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ABSTRACT 

This paper outlines the approach developed together with the 
Radio Network Strategy & Design Department of a large 
European telecom operator in order to forecast the Air-Interface 
load in their 3G network, which is used for planning network 
upgrades and budgeting purposes. It is based on large scale 
intelligent data analysis and modeling at the level of thousands of 
individual radio cells resulting in 30,000 models per day. It has 
been embedded into a scenario simulation framework that is used 
by end users not experienced in data mining for studying and 
simulating the behavior of this complex networked system, as an 
example of a systematic approach to the deployment step in the 
KDD process. This system is already in use for two years in the 
country where it was developed and it is a part of a standard 
business process. In the last six months this national operator 
became a competence center for predictive modeling for micro-
simulation of 3G air interface load for four other operators of the 
same parent company.    

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - Data 

mining 

General Terms 

Algorithms, Management, Measurement, Economics, 
Performance, Experimentation 

Keywords 

Mobile Network, Air-Interface Load, Linear Regression, 
Simulation. 

1. INTRODUCTION 
This paper reports on a deployed data mining application that has 
been developed by one of the largest European telecom operators 
and has been constantly used ever since. In order to accommodate 
the continuing strong increase of mobile internet traffic, the 
operator’s Radio Network Department has to persistently monitor 
and upgrade the 3G Radio Access Network. This requires an Air-
interface Load forecast for every radio cell in the network, 
including indications of denial or interruption of service delivery. 

However, such a detailed forecast was not readily available. 
Furthermore, there is a need to simulate different scenarios for 
different parts of the network. Given the complexity of the 
problem, the dimension of the network and the repetitiveness of 
the task, a manual approach is out of the question. 

In this paper we present a fully automated approach that generates 
multi-variate linear regression models on a grand scale, using 
primarily open source tools.  The key business benefit of this 
research is that it solves a very complex and high impact business 
problem that cannot be approached by using general planning 
methods.  

The traditional methods to mobile network load forecasting have a 
number of practical issues. They are most often analytical or 
Monte Carlo based approaches [1]. The load formula used is 
typically a general purpose analytical model, derived from physics 
knowledge and theory rather than from modeling on actual data, 
let alone being based on data from a specific operator. 
Furthermore, the inputs required are difficult to measure and 
forecast, or do not relate to changes in customer behavior such as 
call usage which is easier to understand and use for scenario 
purposes. Our approach makes it easier to translate customers and 
their usage into network load. To our knowledge, this is the first 
time a data mining approach has been used for Air Interface load 
prediction of a 3G mobile network. 

In terms of business benefits, the exact return is confidential, but 
cellular network infrastructure forms a major part of an operator 
investment budget, and this is a key system for tactical and 
strategic network investment decisions. In the group where this 
operating company belongs, up to 50% of wireless CAPEX 
investments are spent on the radio access network. For reference, 
operators worldwide invest more than 20 billion USD into cellular 
network infrastructure. Our methodology is first and foremost 
intended to ensure that capacity is added in time and at the right 
place, thus avoiding inefficient investments and poor customer 
experience due to traffic congestion, which can ultimately lead to 
churn. Last but not least, Internet access is recognized as a right 
by law by several countries, as a part of the rights to Freedom and 
Expression of Opinion. By adding capacity at the right places, 
operators provide a valuable social service, given the growing 
importance of communications and social media in everyday life. 
This is a data mining application in telecommunications that does 
not raise the usual privacy concerns; on the contrary it serves a 
social function by mediating high quality internet access. 

An early version of our approach has been published in [2]. Since 
then, our system has been rolled out in full use in the operator 
where it was developed. None of the other operator companies in 
this telecommunications group used a similar fine grained 
approach. Therefore, a more universal approach applicable to the 
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other operators as well had to be developed.This involved dealing 
with complexities such as different network equipment vendors 
using different performance management systems and lack of 
certain measurements we have introduced in [2]. Nevertheless, the 
results of our new approach were very positive. Hence, in the past 
six months this operator became a competence center for 
Predictive Modeling of 3G Air Interface Load and it is performing 
this task for operators of the same telecommunications group in 
four countries. 

Whilst the core intelligent data analysis algorithms used are not 
novel, we apply these on a large scale by modeling individual 
radio cells across a variety of dimensions (section 3 motivates 
why we model at cell level). This has also been embedded into a 
simulation framework targeted at non-data miners using tools they 
are familiar with, thus enabling them to run low level simulation 
scenarios. Hence, our goal is to provide a case example of an 
embedded, deployed intelligent data analysis system, dealing with 
real world aspects such as scale and having major business 
impact. Extensive simulations have been carried by the operating 
companies using the system, and novel use cases for scenario 
simulation analysis have been developed and applied. 

As discussed, the technical novelty is not determined by the 
complexity of the base estimators used. We use simple linear 
regression models as data inspection has shown that the behavior 
to be predicted is primarily linear, and experiments confirmed that 
complex algorithms actually performed worse given the high 
variance associated with these models. This is not uncommon in 
real world data mining problems [3]. What makes this problem 
out of the ordinary is the massive number of models. For each of 
cell in the network we create four models to predict different 
kinds of outcomes, resulting in a total of 30,000-100,000 models, 
depending on the amounts of cells in the network. Model 
parameters are estimated using ten-fold cross validation, which 
increases the number of models estimated to over 1 million. This 
process is repeated on a regular basis, given that the customer 
base and its behavior, as well as the cellular network itself change 
constantly.  

Finally, we do not just deploy the forecasted loads. The 
underlying regression formulas are provided by the data miners to 
the end user analysts as simple spreadsheets, which enables them 
to tune various simulation and forecasting scenarios without 
further involvement from the data miners. This turned out to be 
not just a practical benefit, but a major opportunity for the 
business as a range of simulation use cases were explored that 
were not envisioned by the data miners up front. 

We think that this approach, including the concept of decoupling 
data mining from forecasting and simulation processes, can easily 
be replicated and applied to problems from other industries.  
Examples are problems that require similar predictive models and 
simulation of networked systems on a large scale, such as for 
instance sensor networks, retail outlet planning, supply chain 
logistics and revenue predictions for products with a complex 
billing process (which we have already applied).  

The rest of the paper is structured as follows. Section 2 describes 
the load parameters. Section 3 discusses the complex nature of 
network load and how to approximate it, including a motivation 
for modeling at the granular cell level. Section 4 describes the 
construction of the load formulas and the forecasting of the future 
load of the network using simulation, as well as other simulation 
scenarios. Limitations and future work are discussed in section 5. 
Finally, we present our conclusions in section 6. 

2. DEFINING THE LOAD PARAMETERS 
In this section we will describe how we measure the load for a 
cell, plus the underlying attributes that we will use to predict 
future load. Both output and input parameters are measured per 
individual cell per hour.  

2.1 Output Parameters 
The communication between a network cell site (radio network 
element that provides access to the mobile network) and a user’s 
mobile device is separated into downlink communication- 
directed from the cell to the mobile device and uplink 
communication- directed from the mobile device to the cell site. 
One cell site can serve multiple network cells. 

Therefore, the Air-interface load for a cell consists of the 
Downlink Load (DL) and Uplink Load (UL). Multiple measures 
of both DL and UL can be devised. A cell is considered to be in 
overload if either the uplink or the downlink load is above a 
certain threshold. When a cell is in overload, it cannot adequately 
serve customers that demand its resources. Obviously, all cells in 
overload require an adequate upgrade.  

Most of the background literature on telecom networks is related 
to network optimization or load control rather than load prediction 
[4, 5, 6, 7]. In our previous research [2] we used the following 
measurements of load as output parameters: Count of RAB (Radio 

Access Bearer) Releases Due To Interference [4], Average Noise 

Rise (ANR) [5] and Average Noise Rise on Channels Dedicated to 

Release 99 Capable Devices (refers to lower data transfer speed 
up to 384 Kbps). Two additional uplink measures were 
considered: Count of RAB (Radio Access Bearer) Setup Failures 
and Count of RRC (Radio Resource Control) Setup Failures. 
These measurements were discarded at later stages of the process 
due to the very low number of models that could be generated 
because of too many zero-values. 

The parameters used as measures for downlink load in [2] were 
the following. Firstly, we used Percentage of Consumed Downlink 

Power (CDP) [6] and Count of “No Code Available” Situations 
(NCA) [7].  

However, some of these measures were specific to Nokia Data 
Warehouse [8], a performance management tool deployed at the 
operator where our research originated, or were not measured by 
other operators that were looking to use our system. Therefore, we 
used universal measurements, which are applicable to 
performance management systems of other vendors, such as 
Ericsson [9], Huawei [10] or MyCom [11]. Therefore, in our new 
approach we picked measurements that are both compliant to the 
3gpp Mobile Broadband Standard [12] and universally defined 
and measured across the operators which are part of this 
international group. 

Percentage of Uplink Load, also known as UL Carrier Load 
Percentage [12] is the ratio between the total received power level 
on that carrier and the maximum acceptable level of interference.  

UL_LOAD=100 ∗ (1 −
�

��
�	
��
�������
��

��

) 

where MeanRTWP is mean Received Total Wideband Power per 
cell; MinRTWP is minimum Received Total Wideband Power per 
cell, used as the noise floor. In other words MeanRTWP is mean 
of the power assigned to users, while MinRTWP is the power 
measured when no users are using cell resources. 
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Percentage of Downlink Load, also known as DL Carrier Load 
Percentage [12] is the ratio between the total transmitter power 
level on that carrier and the maximum acceptable transmitter 
power. 

DL_LOAD=100 ∗ 10
������������������

��  

where MeanTCP is mean Total Transmitted Power per cell; 
MaxTxPower is maximum transmit power of the cell. In other 
words MeanTCP is mean of the power assigned to users, while 
MaxTxPower is the cell power capacity. 

We used two additional measures for downlink load, based on 
code capacity, namely Code Utilization and Count of “No Code 
Available” situations. Each cell has 256 codes that can be 
assigned to a mobile device for a voice call or a data session. The 
higher the downlink bandwidth required, the higher the number of 
codes will be assigned. For example, voice calls require 12.2 
Kbps (translates into 2 codes), while Data Sessions can require up 
to 14.4 Mbps (which would consume all the codes of that cell). 

Code Utilization- Measures the fraction of codes used vs. codes 
available at the cell. It is averaged over an hour. 

Count of “No Code Available” situations –After all the codes 
have been assigned, the next devices that requests a code from the 
cell, gets a “no code available” message and cannot use the cell 
resources. This variable measures the count of occurrences of this 
message per hour, and will be abbreviated as NCA.  

2.2 Input Parameters 
As input parameters in [2] we used different measures from the 
Nokia Data Warehouse [8], a tool that is used in telecom operators 
to monitor Radio Network Performance. Even though we included 
input parameters related to voice services, most of the input 
parameters are related to consumption of Data Services, because 
they require more of the cell resources. These include the 
following: Average Voice Call Users, Average Release 99 Uplink 
users, Average Release 99 Downlink users,  Average High Speed 
Uplink Packet Access (HSUPA) users, Average High Speed 
Downlink Packet Access  (HSDPA) users, Maximum HSUPA 
users, Maximum HSDPA users, Total RRC attempts, Total Active 
RABs, Total Voice Call RAB Attempts, Total Data Session RAB 
Attempts, Average Downlink Throughput, Average Uplink 
Throughput, Average Soft Handover Overhead Area (measures 
the intersection of coverage of the particular cell with other cells), 
Average Proportion of Voice Traffic originated in that cell (as 
opposed to traffic originated in other cells and handed over to that 
cell), Average Proportion of Data Traffic originated in that cell. 
Forecasts for future values of the input parameters were available 
at the operator. 

However, due to constraints mentioned in section 2.1, namely 
different performance management tools from different vendors, 
not all these could be measured. Therefore, we reduced the input 
parameter set to the following: 

Count of RRC attempts per hour - Radio Resource Control 
(RRC) attempts are related to the signaling exchange between the 
mobile device and the network cells. There can only be one RRC 
connection open per mobile device at a time. 

Count of Data Session RAB Attempts per hour – Radio Access 
Bearer (RAB) is necessary to be assigned to a user in order to 
make voice call or a data session. Multiple RABs can be assigned 
to the same device. This variable measures the RAB attempts 
(not necessarily successful) for a data session in a cell in an hour. 

Count of Voice Call RAB Attempts per hour - This variable 
measures the RAB attempts (not necessarily successful) for a 
voice call in a cell in an hour. It is the only variable that addresses 
usage of voice services exclusively. 

Average Count of Release 99 Uplink users per hour- Average 
number of users that consumed uplink cell resources on a R99 
capable device (throughput of up to 384 Kbps). 

Average Count of Release 99 Downlink users per hour - 
Average number of users that consumed downlink cell resources 
on a R99 capable device (throughput of up to 384 Kbps). 

Average Count of HSUPA users per hour- Average number of 
users that consumed uplink cell resources on a HSUPA (High 
Speed Uplink Packet Access) capable device (up to 5.76 Mbps).  

Average Count of HSDPA users per hour - Average number of 
users that consumed downlink cell resources on a HSDPA (High 
Speed Downlink Packet Access) capable device (bandwidth up to 
14.4 Kbps). Most of the current mobile devices are HSDPA1 
capable. But, an HSDPA device can also be assigned to a R99 
downlink (slower) channel, if there are no HSDPA cell resources 
available. 

Average Downlink Throughput per hour- Average per hour of 
the sum of downlink bandwidths consumed by all users served by 
the cell. 

Average Uplink Throughput per hour- Average per hour of the 
sum of uplink bandwidths consumed by all users served by the 
cell. 

3. APPROXIMATING THE LOAD 
The traditional approaches to mobile network load forecasting are 
most often analytical or Monte Carlo based approaches [1]. 
However, the inputs required are difficult to measure and forecast, 
or do not relate to customer behavior such as call usage which is 
easier to understand and use for scenario purposes.  

Most of the data mining related literature on load forecasting is 
related to electrical networks. A good overview is presented in 
[13]. Various methods have been deployed for this purpose: 
regression models, time series, neural networks, expert systems, 
fuzzy logic etc. The authors state a need for load forecasts for sub-
areas (load pockets) in cases when the input parameters are 
substantially different from the average, which is a case similar to 
different cells in a mobile telecom network. 

Related to mobile telecommunications, data traffic load (which is 
different than air interface load) focusing on a highly aggregated 
link has been forecasted in [14], comparing time series (moving 
averages and dynamic harmonic regression) with linear and 
exponential regression. Also, Support Vector Regression was used 
by [15] for link load prediction in fixed line telecommunications. 

In order to forecast the future load for each cell in the network, it 
is necessary to understand the relationship between the input 
parameters (causing the load situation) and the current load. The 
input parameters in case of the Air Interface load are all 
parameters which can be made accountable for the load situation 
in the cell (Section 2). Therefore, the load parameter (output) can 
be expressed as L=f(x1, x2,…, xn). Ideally, the load of each cell x in 
a given time could be expressed as the sum of all users consuming 

                                                                 
1 Theoretically, even higher speed scan be achieved for both 

HSUPA and HSDPA- 21Mbps and 42Mbps, respectively 
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resources of that cell at the particular time multiplied by the 
amount of resources they use plus the interference between that 
cell and all the other cells in the network (in practice limited to the 
neighboring cells): 

L(x)=	∑ ∑ User& ∗ Resource+
,
+-� +/

&-� ∑ interference(x, y)7
8-�  

where m is the count of users that are using the resources of cell x, 
n is the count of resources of the cell x, z is count of all cells in 
the network and interference(x, y) is the interference measured 
between cell x and y. Unfortunately, there was no tool that would 
provide such a detailed overview.  

In order to approximate the load function, we recorded the 
different load parameters (outputs) and input parameters described 
in section 2, on an hourly basis during 1,5-8 weeks, depending on 
the operator. This provided approximately between 200 and 1,000 
instances per cell or 20,000,000 instances in total on a network of 
20,000 cells. The operators did not store data on lower granularity 
than one hour. Trials on daily averages were made, but these were 
not successful, due to the huge the load differences between night 
and daytime. Also, in this case there was a trade-off between a 
smaller sample and a longer period of data collection, which does 
not yield stability given all optimization changes in the network. 

One of the choices to be made was whether a distinct formula for 
every cell shall be built or – alternatively – a common formula 
valid for all cells should be used. The approach where a model is 
created for each cell was chosen, due to the network experts’ 
conviction that each cell is different, and a unified approach 
simply would not work, because some of the parameters 
influencing the load of each cell were immeasurable and 
unpredictable. 

Next, the domain experts were intrinsically interested in being 
able to model cells that actually do not behave like other cells, 
especially when these are highly loaded. Furthermore, there would 
be a challenge in normalizing with respect to the varying capacity 
of the cells, i.e. what where the cell sized to handle. Finally, we 
hypothesized that not just model parameters could differ by cell, 
but also the optimal selection of features, similar to the load 
pockets explained by [13]. 

The choice of linear regression [16] was made due to several 
reasons. First of all, even though the distribution of the values of 
each of the load measures we are trying to predict vary between 
close to linear and close to exponential, we are only interested in 
the higher values of the load curve, and this can be approximated 
quite well with linear regression, as shown on Figure 1. For this 
purpose, before constructing the regression formulas, we remove 
all zero instances. Furthermore, linear regression is a very fast 
algorithm compared to other methods, which is very useful when 
it is necessary to develop a large number of models in a short 
time. Even though it is imaginable that better results might be 
achieved by using non-linear regression, regression trees, or other 
algorithms, this might not be necessary in most cases (Figure 1). 

Also, simple low variance methods such as linear regression 
frequently perform much better in practice than more complicated 
algorithms, which can very often over fit the data (e.g. high 
variance algorithms such as neural networks). In other words, in 
real world problems variance is typically a more important 
problem than bias when it comes to data preparation and 
algorithm selection [3]. Trials on a smaller sample were already 
made with regression trees, but apart from the visibly increased 
time consumption, the accuracy did not improve. On the contrary, 
in some instances it decreased.  

 

Figure 1 Actual Load vs. Linear approximation 

Last but not least, linear regression is easy to implement, easy to 
explain and its results and models are easy to export for other use. 
Exporting the models to Excel was of crucial value, as analysts 
would use them in order to predict the future load of each cell, by 
scaling the input parameters, based on internal forecasting models. 
In other words, this allows non data miners to simulate future 
network load based on changes in the various type of network 
traffic, using simple tools they are familiar with. 

4. BUILDING THE LOAD FORMULAS 
In this section we will describe how the models are being 
generated and put to work. This includes the tools that were used, 
a detailed description of the approach, the results of this mass 
modeling process, the process of forecasting the future load and 
additional simulation scenarios. 

4.1 Tools 
The tools used in this research are either open source, or can be 
found in the IT portfolio of any telecom operator. These are the 
following: 

Radio Network Performance Management System. As stated 
above, this research was using data from four different operators 
belonging to a large telecom group. Most of them have radio 
networks produced by different vendors, which means that also 
different Radio Network Performance Management Systems were 
used for data collection of both the input and the output 
parameters. In this research, we used Performance Management 
Systems of Nokia [8], Ericsson [9], Huawei [10] and MyCom 
[11], depending on the operator. These software tools were 
already a part of the Network/IT infrastructure of the operators. 
They contain technical parameters related to the mobile network 
performance. The most important feature of these tools for our 
research was that they contained hourly aggregates of all the input 
and output parameters we used (Section 2). These are the only 
domain specific tools from our process. 

Load Prediction and Simulation Data Mart. This is an Oracle 
Database 10g- 64 bit v10.2.0.5.0 [17] used for all our task specific 
data preparation and manipulation. 

Due to the fact that the necessary input and output parameters 
were stored at different tables in the respective Performance 
Management Systems, we needed a separate database where we 
could manipulate the data easier (e.g. merge tables, create 
indexes, and build the final flat table). In the case of Nokia Data 
Warehouse [8] this reduced the duration of the data collection and 
data preparation process from two weeks to 1 day by productizing 
data collection. Because we are rebuilding and rescoring models 
on a continuous and automated basis, this was a key improvement. 
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Any other database platform (commercial or open source) could 
have been used. We opted for Oracle based on license availability. 

WEKA 3.6.4 x64, an open source data mining platform [18], was 
used for building the linear regression formulas and validating 
them. Of course, any other tool capable of deriving linear 
regression can also be used for this purpose. That said, this shows 
that even a research focused open source tool like WEKA can be 
used in critical commercial settings, at high complexity (e.g. 
20.000 cells, 4 models each, around 1000 instances each). 

Strawberry Perl for Windows v5.12.3 [19] is an open source 
scripting language that we used in order to create the script that is 
the core of this approach. Our script creates WEKA input files by 
querying the Oracle database, generates the regression models by 
executing calls to WEKA, and stores the regression formulas and 
the cross-validation outputs (Correlation Coefficient, Mean 
Absolute Error, Root Mean Squared Error, Relative Absolute 
Error, Root Relative Squared Error, and Total Number of 
Instances used to build the model) in csv files. 

MS Excel 2010 [20] – part of MS Office 2010, was used to 
predict the future load of cells, using the regression formulas 
created by WEKA and extrapolations of the input values using a 
internet traffic model scaling factors based on handset/internet 
usage developments (internal to the operator). 

4.2 Process Description 
A graph of how our approach uses these tools to derive and store 
the regression models is presented on Figure 2. First, the data is 
extracted from the Network Performance Management Tools, e.g. 
Nokia Data Warehouse (NDW). The core of our approach is a 
Perl [21] script that automated the derivation of the regression 
formulas for each cell. This script executed calls to WEKA and 
queries the Oracle Database. It works in the following manner: 

1. Get list of cells from the database 

2. for each cell 

2.1. Run a query on the database to isolate 

only the data related to that cell (all the 

input and output parameters). 

2.2. Make separate files for each of the load 

output parameters  

2.3. For each of the load output parameters 

2.3.1. Filter out all instances where the 

load is 0
2
. 

2.3.2. Select only relevant variables for 

the regression formula of that cell, using 

a wrapper approach, build the linear 

regression formula and store it in a 

separate file.  

2.3.3. Use 10-fold cross-validation to 

validate the model.  

2.3.4. Store the formula, the number of 

instances used to build the regression 

formula, the correlation between the 

predicted and actual value for load, the 

Mean Absolute Error (MAE) and the Root 

Mean Square Error (RMSE) as reported from 

the cross-validation. 

                                                                 
2 We did not want noisy data. Cells/instances with no load are of 

no interest. 

  

 

Figure 2: Communication Graph of the Tools used 

While generating the models/regression formulae, we used a 
wrapper [22] approach. Wrapper approaches automatically select 
the best variables for predicting the outcome, taking into account 
the algorithm to be used, which in our case is linear regression. 
Wrapper approaches do not necessarily perform better or worse 
than filter approaches [23]. Our motivation to use the wrapper 
approach was to avoid human interaction with the model building 
process as much as possible, which obviously makes the process 
much faster.   

It is worthwhile mentioning that the optimal feature and linear 
regression model selection were performed using 10-fold cross 
validation [16]. This was done in order to balance between cells 
with large sample of non-zero instances and cells with a smaller 
sample. The reported correlation coefficient, MAE and RMSE are 
averages from the 10 repetitions. Using 10-fold cross validation 
already provides a good estimate of the accuracies of these 
formulas. Of course, we do test them on completely new datasets, 
not only to confirm the accuracies achieved, but also to find out 
when is a good time to update the model. We expect that updates 
should be necessary every few months, because of the 
reconfiguration of the network, additions of new cells and 
upgrades to the existing ones. 

4.3 Results and Discussion 
Using this process we were able to run 30,000 regressions per 
day, by just one click. This does not necessarily result in 30,000 
models, because in some cases it was impossible to derive a 
formula due to the large number of instances that were filtered out 
for zero load. But, in order to measure the load of a cell, it is 
sufficient that a model is generated for at least one output 
variable. Cases of cells where it was not possible to generate a 
model for any of the variables were rare. Furthermore, cells that 
do not show any load by the means of the output variables are not 
of interest for our problem situation. For practical purposes, we 
will only present the modeling results for two of the four output 
variables we used to describe the air interface load in section 2. 
We chose to present the results for the uplink and downlink load. 
All tables have the same structure. In the first column Bands of 
Averages for the respective output variables Downlink Load 
(DL_Load) and Uplink Load (UL_Load) are given. The second 
column contains the count of cells that falls into this band. The 
third column presents the average count of non-zero instances 
(NZI) in each band. In other words, it presents the number of 
instances used to build the regression, because we only took non-
zero output values into account. The fourth column presents the 
average Correlation Coefficient (CC) between the predicted and 
actual values of the variables in the particular band. These 
Correlation Coefficients are the result of the 10-fold cross 
validation. 
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Table 1. Regression Modeling Results for Downlink Load (DL) 
for Country Operator 1 

Downlink 

Load 

Count 

of Cells 

Avg 

Count 

of NZI 

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number 

of Cells 

DL<1 642 /  /  /  

1<=DL<5 132 504.2 0.906 99% 

5<=DL<10 450 528.5 0.920 100% 

10<=DL<20 2995 507.7 0.914 100% 

DL>=20 4120 511.1 0.955 100% 

 

Table 2. Regression Modeling Results for Uplink Load (UL) for 
Country Operator 1 

Uplink Load 

Count 

of 

Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number of 

Cells 

UL<1 643 579 0.254 1% 

1<=UL<5 693 513.94 0.536 96% 

5<=UL<10 2880 522.06 0.676 100% 

10<=UL<20 3405 516.14 0.756 100% 

UL>=20 718 503.05 0.776 99% 

 

Table 3. Regression Modeling Results for Downlink Load (DL) 
for Country Operator 2 

Downlink 

Load 

Count 

of Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number 

of Cells 

DL<1 683 /  /  /  

1<=DL<5 2379 155.4 0.777 80% 

5<=DL<10 9406 247.9 0.824 96% 

10<=DL<20 4550 271.7 0.846 95% 

DL>=20 1697 284.7 0.872 92% 

 

Table 4. Regression Modeling Results for Uplink Load (UL) for 
Country Operator 2 

Uplink Load 

Count 

of 

Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number of 

Cells 

UL<1 431 172.8 0.554 17% 

1<=UL<5 138 247.5 0.649 84% 

5<=UL<10 909 273.9 0.565 87% 

10<=UL<20 9649 294.7 0.617 95% 

UL>=20 7816 288.8 0.801 98% 

 

Table 5. Regression Modeling Results for Downlink Load (DL) 
for Country Operator 3 

Downlink 

Load 

Count 

of Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number 

of Cells 

DL<1 387 /  /  /  

1<=DL<5 2447 142.5 0.854 84% 

5<=DL<10 2428 155.9 0.907 95% 

10<=DL<20 2114 175.5 0.935 99% 

DL>=20 746 184.6 0.945 100% 

 

Table 6. Regression Modeling Results for Uplink Load (UL) for 
Country Operator 3 

Uplink Load 

Count 

of 

Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number of 

Cells 

UL<1 160 56.6 0.382 11% 

1<=UL<5 715 120.6 0.482 77% 

5<=UL<10 1909 146.4 0.546 92% 

10<=UL<20 3195 162.4 0.677 98% 

UL>=20 2143 171.2 0.668 96% 

 

Table 7. Regression Modeling Results for Downlink Load (DL) 
for Country Operator 4 

Downlink 

Load 

Count 

of Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number 

of Cells 

DL<1 5 952.4 0.449 100% 

1<=DL<5 604 949.7 0.705 100% 

5<=DL<10 3801 958.0 0.776 100% 

10<=DL<20 4802 957.9 0.807 100% 

DL>=20 1020 958.2 0.848 100% 

 

Table 8. Regression Modeling Results for Uplink Load (UL) for 
Country Operator 4 

Uplink Load 

Count 

of 

Cells 

Avg 

Count 

of NZI  

Avg 

Correlation 

Coefficient 

Models Built 

Vs Number of 

Cells 

UL<1 0 /  /  /  

1<=UL<5 0 /  /  /  

5<=UL<10 674 948.2 0.461 98% 

10<=UL<20 4187 955.5 0.598 100% 

UL>=20 5371 957.2 0.669 100% 
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The last column presents the ratio between the number of 
formulas that were generated and the total count of cells in each 
band. Namely, for certain cells it was not possible to build the 
regression because of a very low number of non-zero instances. 

The results of the Regression Modeling for Downlink and Uplink 
load for four different countries are shown in tables 1-8. In Tables 
1 and 2 are the modeling results of the same operator published in 
[2]. However, this operator is still undergoing a full network 
swap, which means every cell in the network is either already 
replaced or will be replaced by a new one from a different 
network equipment vendor. At the moment, this operator is 
running both networks in parallel, which creates an additional 
level of complexity. However, the results presented in Tables 1 
and 2 are referring to the modeling process on the swapped part of 
the network using the new vendor’s equipment. Hence, the total 
number of cells is smaller than reported in [2]. For this reason, 
and the fact that we are presenting different output variables in 
this paper, the results of [2] and these results should not be 
compared. 

The results can be evaluated by using two criteria: The 
Correlation Coefficient and The Ratio of The Models Built (the 
last two columns in Tables 1 to 8). Obviously, the Ratio of the 
Number of Formulas built for DL and UL grows alongside the 
number of instances for operators in all four countries, which is to 
be expected. We chose the correlation coefficient because it’s a 
relative measure, and therefore more intuitive than the Mean 
Average Error of Root Mean Square Error. As mentioned above, 
we report the average correlation coefficient of each load band. 
The confidence intervals for the average correlation coefficient at 
95% confidence level were not wider than ±0.02 in any operator 
in any of the Downlink or Uplink load bands, due to the relatively 
low standard deviations.  

Furthermore, because of the choice we made at the beginning of 
the research, to focus on the higher levels of load and eliminate 
the zero values, the Average Correlation Coefficient between 
actual and predicted values also grows as the Load is higher, both 
for Downlink and Uplink. In the lowest Load bands, the 
performance of models is not good. However, this is of no 
interest, as these are not the situations that we are trying to 
predict. These cells are not likely to be in overload in the 
foreseeable future. 

However, when analyzing the Average Correlation Coefficient 
(ACC) between the predicted and actual values there is a visible 
difference between Downlink and Uplink load: The ACC for 
Downlink Load (Tables 1, 3, 5, 7) is much higher than the ACC 
for Uplink Load (Tables 2, 4, 6, 8). Uplink Load seems more 
difficult to predict using linear regression. There are two possible 
reasons for this: A crucial input parameter (predictor) may be 
missing; or the Uplink Load has less of a linear nature.  

Last but not least, model performance across operators cannot be 
compared due to differences in network vendors, software 
versions, geography, population density and smartphone 
penetration rates (which cause higher network load). The 
importance of the smartphone penetration and population density 
was also confirmed by the automated feature selection, where 
variables such as the combined throughput (uplink or downlink), 
which is highly influenced by smartphones and the number of 
HSDPA/HSUPA users per hour (which are smartphone users) 
were the most often selected when building the respective load 
formulas. 

4.4 Forecasting the load 
Once the load formulas have been derived it is possible to forecast 
the future load situation if the changes in the describing 
parameters are known. These changes of the input parameters are 
described by means of scaling factors. The scaling factors are 
calculated by using a traffic forecast model developed by the 
operator (out of scope of this paper). A cell is upgraded if any of 
the four output variables used as measures of Uplink or Downlink 
load, is above a critical value. 

This is done in the following way:  

1. for each output variable 

1.1. For each cell 

1.1.1. Select the top 100 instances of the 

output variable and its corresponding 

values for the input variable.  

1.1.2. Make averages of these input 

variables. 

1.1.3 Scale the input variables up or 

down, according to scaling factors 

developed by a traffic model. 

1.1.4. Feed the scaled values of the input 

parameters into the regression formula for 

the output variable for that cell   

1.1.5 If the resulting value is higher 

than the critical threshold for that 

output variable, the cell should be 

upgraded. 

The forecasting model provides better and more sophisticated 
forecasts and as such supports better network investment 
decisions, which account for the major part of the entire operator 
CAPEX cost. In simple terms, no money is wasted by investing in 
unnecessary network upgrades, providing two benefits: lower cost 
and redirecting investments into areas that have a higher impact 
on a positive network experience for the customers. Also, the 
forecasted capacity issues are addressed and solved before they 
become a problem for the customers. This is a huge advantage, 
especially when compared to the reactive, fire-fighting like model 
previously deployed at the operator to address network capacity 
issues. 

In addition, note that this part of the process is performed in a tool 
as simple as MS Excel. This was a key driver for the business 
success of the solution. In our experience the importance of the 
Deployment step in the data mining process is generally 
underestimated. By providing not just the scores but also the 
underlying models in a format and tool that was immediately 
usable and tunable to end users who are not data miners, the 
solution was readily accepted and also used in new ways not 
necessarily intended by the data miners, for instance detailed 
simulation scenarios. In our view, this approach may be 
applicable to many other domains. 

4.5 Applications- Simulation scenarios 
Initially, the only application of this research envisioned by the 
authors was the deployment scenario for forecasting future load 
and predicting necessary network upgrades due to “regular” traffic 
growth, as described in section 4.4. This has already been used in 
four different country operators belonging to the telecom group. 

However, due to the flexibility of the approach, meaning using 
simple tools such as Microsoft Excel for implementation, the 
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system developed a life of its own: the end users in the operator 
where this research was originally developed started creating 
simulation scenarios suited for different needs.  

Step 1.1.3 of the algorithm described in the previous section 
mentions feeding scaling factors for the input parameters based 

on a traffic model. What if this traffic model is replaced by a 
different one? In that case, a new simulation scenario is generated. 
Using our approach, all it takes to generate a new scenario is to 
change the values of the input parameters in MS Excel. The 
output of the model (Downlink and Uplink Load) is automatically 
recalculated and the user can immediately see the effect. In the 
next paragraphs we will explain a few actual use case scenarios.  

One of the first use cases generated was to predict future network 
load and evaluate network investments, based on proactive 
localized marketing campaigning. It was a co-operation between 
the Marketing and Network Technology Department. The 
Marketing Department provided their campaign description and 
expected benefits, namely new customers and increased service 
usage, which were trended in terms of the input parameters 
described in section 2. These were fed into the model as described 
in section 4.4, so the increased future load can be predicted and 
the necessary network improvements can be made, even before 
the marketing campaign is launched. A very similar scenario is in 
use for opening new stores, due to the fact that increased number 
of customers is expected when opening a brick-and-mortar store. 
This allows for the network to be prepared to accept the new 
customers without impacting the experience of the existing ones.  

Another very powerful application of this model is evaluating a 
business case for adding a new wholesale client- or an MVNO 
(Mobile Virtual Network Operator). This is an operator that does 
not own a network; instead a MVNO is renting the network of a 
bigger telecom operator in order to provide services. In this case, 
the localized traffic growth for predicting the future load is based 
on the location (or the evaluation of) the customers of the 
MVNOs and their respective service usage. These are then 
trended and fed into our model (via MS Excel) in order to 
evaluate the necessary network improvements, so there is no 
degradation of service for the customers of the host operator. 
However, these upgrades come at a certain cost, which is 
attributed to accepting the MVNO onto the host network. If the 
benefit (revenues) generated by accepting the MVNO are lower 
than the costs incurred, the business case is negative and 
therefore, rejected. This approach was used in the country where 
the research originated to reject a business case for adding an 
MVNO. At the moment, a MVNO business case is being 
evaluated for another operator from the same telecom group. 

Last but not least, this approach was used as one of the criteria to 
determine the strategy for the network swap and deployment of 
LTE (4G) network in the originating operator. As mentioned in 
section 4.3, this operator is undertaking a major network 
infrastructure investment, namely replacing the entire radio 
network (every cell) in order to modernize it and allow for 
deployment of 4G. Of course an undertaking of this size cannot be 
performed all at once; thus clusters of cells are being planned for 
replacement at a certain time. Our load prediction method was one 
of the criteria used for giving priority to certain clusters, thus 
reducing the need of unnecessary investments into the “old” 
network. The underlying assumption here is not only that the 
“new” generation radio network has more efficient resource use 
and therefore can handle the load better, but also that a certain 
amount of customers will start using 4G services, therefore 
offloading the 3G network. 

None of the use case analyses described above were possible prior 
to the deployment of our method. They all require localized load 
predictions, which simply did not exist. The exact monetary return 
is once again confidential.  

5. LIMITATIONS AND FUTURE WORK 
The regression formulas developed by this approach can be used 
on a long term basis only if the mobile network stays the same (is 
frozen) over a longer period. But, this is not the case. The cellular 
network is a system of very complex dynamics. The many 
changes that occur, such as hardware and software updates, 
network reconfigurations and optimizations, as well as network 
upgrades and roll-out of new cell sites, which reduce the load of 
the existing cells, cannot be taken into account in advance. It is 
necessary to collect a new dataset and rebuild the regression 
formulas, in order to incorporate all these changes into the model. 
This is why the process described in this paper is scheduled for 
execution every 3-4 months. 

Next, we intend to improve prediction for uplink load. One 
method would be searching for additional input parameters to 
improve the performance of predicting uplink load using linear 
regression. Alternatively, we could look for a substitute for linear 
regression better suited for modeling uplink load on the cells 
where linear regression does not deliver. However, this algorithm 
should not substantially slow down the whole process and must be 
easily transferable to MS Excel, in order to keep the flexibility 
and the ease of building simulation scenarios. 

Further evaluation of the quality of the derived load formulas of 
course also involves the comparison of the predicted load with the 
actually measured load in the future. It should however be noted 
that there a lot of factors impeding a direct comparison. As noted 
above, all changes to the settings of a cell within the forecasting 
timeframe affect the load formula, which means that after such 
changes the derived formula is - at least to some degree - no 
longer correct. For this reason it will be challenging to really 
quantify the accuracy of the predictive model. Developing a fair 
method of evaluation, which would incorporate the network 
changes, would be beneficial. In terms of the core algorithms, we 
do want to keep the benefit of using a simple, fast and robust low 
variance approach such as linear regression. 

However, we do plan to explore a methodology that would allow 
us to combine a global network model with local models for each 
cell, for instance multitask or transfer learning [24]. In principle, 
we have almost infinite data available for most cells, so local 
models cannot be improved by a global model. Nevertheless, 
there could be exception for a non select small number of cells. 
Next, a clustering approach could be devised to group cells with 
similar formulas or levels of load, thereby generating new 
knowledge for the telecom domain experts. 

Furthermore, we do intend to investigate additional simulation 
scenarios for our approach, beyond those described in Section 4.5. 
Last but not least, this research has been implemented in four 
operators of this telecom group. Other operators from the same 
group are still to follow, with their use cases and applications of 
their own. 

6. CONCLUSIONS 
In this paper we presented a very simple yet effective approach of 
deploying data mining in commercial surroundings. 
Unfortunately, data mining is still seen as a black box in many 
industries, telecom not excluded. Even though some data mining 
activities are taken, typically in the Marketing/Customer 
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Retention field, there is a myriad of other possibilities in business 
where data mining can be applied. In our opinion, it is better to 
start with simple methods, such as regression, because it is easier 
to understand them. Once these simple approaches gain 
acceptance, and familiarize the industries with data mining, 
opportunities to apply more advanced techniques will arise. 

In our result section we show that it is easier to accomplish a 
target, if one is focused on it. Namely, with our approach we 
wanted to target cells where some load (non-zero load) occurs, in 
order to predict the part that really matters more correctly: the 
high end part of the load curve (the cells in overload). In other 
words, as the network load grows, so does the quality of the 
model’s predictions. We willingly sacrificed the models’ 
performances within the lower loaded cells, because they are of 
no interest. 

Next, one of the key values of the approach is that a large number 
of regression models (close to 30,000 per day) are developed in a 
very short period of time with minimum human interaction. In 
order to do this, we deployed a simple algorithm such as linear 
regression, motivated by its speed and other benefits explained 
earlier, a wrapper feature selection, in order to avoid human 
interaction, and 10-fold cross validation which makes the models 
statistically sound. Manually, this task would be impossible. 
Obviously, the possibility to generate these formulas was crucial 
to the operator. At the moment, the commercial tools for this 
purpose offer only load predictions based on single variable 
regressions [11], which is not as robust as our approach.  

Typically, planning network upgrades is a reactive process. Our 
approach makes it proactive, which was acknowledged by the 
operator, who has fully integrated our approach into its network 
upgrade planning and budgeting activities. Of course, due to the 
fast pace network changes, the formulas need to be upgraded 
every 3-4 months, but this is also scheduled as a part of a standard 
process. Due to confidentiality, we cannot disclose the exact 
return of this project, but given that the network is the key 
resource of an operator, the investments into its upgrades are quite 
sizeable. To our knowledge, this is the first time a telecom 
operator has applied data mining in order to create a proactive 
network upgrade management process. This allows the operator to 
manage network performance better and avoid extreme 
congestion situations, which can result in degraded customer 
experience and loss of reputation for the operator. As mentioned 
at the beginning, the research was performed at a large telecom 
operator with branches in many European countries. At the 
moment, our research is deployed in four of the countries where 
this operator is present, but efforts are made to make it universal 
to the telecom group and replicate it in the other branches as well. 

Potentially the greatest benefit of our approach is the decoupling 
of the data mining process from simulation scenarios. This is 
accomplished by exporting the models into Excel sheets after they 
have been have been generated by our data mining process. Then, 
the end users, a team of radio network analysts who are not data 
miners, are able to use these formulas resulting from a data 
mining process for forecasting the future network load. This 
allows them to simulate multiple traffic scenarios by scaling the 
current input parameters, which is as simple as changing values in 
their respective columns in Excel. These scenarios include 
“regular growth” scenarios, evaluations of network investments 
necessary to accommodate localized user growth due to targeted 
marketing campaigns, adding a new wholesale client (an MVNO-
Mobile Virtual Network Operator) and prioritizing clusters for 
deployment of new technologies such as LTE/4G.  

Next, we would like to point out the possibility of applying our 
research onto problems other than telecom network load. This 
approach would be applicable to any other industry where large 
scale regression models are necessary. This can be accomplished 
simply be replacing the data source, in this case the Radio 
Network Performance Management Tools, with a data source 
suitable for the industry that would like to apply our research. The 
decoupling of the data mining process from the simulation 
scenarios makes our approach more general to situations where 
detailed simulations are necessary, but the domain experts are not 
data miners. We already tested this approach for cluster based 
revenue predictions, which is a topic from the finance domain. 

Last but not least, perhaps one of the most interesting aspects of 
our approach is the extremely low cost. Given that we used the 
existing IT infrastructure (Server, Radio Network Performance 
Management Tools, Oracle, Excel) combined with open source 
tools (WEKA, Perl), the only cost that incurred are the 1 week 
Processing Time Cost (of the Server) and the labor cost of the 
employees in this project. Also, the Oracle Database that we used 
can be replaced with a less expensive or free database alternative 
in order to further reduce the cost, in case the potential user of our 
approach does not have an Oracle License. These amounts are 
insignificant compared to the actual investments being made into 
the network. 

 

7. REFERENCES 
[1] Mäder, A., Staehle, D. 2004. Analytic modeling of the 

WCDMA downlink capacity in multi-service environments. 
In 16th ITC Specialist Seminar. 229-238. 

[2] Radosavljevik, D., van der Putten, P., Kyllesbech Larsen, K. 
2012.  Mass scale modeling and simulation of the air-
interface load in 3G radio access networks. Advances in 

Intelligent Data Analysis XI. Springer Berlin Heidelberg. 
301-312. 

[3] van der Putten, P., van Someren, M. 2004. A Bias-Variance 
Analysis of a Real World Learning Problem: The CoIL 
Challenge 2000. Machine Learning 57(1-2), 177-195. 
Kluwer Academic Publishers. 

[4] Yates, R. 1995. A framework for uplink power control in 
cellular radio systems. IEEE JSAC 13(7), 3141–3147  

[5] Geijer Lundin, E., Gunnarsson, F., Gustafsson, F. 2003. 
Uplink load estimation in WCDMA. in Proc. IEEE Wireless 

Communications and Networking Conference 3, 1669-1674 

[6] Muckenheim, J., Bernhard, U. 2001. A Framework for Load 
Control in 3rd Generation CDMA Networks. In Proc of the 

IEEE Global Telecommunications Conference 6, pp. 3738-
3742 

[7] Natalizio, E., Marano, S., Molinaro A. 2005. Packet 
scheduling algorithms for providing QoS on UMTS 
downlink shared channels. IEEE VTC 4, pp. 2597–2601 

[8] Nokia Siemens Networks. 2008. Nokia Siemens Networks 
WCDMA RAN, Rel. RU10- System Library, v.1: RNC 
Counters – RNW Part. Nokia Siemens Networks. Proprietary 
and Confidential 

[9] Ericsson. 2013. Ericsson Performance Management. DOI= 
http://www.ericsson.com/ourportfolio/products/performance-
management 

1628



[10] Huawei.2013. iManager M2000. DOI= 
http://www.huawei.com/en/products/oss/mbb-om-
product/imanager-m2000/ 

[11] MyCom. 2013. NIMS-PrOptima Service & Network 
Performance Management. DOI= http://www.mycom-
int.com/products/nims-proptima-service-and-network-
performance-solution/ 

[12] 3gpp.1999. RNSAP Cell Load Information procedure and 
message contents. DOI= 
http://www.3gpp.org/ftp/tsg_ran/wg3_iu/TSGR3_07/Docs/P
dfs/R3-99c57.PDF 

[13] Feinberg, E.A., Genethliou, D. 2005. Load Forecasting. In: 
Chow, J.W., Wu, F.F., Momoh, J., (eds.) Applied 

Mathematics for restructured electric power systems, 269-
285,  

[14] Svoboda, P., Buerger, M., Rupp, M. 2008. Forecasting of 
Traffic Load in a Live 3G Packet Switched Core Network. in 
Proc. of 6th International Symposium on CNSDSP, 433 - 437 

[15] Bermolen, P., Rossi, D. 2009. Support vector regression for 
link load prediction. Computer Networks 53(2), 191-201  

[16] Witten, I. H., Frank, E. 2005. Data Mining: Practical 

Machine Learning Tools and Technique. (2nd Ed.), Morgan 
Kaufmann, San Francisco. 

[17] Oracle, 2011. Oracle Database Documentation Library. 
DOI= http://www.oracle.com/pls/db102/homepage 

[18] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, 
P. Witten, I. H. 2009. The WEKA Data Mining Software: An 
Update; SIGKDD Explorations 11(1). 

[19] Strawberry Perl, 2011. DOI= http://strawberryperl.com/ 

[20] Microsoft Corporation, 2010. Microsoft Excel. DOI= 
http://office.microsoft.com/en-us/excel/ 

[21] Christiansen, T., Torkington, N. 2003. Perl Cookbook (2nd 

Ed.). O’Reilly, Sebastopol. 

[22] Kohavi, R., John, G. 1997. Wrappers for feature subset 
selection. Artificial Intelligence 97, 273–324. 

[23] Tsamardinos, I., Aliferis, C. 2003. Towards principled 
feature selection: Relevancy, filters and wrappers. In 
Proceedings of the Ninth International Workshop on 

Artificial Intelligence and Statistic 

[24] Caruana, R. 1997. Multitask learning. Machine Learning 28, 
41-75.

 

1629




