dimensions there is still a possibility to converge� assume all codes are sorted and all
new inputs fall on the border of the ellipse� so D � � and D � �� Only the probability of this
possibility is practically zero� especially when the data contains a minimal amount of noise�
A collection of measures that are valid for mappings with RD and L of higher dimension are
summarized and compared in �Goodhill et al��
����� These measures were designed for other al�
gorithms than the SOM �a�o� Sammon�s mapping� multi dimensional scaling� minimal wiring��
so they were not used to prove SOM convergence� The advantage of the measure put forward
by Goodhill is that an algorithm has been constructed that is proven to optimize this measure
��Goodhill et al��
������ It was proven that the SOM algorithm does not optimize some objective
function �Ritter et al��
��	�� The disadvantage of the Goodhill algorithm is that it assumes map�
ping M to be bijective� in other words no clustering is performed�

For the purely practical purpose of this thesis we constructed a very simple and straightforward
measure for topology preservation� In the previous section it was explained that a SOM is driven by
two separate forces� One tries to spread the codes over the input manifold to re�ect the probability
density �the clustering property�� The other tries to keep distances between codes neighbouring

�

F� F�

m�

m�

m	

m

m�

�D � �

�D � �

�D � �

Figure 	��� Convergence of ordering� only if a new input falls within this ellipsoid D will be lowered�
Foci F�� F� and axis a can be rewritten in code values�

in L low to enforce topology preservation� So it seems reasonable to express the ordering quality
of a SOM in the mean distance between neighbours� For this we de�ned the topological error of
a code�

De�nition �	�	�
Topological Error� The topological error of a code mc is de�ned as the mean
distance to its neighboring codes in L�

ETOP �mc� �

P
�li�lc��L

d�mc�mi�

N

with �li� lc� � L
 mi is direct neighbor to mc in L and N�number of direct neighboring codes in
L�

In �gure 	�� we plotted mean topological error �over all SOM codes� and quantization error �mean
Euclidian distance d�x�mc� over all training patterns� for our simulation example of �gure 	�
�
We see that quantization error decreases more or less monotonically� Topological error �rst de�
creases drastically during the ordering phase and increases slowly during �netune phase �when
neighborhood size is practically zero��
This measure� though powerful through its simplicity� su�ers from some disadvantages� Firstly�
the absolute values for topological error are not comparable for codebooks of di�erent size or
input manifolds occupying di�erent portions of pattern space� Secondly� we assume that the
SOM performs normal clustering� A SOM that does not distribute the codebook over the input
manifold but keeps the codes in�nitely close to a single point will always score topological error
approximating zero� whether the codes are ordered or not� Therefore we stress that topological
error values should only be used as a measure to evaluate a single SOM during di�erent stages of
normal SOM training�

��� SOM Applications

SOMs can be applied for a whole range of tasks� In this section we will give some examples of the
di�erent applications� We will also focus on some studies in which we think the authors falsely
claim that they utilize the ordering property� We try to make this clear by discussing these appli�
cation using the non�neural concepts of our SOM description �section 	�
��

We see the following main applications of the SOM�

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000

"qerror.log"
"terror.log"

Figure 	��� Topological error and quantization error over time for the simulation
example in �gure ���� Topological error decreases fast during ordering and increases
slowly during �netuning� quantization error decreases more or less monotonically�

 Clustering and Data VisualizationAs described in section 	�
 the main task performed
by the SOM is clustering� The existence of an ordering on the clusters can be useful for
instance for signal processing� Consider a one dimensional SOM mapping scalar frequency
values �see �gure 	���� If there is a shift of the signal in the frequency domain �e�g� all
frequencies increase� the SOM will adapt very quickly because the neighborhood e�ects
cause all the codes in the codebook to shift �Kohonen et al��
����� Also in data visualization�
displaying ordering of clusters on screen can facilitate user interpretation of clusters described
by multiple codes� An example is process control in which dangerous areas on the SOM
represent dangerous process states that need to be avoided �Tryba and Goser�
��
��

 Optimization The SOM tries to �nd an optimal balance between the ordering property
and the clustering property� The optimization power of the SOM can be used for instance
to solve the Travelling Salesman Problem �TSP� �Ang!eniol et al��
����� assume we have a
ring shaped SOM� and the two dimensional coordinates of cities to be visited constitute the
input manifold� The Kohonen algorithmwill now automatically �nd an approximation to the
shortest route �see �gure 	���� If we map all possible places for e�g� a robot to be in with a two
dimensional SOM we can solve route planning problems �Vleugels et al��
��
�� Obviously� if
we can code these generic problems with a SOM other optimization problems can be coded
straightforwardly as well �e�g� function approximation �Cherkassky and Lari�Naja��
�����
chip design �Zhang and Mlynski�
��
���

 Classi�cation and Sequential Processing In a classi�cation task there are multiple
input manifolds in pattern space each of which belongs to a separate class �see chapter
��
A SOM is trained to the union of the manifolds and the codes are labelled to the class they
respond best to� An example is Kohonen�s classical �phonetic typewriter�� which was trained
to spectral values of phonemes �Kohonen�
����� When a sequence of inputs is processed
we enter the realm of sequential processing� In the example of the phonetic typewriter the

	

t�

f �

Figure 	��� Vector Quantization� Linear
SOM �
 codes	 maps frequency values� A
shift in the signal will lead to fast codebook
adaptation because neighborhood adapta�
tion a�ects multiple codes�

Figure 	��� Travelling Salesman Problem�
A ring�shaped SOM maps a distribution
of �cities�� Topology preserving property
keeps route found as short as possible�

SOM codebook produced a sequence of phoneme class labels belonging to winning codes�
We can however also put the ordering to use if we interpret these input sequences as paths
through lattice space ZE �see �gure	���� as is done in �Torkkola and Kokkonen�
��
� and
�Kangas�
�����

We do not only claim the ordering property is hardly utilized in SOM studies ��van der Putten�
������
but we can also give examples of studies in which the authors falsely claim �to our opinion� that
they use the ordering property�
In the latest SOM book written by Kohonen himself �Kohonen�
���� he describes the so�called
supervised SOM� The input vector x consists of a signal �pattern� part xs and a class part x��
First a codebook C is trained on the concatenation of xs and x�� During recognition the nearest
neighbor is found using only xs� x� was not considered� Kohonen writes�

The unsupervised SOM constructs a topology�preserving representation of the sta�
tistical distribution of all input data� The supervised SOM tunes this representation to
discriminate better between pattern classes� �� � � � This special supervised training was
used in our original speech recognition system known as the
Phonetic Typewriter
�
and it indeed made use of the topological ordering of the SOM� contrary to newer
architectures that are based on Learning Vector Quantization� �emphasis placed by
Kohonen�

To our opinion any codebook formation algorithm that would take xs�x� as training input would
show the behaviour described above� There is absolutely no reference to or use of ordering L�
Even if ordering L is referred to explicitly in a SOM study we have to be careful if the way
ordering information is utilized is useful� An example is the Hierarchical SOM by Lampinen
�Lampinen and Oja�
��	�� The authors use two maps to cluster an input manifold� The �rst
SOM clusters the input manifold in the usual way� Every time a code mc is a winner in the
�rst SOM its lattice position lc is sent through to the second SOM for clustering� In a HSOM
every second map code will be nearest neighbor for a cluster of �rst map lattice positions and�
indirectly� nearest neighbor for a conjunction of Voronoi cells� A single Voronoi cell is always
convex �see �gure 	�
� but in a HSOM the units in the second map can represent non convex
clusters of Voronoi cells on the input manifold� So information from lattice space ZE is used� and
because the second map codes are to correspond to adjoining clusters� it is assumed that the �rst
map lattice positions have some meaning� some relation to the input manifold� In other words it
is assumed that the ordering property holds�

p

e ae

o

a

t th d

r

b p

e ae

o

a

t th d

r

b

Figure 	�
�� Phonetic Map� SOM ����	 maps phoneme space� Codes are labelled to
phoneme class they respond best to� Adjacent codes correspond to similar phonemes�
Assume we present the network with the word �Peter� from two di�erent speakers�
The class label outputs �ppeeetter� and �ppaeaeaethther� are largely dissimilar� paths
through lattice space have similar form�

On the other hand� we know that �i� because of the clustering property every �rst SOM code
will approximately be nearest neighbor for the same number of inputs and �ii� the order in which
inputs are presented to a SOM does not matter� From this we can conclude that if we know the
ordering dimensions of the �rst SOM �say
��
�� we can train the second SOM with two nested
loops in which we present all possible �rst map lattice positions ������� � � ������� independent of
the content of X� From this we can deduce that the only thing the second map learns is regular
division of map one lattice in pieces of the same size� But this task is trivial� and could be done
a priori� So we use the ordering information to perform a trivial task�
Hopefully we have shown now that we we are a bit sceptical about the real utilization of ordering
information in previous SOM applications and the utility of preserving ordering in general� Note
however� that we do not make any claim about the in�uence of neighborhood cooperation on the
quality and speed of normal SOM codebook formation �for a range of experiments on this matter
see �Ritter et al��
��	���

�

Chapter �

Classi�cation

��� Introduction

Classi�cation is one of the foremost tasks performed within neural computation� To perform
classi�cation we assume that our training data X is divided in di�erent groups or classes� which
may or may not correspond to clusters of points in X� When a new pattern is input to the classi�er
it should output the class it belongs to�
Consider the example of classi�er for breast cancer� A new patient can be described by a number
of features �personal details� lab exams�� Based on the archive with descriptions and diagnosis
of previous patients the classi�er should give an advice whether the breast tumor is malignant or
benign�
In this chapter we will show that there is a lower bound on classi�cation error� Next we discuss
nearest neighbor classi�cation� give an upper bound for nearest neighbor classi�cation error and
show the relation to the SOM�

��� Bayes Error

It is intuitively clear that given a number of overlapping classes in input space we will never
achieve
��" correct classi�cation� Theoretically� we are able to compute a lower bound on the
classi�cation error� the so�called Bayes error� The idea behind this is simple�
Consider a multi class problem with classes �� � � � �m and observation variable x �see �gure
�	 for
an example�� Let�s assume we know the probability density function p�xj�i�� which de�nes the
relative frequencies with which observations x occur for a certain class �i� We also know the a
priori probability P ��i�� We want to know the a posteriori probability P ��ijx�� the probability
that a certain observation x belongs to class �i� This can be calculated using the Bayes rule�

P ��ijx� �
p�xj�i�P ��i�

pall�x�

with

pall�x� �
X

p�xj�i�P ��i�

We can de�ne a cost function C��i� �j�� which de�nes the cost of making classi�cation �i when it
should be �j � Consider for instance the example of the breast tumor classi�er with �� �benign
tumor and ���malignant tumor� In this case C���� ��� will be much larger than C���� ���� Now
the expected total loss for classifying x as �k can be de�ned as�

Loss�x� �k� �
mX
i��

P ��ijx�C��k� �i� �
p�xj�i�P ��i�

pall�x�
C��k� �i�

�

p�xj���

x �x�

p�xj���

p�xj�i�

�

Figure
�
� Two class problem� x is observant� ��� and ��� are a priori distributions of classes ��

and ��� C��i� �j	 � � if i � j� C��i� �j	 � � otherwise� P ���	 � P ���	� Then x� will be decision
boundary� shaded area will correspond to Bayes error�

Let�s assume that all costs for misclassi�cation are equal and that the a priori class distributions
P �#i� are equal� Then to minimize loss we should classify observation x as the class �i with
highest a posteriori probability P ��ijx�� In the case of �gure
�	 you would choose class �� for
values x � x� and �� for x � x�� We say that x� demarcates a decision boundary�
For a certain observation vector� the probability of error are the a posteriori probabilities of the
other class� Now we see that over the total range of observations the probability of error corre�
sponds to the shaded area in �gure
�	� This is precisely the Bayes Error� It can be theoretically
proven that this will be the lowest possible error�

��� Nearest Neighbor Algorithms

The problem is that generally we do not know p�xj�i�� so then we cannot compute the optimal
decision boundaries that would yield the lowest possible error� In most cases we only have some
small �nite size set X of observations xi and a corresponding set # of class labels �i� We could
estimate p�xj�i� by �tting some appropriate distribution over our data� But then we would have
made assumptions about the shape of the distributions� We could also resort to non�parametric
algorithms� algorithms that don�t make assumptions about the structure of the input manifolds�
Probably the most straightforward approach is to classify an unknown input x as the class of its
nearest neighbor in X� Note that now the whole of input data X is considered to be the codebook
C� In more formal notation�

De�nition �	�	�
�
Nearest Neighbor Rule� Let codebook C � m� � � �mn�mi � RD be a
codebook� # � �� � � � �m be a set of class labels�
Let l be a function l�mi� � �j which assigns a class label to each code� Let x � RD be a new input�
Then i� mc is nearest neighbor to x in C� classify x as class l�mc��

De�nition
�
�
 can easily be extended to the k�NN rule� this rule produces the label occurring
most frequently among the k nearest neighbors�
The most important proof on the
�NN rule sets an upper bound on the probability of error�

Theorem �	�	�
Upper Bound on NN error� Let R be NN probability of error� R� Bayes
probability of error� Let M be the number of classes� M � 	� Then for NN codebook size approxi�
mating in�nity� R� � R � 	R� �MR����M �
�� �Cover and Hart� �
���

�

��

��

mi

mj

Figure
�	� Generalization� Assume straight line is codebook decision boundary �in �d pattern space	�
dotted line is Bayes decision boundary and curve de�nes Simple Nearest Neighbor decision boundary�
If train set is unrepresentative the codebook performs useful generalization�

From this we can conclude that for any number of classes and for in�nite number of samples simple

�NN can not score worse than two times Bayes error� � There will not be any algorithm that will
perform better than half NN error�

We discussed the bayes error as a theoretical lower bound on probability of error for classi�cation�
In most cases we do not know the �theoretical� Bayes error� However� if we assume our input set X
is large enough �this is a dangerous assumption�� we can compute an approximation to NN error�
Complexity of this computation will grow quadratically with size of set X� This is were the SOM
comes into play� because of �nite codebook size� complexity will be constant with respect to input
set size� Especially when p�xj�i� are functions of time� the SOM acts as an e�cient �ngerprint of
this huge amount of data� Furthermore� we might expect small codebooks to perform some useful
generalization if X is small and unrepresentative �see �gure
�
��
Prototypical application of the SOM for classi�cation is a two stage procedure� First a SOM
codebook is formed to approximate the probability density of the input manifold� In the second
step we will assign an appropriate �i to each code mi � C� Usually this is done by majority voting�
a code is labelled with the class that occurs most in its Voronoi cell� We present each input once
to the codebook� � For each nearest neighbor we keep track of the number of times it scores for
a certain input class� In the end we label each code with the class it responded most often to� �

�With M�R�R� � �� MR����M � �� � �� So we see R � �R� and R� � �

�
R

�Or we take a representative subset of the input
�In case of ties or codes that never win we can label the code as
unclassi�ed�� If we use the kronecker delta

function as a cost function� in case of ties� labelling the code with any of the competing class labels will reduce
classi�cation error on the training set�

�

Chapter �

Coding class boundaries

��� Introduction

In a sense using a codebook for classi�cation is not very logical� Most of the codebook will be used
to code the cluster centers� because the input is most dense there� However� for classi�cation we
are more interested in coding the decision boundaries� This is the area where classi�cation can be
improved� See for example �gure ��
� Let�s assume there are two classes� one left� and one right�
The size of the Voronoi regions indicate where most of the inputs lie� small Voronoi tiles suggest
that input is dense there� We see that the decision boundary is relatively sparsely coded� All code
vectors that occupy a Voronoi cell without edges lying on the decision boundary could be deleted
without changing the decision boundary and thus without changing classi�cation error� Maybe
we should instead use these �spurious� codes to code the decision boundary at higher resolution
��gure ��	�� of course at the risk of overgeneralization�

��� Coding with a Duo of SOMs

We try to achieve this kind of pattern space coding by using a duo of interacting SOMs� The �rst
SOM explores pattern space to �nd class boundaries� and acts as a �lter for the second SOM�
The second SOM is then used to code these interesting areas� We have two slightly di�erent
implementations of this idea� called BorderSOM and EdgeSOM �BSOM� ESOM�� of which only
ESOM makes use of the ordering L� These implementations di�er in the �ltering criteria which
de�ne which inputs are sent through to the second map�

 BorderSOM The second SOM only receives an input if the two nearest neighbors in the
�rst SOM have di�erent class labels�

 EdgeSOM The second SOM only receives an input if the nearest neighbor in the �rst SOM
has neighbors in L of a di�erent class�

Let�s illustrate BSOM and ESOM with a simulation example ��gure ��
�� Assume we want to
map three Gaussian input distributions in pattern space with BSOM or an ESOM� each consisting
of two
� �
� SOMs� To reduce the number of times we have to label the codebook� we train
the maps separately� The �rst map is trained on the input and its codes are labelled by majority
voting� This �rst map is not shown in this �gure� Then training continues di�erently for ESOM
and BSOM�
In the ESOM algorithm we assume that the di�erent classes are represented by di�erent areas
on the map� So we assume that the classes approximate clusters in input space and that the
ordering property holds for the �rst map� Only if a code in the �rst map has a direct neighbor
in L of di�erent class we label this code UNLOCKED� otherwise we label it LOCKED� Now we
train the second map only with those inputs that have an UNLOCKED �rst map code as nearest

�

Figure ��
� Two class problem� Only a
small subset of Voronoi edges is also part
of decision boundary�

Figure ��	� Two class problem� Decision
boundary coded at higher resolution�

neighbor� So the second map will only code that part of the input manifold that contains a decision
boundary �see �gure ��
�� When training is �nished we label the second codebook by majority
voting� During recognition� the ESOM produces the code belonging to the nearest neighbor found
in the union of both codebooks� This is done because although the second SOM codes class overlap
at a higher resolution� there still may be a �rst map code that is nearer to the input than the
nearest neighbor in the second map�
For BSOM training the ordering property is not needed� For each input we select the two nearest
neighbors in the �rst codebook and compare the class labels� If these labels are di�erent� the input
is sent through to the second map� After training the second map is labelled by majority voting�
during recognition BSOM also produces the code to the nearest neighbor found in the union of
both codebooks�

��� Related Work

The Kohonen LVQ
�
 algorithms are related to BSOM and ESOM because they perform exactly
the opposite operation� codes are shifted towards class centers� away from class boundaries� This
can be a matter of scale� to avoid the pitfall of overgeneralization it could be better to code a class
with a few codes in the center instead of coding class decision boundaries with a lot of codes�
An example of using competing SOMs to map disjunctive parts of input space is described in
�Cheng�
��	�� an example of multiple SOMs coding exactly the same areas at di�erent resolutions
is the HSOM that we discussed earlier �Lampinen and Oja�
��	��

��� Experiments and Results

We performed some experiments with BorderSom and EdgeSom to test their classi�cation ability�
To achieve realistic results all experiments were performed on real world problems� Three medical
diagnosis problems were taken from the Proben
 benchmark collection� Pima Indians diabetes
data� Cleveland heart disease data and Wisconsin breast cancer data� Additional experiments
were run on the so called Vowel Recognition Problem and LandSat Sattelite Image data� For
descriptions and references of these dataset see appendix A� We divided all available data in
training sets� validation sets and test set� generally in the ratios 	�
�
� Only the training sets were
used to train the networks� The validation set was used to test the generalization capability of
the networks on new data� The best network found was �nally tested on the test set� For each
medical diagnosis problem three di�erent permutations of the original data were used to check the
e�ect of di�erent divisions�

�

Figure ��
� EdgeSom coding of three Gaussian input distributions in two dimen�
sional pattern space� First and second had ��� �� ordering� second SOM ��rst SOM
not shown	 mainly codes areas of class overlap�

	�

NN SOM BSOM ESOM
diabetes
 	��
 	��� 	��
 	���
diabetes	
���

��
	�� 	���
diabetes
 	��� 	��	
	�� 	���
diabetes

�	 	���
��� 	���
cancer
 ��� 	�

��
��
cancer	 ��� ��� ��� ���
cancer
 ��� 	�� 	��
��
cancer ���
�
 	�� 	��
heartc

��
��� 	��� 	��

heartc	
	�� ��
 ��
 ��

heartc
 		�� 	
�
 	��� 	
�

heart
	�� 	
��
��� 	���

Table ��
� Test set classi�cation errors ��	 for the Nearest Neighbor� SOM� BSOM and ESOM algorithms
on benchmarks from the Proben� benchmark collection� For explanation about the benchmarks used see
appendix A�

NN SOM BSOM ESOM
vowel �
�
 ���� �	�� ����
landsat
���
���
���
	��

Table ��	� Test set classi�cation errors ��	 for the Nearest Neighbor� SOM� BSOM and ESOM algorithms
on the vowel and landsat problem� For explanation about the benchmarks used see appendix A�

Tests were run for di�erent SOM� BSOM and ESOM architectures� The output of such a run was
the test set classi�cation error �" test samples classi�ed wrong� on the architecture with lowest
validation set error� By selecting an architecture in this way we hope to �nd the network that
generalizes best on new �test� data� SOM architectures used were � � �� � � ��
��
��
� �
�
and
���
� BSOM and ESOM architectures were �� �� �� �� �� �� �� ��

�
� �� � and
�
 �
 � � � �� all with rectangular neighborhood relations �� neighbors�� In ESOM we reduced
the number of codes that qualify to pass inputs through by only looking at codes directly left and
above the winning code for class di�erence�
All SOM� BSOM and ESOM training was divided into an ordering and a �netuning phase� In
the ordering phase� both neighborhood size � and learning speed � decreased linearly� � from half
of maximum lattice size to � and � from ��
 to �� In the �netune phase neighborhood was �
and learning speed decreased from ���	 to �� The ordering phase took 	��� input presentations�
�netuning took
���� input presentations� In the BSOM and ESOM experiments we �rst ordered
SOM one� then we ordered SOM two� �netuned SOM two and then �netuned SOM one� To reduce
training time we used a block neighborhood function�

We hoped that the BorderSOM and EdgeSOM algorithms would score better than the normal
SOM algorithm� to compensate for the increased computational complexity� See table ��� and
table ��� for the results we got on the experiments�

��� Discussion

We would like to discuss some of the results of the experiments�
Firstly� the experiments show huge di�erences between the di�erent permutations of heartc�
cancer and diabetes� We also see that BSOM and ESOM score below half of NN error for cancer
�

	

This would not have been possible if the experimentally found error would have approximated real
NN error� These are indications that we deal with small and highly unrepresentative training� test
and validation sets� We have to keep this in mind when assessing the real practical value of a
certain classi�cation result� since di�erent divisions of data can lead to large di�erences�
Secondly� we see that ESOM generally outperforms SOM� which con�rms our expectations� The
outcomes for BSOM are close to the SOM results� The di�erence in performance may be caused by
the fact that the �rst SOM in ESOM is a �broader� �lter than the �rst SOM in BSOM� in general
more inputs will be passed to the second map and it will occupy a larger portion of pattern space�
Still� the results of ESOM compared to SOM and the computationally simple Nearest Neighbor
are not always better� Also the ESOM approach is complex and problem dependent� In problems
with a lot of di�erent classes� practically all inputs will be sent through to the second map� which
almost reduces ESOM to a SOM with the same size� Moreover� SOMs optimize clustering criteria
and not classi�cation criteria� For classi�cation it is better to combine SOMs with supervised
learning architectures� We shall do this in the next chapters�

The interesting result remains that both by coding either class boundaries �ESOM� or class centers
�LVQ� positive results can be achieved�

		

Chapter �

Constructing Radial Basis

Function Networks

��� Introduction

The SOM can be used to detect the structure of pattern space� We can utilize this information
for optimal initialization of Radial Basis Function �RBF� Networks �Moody and Darken�
����
Hertz et al��
��
�� Before turning to our application we will �rst discuss Radial Basis Functions�
feedforward networks and radial basis function networks�
Radial Basis Functions are functions that have their maximum at a locally constrained region of
input space� This activation peak has a certain positionm and a certain scale �� It can for example
be a Gaussian ��gure ��
�� but can also be a non�di�erentiable function like a block function or
pyramidal function�
We can combine RBFs with a feedforward network to create RBF networks �see �gure ��	�� We
will �rst turn to the normal feedforward network�
The most simple feedforward network consists of two layers� an input layer L� of size n and an
output layer L� of size m� Each input unit i corresponds to an input pattern feature� every
output unit j corresponds to a certain class� Both layers are totally connected with weights wij

determining the strength of the link� An input x is coded as activations on L�� the activation oj
of each output unit j is determined by calculating a weighted sum over all input unit activations
and applying a transfer function on the result�

oj � f

�
nX
i��

xiwij

�

with L� input layer of size n� oj output on unit j of layer L�� wij weight on connection between
input unit i and output unit j� A common transfer function f is the step function� f�x� � � if
x � t� f�x� �
 if x � t for some threshold t� In this setup every output unit j de�nes a hyperplane

nX
i��

xiwij � t

in pattern space Rn� with oj � � for all inputs at one side of the hyperplane and oj �
 for inputs
lying at the other side of the hyperplane�
To achieve optimal classi�cation� these hyperplanes should coincide with the class decision bound�
aries� To �nd the optimal set of weights we can train the network with the delta rule�

 wij � ��	j � oj�xi 	j � L�� 	i � L�

	

Figure ��
� Radial Basis Function� Gaus�
sian Ai � e�kx�mi j

���� with � � ��m �
��� �	�

mn� �nmi� �im�� ��

wnm

L�

L�

Figure ��	� RBF network� every input
unit i corresponds to a RBF with position
mi� scale �i� every output unit j corre�
sponds to class j�

with wij weight change on connection from input unit i to output unit j� oj output on unit j of
layer L�� 	j target output �
 for class number j� zero for the rest of L�� and learning parameter
� �Rumelhart and McClelland�
�����
A RBF network is an extension of the feedforward network and di�ers only in the input layer�
With every node in the input layer a RBF Ai with position mi and scale �i is associated� These
radial basis function should pave the input manifold with overlapping receptive �elds of di�erent
scale� Instead of coding the input as a distributed activation pattern on L� we apply each Ai to x
to compute the activation for each unit i � L�� Activation propagation and weight training is the
same as in the normal feedforward network� Prototypically� the positions of the input layer RBFs
are calculated using any algorithm that yields a codebook� e�g� k�means clustering or the SOM�
The scale of a RBF is usually set to the distance to the nearest other code�

��� RBF Initialization with SOMs

There is a close relation between a set of RBFs and a SOM� both are designed to be a robust
and regular representation of the input manifold� which occupies only part of pattern space at
varying densities� The code values in a SOM and the positions of the RBFs indicate in which
parts of pattern space input is located� In its neural network version a SOM boils down to a set of
RBF�s with constant �xed scale �neighborhood size�� However� the varying densities of the input
manifold are represented in RBFs by varying scales� In the SOM density of the input manifold
is not explicitly represented� but is implicitly present in the ordering information� the ordering
property ensures that pattern space distance to lattice neighbors corresponds to the distance to the
real nearest neighbors in pattern space� the clustering property then ensures that small distances
correspond to relatively dense input� So ordering information and RBF scales are related�
Therefore in our application we use a SOM to initialize the parameters of the RBF network�
Basicly� the codebook is used to set the positions� the class labels on the codebook determine the
initial values of the weights� Furthermore we use the codebook and the ordering to set the initial
values of the scales�
We start o� with a SOM of codebook size n and train it globally on the input manifold� We label
the codebook� Then we construct a RBF network with n input units and m output units� one for
each class� Positions of input unit RBF�s are set to code vector values� Then for each input unit
we set all the weights on the outgoing connections to zero� except for the connection to the output

	�

unit that corresponds to the class label the codebook predicts� this connection is set to one� The
initial RBF network will now predict the same class label as the SOM� We use the ordering L to
de�ne the scales� the scale of unit i is set to the topological error �de�nition 	�
�
� of code i� the
mean distance to its direct neighbors in L� Because this is an average scale we think this gives
a more accurate scale than simply the distance to the �rst nearest neighbor� For the BorderSom
and EdgeSom algorithms of previous section the procedure followed was similar� For each unit in
the second SOMs we de�ned the scale as the mean of the topological error and the distance to the
nearest neighbor in the �rst SOM�
Finally the weights on the feedforward networks are trained with the delta rule�

��� Related Work

The basic RBF algorithm has been described in �Moody and Darken�
����� the interest in RBF
networks has been increasing ever since� The only other study we found that sets the scales to
topological error is a combination of RBF and the growing cell structures network by Fritzke
�Fritzke�
����� We did not �nd any study that experimentally compared this initialization of
scale to other settings�

��� Experiments and Results

We ran some experiments to test our way of constructing RBF networks and explicitly test our
assumption that topological error yields a better scale than nearest neighbor�
To achieve realistic results all experiments were performed on the same real world datasets as
in chapter �� heartc� diabetes� cancer� vowel and landsat� We used the same divisions in
train� validate and test set and the same permutations of the Proben
 medical diagnosis data�
The same setup for �nding the optimal architecture as in chapter � was repeated� tests were run
for di�erent SOM�RBF� BSOM�RBF and ESOM�RBF architectures� The test error for the
architecture with lowest validation error was the output of the test� The SOM architectures used
were ����
��
� and
��
�� BSOM and ESOM architectures were ��������
	�
	�
	�
	
and

 �
� � � � all with rectangular ordering relations �� neighbors�� The RBF network was
constructed as described before� To test our assumption that topological error is a more useful
scale than simply the distance to the nearest neighbor we also constructed this kind of RBF
network �NNRBF��
All SOM� BSOM and ESOM training was divided in an ordering and a �netuning phase� In the
ordering phase� both neighborhood and learning speed decreased linearly� neighborhood from half
of maximum lattice size to � and learning speed from ��
 to �� In the �netune phase neighborhood
was � and learning speed decreased from ���	 to �� The ordering phase took 	��� input presenta�
tions� �netuning took
���� input presentations� In the BSOM and ESOM experiments we �rst
ordered SOM one� then ordered SOM two� �netuned SOM two and then �netuned SOM one� To
speed up training we used a block neighborhood function�
The radial basis function we used for experiments was �see also �gure ��
��

Ai � e
�kx�mi k

�

��

Following �Fritzke�
���� we did not perform any normalization on the RBFs� We used a linear
transfer function� the output of the RBF network was de�ned as the index j of the output unit
with maximum activation� Feedforward weights were trained with the delta rule with learning
parameter � �xed at ����� We trained for
���� input presentations �not epochs�� which is short
when compared e�g� to backpropagation and checked every 	�� steps if validation set classi�cation
error was lower� The output of a single architecture run was the test error for the iteration when
validation error was lowest�
We hoped for the following results� All RBF algorithms should score better than normal SOMs�
All RBF architectures initialized to topological error �RBF� BRBF� ERBF� should outperform

	�

NN SOM NNRBF RBF BRBF ERBF
diabetes
 	��
 	��� 	��� 	��� 	��� 	���
diabetes	
���

��
��	 	��
 	��	
���
diabetes
 	��� 	��	 	��� 	��
 	��� 	��

diabetes

�	 	��� 	��� 	��� 	��� 	���
cancer
 ��� 	�
 	��
�	 	�
 	�

cancer	 ��� ��� ��� ��� ��	
��
cancer
 ��� 	��
��
�� ��� ���
cancer ���
�
 ��� 	��
��
��
heartc

��
��� 	
�
 	��� 	��� 	���
heartc	
	�� ��
 ��� ��� ��� ��

heartc
 		�� 	
�

���
���
���
��

heart
	�� 	
��
���
��	
���
���

Table ��
� Test set classi�cation errors ��	 for Nearest Neighbor� SOM and RBF initialized with NN�
SOM� BSOM � ESOM on datasets from the Proben� benchmark collection� For explanation about the
benchmarks used see appendix A�

NN SOM NNRBF RBF BRBF ERBF
vowel �
�
 ����
���

�

��
 �	��
landsat
���
���
���
	��

�

�

Table ��	� Test set classi�cation errors ��	 for the Nearest Neighbor� SOM and RBF initialized with NN�
SOM� BSOM � ESOM resp� on the twospiral� vowel and landsat problem� For explanation about the
benchmarks used see appendix A�

RBF initialized with only the nearest neighbor �NNRBF�� Finally RBF networks based on BSOM
and ESOM �BRBF� ERBF� should give better results than RBF�
The actual results are listed in table ��� and table ����

��� Discussion

Firstly we want to make the same general remark as in the previous section about the reliability of
test results on small training sets like the Proben
 medical diagnosis sets� Again� test results are
very di�erent for di�erent permutations and divisions of the data sets� This is another indication
for the unreliability of test results on small data sets� if the division into train� validation and test
set is not exactly the same�
Secondly� we want to stress a couple of results relevant to this section� The foremost result is
that in all cases but one our RBF network initialized with topological error �RBF� signi�cantly
outperformes exactly the same network initialized with just the nearest neighbor �NNRBF�� Only
in cancer� the NNRBF network reaches the level of accuracy of RBF�
The overall result of RBF compared to a normal SOM is very good as well� in all cases but cancer�
RBF outperforms SOM�
Finally we see that in almost all cases BRBF and ERBF score worse than RBF� The extra com�
putational complexity of these architectures does not pay o��

The only di�erence between NNRBF and RBF was that RBF utilizes the ordering L to set the
scales� By running tests on a considerable number of real world data sets we found consistent
empirical support for our claim that setting scales to topological error improves performance� So
L can convey important information�

	�

Chapter �

Combining SOMs with

Backpropagation Networks

��� Introduction

A feedforward network trained with backpropagation ��Rumelhart and McClelland�
����� see sec�
tion ��� for a description� is the most widely used neural network for classi�cation� So for classi��
cation tasks it may be interesting to combine SOMs and backprop networks� We use a SOM as a
pre�processor to perform quantization and dimension reduction on the training data and then the
output of the SOM becomes the input for the feedforward network�
In our setup the input to the feedforward network includes information regarding ordering L� In
our experiments we investigate whether the backprop network takes this ordering information into
account�

��� Transforming the Pattern Space with a SOM

There are many ways to use a SOM as a preprocessor for feedforward networks� Basicly these
algorithms di�er in the way the output of the SOM is represented as input for the feed forward
network�
In one type of solution every SOM code corresponds to an input unit in the feed forward network�
just like the RBF networks described in chapter �� However� if we permute the ordering in the
�rst layer� nothing changes really� the units in the next layer compute a weighted sum over the
input activations� this sum concerns the same input units because the layers are totally connected�
and summation is a commutative operation� Without any additional information like the scales
from chapter �� ordering information is lost without being put to use�
So for the algorithms of this chapter we considered an input representation in which the ordering
information is preserved� given a certain input every feedforward input unit codes a coordinate of
lattice position lc belonging to the nearest neighbor�s� mc� So now lattice space ZE becomes the
pattern space for the feedforward network�
We constructed three di�erent approaches �see �gure ��	��

 BMUBP Given a certain input x the input y to the feed forward network will be the lattice
position lc � ZE of nearest neighbor code mc� This means that the input layer will have E
units�

 BMUSBP Let lc� be the index of the second nearest neighbor mc� �nearest neighbor in C
minusmc�� Then y will be the concatenation of lc and lc� � the input layer will have 	E units�

	�

� � � � �

�

�

�

�

lc�lc

lc��

Figure ��
� Di�erent versions of SOM preprocesing� Examples of input to feed�
forward network for BMUBP� BMUSBP and DBMUBP� SOM is displayed in lattice
space and activated by a certain input� radius circles indicates level of activation� The
input to the feedforward network could be lc � �
� �� for BMUBP� lc� � �
���
� �� for
BMUSBP and l�c � �
��
� ���
� for DBMUBP�

 DBMUBP The feedforward network is trained with a continuous index l�c instead of the
usual index lc� This should give a more accurate description of the position in ZE where
the gravity point of activation is located� See ��� for details of calculation of l�c�

We propose the following procedure� First train a SOM on the training data� We transform both
train and test set into patterns in lattice space using the rules described above� Then a feedforward
network is trained and tested on this transformed data only�
This setup is a kind of special purpose algorithm� it will primarily have advantages for large
datasets of high dimension� The input layer size will not be equal to the dimensionality of the the
input� but it will consist of a constant low number of units instead� Since feedforward layers are
totally connected� this heavily reduces the number of weights� Our primary goal in this case is not
to reduce classi�cation error� but to improve the convergence rate� And perhaps when trying to
�nd a solution in high dimensional weight space we might get stuck in a local optimum earlier or
su�er from overgeneralization� In this case our algorithm would even �nd a better solution� See
our experiments for what we found in practice�

��� Related work

An early algorithm that combines a SOM with a feedforward network was the Counterpropagation
network �Hecht�Nielsen�
���� Hertz et al��
��
�� The �rst two layers are used to code an input
manifold and a output manifold� Associative connections between the two layers are learned with
the delta rule� the layers are fully connected with each other� Algorithms in which the second layer
is connected partially to parts of the �rst layer are �Iwata et al��
���� and �Hsieh and Chen�
��
��
In some studies the lattice position of the nearest neighbor was sent to a post�processor� just as
in our BMUBP algorithm� In the HSOM discussed earlier� the lattice positions are clustered by
a second SOM �Lampinen and Oja�
��	�� processing strings of lattice positions is done in various
speech recognition applications �Torkkola and Kokkonen�
��
� Kangas�
�����
An algorithm related to DBMUBP is described in �Maggioni and Wirtz�
��
�� They use a su�
pervised SOM to predict the angle of an object� given the two dimensional projections of vertex

	�

points� The exact angle is found by interpolating between activations of the nearest neighbor and
its direct neighbor in L which is nearest in RD�

��� Experiments and Results

We ran experiments to test the performance of our algorithms in terms of convergence rate and
classi�cation error�
The experiments were performed on the same real world datasets as in chapter �� heartc�

diabetes� cancer� vowel and landsat� We used the same divisions in train and test set and
the same permutations of the Proben
 medical diagnosis data�
First a SOM was trained on the train set� SOM topology was restricted to a
� �
� array
with rectangular neighborhood relations �� neighbors�� We used a block neighborhood function
with neighborhood size � and learning parameter � both linearly decreasing� The ordering phase
took
��� input presentations �initial � � �� � � ��
� and the �netune phase took ���� input
presentations �initial � � �� � � ���	��
Then we transformed our train and test patterns to lattice positions� each pattern is transformed
to the lattice position of the nearest neighbor for this pattern �BMUBP� or the two nearest
neighbors�BMUSBP�� Calculation of the continuous lattice position l�c for DBMUBP was more
complex�
We de�ned l�c as the center of gravity of activation in lattice space� The activation Ai of each
code mi was calculated with the radial basis function from the previous chapter� scales were set to
topological error �mean distance to lattice neighbors� de�nition 	�
�
�� The choice for this variable
scale instead of the constant scale used in SOM training was con�rmed in initial experiments�
Then each coordinate l�cj of l

�
c is determined by linear interpolation over the Ai�

l�cj �

Pn

i��AilijPn
i��Ai

The transformed train and test sets were used to train and evaluate the feedforward networks�
For comparison we also trained a feedforward network on the original data�
The feedforward networks were trained with the momentumbackpropagation rule� a generalization
of the delta rule for multilayer feedforward networks� This generalized delta rule has the same
form as the delta rule from chapter ��

 wt
ij � ��joi �
 wt��

ij

with wt
ij weight change on connection unit i to j� � learning speed� oi activation on unit i� �j

error signal on unit j and
 wt��
ij a momentum term� The momentum term adds the weight

change from the previous time step to stabilize learning� For an output unit j computation of
error signal �j is similar to the delta rule�

�j � �	j � oj�f
��netj�

with 	j target output on j� netj �
P

oiwij incoming activation on j and f
� derivative of transfer

function f � For a hidden unit i calculation of error signal �i is less obvious� because we have no
target output available� We compute �i in terms of error signals �j of the next layer units to which
it connects and the weights wij on these connections�

�i � f ��netj�
X

j�����m

�jwij

with m units in the output layer� This way all eror signals can be propagated back through an
arbitrary number of layers� so that weight adaptation can take place�
For all architectures including standard backpropagation we used feedforward networks with one
input� hidden and output layer� with a hidden layer of
� units� For each class there was one

	�

BP BMU�BP BMUs�BP dBMU�BP
diabetes
 	
��
��	 	��� 	��	
diabetes	 	��� 	��� 	��	

�

diabetes
 		�� 	��
 		�� 	��

diabetes 	� 	� 	�
�
cancer

�
�
�
�
�
�
��	
cancer	
��� ���	
���
���
cancer
 ���	 	��� 	��� 	���
cancer 	�� 	�� 	�� 	��
heartc

��� 	��� 	��� 	���
heartc	 	��� ���� ����
���
heartc

�

�

���
���
heart

�
�
�

Table ��
� Proben� test set classi�cation errors ��	 for standard backprop and backprop with one winner�
two winners or an interpolated winner� For explanation about the benchmarks used see appendix A�

output unit� The classi�cation decision made by the feedforward network was de�ned as the class
label belonging to the output unit with the highest activation�
The networks were trained for ���� epochs with learn parameter ��
 and momentum ���� an epoch
corresponds to one single sweep through all patterns xi in train set X� For simplicity we did not
use a stop criterion� output of a certain run was the lowest test classi�cation error we obtained�
The train and test classi�cation error and root mean square error was calculated every
� epochs�
The overall results we hoped for were�

 Reasonable classi�cation results for BMUBP� BMUSBP� DBMUBP compared to standard
backpropagation for high dimensional classi�cation problems�

 Better performance for BMUSBP and DBMUBP compared to BMUBP for any problem�

 Improved convergence rate for BMUBP� BMUSBP� DBMUBP compared to standard back�
propagation for high dimensional problems�

First we applied our algorithms to the relatively low dimensional medical diagnosis problems
heartc� diabetes and cancer �see table ��
� and the vowel problem �see table ��	�� First note
that again the di�erent divisions of the heartc and cancer data leads to considerably di�erent
results� although the union of the train and test sets contains exactly the same patterns� This
unpredictability of these real world datasets also occurred in the previous experiments� We see
that for the cancer problem our algorithms �BMUBP� BMUSBP� DBMUBP� outperformed normal
backpropagation �BP�� For the other algorithms preprocessing with a SOM resulted in considerable
increase in classi�cation error� for example for the BMUBP algorithm there was a relative increase
in classi�cation error of
�" �diabetes� and ��" �heartc��
Table ��
 also shows that there are as many runs in which BMUBP outperforms BMUSBP and
DBMUBP than there are runs in which BMUSBP and DBMUBP score better or equal than
BMUBP�
So for these relatively small and low dimensional data sets classi�cation error increased in general
and there was no signi�cant improvement in classi�cation accuracy when comparing BMUSBP
and DBMUBP�

Note however that our algorithms were speci�cally designed to yield favourable results on large
datasets of high dimension� An example of such a training set is landsat� it contains ���� train
patterns and 	��� test patterns each of which consists of
� continuously valued features�

�

BP BMU�BP BMUs�BP dBMU�BP
vowel
	�� ���� �
�	� ����
landsat
���
���
���
���

Table ��	� Test set classi�cation errors ��	 for standard backprop and backprop with one winner� two
winners or an interpolated winner� on the vowel and landsat problem� For explanation about the
benchmarks used see appendix A�

Measured in �nal classi�cation results our algorithms �BMUBP� BMUSBP� DBMUBP� all out�
performed standard backpropagation �see table ��	�� Since we just wanted our algorithms to
approximate standard BP error this is beyond expectation�
To be able to compare the convergence rate of the di�erent algorithms we had to make a couple
of assumptions�
Firstly we have to de�ne how we should measure the time scale against which the classi�cation
error is plotted� The number of iterations or epochs is not a useful measure because complexity of
training depends largely on network architecture� So we chose to take the number of connection
updates as the time scale� A connection update directly corresponds to a weight change� Given
a feedforward network with layer sizes k� l�m� dataset size N and epoch T the current number of
connection updates U will be�

U � �k � l � l �m� � T �N

Secondly� we assumed computation time for the SOM codebook was negligible� In practice un�
supervised learning is very fast when compared to supervised learning� For a rough indication
compare the time scale of �gure 	�� multiplied by codebook size �
� �
� in this case� with the
time scale in �gure ��	�
In �gure ��	 we compared classi�cation error over time for normal BP and BMUBP �see upcoming
paragraph for an explanation of PBMUBP�� If we compare BMUBP test error �third line from
below� and BP test error �fourth line from below� we see that the BMUBP algorithm outperforms
BP� We also see that BMUBP train and test error follow each others course� whereas BP train and
test error take very di�erent values� This indicates that the better results from BMUBP are not
caused because BP is stuck in a local optimum on the error surface� but BMUBP performs useful
generalization on the train data� Comparing convergence rate for test errors makes no sense� but
if we compare train errors we see that faster convergence only is achieved in the �rst
�� epochs of
BP training �	��e��� connection updates roughly corresponds to
��� BP epochs� which is still
a considerable amount of computer time with datasets of this size and dimension�
We compared our di�erent versions of SOM preprocessing in �gure ��
� The extra ordering infor�
mation in BMUSBP and DBMUBP clearly leads to better results� The feedforward network was
able to detect this extra information in the transformed data�
There is only one snake in the grass� The only information the feedforward network received were
lattice positions li� Does this mean that this post�processor utilized the ordering�
According to our de�nition some algorithm utilizes the ordering if it just refers to lattice positions
li �see section 	�
�� So in this case the ordering property was utilized� The question still remains
though whether the algorithm was able extract ordering information about pattern space from
lattice space information alone� and whether this extra information made a di�erence� Did we
really need the ordering property to hold to reach the same level of performance�
The answer is no� it is theoretically still possible that it would have made no di�erence to the
feedforward network if the indices were symbolic labels belonging to some Voronoi tiles in pattern
space without a certain metric or even ordinal relation de�ned on these labels� The input is then
produced as if it were nominal� not ordinal or continuous� in other words an input �x�� x�� is as
di�erent from �x� �
� x� �
� as from �x� �
����� x��
������
For example� assume we have a x � y SOM and a feedforward network with n hidden units� Each
hidden unit then corresponds to a hyperplane in lattice space� with n � �x �
� � �y �
� hidden

20

30

40

50

60

70

80

90

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

"sat.bp.trainlogc"
"sat.bp.testlogc"

"sat.bmu.trainlogc"
"sat.bmu.testlogc"

"sat.pbmu.trainlogc"
"sat.pbmu.testlogc"

Figure ��	� Classi�cation error on landsat training and test set for normal backpropagation �BP	�
backpropagation with nearest neighbor as input �BMUBP	� and backpropagation with one winner as
input� ordering L permutated �PBMUBP	� X�axis represents number of connection updates� For this
problem� permutating SOM ordering severely damages classi�cation accuracy� SOM preprocessing
leads to improved classi�cation accuracy compared to normal backpropagation�

units it is possible to identify each individual SOM code� so no ordering is needed� Depending on
the nature of the problem we may need even less hidden units to separate the classes in lattice
space� �

To exclude this possibility we constructed a �nominal� or �permutated� variant of our BMUBP
algorithm� PBMUBP� PBMUBP di�ers from BMUBP only in one extra step we perform right
after SOM training� We construct a bijective function p which maps a lattice position li to a
random position lj in lattice space ZE � A new SOM is then constructed by transforming the
lattice positions with p�

lnewi � p�li�

for all lattice positions li� So now ordering L does not make any sense any more and the feedforward
network can only learn them as unrelated nominal labels� We then continued feedforward training
in exactly the same way as for BMUBP�
We plotted the performance of PBMUBP in �gure ��	� We see that both PBMUBP train and test
error is well above the level of BMUBP error� This explicitly shows that at least for this dataset
the feedforward network utilizes ordering information to improve performance�

��� Discussion

The experiments have shown that preprocessing with a SOM leads to unpredictable results on low
dimensional datasets� It is possible that classi�cation improves compared to normal backpropa�
gation but a severe increase in error can also occur�

�Assume we have a three class problem with l�l�� � ��� l�l�� � �� � l�li� � ��� i � � and a SOM with linear
ordering� A hidden layer of � units will su�ce to separate classes in lattice space�

	

17

18

19

20

21

22

23

24

25

26

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

"sat.bmu.testlogc"
"sat.bmus.testlogc"

"sat.dbmua.testlogc"

Figure ��
� Classi�cation error on landsat test set for backpropagation with nearest neighbor as input
�BMUBP	� and backpropagation with two nearest neighbors as input �BMUSBP	� and backpropa�
gation with continuous nearest neighbor position as input �DBMUBP	� X�axis represents number
of connection updates� Presenting additional ordering to the postprocessor leads to a decrease in
classi�cation error�

When we apply SOM preprocessing to high dimensional problems we can pro�t optimally from
the decrease in the number of weights� Our experiments showed improved convergence rate on a
small timescale and improved generalization�
The result that is of more relevance to the theme of our paper is that we have shown that permutat�
ing the SOM �in other words� throwing the ordering away� severely worsens classi�cation results�
Furthermore we found for our high�dimensional problem that adding extra ordering information
improves performance�

Chapter �

Discussion

In our discussion of the SOM algorithmwe identi�ed two di�erent sources of related work� classical
pattern recognition �clustering � dimension reduction� and neurobiological modelling� Let�s delve
a bit more into these �elds to shed some light on the relevance of ordering�
Firstly� we turn to neurobiological modelling� We would like to stress that we think that this is
just one of the applications for neural networks �if you want to see a SOM as a neural network at
all�� and nothing more� To our opinion biological plausibility is only of value for neurobiological
modelling� for other applications it is totally irrelevant� On the other hand nothing keeps us
from using mechanisms found in this �eld if this helps us to improve performance in our own
applications�
Regarding the subject of ordering� it is surprising to see that the focus within neurobiological
modelling has been entirely on simulation of formation of ordered brain structures� Very few work
has been done on modelling mechanisms that really need an ordered structure as input� and not
just to build yet another ordered representation� Candidate mechanisms are local operations like
lateral inhibition� lateral facilitation� synchronisation �Knudsen et al��
���� and the more global
�smart mechanisms� �van de Grind�
�����
The second �eld of inspiration for the SOM consisted of classical clustering and dimension re�
duction techniques which were mainly developed outside the �eld of neural networks� Dimension
reduction and ordering are useful when there is user interaction� if high dimensional� highly non�
linear data is visualized� it is easier to interpret and act on the data� The same goes for the
so�called hierarchical clustering algorithms� Though these algorithms were designed to speed up
clustering� the generic relation between clusters that evolves can be useful for user interpretation�
So regarding the utility of ordering we claim that little spino� is to be expected from the �eld
of neurobiological modelling and that the purpose of ordering in classical pattern recognition is
mainly constrained to user interaction�

Let�s get back to our approach to the central theme� the classi�cation experiments�
When we compare our algorithms �ESOM� RBF� BMUBP� to their counterparts �SOM� NNRBF�
PBMUBP� we see that the use of ordering information generally leads to improved performance�
Let�s discuss our algorithms one by one�
The ESOM algorithm outperforms the SOM in � sets and has a similar performance in the other
	� So we have consistent positive results for these datasets� Note however that for the task ESOM
performs the ordering property is not a necessary property� The BSOM algorithm �which performs
worse� works by the same principles� but does not look nearest neighbors up in the lattice but
directly in pattern space�
Also our RBF algorithm generally outperforms its counterpart NNRBF� now in
� of the

 cases�
We have shown that SOM ordering and RBF scales both code the density of the input manifold�
so that makes SOMs and RBFs related� Note that again ordering was not a necessary property�
We could have set the scales directly with information from pattern space�
Finally� BMUBP had faster convergence than BP on the high�dimensional landsat data as we

�

expected� It also achieved lower classi�cation error� which was beyond our expectations� The
variants which included extra ordering information �BMUSBP� DBMUBP� outperformed BMUBP
on this data as well� Furthermore we showed that though ordering information was not necessary
information� its ommitance resulted in considerable increase of error �PBMUBP�� Just like in the
previous two experiments� we showed ordering could be relevant�
On the other hand� we have to interpret these results with apt reserve� By using only real world
problems we tried to approximate real world performance of our algorithms as close as possible�
We have the opinion that arti�cial problems often contain regularities which will never arise in
reality and which will bias an experiment� A disadvantage of using real world data sets on the
other hand is that these sets are usually small and unrepresentative� This can lead to very di�erent
results for di�erent divisions in training� validation and test sets�
Another constraint on the value of our positive results is set by some methodological assumptions
we made� For simplicity and following previous work from other authors on the same datasets
we only performed
�fold cross�validation on the Proben
 data and no cross�validation on the
vowel and landsat data� Furthermore we did use a separate test set but no validation set in the
backpropagation experiments because of constraints in the backpropagation source code used�
We have already interpreted the results speci�cly to investigate whether using ordering had a posi�
tive e�ect� If we interpret the results to �nd the algorithm that performed best on all datasets we do
not �nd a de�nite winner� Generally speaking� RBF outperforms ESOM and ESOM outperforms
SOM� Though it is dangerous to compare the backpropagation experiments to the other algo�
rithms because of di�erences in training methodology there is an indication that backpropagation
performs well on the medical diagnosis data� Surprisingly� the simple nearest neighbor algorithm�
which is trivial to implement� performs very good on the heart and landsat datasets �and on
these two only�� Hence one may conclude that we should always give simple nearest neighbor a try�

Generally speaking� our experiments have shown several possibilities to utilize the ordering prop�
erty� On the other hand ordering property was not always a necessary property� We might as well
get our information directly from pattern space� Furthermore� using the ordering did not supply
us with an algorithmwhich generally outperforms all the other �nearest neighbor� algorithms� this
would not have been a realistic aim for research either�
We conclude that the ordering property contains useful information� This information is usually
thrown away� which seems to be a waste� But as long as there are no clear mechanisms found that
necessarily need the ordering property to hold it makes no sense to refer to this property as an
explicit reason for using a SOM instead of another algorithm� Until then we can only justify our
choice of the SOM algorithm by referring to clustering or classi�cation performance�

�

Chapter �

Conclusion

When we compare our algorithms �ESOM� RBF� BMUBP� to their equivalents that do not use
ordering explicitly �SOM� NNRBF� PBMUBP� we see that there is improved performance� For
these algorithms ordering helps to improve classi�cation performance� So in these cases order
makes sense�

On the other hand we showed ordering was not always a necessary property in these experiments�
Moreover� if we look at other SOM applications in a non neural way we see that ordering is gener�
ally not used explicitly� And we should not be using SOMs just because an ordered representation
looks nice on paper�

The frequent claims that a SOM is used because it is an ordered representation must be judged
with reserve� The exact advantages of SOM ordering in normal SOM training or in explicit use
are still too unclear�

�

Appendix A

Benchmarks

We merely used real world data to test our algorithms� because we believe it is always possible to
construct arti�cial data that matches a certain algorithm� The following set of benchmarks was
used�

 Datasets from the Proben
 benchmark collection �Prechelt�
�����

� heartc Cleveland Heart database� decide if one of four main vessels is reduced in
diameter by approximately ��"� Features describe sex� smoking and drinking habits
etc� �Detrano et al��
����

� diabetes Pima Indians Diabetes database� diagnose diabetes of Pima Indian based on
personal information and medical examinations� �Smith et al��
����

� cancerWisconsin breast cancer database� classify tumor as benign or malignant based
on microscopic examination of cells� �Mangasarian and Wolberg�
����

 vowel Vowel recognition problem �Robinson�
����� distinguish

 di�erent vowel phonemes�
Feature vectors describe
� di�erent frequencies for the vowels in� heed� hid� head� had� hard�
hud� hod� hoard� hood� who�d en heard �Robinson�
�����

 landsat Segmentation$classi�cation of land surface areas in a Landsat sattelite image �Michie et al��
�����
Input patterns consist of � spectral values for each pixel in a
 �
 neighborhood� This
database was in use in the European StatLog project� which involves comparing the per�
formances of machine learning� statistical� and neural network algorithms on data sets from
real�world industrial areas�

For statistics see table A� Both the Vowel Recognition Benchmark and the Proben
 benchmark are
available via the neural bench repository at CMU �ftp�cs�cmu�edu� afscd$project$connect$bench$��
The Landsat dataset can be found in the UCI Repository Of Machine Learning Databases and
Domain Theories �ftp�ics�uci�edu�pub$machine�learning�databases��

twospiral vowel heart diabetes cancer landsat
binary features � �
� � � �
continuous features 	
� � � �
�
nominal features � �

 � � �
dimension 	
�
� � �
�
number of classes 	

 	 	 	 �
train set size ��� �	�
�	
��
�� ����
val�test set size ��� 	

 ��
�	
�� �
��	���

Table A�
� Statistics on datasets used�

�

Appendix B

The MOvieS Simulator

To study the behaviour of the various algorithms discussed in this paper we designed a C�� class
library and a graphical user interface for the Silicon Graphics IRIX environment� Based on these
elements we built simulators for the SOM variants described in this paper� Next will discuss then
class library and the interface in more detail�

B�� MOvieS class library

The class library is built up hierarchically around the central class codebook �see �gure B�
�� This
is to express that a SOM basicly is nothing else than a codebook in pattern space� just like familiar
algorithms such as LVQ or simple nearest neighbour�
The most important member functions of codebook handle �nding the k nearest neighbors and
attaching class labels to the codebook by majority voting� Furthermore there are functions to
compute quantization and classi�cation error and functions to dump a codebook on screen or in
Maple format�
The main member function for the derived classes � adapt � de�nes for each algorithm its charac�
teristic way of forming the codebook� Obviously this function is empty for the nearest neighbor

object� because the codebook is set to the patterns in the train set� Each of the derived classes
has its own additional speci�c member functions� e�g� som possesses functions to draw ordering L
in lattice or pattern space and a function to compute topological error�
The rbf object takes a som �or a bsom� esom� for construction� Apart from the usual error
and train functions it possesses a special function that resets the Gaussians to the �rst nearest
neighbor� Finally we de�ned two auxiliary objects� vector is a double valued vector with all
basic mathematical operations and input can contain a dataset with functions to read� write and
generate patterns� get and set labels etc�

B�� MOvieS graphical user interface

Based on the MovieS class library � FORMSGUI library and Silicon Graphics GL �graphics library�
we built a graphical user interface for the Silicon Graphics Irix platform�On the screendump of
our SOM simulator ��gure B�	� the following areas and objects are of interest�

 Viewport The Viewport is a window on pattern space or lattice space� In this example a
SOM maps a �cross� of two planes lying perpendicular to each other� The pattern space in
which the data is projected is always three dimensional� if the data is of a higher dimension
we just draw the �rst three dimensions� if data is of lower dimension it is projected on a
plane or a line� With the Viewport Buttons directly to the lower right corner we can rotate
in three dimensions� zoom in or out and change the size of label cubes�

�

Codebook

LVQ� LVQ�

LVQ�

Vector Input

Som

EdgeSom

Nearest NeighborLVQ

is�a

has�a

has�a

has�a

is�a
is�a is�a

is�a

is�a

has�a

BorderSom

is�a

RBF

has�a

has�a

Figure B�
� MOvieS Class Hierarchy

Figure B�	� An example of the MOvieS Graphical Interface� SOM Simulator

�

 Operate Buttons Directly to the upper right corner of the viewport the Operate Buttons
are located� These buttons serve to stop� start� fastforward �no graphical output� or pause
training and to quit the application� Below these buttons we see a button to construct a
RBF network based on the present state of the SOM� A window will appear which displays
train� validate and test classi�cation errors� The Maple Button will dump the SOM and the
train set in a Maple �le�

 Message and Performance Window Directly below the lower right corner of the View�
port we see the Message Window in which information about the datasets� state of training�
errors etc� is displayed� This log can be saved to a �le with the Record Messages Button�
In the Performance Window left to the Message Window error graphs are displayed�

 Option Pad Parameters speci�c to the simulator and extra display toggles are shown on
the Option Pad�

In this example we can set the dimensions of SOM topology and select data sets for training
and testing� The training parameters can be set manually with the Neighborhood and Learn
Rate Sliders� We can also choose a linear or quadratic training regime with the Training
Regime Button� the Neighborhood and Learn Rate Sliders will then be controlled by the
simulator�

The other group of buttons controls which information we want to display in the Viewport
� �show� buttons� or the Performance � Message Window � �error� buttons�� The Pattern
Space � Lattice Space Buttons toggle between pattern space and lattice space display in the
Viewport�

Using these GUI objects we built simulators for some of the algorithms presented in this paper� viz�
for SOM� SOM�RBF� ESOM and also for Learning Vector Quantization �LVQ�� These simulators
were primarily built to study whether the algorithms showed correct behavior�

��

Bibliography

�Amari�
���� Amari� S��I� �
����� Topographic organization of nerve �elds� Bulletin of Mathe�
matical Biology� �	�

��
��� Reprinted in �Anderson et al��
�����

�Anderson et al��
���� Anderson� J�� Pellionisz� A�� and Rosenfeld� E�� editors �
����� Neurocom�
puting 	� MIT Press� Cambridge� Mass�

�Ang!eniol et al��
���� Ang!eniol� B�� Vaubois� G� D� L� C�� and Texier� J� Y� L� �
����� Self�
organizing feature maps and the Travelling Salesman Problem� Neural Networks�
����	���	�
�

�Budinich and Taylor�
���� Budinich� M� and Taylor� J� G� �
����� On the Ordering Conditions
for Self�Organizing Maps� Neural Computation� ��	��

�Cheng�
��	� Cheng� Y� �
��	�� Clustering with competing self�organizing maps� In Proc�
IJCNN�
	� Int� Joint Conf� on Neural Networks� volume IV� pages �������� Piscataway� NJ�
IEEE Service Center�

�Cherkassky and Lari�Naja��
���� Cherkassky� V� and Lari�Naja�� H� �
����� Self�organizing
neural network for nonparametric regression analysis� In Proc� INNC�
�� Int� Neural Network
Conf�� volume I� pages
���
��� Dordrecht� Netherlands� Kluwer�

�Cottrell and Fort�
���� Cottrell� M� and Fort� J� �
����� �etude d�un process d�auto�organisation�
Ann� Inst� Henri Poincar�e �Probabilit�es et Statistiques�� 	
�	���

�

�Cover and Hart�
���� Cover� T� and Hart� P� �
����� Nearest neighbor pattern classi�cation�
In IEEE Transactions on Information Theory� volume IT�

� pages 	
�	�� Reprinted in
�Anderson et al��
�����

�Detrano et al��
���� Detrano� R�� Janosi� A�� Steinbrunn� W�� P�sterer� M�� and Schmid� J�
�
����� International application of a new probability algorithm for the diagnosis of coronary
artery disease� American Journal of Cardiology� ���
���

��

�Durbin and Mitchison�
���� Durbin� R� and Mitchison� G� �
����� A dimension reduction frame�
work for understanding cortical maps� Nature�
�
���������

�Durbin and Willshaw�
���� Durbin� R� and Willshaw� D� �
����� An analogue approach to the
travelling salesman problem using an elastic net method� Nature�
	��������
�

�Fritzke�
���� Fritzke� B� �
����� Growing cell structures % a self�organzing network for unsu�
pervised and supervised learning� Neural Networks� ��
��
�
����

�Goodhill et al��
���� Goodhill� G� J�� Finch� S�� and Sejnowski� T� J� �
����� Quantifying neigh�
borhood preservation in topographic mappings� Technical Report INC������ Institute for Neural
Computation Report Series�

�Goodhill et al��
���� Goodhill� G� J�� Finch� S�� and Sejnowski� T� J� �
����� Optimizing cortical
mappings� In Touretzky� D� S�� Mozer� M� C�� and Hasselmo� M� E�� editors� Neural Information
Processing Systems� MIT Press� Cambridge MA�

�

�Hecht�Nielsen�
���� Hecht�Nielsen� R� �
����� Applications of the counterpropagation network�
Neural Networks�
�

�

��

�Hertz et al��
��
� Hertz� J�� Krogh� A�� and Palmer� R� �
��
�� Introduction to the theory of
neural computation� Addison Wessley�

�Hsieh and Chen�
��
� Hsieh� K��R� and Chen� W��T� �
��
�� A neural network model which
combines unsupervised and supervised learning� IEEE Trans� Neural Networks� ��	��
���
���

�Iwata et al��
���� Iwata� A�� Tohma� T�� Matsuo� H�� and Suzumura� N� �
����� A large scale
neural network �CombNET� and its application to Chinese character recognition� In INNC�
��
Int� Neural Network Conf�� volume I� pages �
���� Dordrecht� Netherlands� Kluwer�

�Kangas�
���� Kangas� J� �
����� On the Analysis of Pattern Sequences by Self�Organizing Maps�
PhD thesis� Helsinki University of Technology�

�Knudsen et al��
���� Knudsen� E� I�� du Lac� S�� and Esterly� S� D� �
����� Computational maps
in the brain� Annual Review of Neuroscience�
���
����

�Kohonen�
��	a� Kohonen� T� �
��	a�� Analysis of a simple self�organizing process� Biological
Cybernetics� ���

��
���

�Kohonen�
��	b� Kohonen� T� �
��	b�� Self�organized formation of topologically correct feature
maps� Biological Cybernetics� �
�������

�Kohonen�
���� Kohonen� T� �
����� Self�Organization and Associative Memory� Springer Verlag�
Berlin�Heidelberg�New York� third edition�

�Kohonen�
���� Kohonen� T� �
����� The Self�Organizing Map� Proceedings of the IEEE�
������
����
����

�Kohonen�
���� Kohonen� T� �
����� Self�Organizing Maps� Springer� Berlin� Heidelberg�

�Kohonen et al��
���� Kohonen� T�� Raivio� K�� Simula� O�� Vent&a� O�� and Henriksson� J� �
�����
An adaptive discrete�signal detector based on Self�OrganizingMaps� In Proc� IJCNN�
��WASH�
DC� Int� Joint Conf� on Neural Networks� volume II� pages 	���	�	�

�Lampinen and Oja�
��	� Lampinen� J� and Oja� E� �
��	�� Clustering properties of hierarchical
self�organizing maps� J� Mathematical Imaging and Vision� 	�	�
��	�
�	�	�

�Linde et al��
���� Linde� Y�� Buzo� A�� and Gray� R� �
����� IEEE Transactions Communication�
	������

�Loyd�
���� Loyd� S� �
����� Least squres quantization in pcm� Technical report� Bell Labs�
Eventually published in IEEE transactions on information Theory� IT�	��
��	�
	��

��

�MacQueen�
���� MacQueen� J� �
����� Some methods for classi�cation and analysis of multi�
variate observations� In LeCam� L� and J� N�� editors� Mathematics� Statistics and Probability�
�th Berkely Sumposium� volume
� pages 	�
�	��� Berkely� California� University of California
Press�

�Maggioni and Wirtz�
��
� Maggioni� C� and Wirtz� B� �
��
�� A neural net approach to
d pose
estimation� In Proc� ICANN�
�� Int� Conf� on Arti�cial Neural Networks� pages ������

�Mangasarian and Wolberg�
���� Mangasarian� O� L� and Wolberg� W� H� �
����� Cancer diag�
nosis via linear programming� SIAM News� 	
����
�
��

�Martinetz�
��
� Martinetz� T� �
��
�� Competitive Hebbian Learning Rule Forms Perfectly
Topology Preserving Maps� In Proceedings ICANN�
� Amsterdam� pages �	���
��

�	

�Martinetz and Schulten�
���� Martinetz� T� and Schulten� K� �
����� Topology Representing
Networks� Neural Networks� ��
�������		�

�Michie et al��
���� Michie� D�� Spiegelhalter� D�� and Taylor� C� �
�����Machine learning� Neural
and Statistical Classi�cation� Ellis Horwood Series In Arti�cial Intelligence�

�Moody and Darken�
���� Moody� J� and Darken� C� �
����� Fast learning in networks of locally
tuned processing units� Neural Computation�
�	�
�	���

�Murtagh and Hern�andez�Pajares�
���� Murtagh� F� and Hern�andez�Pajares� M� �
����� The
Kohonen self�organizing map method� An assessment� Journal of Classi�cation�
	� �in press��

�Prechelt�
���� Prechelt� L� �
����� PROBEN
 % A set of benchmarks and benchmarking rules
for neural network training algorithms� Technical Report 	
$��� Fakult&at f&ur Informatik�
Universit&at Karlsruhe� D���
	� Karlsruhe� Germany� Anonymous FTP� pubpapers$tech�
reports$
���$
����	
�ps�Z on ftp�ira�uka�de�

�Ritter et al��
��	� Ritter� H�� Martinetz� T�� and Schulten� K� �
��	�� Neural Computation and
Self�Organizing Maps� Addison�Wesley� Reading Mass�

�Robinson�
���� Robinson� A� �
����� Dynamic error propagating networks� PhD thesis� Cam�
bridge University�

�Rumelhart and McClelland�
���� Rumelhart� D� E� and McClelland� J� L� �
����� Parallel Dis�
tributed Processing� explorations in the microstructure of cognition� MIT Press� Cambridge�
Mass�

�Sammon�
���� Sammon� J� �
����� A non�linear algorithm for data structure analysis� IEEE
Transactions Communication� pages ��
�����

�Shepard�
��	� Shepard� R� �
��	�� The analysis of proximities� multi dimensional scaling with
an unknown distance function� Psychometrika� 	��
	��
��� 	
��	���

�Sirosh and Miikkulainen�
���� Sirosh� J� and Miikkulainen� R� �
����� Cooperative self�
organization of a�erent and lateral connections in cortical maps� Biological Cybernetics� �
����
���

�Smith et al��
���� Smith� J� W�� Everhart� J� E�� Dickson� W� C�� Knowler� W� C�� and Johannes�
R� S� �
����� Using the adap learning algorithm to forecast the onset of diabetes mellitus� In
Proceedings of the Symposium on Computer Applications and Medical Care� pages 	�
�	���
IEEE Computer Society Press�

�Torkkola and Kokkonen�
��
� Torkkola� K� and Kokkonen� M� �
��
�� Using the topology�
preserving properties of SOFMs in speech recognition� In Proc� ICASSP�
�� Int� Conf� on
Acoustics� Speech and Signal Processing� volume I� pages 	�
�	��� Piscataway� NJ� IEEE Ser�
vice Center�

�Tryba and Goser�
��
� Tryba� V� and Goser� K� �
��
�� Self�Organizing Feature Maps for pro�
cess control in chemistry� In Kohonen� T�� M&akisara� K�� Simula� O�� and Kangas� J�� editors�
Arti�cial Neural Networks� pages ������	� Amsterdam� Netherlands� North�Holland�

�van de Grind�
���� van de Grind� W� �
����� Smart mechanisms for the visual evaluation and
control of self�motion� In Warren� R� and Wertheim� A�� editors� Perception � Control of
Self�Motion� Lawrence Erlbaum Ass�� Hillsdale New Jersey�

�van der Putten�
���� van der Putten� P� �
����� Utilizing the Topology Preserving Property of
Self�Organizing Maps�an overview� Unpublished paper� Dept� of Computer Science� Utrecht
University�

�

�Vleugels et al��
��
� Vleugels� J� M�� Kok� J� N�� and Overmars� M� H� �
��
�� A self�organizing
neural network for robot motion planning� In Gielen� S� and Kappen� B�� editors� Proc�
ICANN�
�� Int� Conf� on Arti�cial Neural Networks� pages 	�
�	��� London� UK� Springer�

�Whillshaw and von der Malsburg�
���� Whillshaw� D� and von der Malsburg� C� �
����� How
patterned neural connections can be set up by self�organization� In Proceedings of the Royal
Society of London� B� volume
��� pages �

����� Reprinted in �Anderson et al��
�����

�Zhang and Mlynski�
��
� Zhang� C��X� and Mlynski� D� A� �
��
�� Neural somatotopical map�
ping for VLSI placement optimization� In Proc� IJCNN�
��Singapore� Int� Joint Conf� on Neural
Networks� pages ��
����� Piscataway� NJ� IEEE Service Center�

��

