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Abstract—In this paper we present an approach for bench-
marking and profiling novel classification algorithms. We apply
it to AIRS, an Artificial Immune System algorithm inspired
by how the natural immune system recognizes and remembers
intruders. We provide basic benchmarking results for AIRS, to
our knowledge the first such test under standardised conditions.
‘We also investigate how data set properties (data set size) relate to
AIRS performance, and what other algorithms produce similar
patterns over over- and underperformance on specific data sets.
We present three methods for computing algorithm similarity
that may be useful for profiling novel algorithms in general.

I. INTRODUCTION

The introduction of new technologies generally follows a
typical hype cycle, and novel data mining algorithms are no
exception to this rule. Neural networks are a good example.
Algorithms inspired by neural processing have been around
since the forties (for instance [1]) but really gained traction
in the eighties of the last century after publication of the
PDP Handbooks [2]. The amount of neural network research
exploded, and neural networks were pitched as a superior set
of algorithms for classification, clustering and optimization,
in some cases with no more justification than its biological
origins.

After this period of excitement but also overinflated claims a
more realistic approach was taken. Some researchers went the
direction of using neural networks strictly for the purpose of
neurobiological modeling, but the data mining and machine
learning community started to ignore the biological roots
and to evaluate and benchmark neural algorithms against
other approaches using generally applicable measures such as
accuracy. Whilst this may have resulted in the loss of some of
the initial appeal, research interest and promise, it actually led
to the incorporation of of neural networks into the standard
toolkit of a much wider community.

So for the maturity and wider acceptance of a novel algo-
rithm it is key that it is benchmarked against and compared
with existing approaches, preferably by researchers who have
not been involved in the development and evangelization of
the particular novel algorithm. However, it should be noted
that this only provides basic reassurance that the algorithm
provides reasonably valid results. The No Free Lunch theorem
loosely states that there is no algorithm that will consistently
outperform all other algorithms on all problem domains [3]. So
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it is important to take the analysis further than basic accuracy
benchmarking, and for instance investigate on what kind of
problems and data it works well, or explore to what algorithms
it is similar in its behavior. This will help the data miner to
decide when best to apply these methods. We refer to this as
algorithm profiling rather than basic benchmarking. Existing
methods such as learning curves and bias variance analysis
can be used, but there is also a lot of opportunity to develop
new methods (see figure 1)

In this paper we provide an example approach for such an
analysis. As the candidate novel algorithm we have chosen for
AIRS, a so called Artificial Immune System or Immunocom-
puting algorithm, a prediction method inspired by the learning
capabilities of the immune system ([4]). The analogy with
neural networks is not a coincidence - we wanted to pick
a field that is likely to be in a similar position as neural
networks previously. Whilst our approach goes further than
basic benchmarking ([5], [6]) we have chosen to keep it fairly
straightforward and simple, so that the same approach can
easily be used to benchmark, profile and characterize other
novel algorithms for classification.

The paper is organized as follows. Section IT provides an
overview of natural immune systems, and section III outlines
the AIRS algorithm. The basic benchmarking, data set proper-
ties and algorithm similarity experiment results are described
in sections IV, V and VI respectively. We conclude this paper
with section VIL.

II. NATURAL IMMUNE SYSTEMS

The natural immune system offers two lines of defense,
the innate and adaptive immune system. The innate immune
system consists of cells that can neutralize a predefined set
of attackers, or antigens, without requiring previous exposure
to them. The antigen can be an intruder or part of cells or
molecules of the organism itself. Tn addition, higher animals
like vertebrates possess an adaptive immune system that can
learn to recognize, eliminate and remember specific new
antigens.

An important role is played by lymphocytes, cells that
recognize and destroy antigens. There are different types of
lymphocytes, cells that recognize antigens directly (B-cells)
or cells that recognize antigens that are bound to so called



Domain Profiling
On what kind of problems and/or data sets does
the algorithm under- or overperform?
How can we relate properties of the problem
domain to relative performance of the
algorithm?

Basic Accuracy Benchmarking
Does the novel algorith perform reasonably
well on average?

Is the worst case performance acceptable?
Can we debunk overinflated claims?

Algorithm Similarity
How similar s the behavior of this algorithm to
other algorithms?
What could be a theoretical explanation of this
similarity?
Can similarity be quantified?

Basic Benchmarking Profiling

’Smoke Test"
Check minimal conditions for
suitability

When to use the algorithm?
Increasing the understanding
Addressing No Free Lunch

Fig. 1. Basic algorithm benchmarking versus algorithm profiling

presenter cells (T-cells). Each lymphocyte codes for a specific
antigen, but there may be more possible types of antigens than
there are specific lymphocytes.

This is solved by a form of natural selection. The bone
marrow and thymus continuously produce lymphocytes and
each of these cells can counteract a specific type of antigen.
Now if for example a B-cell lymphocyte encounters an antigen
it codes for, it will produce antibody molecules that neutralize
the antigen and in addition a large number of cloned B-cells
are produced that code for the same antigen (clonal expansion
or clonal selection).

The immediate reaction of the innate and adaptive immune
system cells is called the primary immune response. The
immune system also keeps a record of past intrusions. A
selection of the activated lymphocytes is turned into sleeper
memory cells that can be activated again if a new intrusion
occurs of the same antigen, resulting in a quicker response.
This is called the secondary immune response [7].

III. AIRS

The Artificial Immune System algorithm (AIRS) can be
applied to classification problems, which is a very common
real world data mining task. Most other artificial immune
system research concerns unsupervised learning and clus-
tering. The only other attempt to use immune systems for
supervised learning is the work of Carter [8]. The AIRS design
refers to many immune system metaphors including resource
competition, clonal selection, affinity maturation, memory cell
retention, and so on.

A. History and Background

AIRS builds on the concept of resource limited clustering as
introduced by Timmis and Neal and de Castro and von Zuben
[9], [10].

According to the introductory paper, AIRS seems to perform
well on various classification and machine learning problems
[4]. Watkins claimed the performance of AIRS is compa-
rable, and in some cases superior, to the performance of
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Fig. 2. An overview of the AIRS algorithm

other highly-regarded supervised learning techniques for these
benchmarks. Goodman, Boggess, and Watkins investigated the
‘source of power for AIRS’ and its performance on multiple-
class problems. The authors compared the results of AIRS
on several datasets including iris, ionosphere, diabetes, sonar,
and Cleveland heart with the results from a large number of
other classifiers from literature. Based on this comparison, the
authors claim ‘AIRS is competitive with the top five to eight
classifiers out of 10-30 best classifiers on those problems’,
‘it was surprisingly successful as a general purpose classifier’
and it ‘performed consistently strong across large scope of
classification problems’ [11], [12].

B. The Algorithm

From a data mining point of view, AIRS is a cluster-
based approach to classification. It first learns the structure
of the input space by mapping a codebook of cluster centers
to it and then performs a k-nearest neighbor search on the
cluster centers for classification, just like k-means clustering
for classification or Self Organizing Maps (SOMs, [13]).
The attractive point of AIRS is its supervised procedure for
discovering both the optimal number and position of the
cluster centers.

In AIRS, there are two different populations, the Artificial
Recognition Balls (ARBs - lymphocytes) and the memory
cells, see figure 2. When a training antigen is presented ,
ARBs matching the antigen are activated and awarded more
resources. ARBs with too few resources will be removed and
new ARBs are created through mutation. This corresponds
to the primary immune response in natural immune systems.
On convergence a candidate memory cell is selected which
is inserted into the memory cell pool if it contributes enough
information. This corresponds to the secondary immune re-
sponse. This process is repeated for all training instances
- each training items can be seen as a separate ’attack’.
Classification takes place by performing a nearest neighbor
search on the memory cell population.

For a more formal description of the AIRS algorithm
information see [4].

IV. BASIC ACCURACY BENCHMARKING

The goal of the benchmark experiments is to evaluate the
predictive performance of AIRS in a real world application
setting. We assume that our users are non data mining experts,



e.g., business users, who may lack knowledge or time to fine-
tune models, so we used default parameters without manual
fine-tuning to create a level playing field. For this reason
we also decided to use simple accuracy rather than more
advanced measures such as area under the ROC. To ensure
consistency, the experiments for all classifiers were carried out
under exactly the same conditions, in contrast to some earlier
published work on AIRS (see section III-A).

A. Approach

We selected data sets with varying number of attributes,
instances and classes, from simple toy data sets to difficult
real world learning problems, from the UCI Machine Learning
and KDD repositories [14]. The TIC data sets are derived from
the standard TIC training set by down sampling the negative
outcomes to get an even distribution of the target. In addition,
TIC5050S only contains the most relevant according attributes
according to a subset feature selection method [15].

For the experiments, we selected some representative, well
known classifiers as challengers. These classifiers include
naive Bayes, logistic regression, decision tables, decision trees
(C45/148), conjunctive rules, bagged decision trees, multi layer
perceptrons (MLP), 1-nearest neighbor (IB1) and 7-nearest
neighbor (IB7). This set of algorithms was chosen because
it covers most of the algorithms used in business data mining
and contains a variety of classifier types and representations
- instance based learning, clustering, regression type learning,
trees and rules, and so on. Furthermore we added classifiers
that provide lower bound benchmark figures: majority class
(ZeroR) simply predicts the majority class and decision stumps
are decision trees with one split only. For AIRS we chose
the 1 and 7 nearest neighbor versions of the algorithm.
We used the Java version of AIRS by Janna Hamaker and
the WEKA toolbox for the benchmark algorithms [16] [17].
All experiments are carried out using 10-fold stratified cross
validation, and we compute averages and standard deviations
on the accuracies [5], [6].

B. Results

The results of the experiments can be found in Table I
With respect to the worst case classifiers we highlight some
interesting patterns. Almost all classifiers outperform majority
vote. The comparison with decision stumps is more striking.
For example, for all data sets with the exception of the
waveform data set the conjunctive rules classifier does not
perform better than decision stumps. Other examples are the
TIC data sets: none of the classifiers other than C45 on
TICTRAINS050s perform better than decision stumps. This
demonstrates the power of a very simple decision rule in a
real world black box modeling environment (see also [18]).

To get a better picture on the relative performance of AIRS
we compare it to the average classifier performance (excluding
decision stump and majority vote). AIRS-1 performs better
than average on 3 of these 9 datasets. AIRS-7 performs better
than average on 6 of these 9 datasets. This conflicts with
the claims made in earlier studies that were cited in section
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Fig. 3. Accuracy learning curves for AIRS-1 and AIRS-7 and MLP

2.2. We also made some comparisons to the IB-k algorithms,
because these may be closest to a trained AIRS classifier.
AIRS-1 improves on IB1 more often than the other way
around; this is probably due to the fact that AIRS-1 provides
some useful generalization. However IB7 performs better than
AIRS-7 on all of the data sets. AIRS-7 performs better than
AIRS-1on 7 out of 9 data sets. Using more clusters may give
better results but not to the extent that IB7 can be beaten
(basically as many cluster centers as data points).

That said, with the exception of AIRS-1 on German credit
data, the AIRS algorithms produce at least around average
results. This suggests that AIRS is a mature classifier that
delivers reasonable results and that it can safely be used for
real world classifications tasks.

V. PROFILING: INFLUENCE OF DATA SET PROPERTIES

As mentioned the No Free Lunch theorem states that there
is no classifier that outperforms all other classifiers across all
problem domains. So it is interesting to investigate on what
kind of data sets AIRS performs well, for example by relating
data set properties to the performance of AIRS relative to other
algorithms. We focus on a key property, the size of the data
set.

A. Approach

We carried out a so called learning curve analysis on the
diabetes data set. We created models using the same set of
classifiers as in the previous section, using 25% hold out
validation. These experiments were carried out on samples of
various size, starting with 10% and with 10% increments. We
then fitted logistic trend lines to the result series for each of
the classifiers and eyeballed the patterns that emerged.

B. Results

Roughly three patterns of result series emerge. In figure 3
the trend lines of AIRS-1 and AIRS-7 are compared to MLP.
The trend of AIRS-1 and AIRS-7 is quite similar - in this case
AIRS-1 outperforms AIRS-7 regardless of data set size. The
trend of the MLP curve is much flatter - i.e. it outperforms
AIRS at lower data set size but AIRS starts to perform better
at larger data set sizes. The opposite is true for IB1. The



Sonar Wisc. Wave Iris Tono- Pima Ger- TIC5050 | TIC5050
Breast form sphere dia- man
Cancer betes credit
Maj. 53.4 65.5 33.8 33.3 64.1 65.1 70.0 49.7 49.7
Class + 1.7 + 0.5 + 0.1 + 0.0 + 1.4 + 0.4 + 0.0 + 04 + 0.4
1B1 86.6 95.3 73.6 95.3 86.3 70.2 72.0 55.9 59.9
+7.0 +3.4 + 1.3 + 5.5 + 4.6 + 4.7 + 3.1 + 7.8 + 5.1
TB7 80.8 96.6 80.1 96.7 85.2 74.7 74.0 61.1 65.4
+ 7.8 + 2.2 + 1.1 + 3.5 + 4.3 + 5.0 + 4.1 + 3.2 + 8.4
Dec. 73.1 92.4 56.8 66.7 82.6 71.9 70.0 68.5 68.5
Stump + 8.3 + 4.4 + 1.5 + 0.0 + 4.8 + 5.1 + 0.0 + 4.7 + 4.7
C45 71.2 94.6 75.1 96.0 91.5 73.8 70.5 68.1 69.1
(J48) + 7.1 + 3.6 + 13 + 5.6 + 33 + 5.7 + 3.6 + 5.5 + 4.4
Naive 67.9 96.0 80.0 96.0 82.6 76.3 75.4 62.8 68.0
Bayes + 93 + 1.6 + 2.0 + 4.7 + 55 + 55 + 43 + 6.4 + 3.3
Conj. 65.9 91.7 57.3 66.7 81.5 68.8 70.0 67.4 68.3
Rules + 8.7 + 4.5 + 1.3 +0 + 5.4 + 8.67 +0 + 3.7 + 45
Bag- 77.4 95.6 81.8 94.0 90.9 74.6 74.4 59.9 68.4
ging + 0.1 + 3.1 + 14 + 5.8 + 4.4 + 3.6 + 4.9 + 5.8 + 4.1
Log. 73.1 96.6 86.6 96.0 88.9 77.2 75.2 62.7 66.5
Regr. | + 134 + 2.2 +23 + 5.6 + 49 + 4.6 + 3.4 + 4.6 + 3.4
MLP 82.3 95.3 83.6 97.3 91.2 75.4 71.6 60.7 65.4
+ 10.7 + 2.6 + 1.7 + 3.4 + 2.8 + 4.7 + 3.0 + 43 + 4.7
Dec. 74.5 95.4 73.8 92.7 89.5 73.3 72.2 61.9 69.1
Table + 8.2 + 2.7 + 1.6 + 5.8 + 4.5 + 3.6 + 4.1 + 4.5 + 5.7
AIRS1 84.1 96.1 75.2 96.0 86.9 67.4 68.0 56.8 55.0
+ 74 + 1.8 + 1.7 + 5.6 + 3.1 + 4.6 + 5.1 + 44 + 6.5
AIRS7 76.5 96.2 79.6 95.3 88.6 73.6 71.4 57.8 59.1
+ 8.4 + 1.9 +22 | £55 + 5.0 + 3.5 + 3.1 + 5.5 + 6.1
TABLE 1

AVERAGE ACCURACY AND STANDARD DEVIATION ON ACCURACY (TEN FOLD) FOR AIRS AND A RANGE OF BENCHMARK ALGORITHMS. BEST RESULTS
IN BOLDFACE, WORST RESULTS IN ITALICS.
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Fig. 4. Accuracy learning curves for AIRS-1 and AIRS-7 and IB1

slope of the IB1 learning curve is steeper than the AIRS
learning curves, see figure 4. For the remaining classifiers,
including IB7, the learning curve has a similar curve as the
AIRS classifiers.

VI. PROFILING: COMPUTING ALGORITHM SIMILARITY

The experiments above provide an overview what the perfor-
mance of the AIRS algorithm is and how AIRS performance
may relate to data set size. Another typical question for a novel
algorithm is how similar it is in its behavior compared to other
algorithms. This is useful to know, as it will give a data miner

an idea when to apply this technique.

Some insight can be derived by studying the theoretical
properties of the algorithm. For instance, the AIRS learning
process can be seen as a fairly complicated way to deliver a
simple codebook of labeled cluster centers, so in theory it’s
behavior could be similar to nearest neighbor and or k-mean
clustering style of classifiers.

The key question though is whether this behavior is val-
idated in experiments, and whether other classifiers of very
different origins may behave similarly as well, for reasons yet
to be determined.

A. Approach

In our experiments we have used three different ways to
measure algorithm similarity. We focussed on the accuracy of
the algorithm, given that it is generally the key behavior of
interest.

The basic benchmarking data provided the raw data for
the analysis. To get a basic picture we simply calculated the
correlation between classifiers on series of accuracies over the
various data sets. A problem though with this approach is
that to a large extent correlation can already be expected - on
difficult problems accuracy will be low and vice versa.

So in our second method we decided to focus on perfor-
mance relative to to other classifiers. For each classifier - data
set combination we evaluated whether performance was better
or worse than the average of all classifiers on that particular



Classifier Correlation
AIRS-1
IB1 0.99
1B7 0.98
MLP 0.97
AIRS-7 0.97
Bagging 0.94
Decisiontable 0.92
Logistic 0.89
J48 0.87
Naive Bayes 0.83
DecisionStump 0.47
Conjunctive Rules 0.46
ZeroR -0.07
TABLE 1T

CORRELATION WITH AIRS-1 ACCURACY SERIES

Classifier Correlation
AIRS-7
MLP 0.99
1B7 0.99
Bagging 0.98
Logistic 0.97
AIRS-1 0.97
Decisiontable 0.96
IB1 0.95
Naive Bayes 0.93
J48 0.92
Conjunctive Rules 0.48
DecisionStump 0.45
ZeroR -0.04
TABLE 111

CORRELATION WITH AIRS-7 ACCURACY SERIES

data set. We then counted how often classifiers agreed in terms
of over or underperformance with the AIRS algorithms.

A drawback of this particular approach is that we lose how
much better or worse a classifier was than average, in relative
terms. So in our third approach we calculated the number of
standard deviations a classifier under or over performed. To
calculate similarity we then computed the correlations between
these series of standard deviations.

B. Results

The correlation between the AIRS-1 accuracy series and
the other algorithms can be seen in table II. As mentioned in
section ITI-B the AIRS algorithm can be seen as a codebook
learning procedure that automatically determines the optimal
number of codes. Classification is done by simple nearest
neighbor search on the codebook. As expected the nearest
neighbor classifiers indeed have a high correlation, along with
the AIRS-7 algorithm, and the IB1 algorithm indeed behaves
more similar than the IB7 algorithm. An somewhat unexpected
result is the high score for MLP. The AIRS-7 results (table III)
show a consistent yet slightly more mixed picture with the IB1
and AIRS-1 algorithms scoring lower and MLP ranking as the
first algorithm. This could have been due to the lower variance
of AIRS-7 (bagging scores high, AIRS-1 scores higher than
IB1).

The results of our second method can be found in tables

Agreement
AIRS-1
IB1 8
AIRS-7 6
1B7 5
Conjunctive Rules 4
Bagging 4
MLP 4
J48 3
Decisiontable 3
Naive Bayes 3
Logistic 2
TABLE IV

FREQUENCY OF AGREEMENT (UNDER OR OVER PERFOMANCE COMPARED
TO AVERAGE) BETWEEN AIRS-1 AND OTHER CLASSIFIERS

Agreement
AIRS-7

Bagging 7

MLP

1B7

AIRS-1

IB1

Logistic

J48

Decisiontable

Naive Bayes

Conjunctive Rules

TABLE V
FREQUENCY OF AGREEMENT (UNDER OR OVER PERFOMANCE COMPARED
TO AVERAGE) BETWEEN AIRS-7 AND OTHER CLASSIFIERS

[N N N RV RV Bo)| Fo | IEN |

IV and V. Note that in this method we only consider whether
a method scores better or worse then average, and we count
how often classifiers agree. For AIRS-1 we do see the expected
behavior with respect to the AIRS-7 and the nearest neighbor
algorithms, MLP now scores lower. For AIRS-7 we see a
similar pattern, however nearest neighbor and AIRS are even
less similar than bagging and MLP.

The results for the third method can be found in tables VI
and VII. For this method the most consistent pattern as per
the expectations emerge with high scores for AIRS, nearest
neighbor and MLP. This method also seems to gives the widest
range in similarity scores which makes it easier to discriminate
across classifiers (obviously assuming the score itself is valid).

In table VIII we provide an overview of the results for the
various methods. Overall it can be concluded that classifiers
with theoretical similarities (AIRS-n, IB-n) indeed also behave
similar, with an interesting similarity to the MLP algorithm as
well.

VII. CONCLUSION

In this paper we have presented an approach to benchmark-
ing and profiling a novel algorithm, in this case the AIRS
Artificial Immune System algorithm. We are interested in
immuno-computing because it is one of the newest directions
in biologically inspired machine learning and focused on AIRS
because it can be used for classification, which is one of the
most common data mining tasks.



Whilst even proper basic benchmarking is lacking for novel
algorithms, as was also the case with AIRS, we propose that
more attention is being paid to the area of algorithm profiling,
both from the perspective of actually applying it to novel
methods as well as an independent area for research, as there
are not a lot of generally accepted methods for algorithm

Classifier Correlation
with AIRS-1
1B1 0.77
AIRS-7 0.66
MLP 0.43
1B7 0.16
Bagging -0.34
J48 -0.35
Decisiontable -0.48
Logistic -0.50
ZeroR -0.52
DecisionStump -0.54
Conjunctive Rules -0.63
Naive Bayes -0.66
TABLE VI

CORRELATION FOR RELATIVE UNDER OR OVER PERFORMANCE BETWEEN
ATRS-1 AND OTHER CLASSIFIERS

Classifier Correlation
with AIRS-7
AIRS-1 0.66
MIL.P 0.52
TB1 0.48
TB7 0.23
Logistic 0.22
Bagging 0.07
Naive Bayes -0.28
J48 -0.49
Decisiontable -0.55
ZeroR -0.56
DecisionStump -0.85
Conjunctive Rules -0.93
TABLE VII

CORRELATION FOR RELATIVE UNDER OR OVER PERFORMANCE BETWEEN
AIRS-7 AND OTHER CLASSIFIERS

This was the first basic benchmark of AIRS that compared
AIRS across a wide variety of data sets and algorithms, using
a completely standardized experimental set up rather than
referring to benchmark results from literature. In contrast to
earlier claims, we find no evidence that AIRS consistently
outperforms other algorithms. However, AIRS provides stable,
near average results so it can safely be added to the data miners
toolbox [5], [6].

In addition we have presented a methodology to further
profile a novel algorithm. We have performed some selected
learning curve experiments that showed a more or less standard
curve for AIRS, steeper than MLP but flatter than nearest
neighbor. We have explored a variety of methods for com-
puting algorithm similarity that confirmed it behaved indeed
similar to nearest neighbor based methods, as expected, but it
also has shown to be similar to MLP in its behavior.

Similar to AIRS-1 Similar to AIRS-7
Method 1 | IB1, IB7, MLP, AIRS-7 | MLP, IB7, Bagging, Logistic
Method 2 IB1, AIRS-7, IB7 MLP, Bagging, IB7, AIRS-1
Method 3 | IB1, AIRS-7, MLP, IB7 AIRS-1, MLP, IB1,IB7
Summary 1B1, AIRS-7, IB7 MLP, IB7, AIRS-1

TABLE VIII
ALGORITHM SIMILARITY FOR THE COMPUTATION METHODS

profiling yet.
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