
The Intersection of

Planning and Learning

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 10 maart 2021 om 15:00

uur

door

Thomas Marinus MOERLAND

Master of Science in Mathematics, Universiteit Leiden, Nederland,
Arts, Universiteit Leiden, Nederland,

geboren te Amsterdam, Nederland.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. C.M. Jonker

promotor: Prof. dr. A. Plaat

copromotor: Dr. ir. J. Broekens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. C.M. Jonker, Technische Universiteit Delft

Prof. dr. A. Plaat, Universiteit Leiden

Dr. ir. J. Broekens, Universiteit Leiden

Onafhankelijke leden:

Prof. dr. R. Babuska, Technische Universiteit Delft

Dr. M.T.J. Spaan, Technische Universiteit Delft

Prof. dr. P. Oudeyer, INRIA, Bordeaux, Frankrijk

Dr. J.B. Hamrick, Deepmind, Londen, Verenigd Koninkrijk

Prof. dr. G.C.H.E. de Croon, Technische Universiteit Delft, reservelid

Keywords: Model-based reinforcement learning, planning, sequen-
tial decision making, Markov Decision Process.

Copyright © 2020 by T.M. Moerland

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


C O N T E N T S

i planning and learning

1 introduction 3

1.1 Planning and Reinforcement Learning 5

1.2 Model-based Reinforcement Learning 9

1.3 Research Questions 10

1.4 Thesis Structure 13

1.5 Notation 16

2 background 17

2.1 Markov Decision Process 18

2.2 Reversible versus irreversible access to the MDP dynam-
ics 19

2.3 Planning 21

2.4 Model-free Reinforcement Learning 24

2.5 Model-based Reinforcement Learning 27

ii conceptual integration of planning and learning

3 frap : a unifying framework for reinforcement

learning and planning 33

3.1 Introduction 33

3.2 Framework for Reinforcement learning and Planning 35

3.3 Conceptual Comparison of Well-known Algorithms 68

3.4 Related Work 69

3.5 Discussion 74

3.6 Conclusion 77

4 model-based reinforcement learning : a survey 79

4.1 Introduction 79

4.2 Categories of model-based reinforcement learning 80

4.3 Dynamics Model Learning 82

4.4 Integration of Planning and Learning 100

4.5 Implicit model-based RL 117

4.6 Benefits of Model-Based Reinforcement Learning 124

4.7 Related Work 141

4.8 Discussion 142

4.9 Summary 144

iii



iv contents

iii experimental integration of planning and learn-
ing

5 stochastic dynamics approximation with condi-
tional variational inference 149

5.1 Introduction 149

5.2 Challenge of Multimodal Transitions 150

5.3 Conditional Variational Inference 152

5.4 Results 158

5.5 Related Work 163

5.6 Future Work 165

5.7 Conclusion 165

5.8 Appendix 166

6 alphazero in continuous action space 169

6.1 Introduction 169

6.2 Preliminaries 170

6.3 Tree Search in Continuous Action Space 173

6.4 Neural Network Training in Continuous Action Space 174

6.5 Experiments 177

6.6 Discussion 179

6.7 Conclusion 180

6.8 Appendix 180

7 think too fast nor too slow : the computational

trade-off between planning and reinforcement

learning 183

7.1 Introduction 183

7.2 Multi-step Approximate Real-Time Dynamic Program-
ming 184

7.3 Methods 186

7.4 Results 189

7.5 Related Work 192

7.6 Discussion 193

7.7 Conclusion 195

8 improved monte carlo tree search through sub-
tree depth estimation 197

8.1 Introduction 197

8.2 Variation in Subtree Size 199

8.3 Loops 203

8.4 Experiments 206

8.5 Related Work 207

8.6 Discussion 208



contents v

8.7 Conclusion 210

iv integration

9 discussion 213

9.1 Answers to Research Questions 213

9.2 Bigger Picture 217

9.3 Computational Demands in AI Research 220

9.4 Relation to Psychology Research 223

9.5 Future Work in Planning and Learning 224

10 conclusion 233

bibliography 235

summary 271

samenvatting 275

acknowledgements 281

curriculum vitae 283

list of publications 285





A B S T R A C T

Intelligent sequential decision making is a key challenge in artificial
intelligence. The problem, commonly formalized as a Markov Deci-
sion Process, is studied in two different research communities: planning
and reinforcement learning. Departing from a fundamentally different
assumption about the type of access to the environment, both research
fields have developed their own solution approaches and conventions.
The combination of both fields, known as model-based reinforcement learn-
ing, has recently shown state-of-the-art results, for example defeating
human experts in classic board games like Chess and Go. Neverthe-
less, literature lacks an integrated view on 1) the similarities between
planning and learning, and 2) the possible combinations of both. This
dissertation aims to fill this gap. The first half of the book presents a
conceptual answer to both questions. We first present a framework that
disentangles the common algorithmic space of both fields, showing that
they essentially make the same decisions. Moreover, we also present an
overview on how to combine planning and learning in one algorithm.
The second half of the dissertation provides experimental illustration
of these ideas. We present several new combinations of planning and
learning, such as a flexible method to learn stochastic dynamics models
with neural networks, an extension of a successful planning-learning
algorithm (AlphaZero) to deal with continuous action spaces, and a
study of the empirical trade-off between planning and learning. Finally,
we also illustrate the commonalities between both fields, by designing
a new algorithm in one field based on inspiration from the other field.
We conclude the thesis with an outlook for the planning-learning field
as a whole. Altogether, the dissertation provides a broad theoretical and
empirical view on the combination of planning and learning, which
promises to be an important frontier in artificial intelligence research in
the coming years.

vii





Part I

P L A N N I N G A N D L E A R N I N G





1I N T R O D U C T I O N

“It’s like this,” Winnie-the-Pooh said.
“When you go after honey with a balloon, the great thing is not to let
the bees know you’re coming. Now, if you have a green balloon, they
might think you were only part of the tree, and not notice you, and if
you have a blue balloon, they might think you were only part of the sky,
and not notice you, and the question is: Which is most likely?”
“Wouldn’t they notice you underneath the balloon?” Christopher Robin
asked.
“They might or they might not,” said Winnie-the-Pooh. “You never can
tell with bees.”

A.A. Milne, Winnie-the-Pooh and Some Bees (1926)

Intelligent sequential decision-making is a key challenge in artificial
intelligence research. While this dissertation will focus on the inte-
gration of two successful approaches to this problem, planning and
reinforcement learning, we will start with an informal illustration of the
problem type. Intelligent sequential decision making is crucial in nearly
every aspect of our daily lives: getting groceries, navigating to your
work, playing sports, etc. The concepts of intelligent sequential decision
making appear so natural to us that we hardly notice them. We will
therefore illustrate the general problem with a small piece of text from
one of the Winnie-the-Pooh stories by A.A. Milne, shown in the epi-
graph above this chapter. It is a story a young child would understand,
and actually enjoy.

In the story, Pooh clearly does not act randomly, but acts to be
rewarded, i.e., he has goals. Some situations in the environment, like
honey, are positively rewarding, while others, like being stung by the
bees, have a negative reward. Importantly, Pooh does not only bother
about instant reward, but rather about cumulative reward: he wants to
achieve as much positive outcomes in the future (honey) while avoiding
negative outcomes (being stung). The cumulative reward that we expect
to achieve in the future is commonly referred to as the value.

Pooh clearly also makes observations about the environment: he has
spotted the honey in the tree, but also observes that he has not got the

3



4 introduction

honey himself yet. Observations define the state of the environment.
Pooh is also able to identify a possible state of the environment, himself
holding the honey, which he would like to reach. Moreover, Pooh
realizes that he can act: he can influence the environment, for example
by taking either a green or a blue balloon. Depending on these actions,
the state of the environment may change.

In order to reach the rewarding honey, Pooh is clearly anticipating
in his mind what may happen. If he takes the green balloon, then the
bees may think he is part of the tree, while a blue balloon may make
him seem part of the sky. Such explicit anticipation of different futures
is better known as planning. Planning can improve our decision, as
it separates out different futures and their possible pay-off. In order
to plan, we need to have a model of the environment. When we take
an action in a certain state, we want to be able to predict the relevant
change in the environment, and the associated reward. Pooh did not
have such a model of honey, bees and balloon types when he was
born: clearly, he has learned this model from previous experience in his
lifetime, i.e., from data.

Pooh also indicates that he is not certain about the outcome of an
action. When he takes the green balloon, he does not know whether
the bees will accept the balloon as a tree, nor whether they will see
him below the balloon. To Pooh, the environment is stochastic: when
he chooses an action, multiple futures may present, according to some
probability distribution. Such stochasticity is present in most real-world
tasks. Also note that Pooh implicitly takes the expectation (average) of
the cumulative reward of the possible futures: he wants to select the
balloon which on average gives the highest chance of honey with the
lowest chance of detection.

Apart from stochasticity, Pooh may have a second reason to be un-
certain. He may not have had enough experience in his life to be able
to accurately predict what will happen. In other words, he may be
uncertain due to a lack of data, better known as statistical uncertainty.
Christopher Robin illustrates this phenomenon, by expecting the bees to
spot Pooh below the balloon. Clearly, Christopher Robin has learned a
different model than Pooh, likely because he has seen more or different
data.

Finally, Pooh has not only learned a model, but also learned action
preferences or action values. For example, he only considers two possible
actions in his plan, while the total number of possible actions should
be much larger. He does not consider to shout, write or dance to obtain
the honey, which he must have learned from previous experience. He



1.1 planning and reinforcement learning 5

clearly directs his plan based on previously learned action preferences.
Thereby, Pooh has been learning in two ways: 1) to learn a model that
predicts how the environment responds to his actions, and 2) to learn
the preference (or value) of actions, based on the total sum of rewards
that each action will obtain in the future.

As mentioned before, we usually do not notice these aspects when
we read the above story. The concepts are probably so natural because
this is what we do all day: attempting to make intelligent sequential
decisions based on a cumulative reward criterion. When we do dig
deeper we quickly identify that Pooh shows signs of both planning
and learning in his behaviour. This dissertation will focus on these two
approaches, their similarities, and the ways to combine both. The next
section will briefly introduce both fields.

1.1 planning and reinforcement learning

The computational study of cumulative reward optimization is com-
monly formalized as a Markov Decision process (MDP) (Puterman, 2014).
Especially the partially observable MDP (POMDP) specification has
great flexibility, and can deal with any decision-making problem in
which we have some sensory observations (states1), can take certain
actions, and desire to maximize some cumulative performance measure
over time (cumulative reward). It is therefore a generic specification for
any type of sequential decision making problem, with applications in,
for example, robotics (Kober, Bagnell, and Peters, 2013), autonomous
driving (Shalev-Shwartz, Shammah, and Shashua, 2016), and game
playing (Silver et al., 2016, 2017c).

Several research fields have studied the MDP optimization problem.
The two dominant approaches are reinforcement learning (RL) (Barto,
Sutton, and Anderson, 1983; Sutton and Barto, 2018), a subfield of

1 The meaning of the term ‘state’ varies between research fields. In robotics and control,
state refers to the most compact representation of the problem. For example, a high-
dimensional image of a robot would be considered an observation, while the state of the
system only consists of the underlying task relevant features. In contrast, in computer
science researchers would typically refer to the entire high-dimensional image as state,
and define the MDP over the entire image space. This distinction does not alter the
underlying problem, but is just a matter of terminology. Throughout this thesis, we
choose to follow the computer science definition of state. Note that this discussion applies
to fully observable problems: in case of partial observability we always need to distinguish
the non-Markovian observations from the underlying Markovian state, although even
in these cases terminology can be sloppy (i.e., researchers define a POMDP problem as
a MDP, but still incorporate methodology to deal with the partial observability in their
algorithm, assuming the reader understands it is really a POMDP).



6 introduction

machine learning, and planning, whose discrete and continuous versions
are studied in symbolic artificial intelligence2 (Moore, 1959; Russell and
Norvig, 2016) and control (Bellman, 1966; Bertsekas, 1995) research,
respectively.

Note that in the broader AI community, the term ‘planning’ is used
for other types of problems as well, like scheduling a group of trucks
for a company (a combinatorial optimization problem, see Korte et al.
(2012)), or planning over logical representations (Saffiotti, Konolige, and
Ruspini, 1995). Though we could reformalize these problems into MDPs,
we will not consider them in this book. When we refer to ‘planning’
throughout the book, we actually refer to MDP planning methods
without any additional (logical) structure on the state space.3

The initial distinction between planning and learning originates from
the way they can access the MDP transition dynamics. In planning, we
have reversible access to the MDP dynamics, which we call a model.

A model is a form of reversible access to the MDP dynamics
(known or learned).

A model allows us to repeatedly move forward from the same state,
or move forward from any arbitrary state in the problem. This bears an
analogy with how humans plan in their mind, repeatedly considering
different action sequences. In contrast, reinforcement learning originally
assumed that our access to the MDP dynamics is irreversible, and ev-
erytime we take an action we have to continue from the state we reach.
This bears an analogy with the real world: whenever we try something,
the effect is permanent. For some tasks, like board games, it is trivial
to obtain a model, while for many real world tasks, like autonomous

2 Machine learning is of course part of artificial intelligence as a whole. But discrete
planning has been traditionally studied in the symbolic artificial intelligence community,
for which Haugeland (1989) introduced the term ‘good old-fashioned AI’ (GOFAI).

3 More precisely, this does include ‘probabilistic planning’ methods, since we do include
stochastic MDP problems. However, we for example exclude specific logical description
languages, like the ‘planning domain definition language’ (PDDL) (Ghallab et al., 1998)
or its probabilistic extension PPDDL (Younes and Littman, 2004). These methods utilize
additional structure on the state space and dynamics model, based on propositional
logic. Although these approaches can plan more efficiently when the problem permits
it, they do require prior knowledge about the logical structure of the state space and
dynamics model. In this thesis, we focus on the generic approach that does not impose
such additional structure. This has also been the main focus in the reinforcement learning
community, although relational/logical representations have also received attention in
this community (Garnelo, Arulkumaran, and Shanahan, 2016; Tadepalli, Givan, and
Driessens, 2004; Van Otterlo, 2005).



1.1 planning and reinforcement learning 7

driving, we do not known the dynamics model in advance and can only
try in the real world.

However, we may also separate planning and reinforcement learning
based on the way they represent the solution. Planning methods use local
solutions, which focus on a particular state or subset of states, and are
discarded after the solution gets executed. In contrast, reinforcement
learning has focused on estimating global solutions for all possible
states. Since under the original assumption (irreversible environment)
RL agents cannot repeatedly simulate forward from the same state, our
best bet is to estimate a global solution.

The two separate definitions of planning and reinforcement learning
(reversible versus irreversible access to the dynamics, and local versus
global solution representation) are unfortunately not consistent with
eachother. For example, AlphaZero (Silver et al., 2018) has reversible
access to the MDP dynamics (which would make it planning), but
also learns global value and policy functions (which would make it
reinforcement learning). We consider AlphaZero to be a model-based
reinforcement learning algorithm (i.e., belong to reinforcement learning),
and therefore chose to let the local versus global distinction dominate.
This leads us to the following definitions of planning and reinforcement
learning.

Planning is a class of MDP algorithms that 1) use a model and 2)
store a local problem solution.

Reinforcement learning is a class of MDP algorithms that store a
global solution.4

Note that the above definitions exclude the combination of irreversible
access to the MDP dynamics (unknown model) and a location solution.
Indeed, this combination does not make sense. The moment we would
start building a local solution (after the first tried action), we cannot get
back anymore, and therefore directly have to discard the local solution.
A thorough introduction of MDPs, planning, reinforcement learning is
provided in Chapter 2.

4 Sutton and Barto (2018) define reinforcement learning as ‘learning what to do - how to
map situations to actions - so as to maximize a numerical reward signal’. This definition
however coincides with the MDP definition, and would not discriminate it from planning.
The definition by Sutton and Barto is mostly intended to separate RL from supervised
learning, in which case the agent would be exactly told what actions to take, instead of
getting the partial information provided by rewards.



8 introduction

Table 1.1: Distinction between planning, reinforcement learning and model-
based reinforcement learning. The cell entries +, - and +/- indicate a
property is present, absent, or not defining, respectively.

Model Local
solution

Global
solution

Planning + + -

Reinforcement learning +/- +/- +

Model-free reinforcement learning - - +

Model-based reinforcement learning + +/- +

learning We have already used the term ‘learning’ a few times,
but it is actually not trivial to define. In psychology literature, learn-
ing can for example refer to non-associative learning (Peeke, 2012),
like habituation and sensitization, or associative learning (Mackintosh,
1983), like classical conditioning (Pavlov and Gantt, 1928), instrumental
conditioning (Skinner, 1937), observational learning (Miller and Dollard,
1941) and imprinting (Hess, 1959). In this thesis, and in the context of se-
quential decision making, we explicitly focus on reward- or goal-based
learning, in line with instrumental conditioning.

As already defined above, in the context of MDP optimization we
consider learning to be ‘the optimization process towards a global solu-
tion’. This definition is mostly inspired by the distinction with planning,
which focuses on local solutions. However, it is also in line with the
ideas on reactive behaviour and (instrumental) conditioning. Learned
skills become reactive (fast), and such reactive behaviour require a
global solution (i.e., we can not reactively respond when we first have
to build a local solution).

In artificial intelligence, learning is mostly studied in the machine
learning community. There, learning is often associated with another
property: generalization. For a function that maps some input (e.g, ob-
servations) to output (e.g., actions), generalization implies that similar
input usually also leads to approximately similar output. Indeed, in
de context of MDPs, generalization is associated with (non-tabular)
reinforcement learning, and often considered as one of its defining char-
acteristics and benefits. Generalization allows us to 1) make predictions
for unobserved/similar states, and 2) store a solution in memory in
approximate form (which is inevitable in larger problems). In contrast,
planning has by convention focused on local, exact solution representa-
tions, which do not generalize.



1.2 model-based reinforcement learning 9

We therefore again encounter two possible definitions, since learning
can be distinguished by 1) a global solution, or 2) a solution that
generalizes.5 Unfortunately, these definitions do not agree in the case of
a tabular/atomic/exact representation. The first definition would allow
learning on tables (they can be global), the second definition would
not (they can not generalize). For example, a classic RL approach like
tabular Q-learning (Watkins and Dayan, 1992) is usually considered
learning (using the global solution definition), but (especially in recent
years) reinforcement learning is often associated with the benefits of
generalization (using the generalization definition), see, e.g., Ponsen,
Taylor, and Tuyls (2009).

The different uses of learning are in practice not a huge problem,
especially since readers understand the intended use in the context
of the paper. Only after writing the research papers in this thesis we
discovered our own inconsistency as well. For example, in Chapter
3 we show that common planning updates can actually be rewritten
as a form of tabular learning updates, which uses the global solution
definition of learning. However, in other chapters we may write that
‘learning adds generalization to planning’. The latter statement should
therefore technically be read as ‘non-tabular learning methods add
generalization to planning’.

1.2 model-based reinforcement learning

Having discussed the differences between planning and learning, we
will now focus on the ways to combine both approaches. The main
class of algorithms that integrates planning and learning is model-based
reinforcement learning (Hester and Stone, 2012b; Sutton, 1990; Sutton and
Barto, 2018), which we define as:

Model-based reinforcement learning is a class of MDP algorithms
that 1) use a model, and 2) store a global problem solution.6

5 One could also define learning as a group of algorithms whose performance improves
with additional data. However, in the case of RL and planning, this would not settle
the definition either. Of course, both RL and planning improve their performance with
additional data. Otherwise, when we only define irreversible samples as data, then we
effectively recover the irreversible versus reversible separation between RL and planning.
Since we already excluded this definition in the previous section, we do not include it
here as a third possible definition of learning.

6 Note that a ‘local solution’, as required for pure planning, is not included in the definition
of model-based RL. The reason is that well-known model-based RL algorithms, like Dyna
(Sutton, 1990), learn a reversible model from data, but then sample single transitions/-



10 introduction

Most of the empirical work in this book deals with the model-based
RL setting. A general scheme for the possible connections in model-
based RL algorithms is shown in Figure 1.1, bottom. We have three
boxes: one for planning, one for model learning, and one for policy or
value learning. The boxes can be connected in various ways, which are
labeled with letters a-g in the figure. The figure caption explains each
of these connections, which we further detail in Chapter 4.

Figure 1.1 also illustrates the difference between the model-based
reinforcement learning and the individual research fields of planning
and model-free reinforcement learning. The top-left of the figure shows
the arrows used by planning, where we plan over a model (arrow a)
and use the results to act in the environment (arrow d). The top-right of
the figure shows model-free RL, where we act in the environment based
on a learned policy or value function (arrow e), and use the acquired
data to update the value or policy approximation (arrow f). This book
focuses on the integration of both fields, shown in the bottom of the
figure. This may in principle use any of the arrows a-g, as we will see
throughout this dissertation.

Model-based RL has shown impressive data efficiency results in
recent years (Deisenroth and Rasmussen, 2011; Levine and Koltun,
2013). Moreover, it recently surpassed human expert performance in
two-player board games like Chess, Go and Shogi (Silver et al., 2018,
2017c), while planning-inspired algorithms were also successful in Atari
2600 (Schrittwieser et al., 2019), another well-known AI testbed. As
such, model-based RL has established itself as an important frontier in
AI research.

1.3 research questions

Although model-based RL has been studied for at least three decades
(Sutton, 1990), and has shown important empirical success (Schrit-
twieser et al., 2019; Silver et al., 2017c), literature lacks a fundamental
study of the relation between and the combination of both fields. We
detail these two deficits below.

traces from this model to directly update the global solution. These methods therefore
never build a local solution (we can not consider such a single sample value estimate a
local solution, since otherwise even model-free RL methods would be planning). Second,
note that ‘planning over a learned model’, without any global solution approximation,
is not considered model-based RL in this definition. We further detail this distinction in
Chapter 4.



1.3 research questions 11

Figure 1.1: Conceptual illustration of the possible interactions between a model,
a planning procedure, and policy/value value learning. Top: Illustra-
tion of the separate research fields of planning (left) and model-free
reinforcement learning (right). Bold lines indicate which connections
are actually used. Bottom: Illustration of planning-learning integra-
tion. All connections (identified with a-g) can be used. Labels: a)
Planning over a model, b) Directing planning based on information
in a learned policy/value function, c) Learning a policy/value func-
tion based on planning output, d) Acting in the real environment
based on the planning output, e) Acting in the real environment
based on a learned policy or value, f) Learning a policy/value based
on real environment data, g) Learning a dynamics model from real
environment data.



12 introduction

First of all, both planning and learning solve exactly the same MDP
optimization problem. However, both research fields largely have their
own research communities, and their methods are usually presented
separately. For example, a classic AI textbook like Russell and Norvig
(2016) devotes multiple chapters to both planning and reinforcement
learning, but treats them as different topics, without discussion of their
commonalities. Sutton and Barto (2018) did cover the relation between
RL and planning, but only focuses on the type of back-up, which is only
one aspect of planning and RL algorithms. This leaves a gap between
both fields, as if they are fundamentally different. Since planning and
RL deal with exactly the same problem, this dissertation hypothesizes
that they actually share the same algorithmic space.

As a second deficit, literature also lacks a structured view on the
way planning and learning can be combined. There is a plethora of
model-based RL papers, which usually focus on a different subproblem
of model-based RL, or introduce a variant of a known model-based RL
approach. However, there is no literature that systematically structures
the ways to combine planning and learning, and identifies which topics
deserve more attention.

In short, planning and learning are two key fields in artificial in-
telligence, but we still lack a systematic bridge between both fields.
This brings us to the following two research questions (each with a
conceptual and empirical subquestion):

1. How are planning and learning related?

• Conceptual: Do planning and learning share a common algo-
rithmic space, and what does it consist of?

• Empirical: How may we design a new algorithm in one field
by taking inspiration from the other field?

2. How can planning and learning be combined?

• Conceptual: How can we conceptually structure the space of
algorithms that combine planning and learning?

• Empirical: How may we design a new algorithm that com-
bines planning and learning?

There appears to be a tension between these two research questions.
The first question hypothesizes that both fields actually do the same
thing, while the second question wants to combine both. The reader
may ask: why would we want to combine two approaches that are
actually the same? We will further detail this issue throughout the



1.4 thesis structure 13

Table 1.2: Thesis structure. We discuss two research quesions, each on a concep-
tual and empirical level. The thesis is structured in two halves: the
first half (Ch. 3-4) provides a conceptual discussion, while the second
half (Ch. 5-8) presents empirical illustration of both questions.

Research question Conceptual
answer

Empirical
answer

How are planning and learning related? Ch. 3 Ch. 8

How can planning and learning be combined? Ch. 4 Ch. 5-7

book, but a short explanation is necessary here. The first question looks
within a planning cycle, and within a reinforcement learning episode,
identifying that their inner algorithmic decisions are essentially the
same. In Figure 1.1, it hypothesizes that the algorithmic choices in the
top-left and top-right graph are actually the same. The second research
question looks over an entire planning cycle, emphasizing how planning
may be integrated in a learning loop. For example, planning over a
learned model may reduce the required number of samples in the real
world, and the local tabular representation of planning may stabilize
the global policy or value approximation of reinforcement learning. In
Figure 1.1, the second research question therefore deals with all the
arrows in the bottom graph, i.e., the possible connections to combine
planning and learning.

1.4 thesis structure

Both research questions have a conceptual and an empirical subquestion.
We therefore decide to split the book in two parts (Table 1.2). The first
half provides a conceptual/ theoretical discussion of both questions,
while the second half provides an empirical study of both. We choose
this structure to keep the conceptual part self contained. In our view,
the most important contribution of the dissertation is the conceptual
part, which systematically structures the planning-learning field, and
integrates their underlying disciplines. The empirical chapters that
follow do have their standalone value: they have been published, and
answer specific research questions in the field. However, in the context
of the whole book, they also serve an illustratory purpose: they provide
examples of novel combinations of planning and learning, and ways in
which the field may be advanced.



14 introduction

It is useful to also put the thesis structure in the context of the
associated PhD project. In this book, the theoretical part comes before
the empirical part. However, in the chronology of the PhD project, we
actually first conducted the empirical research. In some sense, we first
needed to perform the empirical experiments to gain enough insight
into the field to answer the questions on a conceptual level. Therefore,
in a chronological sense, the thesis actually developed from back to
front. We nevertheless invite the reader to still read the book from front
to back, and thereby interpret the empirical chapters as an illustration
to the conceptual part.

chapter structure We will shortly introduce the actual content
of the chapters in this thesis. When applicable, we will also point to the
relevant arrows in Figure 1.1 which the specific chapters discusses.

To keep the book self-contained, we start Chapter 2 by providing
a short general introduction to MDPs, planning, and reinforcement
learning. This serves as a background for readers with less experience
in the field. The conceptual part of the book is covered in Chapters 3

and 4:

• Chapter 3 introduces a Framework for Reinforcement Learning
and Planning (FRAP), which disentangles the common algorith-
mic space of planning and learning into its key underlying dimen-
sions. As such, it illustrates that both fields share exactly the same
methodology, and provides a common language for both fields to
communicate their methods. This answers the conceptual part of
research question 1. In Figure 1.1, it shows that planning (top-left)
and (model-free) RL (top-right) actually deal with exactly the
same algorithmic decisions.

• Chapter 4 provides a conceptual answer on the second research
question. It presents a survey of model-based reinforcement learn-
ing, discussing the various ways to learn a model, the essential
decisions to integrate planning and learning, and its potential
benefits. As such, it provides a conceptual overview of the ways
planning and learning can be combined. It discusses all the arrows
in the bottom graph of Fig. 1.1 (the figure actually originates from
this paper).

The empirical half of this thesis consists of Chapters 5-8. The first
three chapters focus on the second research questions, presenting novel
ways to combine planning and learning. In the last empirical chapter, we



1.4 thesis structure 15

also illustrate how the commonalities between planning and learning
may provide mutual inspiration for new algorithms.

• Chapter 5 presents a novel model learning method, which is
a key preliminary for model-based RL. In particular, we show
how conditional variational inference in neural networks can
be leveraged to flexibly learn transition functions in stochastic
environments. In Fig. 1.1, this method deals with arrow g.

• Chapter 6 presents a new planning-learning integration, where
we extend the successful AlphaZero (Silver et al., 2018) algorithm
to deal with continuous action spaces, like frequently encountered
in robotics tasks. In Fig. 1.1, this deals with a novel form of arrows
a, b, c and d.

• Chapter 7 identifies an important new trade-off in planning-
learning integration: how long should we plan before we act?
This is a relatively little studied topic, but turns out to be of im-
portance for the final performance. We show that an intelligent
agent should neither plan too long nor too short, which can also
be related to work from cognitive psychology on dual process
theory (Evans, 1984; Kahneman, 2011). In Fig. 1.1, this studies the
relative duration of planning (arrow a, b and plan box) versus
acting and learning (arrows d and e).

• Finally, Chapter 8 presents MCTS-T+, an extension of the popular
Monte Carlo Tree Search (MCTS) algorithm. MCTS-T+ uses ideas
from exploration research in RL to improve the standard MCTS
algorithm. As such, it provides an empirical illustration of the first
research question, showing that both fields deal with the same
algorithmic space, and can therefore profit from the solution that
research in the other field has already come up with. In Fig. 1.1,
this designs a new planning method (arrow a and Planning box)
by taking inspiration from model-free RL (arrows e and f).

Altogether, the book provides both a conceptual and empirical study
of the intersection of planning and learning. The key message of this
dissertation is that planning and learning solve the same problem, have
the same underlying algorithmic dimensions, but make some crucially
different assumptions which turn out to be mutually beneficial. A
good illustration of this last point is that optimal performance in a
task appears to require both planning and learning, in a well-balanced



16 introduction

manner (Ch. 7). We will provide a more extensive discussion of our
findings, and its implications for future work, in the Discussion (Ch. 9).

1.5 notation

The chapters in this thesis were first published, or are in submission, as
individual research papers. Therefore, notation can vary between chap-
ters. Notation within a chapter is always consistent, and we therefore
advice the reader to look within the same chapter for the meaning of an
unclear symbol. However, in general the above remarks should not be
much of an issue. We generally follow the notation conventions in the
reinforcement learning, machine learning, and planning literature. We
will shortly mention a few common notation conventions throughout
this dissertation.

We reserve s for state, a for action, r for reward, t for timestep,
T (s′|s, a) for dynamics function, and R(s, a, s′) for reward function.
Policies are denoted by π(a|s), value functions by V(s) and action-
value functions by Q(s, a). Probability distribution are denoted by p(·),
or p(·|·) when conditional. Counts are typically denoted by n. When
we learn a parametrized function, the parameters are usually denoted
by θ or φ. To indicate that a function is parametrized, we use subscripts,
i.e., fθ(x) is a function that takes in data x and has parameters θ.

Good statistical practice writes random variables with capital letters
(X) and their realization with small letters (e.g., a sample xi). RL con-
ventions have always been less strict, and RL researchers usually write
small letters, where the context should tell whether we deal with a ran-
dom variable. For consistency with literature we also stick with these
conventions. The same applies to scalar (x) versus vector (x) versus
matrix (X) notation: we only explicitize these distinctions when they
matter for understanding the proposed method.



2B A C K G R O U N D

abstract

This chapter provides a broad introduction to sequential decision making, and thereby
to the remainder of the content of this dissertation. We first formally define intelligent
sequential decision making in the form of a Markov Decision Process optimization. We
then discuss the key difference between two approaches to this problem (planning and
reinforcement learning), in the form of the type of access we get to the MDP dynamics
function. Then, we provide short introductions of the individual research fields of
planning and (model-free) reinforcement learning, and discuss their combination in the
form of model-based reinforcement learning. Altogether, the chapter provides essential
preliminaries to the remainder of this thesis.

In sequential decision-making, formalized as Markov Decision Pro-
cess optimization, we are interested in the following problem: given
a (sequence of) state(s), what next action is best to choose, based on
the criterion of highest cumulative pay-off in the future. More formally,
we aim for context-dependent action prioritization based on a (discounted)
cumulative reward criterion. This is a core challenge in artificial intelli-
gence research, as it contains the key elements of the world: there is
sensory information about the environment (states), we can influence
that environment through actions, and there is some notion of what is
preferable, now and in the future. The formulation can deal with a wide
variety of well-known problem instances, like path planning, robotic
manipulation, game playing and autonomous driving.

This chapter will first formally introduce the MDP optimization prob-
lem (Sec. 4.2). Then, we shortly discuss the different types of access
to the MDP dynamics, which formed the initial distinction between
planning and learning (Sec. 2.2). Afterwards, we present a broad in-
troduction to the planning (Sec. 2.3), reinforcement learning (Sec. 2.4),
and model-based reinforcement learning (Sec. 2.5) fields. Together, the
chapter provides a broad introduction to the problem type and relevant
research fields.

17



18 background

2.1 markov decision process

The formal definition of a Markov Decision Process (MDP) (Puterman,
2014) is the tuple {S ,A, T ,R, p(s0), γ}. The environment consists of
a transition function T : S × A → p(S) and a reward function R :
S × A × S → R. At each timestep t we observe some state st ∈ S
and pick an action at ∈ A. Then, the environment returns a next state
st+1 ∼ T (·|st, at) and associated scalar reward rt = R(st, at, st+1). The
first state is sampled from the initial state distribution p(s0). Finally,
γ ∈ [0, 1] denotes a discount parameter.

The agent acts in the environment according to a policy π : S → p(A).
In the search community, a policy is also known as a contingency plan
or strategy (Russell and Norvig, 2016). By repeatedly selecting actions
and transitioning to a next state, we can sample a trace through the
environment.

The cumulative return of trace through the environment is denoted by:

Jt =
K

∑
k=0

γk · rt+k, (2.1)

for a trace of length K. For K < ∞ we call this the finite-horizon return,
for K = ∞ it is the infinite-horizon return. In the latter case, we either
continue the episode until we encounter a terminal state, or otherwise
we continue forever. Termination happens in specific states in which,
by the MDP definition, there are no available actions.1

When we assume an infinite-horizon return (K = ∞), we theoretically
require γ < 1 to ensure that the above cumulative reward stays finite.
However, in practice this is often not a big issue. Throughout this thesis,
we assume the infinite-horizon setting, i.e., we will use:

Jt =
∞

∑
k=0

γk · rt+k, (2.2)

Define the action-value function Qπ(s, a) as the expectation of the
cumulative return given a certain policy π:

Qπ(s, a)=̇Eπ,T

[
K

∑
k=0

γkrt+k

∣∣∣st = s, at = a

]
(2.3)

1 We may also define a terminal state as a state in which all actions lead back to the state
itself, and which all have a reward of 0. As such, we can never achieve any additional
reward from the terminal state.



2.2 reversible versus irreversible access to the mdp dynamics 19

This equation can be written in a recursive form, better known as the
Bellman equation:

Qπ(s, a) = Es′∼T (·|s,a)

[
R(s, a, s′) + γ Ea′∼π(·|s′)

[
Qπ(s′, a′)

]]
(2.4)

Our goal is to find a policy π that maximizes our expected return
Qπ(s, a):

π? = arg max
π

Qπ(s, a) = arg max
π

Eπ,T

[
K

∑
k=0

γkrt+k

∣∣∣st = s, at = a

]
(2.5)

There is at least one optimal policy, denoted by π?, which is better or
equal than all other policies π (Sutton and Barto, 2018). In the planning
and search literature, the above problem is typically formulated as a cost
minimization problem (Russell and Norvig, 2016). That formulation is
interchangeable with our presentation by negating the reward function.
The formulation also contains stochastic shortest path problems (Bertsekas
and Tsitsiklis, 1991), which are MDP formulations with absorbing states
at goal states, where we attempt to reach the goal with a little cost as
possible.

2.2 reversible versus irreversible access to the mdp dy-
namics

We already discussed the possible separations between planning and
learning in Sec. 1.1: 1) based on reversible or irreversible access to the
MDP dynamics, and 2) based on the use of a local or global solution. In
this section, we will further clarify the first issue, i.e., what access to the
MDP (dynamics T and reward function R) are we provided with? We
identify three ways in which we can get access to the MDP:

• Reversible analytic environments specify the entire probability dis-
tribution T (s′|s, a). In Figure 2.1 top-left, we see an example with
three possible next states, where the probability of each state is
fully explicitized. Such access allows for exact evaluation of the
Bellman equation.

• Reversible sample environments provide a single sample from s′ ∼
T (·|s, a), but do not give access to the underlying probabilities.



20 background

Figure 2.1: Types of access to the environment dynamics. Columns: On each
trial, we may either get access to the exact transition probabilities of
each possible transition (analytic or descriptive model), or we may
only get a sampled next state (sample or generative model). Rows:
Additionally, we may either be able to revert the model and make
another trial from the same state (reversible), or we may need to
continue from the resulting state (irreversible). Planning algorithms
assume a reversible environment, RL algorithms assume an irre-
versible environment. We could theoretically think of an irreversible
analytic environment, in which we do see the probabilities of each
transition but can only continue from one drawn realization, but we
are unaware of such a model in practice.

In Figure 2.1, top-right, we sampled the same state-action three
times, which gave two times the first and one time the third next
state.

• Irreversible sample environments also provide a sample, but intro-
duce another restriction: we need to keep sampling forward. In
other words, we cannot consider the same state twice directly
after each other. If we want to get back, then we will have to pick
the correct actions to bring us back to the specific state. The key
example of an irreversible sampler is the real-world, in which we
cannot revert time. For many real world problems it is hard to
specify an analytic or reversible sample model, but we can always
get irreversible sample data by interacting with the real world.

These models, based on two underlying distinctions, are summarized
in Figure 2.1. Regarding the terminology, a model from which we can



2.3 planning 21

(only) sample is often referred to as a generative model. However, in su-
pervised learning (where we aim to predict y from x), generative models
are often opposed to discriminative models (Jaakkola and Haussler, 1999).
Discriminative models learn the conditional probability distribution
p(y|x), while generative models learn p(x, y). Since we here want to
make the contrast with ‘analytic’ models, which have full access to the
density, we chose to use the term ‘sample’ model.

Note that there is an ordering in the above access types. We can always
decide to sample from an analytic model, and we can always restrict
ourselves to never revert the environment. Therefore, the reversible
analytic model gives us most information and freedom. On the other
hand, sample models are usually easier to obtain, and irreversible
sampling is of course an important property of the real world, in which
we ultimately want to apply learning.

The initial difference between planning and RL was based on the
above assumption, i.e., RL assumed irreversible access to the MDP
dynamics (‘unknown model’), while planning assumed reversible access
(‘known model’). As we already discussed, this assumption led to a
second distinction, i.e., RL assumes a global solution, while planning
assumes a local solution. From these distinctions, both fields have
developed their own methods and preferences for solving the MDP
optimization problem, which will be covered in the next section.

2.3 planning

Planning (or search) is a large research field within artificial intelligence
(Russell and Norvig, 2016). We defined planning as a class of MDP
algorithms that 1) use a model, and 2) store a local problem solution,
like a value or action recommendation. We shortly list some important
planning approaches. This presentation is by no means exhaustive, but
it does establish some common ground of algorithms we consider in
our framework:

• Dynamic programming (DP) (Bellman, 1966; Howard, 1960): The
key idea of Dynamic programming is to break the optimization
problem into smaller subproblems given by the 1-step optimal
Bellman operator. We then sweep through state-space, repeatedly
solving the small subproblem which eventually solves for the
optimal policy. DP is a bridging technique between both planning
and reinforcement learning. However, the tabular implementation
does not scale well to high-dimensional problems, since the size



22 background

of the required table grows exponentially in the dimensionality
of the state space (‘the curse of dimensionality’). To solve for this
issue, Real-time Dynamic Programming (RTDP) (Barto, Bradtke,
and Singh, 1995) only applies DP updates on traces sampled from
some start state distribution.

• Heuristic search: These search approach built a forward tree from
some start state. Initial research largely focused on uninformed
search strategies, like breadth-first search (BFS) (Moore, 1959)
and Dijkstra’s shortest path algorithm (Dijkstra, 1959). These ap-
proaches track a frontier, which is the set of nodes that have them-
selves been visited, but whose successor states have not all been
visited yet. Later approaches successfully incorporated heuristics,
which are functions that provide an initial optimistic estimate of
the return from a particular state. A well-known heuristic search
algorithm is A? (Hart, Nilsson, and Raphael, 1968). However, for
many problems informative and admissible heuristics are not
trivial to obtain. Extensive introductions to planning methods on
MDPs, including heuristics, are provided by Geffner and Bonet
(2013) and Kolobov (2012).

• Sample-based search: This group of search algorithms estimates
state-action values based on statistical sampling methods. The sim-
plest example is Monte Carlo search (MCS) (Tesauro and Galperin,
1997), where we sample n traces for each currently available action
and use their mean return as an estimate of the value of that ac-
tion. A successful extension of this paradigm is Monte Carlo Tree
Search (Browne et al., 2012; Coulom, 2006; Kocsis and Szepesvári,
2006). While MCS only tracks statistics at the root of the tree,
MCTS recursively applies the same principle at deeper levels
of the tree search. Exploration and exploitation within the tree
are typically based on variants of the upper confidence bounds
(UCB) rule (Kocsis and Szepesvári, 2006). Pure MCTS for example
showed early success in the game of Go (Gelly and Wang, 2006).
MCTS originates in regret minimization (Auer, 2002), which at-
tempts to select the optimal action as often as possible during
the search. In contrast, best-arm identification (BAI) tries to identify
the optimal root action at the end of the search (Kaufmann and
Koolen, 2017), which allows for additional exploration during the
search itself. Finally, in the robotics path planning community
there is another successful branch of sample-based planning al-
gorithms known as rapidly-exploring random trees (RRTs) (LaValle,



2.3 planning 23

1998). While MCTS samples in action space to build the tree, RRTs
sample in state space, which is only feasible if the state-space is
not too large.

• Gradient-based planning: This planning approach is especially
popular in the robotics and control community. If we have a
differentiable dynamics models (either pre-known or learned
from data), then we can directly obtain the derivative of the
cumulative reward objective with respect to the policy parameters
by differentiating through the dynamics function. An especially
popular approach in this category applies when we have a linear
dynamics model and a quadratic reward function. In that case,
we can derive closed-form expressions for the optimal action,
known as the linear-quadratic regulator (LQR) (Anderson and
Moore, 2007; Kalman, 1960). While most practical problems have
non-linear dynamics, this problem can be partly mitigated by
iterative LQR (iLQR) (Todorov and Li, 2005), which repeatedly
makes local linear approximations to the true dynamics. In RL
literature, gradient-based planning is referred to as value gradients
(Fairbank and Alonso, 2012).

• Direct optimization: We may also treat the planning challenge
as a black-box optimization problem. This approach is especially
popular in the robotics and control community, better known as
direct optimal control (Bock and Plitt, 1984). In this approach we
reformulate the objective as a non-linear programming problem, in
which the dynamics typically enter as constraints on the solution.
We then parametrize a trajectory (a local policy), and perform
hill-climbing in this parameter space, for example based on finite-
differencing. In the next section on RL, we will encounter similar
ideas known as policy search.

Another direction of planning research that has been popularized in
the last decade treats planning as probabilistic inference (Botvinick and
Toussaint, 2012; Kappen, Gómez, and Opper, 2012; Toussaint, 2009),
where we use message-passing like algorithms to infer which actions
would lead to receiving a final reward. Note that we do leave out some
planning fields that depart from the generic MDP specification. For
example, classical planning (Ghallab et al., 1998) requires a propositional
logic structure of the state space. Approaches in this field may plan
based on delete relaxations, in which we temporarily ignore attributes
in the state that should be removed, and only focus on solving for the



24 background

ones that should be added. These methods require additional structure
on the state space, and are therefore not considered in this thesis.

In practice, many planning approaches cannot solve for the entire
optimal policy from the start. Therefore, they frequently employ a form
of receding horizon control (Mayne and Michalska, 1990; Thomas, 1975),
also known as model predictive control (Richalet et al., 1978). In those
cases, we plan for the optimal policy up to a certain depth, execute the
optimal action, and then repeat the process from the next state. This
approach moves forward in the domain on preliminary estimates of the
value of each action, but does make execution practically feasible, and
may still lead to good solutions.

2.4 model-free reinforcement learning

Reinforcement learning is a large research field within machine learning.
As discussed in the introduction, we consider the defining assumption
of reinforcement learning the use of global, learned representation of
the solution (like a value or policy function). This section covers model-
free RL, where we have irreversible access to the MDP dynamics, and
directly learn from sampled data from this environment (similar to
directly learning from real world interaction).

The planning literature (introduced above) is mostly organized in
sub-disciplines, where each discipline focuses on its own set of assump-
tions or particular approach. In contrast, the RL community is less
organized in subtopics, but has rather focused on a range of factors
that can be altered in algorithms. This already hints at the possibility
of a framework, which should disentangle such factors. We will here
introduce some important concepts in RL literature:

• Value and policy: While many planning algorithms search for a
local solution (e.g., a single trajectory, or only a solution for the
current state), RL algorithms in principle approximate a solution
for the entire state space. Since RL agents can only try an action
once and then have to continue, we cannot really learn a local
solution, since we do not know when we will be able to return
to the current state. Solutions are usually stored in the form of
a value function (from which the policy is implicitly derived) or
a policy function. Some approaches learn both, where the value
function aids in updating the policy, better known as actor-critic
methods.



2.4 model-free reinforcement learning 25

• On-policy and off-policy bootstrapping: A crucial idea in RL
literature is bootstrapping, where we plug in the learned estimate
of the value of a state to improve the estimate of a state that
precedes it. A key concept is the temporal difference error, which is
the difference between our previous and new estimate of the value
of a state (Sutton, 1988). When bootstrapping state-action values,
there is an important distinction between on-policy learning, we
we estimate the value of the policy that we actually follow, and
off-policy learning, where we create a value estimate of another (
usually greedy) policy. Cardinal examples of the on- and off-policy
cases are SARSA (Rummery and Niranjan, 1994) and Q-learning
(Watkins and Dayan, 1992), respectively.

• Exploration: Exploration is a fundamental theme in nearly all
optimization research, where we typically store a (set of) current
solution(s) and want to explore to a (set of) potentially better
candidate solution(s) around the current solution (set). However,
exploration is extra relevant in reinforcement learning, because
we also need to collect our own data, which makes the process
more brittle.

Many RL exploration methods have focused on injecting some
form of noise into the action space decision. Some methods, like
ε-greedy and Boltzmann exploration, use random perturbation,
while other approaches, like confidence bounds (Kaelbling, 1993)
or Thompson sampling (Thompson, 1933), base exploration de-
cisions on the remaining uncertainty of an action. While these
methods explore in action space, we can also explore in policy
parameter space (Plappert et al., 2017). There are other exploration
approaches based on intrinsic motivation (Chentanez, Barto, and
Singh, 2005), like curiosity (Schmidhuber, 1991a), or by planning
ahead over an uncertain dynamics model (Guez, Silver, and Dayan,
2012).

• Generalization: Since RL tends to store global solutions, it is
typically infeasible to store them in a table for problems with a
higher dimensional state-space (due to the curse of dimensionality,
as already mentioned in the section on Dynamic Programming).
Therefore, the RL literature has largely focused on learning meth-
ods to approximate the solution. Note that such approximation
is a supervised learning task itself, which frequently creates a



26 background

nested supervised learning optimization loop within the outer RL
optimization.

A plethora of function approximation methods has been applied
to RL, including tile coding, (Sutton, 1996), linear approximation
(Bradtke and Barto, 1996), and a recent explosion of (deep) neural
network (Goodfellow, Bengio, and Courville, 2016) applications
to RL (Mnih et al., 2015). Recent surveys of deep RL methods are
provided by François-Lavet et al. (2018) and Arulkumaran et al.
(2017). Learning not only allows a global solution to be stored in
memory (in approximate form), but, equally important, its gener-
alization also provides a fundamental way to share information
between similar states.

• Direct policy optimization: We may also approach MDP opti-
mization as a direct optimization problem in policy parameter
space. An important example are policy gradient methods (Sutton
and Barto, 2018; Sutton et al., 2000; Williams, 1992), which provide
an unbiased estimator of the gradient of the objective with respect
to the policy parameters. We will discuss the policy gradient theo-
rem in much greater detail in Sec. 3.2.7 of our framework. There
has been much research on ways to stabilize policy gradients, for
example based on trust region optimization methods (Schulman
et al., 2015).

Some gradient-free policy search methods only require the ability
to evaluate the objective (the expected cumulative return). Exam-
ple approaches include evolutionary strategies (ES) applied to
the policy parameters (Moriarty, Schultz, and Grefenstette, 1999;
Salimans et al., 2017; Whiteson and Stone, 2006), and the use of the
cross-entropy method (CEM) (Mannor, Rubinstein, and Gat, 2003;
Rubinstein and Kroese, 2013). These approaches treat the MDP
as a true black box function which they only need to evaluate.
Therefore, they use less MDP specific properties, and will also
receive less emphasis in our framework.

There are many specific subtopics in RL research, like partial ob-
servability (Chrisman, 1992), hierarchy (Barto and Mahadevan, 2003),
goal setting and generalization over different goals (Schaul et al., 2015),
transfer between tasks (Taylor and Stone, 2009), inverse reinforcement
learning (Abbeel and Ng, 2004), multi-agent learning (Busoniu, Babuska,
and De Schutter, 2008), etc. While these topics are all important, our
framework (Chapter 3) solely focuses on a single agent in a single



2.5 model-based reinforcement learning 27

Figure 2.2: Model-based versus model-free reinforcement learning. In model-
free RL (blue), we directly use experience (data) acquired from the
environment to improve a value/policy. In model-based RL (green),
we additionally use the sampled data to learn a model, which can
then be used to update the value or policy through planning.

MDP optimization task. However, many of the above topics are com-
plementary to our framework. For example, we may use meta-actions
(hierarchical RL) to define new, more abstract MPDs, in which all of the
principles of our framework are again applicable.

2.5 model-based reinforcement learning

In model-based reinforcement learning (Hester and Stone, 2012b; Moer-
land, Broekens, and Jonker, 2020b; Sutton, 1990), the two research fields
of planning and reinforcement learning merge. The original idea of
model-based RL was to start from an irreversible environment, and then:
i) use sampled data to learn a dynamics model, and ii) use the learned
model to improve a learned value or policy. This idea is illustrated in
Figure 2.2.

However, more recently we have also seen a surge of techniques
that start from a reversible model, but also use learning techniques for
the value or policy. An example is AlphaGo Zero (Silver et al., 2017c).
Since most researchers also consider this model-based RL, we defined
model-based RL as: ‘any MDP algorithm that 1) uses a model, and 2)
stores a global, learned solution, like a value or policy function.’

There are two important steps in model-based RL. When our access
to the ground-truth MDP is irreversible, we will first have to learn the
model from sampled data. This is similar to the supervised learning
setting, except for the challenge that we influence the data we actually



28 background

observe. Since our survey (Ch. 4) extensively discusses this topic, we
will not further discuss this topic here. The second important step
of model-based RL involves usage of the learned reversible model to
improve a value or policy. We will list a few successful approaches to
integrate planning in global function approximation:

• Sampling additional data: The classic idea of model-based RL
was to use the model to sample additional data, which can then
be used for standard model-free updates. This idea was first
introduced in the well-known Dyna algorithm (Sutton, 1990).

• Multi-step approximate dynamic programming: More complex
integrations use a form a multi-step approximate dynamic pro-
gramming (Efroni et al., 2018, 2019). In this approach, we use the
reversible model to make a multi-step planning back-up, which is
then used to update a value or policy approximation at the root of
the search. This approach has received much recent attention, for
example in AlphaGo Zero (Silver et al., 2017c) and Guided Policy
Search (Levine and Koltun, 2013).

• Backward trials: While most models have a forward view (which
next states may result from a particular state-action pair), we
can also learn a backward model (given a particular state, which
state-action pairs could bring us there). A backward model allows
us to spread new information more quickly over state-space, by
identifying all the possible precursors of a changed state-action
value estimate. This idea is better known as prioritized sweeping
(PS) (Moore and Atkeson, 1993).

• Value gradients: When the function class of our learned dynam-
ics model is differentiable, then we can apply gradient-based
planning (already introduced in Sec. 2.3). In the RL literature,
this approach is known as value gradients (Fairbank and Alonso,
2012). A successful example is PILCO (Deisenroth and Rasmussen,
2011), which learns a Gaussian Process (GP) transition model, and
combines this with gradient-based planning to achieve good data
efficiency in real-world robotics tasks.

We present a much more extensive discussion of the ways to integrate
planning and learning in the survey in Chapter 4. For example, the
survey also discusses implicit approaches to model-based RL, like
MuZero (Schrittwieser et al., 2019), Value Iteration Networks (VIN)
(Tamar et al., 2016) and TreeQN (Farquhar et al., 2018). As we will see,



2.5 model-based reinforcement learning 29

these methods actually blur the line between model-free and model-
based RL.

This concludes our short introduction of the MDP optimization prob-
lem, and the three solution approaches of planning, model-free RL, and
model-based RL. For further details on the MDP optimization problem,
we refer the reader to Puterman (2014). Further details on model-free
and model-based reinforcement learning can be found in Sutton and
Barto (2018), while an extensive discussion of planning methods is
provided by Russell and Norvig (2016). In the next chapter, we will
present a framework to disentangle the common factors underneath
these methods.





Part II

C O N C E P T UA L I N T E G R AT I O N O F
P L A N N I N G A N D L E A R N I N G





3F R A P : A U N I F Y I N G F R A M E W O R K F O R
R E I N F O R C E M E N T L E A R N I N G A N D P L A N N I N G 1

abstract

Sequential decision making, commonly formalized as Markov Decision Process
optimization, is a key challenge in artificial intelligence. Two successful approaches to
MDP optimization are planning and reinforcement learning. Both research fields
largely have their own research communities. However, if both research fields solve the
same problem, then we should be able to disentangle the common factors in their
solution approaches. Therefore, this chapter presents a unifying framework for
reinforcement learning and planning (FRAP), which identifies the underlying
dimensions on which any planning or learning algorithm has to decide. At the end of
the chapter, we compare - in a single table - a variety of well-known planning,
model-free and model-based RL algorithms along the dimensions of our framework,
illustrating the validity of the framework. Altogether, FRAP provides deeper insight
into the algorithmic space of planning and reinforcement learning, and also suggests
new approaches to integration of both fields.

3.1 introduction

Sequential decision making is a key challenge in artificial intelligence
research. The problem, commonly formalized as a Markov Decision
Process (MDP) (Puterman, 2014), has been studied in different research
fields. The two prime research directions are reinforcement learning (Sut-
ton and Barto, 2018), a subfield of machine learning, and planning
(also known as search), of which the discrete and continuous variants
have been studied in the fields of artificial intelligence (Russell and
Norvig, 2016) and control (Bertsekas, 1995), respectively. Planning and
learning approaches differ with respect to a key assumption: is the
dynamics model of the environment known (planning) or unknown
(reinforcement learning).

Departing from this distinctive assumption, both research fields have
largely developed their own methodology, in relatively separated com-

1 Chapter based on: Moerland TM, Broekens J, Jonker CM. A Framework for Reinforcement
Learning and Planning. In submission.

33



34 frap : a unifying framework for reinforcement learning and planning

munities. There has been cross-breeding as well, better known as ‘model-
based reinforcement learning’ (surveyed in Chapter 4). However, a
unifying view on both fields, including how their approaches overlap
or differ, currently lacks in literature (see Section 3.4 for an extensive
discussion of related work).

Therefore, this chapter introduces the Framework for Reinforcement
learning and Planning (FRAP), which identifies the essential algorithmic
decisions that any planning or RL algorithm has to make. We idenfity
six main questions: 1) where to put our computational effort, 2) where
to make our next trial, 3) how to estimate the cumulative return, 4)
how to back-up, 5) how to represent the solution and 6) how to update
the solution. As we will see, several of these questions have multiple
subquestions. However, the crucial message of this chapter is that any
RL or planning algorithm, from Q-learning (Watkins and Dayan, 1992)
to A? (Hart, Nilsson, and Raphael, 1968), will have to make a decision
on each of these dimensions. We illustrate this point at the end of the
chapter, by formally comparing a variety of planning and RL papers on
the dimensions of our framework.

The framework first of all provides a common language to catego-
rize algorithms in both fields. Too often, we see researchers mention
‘they use a policy gradient algorithm’, while this only specifies the
choice on one of the dimensions of our framework and leaves many
other algorithmic choices unspecified. Second, the framework identi-
fies new research directions, for example by taking inspiration from
solutions in the other research field, or by identifying novel combina-
tions of approaches that are still left untried. Finally, it can also serve
an educational purpose, both for researchers and students, to get a
more systematic understanding of the common factors in sequential
decision-making problems.

Essential preliminaries on planning and reinforcement learning were
already provided in the previous chapter. We will next introduce the
framework (Section 3.2). Afterwards, we will compare various well-
known planning and reinforcement learning algorithms along the di-
mensions of our framework (in Table 3.3), thereby illustrating the gen-
erality of FRAP. We conclude the chapter with Related Work (Sec. 3.4),
Discussion (Sec. 3.5) and Summary (Sec. 3.6) sections.



3.2 framework for reinforcement learning and planning 35

3.2 framework for reinforcement learning and plan-
ning

We now introduce the Framework for Reinforcement Learning and
Planning (FRAP). One of the key messages of this chapter is that both
planning and reinforcement learning make the exact same algorith-
mic choices to solve the MDP problem. For example, a MCTS search
of 500 traces is conceptually not too different from 500 episodes of a
model-free Q-learning agent in the same environment. In both cases,
we repeatedly move forward in the environment to acquire new infor-
mation, make back-ups to store this information, with the goal to make
better informed decisions in the next trace/episode. The model-free RL
agent is restricted in the order in which it can visit states, but otherwise,
the methodology of exploration, back-ups, representation and updates
is largely the same (which we will show later in this chapter).

We will center our framework around the concept of trials and back-
ups. We will first introduce these in Section 3.2.1. Afterwards, we will
introduce the dimensions of our framework:

• Where to put our computational effort? (Sec. 3.2.2)

• Where to make the next trial? (3.2.3)

• How to estimate the cumulative return? (3.2.4)

• How to back-up? (3.2.5)

• How to represent the solution? (3.2.6)

• How to update the solution? (3.2.7)

Table 3.1 is crucial, since it summarizes our entire framework, and
can be used as a reference point throughout the sections.

3.2.1 Trials and back-ups

We will first conceptually define a trial and a back-up:

1. Trial: A trial consists of a single call to the environment.2 We
have to specify a certain state action pair (s, a), and the environ-
ment gives us either a sample from, or the entire distributions of,

2 Note that especially in the early RL literature,‘trial’ has also been used to refer to an
entire episode. Here, we specifically use trial to refer to a single call to the environment,
i.e., the MDP dynamics and reward function.



36 frap : a unifying framework for reinforcement learning and planning

Table 3.1: Overview of dimensions in the Framework for Reinforcement learning
and Planning (FRAP). The right column shows possible choices on
each dimension and subconsideration. IM = Intrinsic Motivation.

Dimension Consideration Choices

1. Comp. effort (3.2.2) - State set All↔ reachable↔ relevant

2. Trial selection
(3.2.3)

- Candidate set Step-wise↔ frontier

- Exploration Random↔ Value-based↔ State-based
- For value: mean value, uncertainty,

priors
- For state: ordered, priors (shaping),

novelty,
knowledge IM, competence IM

- Phases One-phase↔ two-phase

- Reverse trials Yes↔ No

3. Return estim.
(3.2.4)

- Sample depth 1↔ n ↔ ∞

- Bootstrap func. Learned↔ heuristic↔ none

4. Back-up (3.2.5) - Back-up policy On-policy↔ off-policy

- Policy expec. Expected↔ sample

- Dynamics expec. Expected↔ sample

5. Representation
(3.2.6)

- Function type Value↔ policy↔ both (actor-critic)
- For all: generalized ↔ not general-

ized

- Function class Tabular↔ function approximation
- For tabular: local↔ global

6. Update (3.2.7) - Loss Squared, etc. (for value)↔ (det.) policy
gradient, value gradient, cross-entropy,
etc. (for policy)

- Update Gradient-based↔ gradient-free
- For gradient-based, special cases: re-

place & average update



3.2 framework for reinforcement learning and planning 37

Figure 3.1: Trials and back-ups. Left: Grey nodes visualize a search tree, consist-
ing of all the state-action pairs evaluated in the domain so far. In red
we visualize the next trial, which picks a state-action pair an queries
the environment for either a sample from, or the entire distributions
of, T and R. The green dotted arrows visualize a back-up, in which
the newly acquired information is used to update our value esti-
mates of the state(s) above it. Right: Key procedure in FRAP consists
of iterated trials and back-ups.

T (s′|s, a) and R(s, a, s′) (depending on what access we have to
the environment, see Figure 2.1). In Figure 3.1 this is visualized in
red.

2. Back-up: The second elementary operation is the 1-step back-up,
which uses the information on the state-action pairs below it (for
example obtained from the last trial) to update the information
of the state-action pairs above it. In Figure 3.1 this is visualized
in green. The back-up can involve any type of information, but
frequently involves estimates of state-action values.

The central idea of nearly all MDP optimization algorithms is that the
information in the back-up allows us to better choose the location of the
next trial. Therefore, most algorithms iterate both procedures. However,
we are not forced to alternate a trial and a back-up (Figure 3.1, right).
We may for example first make a series of trials (‘a roll-out’) to go deep
into the domain, and then make a series of back-ups to propagate the
information all the way up to the root node.



38 frap : a unifying framework for reinforcement learning and planning

Figure 3.2: Four sets of states. The reachable state set, a subset of the entire state
space, consist of states that are reachable from any start state under
any policy. A subset of the reachable states are the relevant states,
which are reachable from any start state under the optimal policy.
The start states are by definition a subset of the relevant states.

3.2.2 Where to put our computational effort?

To make the MDP optimization tractable, the first question that any
algorithm implicitly asks is: are there states that we can completely
ignore? Fundamentally, we can identify four sets of states, as graphically
illustrated in Figure 3.2:

1. All states: i.e., S .

2. Reachable states: all states reachable from any start state under
any policy.

3. Relevant states: all states reachable from any start state under the
optimal policy3.

4. Start states: all states with non-zero probability under p(s0).

Some algorithms find a solution for all states, the most noteworthy
example being Dynamic Programming (DP). Such approaches tend to
break down in larger problems, as the number of unique states grows
exponentially in the dimensionality of the state space. As an illustration,
imagine we apply DP to video game playing, where the input is a low-
resolution 200x200 pixel greyscale image, with each pixel taking values

3 Intuitively, one may prefer to include a solution for states close to the optimal solution.
However, conceptually, when we truly obtain the optimal solution, the only relevant
states (in a stationary MDP) are those reachable under the optimal policy.



3.2 framework for reinforcement learning and planning 39

between 0 and 255. Then the state space consists of 256(200·200) unique
states, a quantity without any meaningful interpretation. However,
this state space contains all possible screen configurations, including
enormous amounts of noise images that will never occur in the game.

Therefore, nearly all planning and RL methods start updating states
from some start state, thereby only considering states that they can
actually reach. Without additional information, this is the only practical
way to identify reachable states. However, the reachable state set still
tends to be large, and ultimately we are only really interested in the
policy in those states that we will encounter under the optimal policy
(the relevant states). As the optimal policy is not known in advance,
nearly all algorithms beside Dynamic Programming start from the
reachable set, and try to gradually narrow this down to the relevant
state set. We will discuss approaches to gradually focus on the relevant
set in the next section (on exploration).

Some specifications do provide additional information, for example
in the form of explicit goal states. This frequently happens in path-
planning problems, where we for example want to navigate to a certain
destination. This is a form of prior knowledge on the form of the reward
function, which peaks at the goal. In such cases, we can also include
backwards planning from the goal state, which identifies the reachable
state set from two directions. This principle was first introduced as
bidirectional search (Pohl, 1969), and for example also part of some RRT
approaches (LaValle, 1998).

3.2.3 Where to make the next trial?

A trial is the fundamental way to obtain new information about the
environment. The crucial question then becomes: at which state-action
pair should we make our next trial? Note that in RL (where we have an
irreversible environment), the state-action pairs that we can access is
usually restricted, but over a sequence of actions the same principles
apply (i.e., where do we want to go to make more trials). There are
two considerations we need to make for trial selection. First, we need
to decide on a candidate set of state-action pairs that will be considered
for the next trial (Sec. 3.2.3.1). Then, we need to actually decide which
candidate from the set to select, which needs to incorporate some
amount of exploration (Sec. 3.2.3.2). At the end of the section, we also
briefly touch upon two additional generic concepts in trial selection
(phases and reverse trials, in Sec. 3.2.3.3 and 3.2.3.4, respectively).



40 frap : a unifying framework for reinforcement learning and planning

3.2.3.1 Candidate set selection

The first step is to determine the set of state-action pairs that are
candidates for the next trial (in the current iteration). There are two
main approaches:

• Step-wise: The most frequent approach is to explore step-wise on
traces from some start state. At each step in the trace, the candidate
set consists of all available actions in the current state. After
finishing a sequence of step-wise candidate sets, we typically reset
to a start state, and repeat the same procedure. This is the standard
approach for most RL approaches (Sutton and Barto, 2018) and
also for many planning algorithms, such as MCTS (Browne et al.,
2012). Note that methods that explore by perturbation in (policy)
parameter space (Plappert et al., 2017) can be seen as a special
form of step-wise perturbation, where the perturbation for all
steps is already fixed at the beginning of the episode.

• Frontier: The second type of candidate set is a frontier, illustrated
in Figure 3.3. A frontier (or open list) (Dijkstra, 1959) consists of
the set of states at the border of the explored region, i.e. those
states who have themselves been visited, but whose child states
have not all been visited yet. In a search tree, the frontier consists
of all leaf nodes, with duplicate states removed (only keeping the
occurrence with the lowest cost to reach). The cardinal value-based
frontier exploration algorithm is the heuristic search algorithm A?

(Hart, Nilsson, and Raphael, 1968).

The key difference between step-wise and frontier candidate sets is
the moment at which they start exploration (next section). Step-wise
methods have a new candidate set at every step in the trace. In contrast,
frontier methods only have a single candidate set per episode, fixing a
new target at the horizon, and only starting exploration once they are
on the frontier.

There a pros and cons for both step-wise and frontier-based candidate
sets. A benefit of frontier exploration is that it will by definition explore
a new node. By storing the edges of the region you have already visited,
you are guaranteed to make a step into new territory. In contrast, step-
wise exploration has a risk to repeatedly trial around in an already
explored region of state space. This is especially pronounced in tasks
with bottleneck states (a narrow passage which brings the agent to
another region of the problem). As Ecoffet et al. (2019) mention, step-
wise exploration methods already apply exploration pressure while



3.2 framework for reinforcement learning and planning 41

Figure 3.3: Illustration of the frontier. Green-shaded nodes have been completely
visited, in a sense that either all their children have been visited, or
they are terminal. Orange nodes are part the the search tree, but
have unvisited child nodes left. Together the orange nodes constitute
the frontier (black line), from which we want to continue exploring.
White nodes are still unexplored.

getting back to the frontier, while we actually want to get back to a new
region first, and only then explore. In the long run, (random) step-wise
exploration methods will of course also hit the frontier, but this may
take a long time of wandering around in known territory.

Frontier candidate sets also have their challenges. First, frontier explo-
ration assumes that we can always get back to a particular frontier node,
which is not guaranteed in stochastic domains (although we may also
opt to approximately reach the same node (Péré et al., 2018). Moreover,
in larger problems, the frontier may become very large, let alone all the
paths towards it. In those cases, we can no longer store the frontier as a
list, or the paths towards it as a tree. We then need to use representation
learning for storing both the frontier (Ecoffet et al., 2019) and the paths
towards it (Péré et al., 2018), which may generate instability, and make
it hard to actually reach the frontier. Step-wise exploration methods do
not have to deal with these issues.

3.2.3.2 Exploration

Once we have defined the candidate set, we need to decide which state-
action pair in the set we will select for the next trail. The exploitation



42 frap : a unifying framework for reinforcement learning and planning

decision is to greedily select the action with the highest value estimate.
However, as discussed before, this will lead to suboptimal performance.
We need to add exploration pressure to the greedy policy. We identify
three main ways to achieve this: i) random perturbation, ii) value-based
perturbation, and iii) state-based perturbation.

• Random exploration: In this category we simply inject random
exploration noise to the greedy policy. The classic example is
ε-greedy exploration (Sutton and Barto, 2018), which (in a step-
wise candidate set) with small probability randomly selects one
of the other actions, independently of its current value estimate
or any other characteristics. In continuous action space the noise
can for example be Gaussian. We may also inject the noise in
(policy) parameter space (Plappert et al., 2017), which may help
to correlate it over timesteps.

A benefit of random exploration approaches is that they can guar-
antee to retain positive exploration pressure throughout learning,
and may therefore escape a local optimum when given (a lot of)
time. However, they have serious drawbacks as well. Random
exploration is undirected, which may lead to jittering behaviour,
where we undo an exploratory step in the next step (Osband et al.,
2016). Moreover, there is no good measure of progress (when
should exploration stop), and these methods therefore typically
require tedious hyperparameter tuning.

• Value-based exploration: A second approach is to use value-
based information to better direct the perturbation. There are
several approaches:

– Mean action values: We may potentially improve over ran-
dom exploration by incorporating the mean estimates of all
the available actions. The general idea is that actions with
a higher value estimate also deserve more exploration pres-
sure. In discrete action space, the cardinal example of this
approach is Boltzmann exploration (Sutton and Barto, 2018):

π(a|s) = exp(Q(s, a)/τ)

∑b∈A exp(Q(s, b)/τ)
, (3.1)

where τ ∈ R denotes a temperature parameter that scales
exploration pressure.



3.2 framework for reinforcement learning and planning 43

For continuous action spaces, we may achieve a similar effect
through entropy regularization (Mnih et al., 2016; Peters,
Mulling, and Altun, 2010). These methods usually optimize
an adjusted reward function of the form:

r(st, at, st+1) + α · H(π(·|st)), (3.2)

where H(·) denotes the entropy of a distribution, and α ∈ R

is a hyperparameter that scales exploration pressure. The en-
tropy term prevents the policy from converging to a narrow
distribution, unless a narrow policy distribution can achieve
large gains in expected cumulative return. Thereby, it ap-
plies a similar principle as Boltzmann exploration, gradually
weighting exploration based on the returns of competing
actions.

Compared to random perturbation, the benefit of this ap-
proach is that it gradually starts to prefer actions with better
returns. On the downside, it does not track any measure of
progress (or remaining uncertainty), and therefore cannot
assess whether learning has converged, or whether we need
additional information. It also depends on the relative scale
of the rewards, and can therefore involve tedious tuning of
hyperparameters.

– Action value uncertainty: A popular approach to exploration
uses the remaining uncertainty in the value estimates of the
available actions. With high uncertainty around our estimate
there is still reason to explore, while reducing uncertainty
should gradually shift our policy towards exploitation. A
popular uncertainty-based approach are upper confidence
bound (UCB) methods (Auer, 2002; Kaelbling, 1993; Kocsis
and Szepesvári, 2006; Silver et al., 2017c), which for example
explore like:

π(a|s) = Q(s, a) + c ·

√
ln(n(s))
n(s, a)

, (3.3)

where n(·) denotes the number of visits to a state or state-
action pair, and c ∈ R is a hyperparameter that scales explo-
ration. A popular Bayesian approach to select actions under



44 frap : a unifying framework for reinforcement learning and planning

uncertainty is Thompson sampling (Thompson, 1933). Again,
we may want to correlate noise over timesteps, for example
by sampling from the value function posterior once at the
beginning of a new episode (Osband et al., 2016).

We also consider pruning an uncertainty-based method. In
certain scenarios, we can completely eliminate an action from
the candidate set because we are absolutely certain that it can
never outperform an already visited action. This is a form
of ‘hard uncertainty’. It for example occurs in two-player
games with a minimax (Edwards and Hart, 1961; Knuth and
Moore, 1975) structure. Indeed, the soft pruning techniques
developed in the search community in the early ’80 (Berliner,
1981) can be regarded as early confidence bound methods.

Finally, note that due to the sequential nature of the MDP
problem, value uncertainty in a MDP is more complicated
than in the bandit setting. In particular, the remaining un-
certainty is not only a function of the number of trials at
a state-action pair, but also depends on the remaining un-
certainty in the value estimates of the state-action pairs that
follow it. See Dearden, Friedman, and Russell (1998), Moer-
land, Broekens, and Jonker (2017a, 2018b), and Osband et al.
(2016) for a further discussion of this topic.

– Priors: In some cases we may have access to specific prior
information about the value function, which then implicitly
encodes exploration pressure. The prime example is an ad-
missible heuristic. An admissible heuristic provides for every
state an optimistic estimate of the cumulative return under
the optimal policy. The closer the heuristic is to the true
action value, the more prior information about exploration
potential we get.

The classic example of a good admissible heuristic is the
Euclidean distance to the goal in a path planning task, which
can for example be used in A? (Hart, Nilsson, and Raphael,
1968). An admissible heuristic actually provides informative
exploration information, as it directly gives an estimate of
the remaining value of a node, which may therefore become
promising for exploration (or not). However, in most prob-
lems an admissible heuristic in not easy to obtain. See for
example Kolobov (2012) for a more extensive discussion of
planning on MDPs and possible heuristics.



3.2 framework for reinforcement learning and planning 45

• State-based exploration: The third main approach to exploration
uses state-dependent properties to inject exploration noise, i.e.,
independently of the value of a particular state action. We again
list the most important approaches:

– Ordered: First of all, we may simply give every state-action
a finite probability of selection. This is better known as a
sweep. In Dynamic Programming (Bellman, 1966) the sweep
is ordered based on the state-space structure, while in exhaus-
tive search (Russell and Norvig, 2016) the sweep is ordered
based on a tree structure. Note that a DP sweep is fully
exploratory, since it visits every state-action pair in a fixed
order, independently of greedy policies.

We also consider random starts to be part of this category.
Random starts, where our agents starts each new trial at
a random state, is part of several classic RL convergence
proofs (Barto, Bradtke, and Singh, 1995; Watkins and Dayan,
1992). It ensures that we visit every state eventually infinitely
often. Although randomized, it is conceptually close to the
DP sweeps, since it ensures that we visit every state-action
infinitely often in the limit. We therefore consider it a state-
based exploration method, with random ordering.

– Priors: The state-based variant of prior information is better
known as shaping. The best known example are shaping re-
wards (Ng, Harada, and Russell, 1999), which are additional
rewards placed at states that are likely part of the optimal
policy. Recent examples that include this approach are Al-
phaStar (Vinyals et al., 2019) and For The Win (Jaderberg
et al., 2019), who use intermediate game scores as shaping
rewards, and optimize the relative weight of each shaping
reward in a meta-optimization loop.

Another form of state-dependent priors that guide explo-
ration are expert demonstrations, which help to initialize to a
good policy. This approach was for example used in the first
version of AlphaGo (Silver et al., 2016). While these examples
use completely task-specific shaping, we can also find more
generic shaping priors. For example, objects are generally
salient in a task, and children are indeed able to discriminate
objects in early infancy. Kulkarni et al. (2016) equip the RL
agent with a pre-trained object recognizer, and subsequently



46 frap : a unifying framework for reinforcement learning and planning

places shaping rewards at all detected objects in the scene,
which is a more generic form of reward shaping.

– Novelty: As discussed before, uncertainty and novelty can
be important primitives for exploration. While value-based
uncertainty methods use the uncertainty around a value,
there are also approaches that use the novelty of the state
itself, independently of its value. An example is optimistic
value initialization (Sutton and Barto, 2018), where we initial-
ize every state-action estimate to a value higher than the
maximum achievable return, which ensures that we initially
prefer unvisited actions.

A more formal approach to novelty is the Probably Approxi-
mately Correct in MDP (PAC-MDP) framework (Kakade et al.,
2003). These approaches provide sample complexity guaran-
tees for a RL algorithm, usually based on notions of novelty,
ensuring that every reachable state-action pair gets visited
enough times. A well-known example is R-max (Brafman
and Tennenholtz, 2002), which assumes that every transition
in the MDP has maximum reward until it has been visited
at least n times. Note that such approaches are generally
not computationally feasible in large, high-dimensional state
spaces.

– Knowledge-based intrinsic motivation: A large group of state-
based exploration approaches is knowledge-based intrinsic
motivation (Chentanez, Barto, and Singh, 2005; Oudeyer,
Kaplan, and Hafner, 2007). Novelty, as discussed above, is
also part of this group, but knowledge-based IM contains a
broader set of concepts. The general idea is to provide re-
wards for events that are intrinsically motivating to humans.
Examples include curiosity, novelty, surprise, information
gain, reduced model prediction error, etc. These are state
dependent properties, independent of the external reward
function. For example, depending on the interaction history
of an agent, a certain transition can be surprising or not,
the model prediction can be correct or completely off, etc.
Knowledge-based IM approaches then provide an intrinsic
reward for such events, based on the idea that good explo-
ration requires us to decrease novelty, surprise and prediction
error over the entire state-space. There is a plethora of dif-
ferent intrinsic motivation approaches (Achiam and Sastry,



3.2 framework for reinforcement learning and planning 47

2017; Bellemare et al., 2016; Dilokthanakul et al., 2019; Hester
and Stone, 2012a; Houthooft et al., 2016; Lopes et al., 2012;
Mohamed and Rezende, 2015; Pathak et al., 2017; Stadie,
Levine, and Abbeel, 2015; Sun, Gomez, and Schmidhuber,
2011; Sutton, 1990)

– Competence-based intrinsic motivation: In RL, frontier-based ex-
ploration has been popularized under the name of competence-
based intrinsic motivation (Oudeyer, Kaplan, and Hafner,
2007; Péré et al., 2018). Competence-based IM approaches try
to explore by setting their own new goals at the border of
their current abilities (i.e., their frontier). This approach typi-
cally involves three steps. The first step (goal space learning,
for example based on variational auto encoders (Laversanne-
Finot, Pere, and Oudeyer, 2018; Péré et al., 2018)) and third
step (planning towards the sampled goal) are less relevant
from an exploration perspective. The second step involves
the exploration decision. We may for example select a new
goal based on learning progress (Baranes and Oudeyer, 2013;
Matiisen et al., 2017), selecting the goal which has shown the
largest recent change in our ability to reach it. Otherwise, we
can also train a generative model on the state that were of
intermediate difficulty to reach, and sample a next goal from
this model (Florensa et al., 2018). In any case, the prioritiza-
tion is dependent on which states we managed to reach so
far, and is therefore a form of state-based prioritization.

Note that the above groups are not mutually exclusive. For example,
Ecoffet et al. (2019) introduces two methods to prioritize a frontier,
one that estimates the amount of progress in the overall task (a value-
based prior), and one that uses the visitation frequency of the state (a
state-based novelty approach). In summary, we discussed two types of
candidate sets (step-wise and frontier) and three approaches to explo-
ration (random, value-based, state-based). Table 3.2 summarizes our
discussion, by displaying common approaches on each of the possible
combinations.

3.2.3.3 One versus two phase exploration

The straightforward implementation of the above ideas is to select
one method and repeatedly apply it. This is what we call ‘one phase
exploration’, where every step of trial selection uses the same method.



48 frap : a unifying framework for reinforcement learning and planning

Table 3.2: Schematic overview of common trial selection methods. The columns
display the candidate set selection method (Sec. 3.2.3.1), the rows
display the way to inject exploration pressure to the greedy policy
(Sec. 3.2.3.2). Each cell shows some illustrative example papers. IM =
Intrinsic Motivation. PAC-MDP = Probably Approximately Correct in
Markov Decision Process (Kakade et al., 2003).

Step-wise Frontier

Random - Random perturbation, e.g., ε-greedy
(Mnih et al., 2015)
Gaussian noise

- Random sampling on frontier

Value-based - Mean value: e.g., Boltzmann (Mnih
et al., 2015), entropy regularization
(Peters, Mulling, and Altun, 2010)
- Uncertainty: e.g., confidence bounds
(Kaelbling, 1993), posterior sampling
(Thompson, 1933)

- Priors, e.g. A? (Hart, Nils-
son, and Raphael, 1968)

State-based - Ordered: e.g., DP (Bellman, 1966)
- Priors: e.g., reward shaping (Ng,
Harada, and Russell, 1999)
- Novelty: e.g., optim.init. (Sutton and
Barto, 2018), PAC-MDP (Brafman
and Tennenholtz, 2002)
- Knowledge-based IM, e.g., (Achiam
and Sastry, 2017)

- Competence-based IM, e.g.
(Péré et al., 2018)

However, some approaches extend this idea to two distinct phases. It is
inspired by the way humans plan and act in the real world, where we
typically first plan in our head, and then decide on an action in the real
world. The two phases therefore are:

1. Plan: repeatedly plan ahead from the same state, which is the root
of the plan.

2. Real step: decide on an action at the root, move forward to the next
state, and repeat planning with the resulting state as the new root.

In the planning literature, this scheme is often referred to as receding
horizon control (Mayne and Michalska, 1990), or model predictive control
(Morari and Lee, 1999). However, in planning the real step is always
greedy (we want to execute the best planned action), and the real step
never contains any exploration. In model-free RL, we never have the
planning step available, and therefore push all exploration in the real



3.2 framework for reinforcement learning and planning 49

step. However, in model-based RL, we approximate a value or policy
over many episodes, and it does make sense to explore in both the plan
and in the real step, usually in a different amount (where the real step
is typically more greedy).

When we do model-based RL with in an irreversible environment,
like the real world, then the two phases of exploration are inevitable.
However, interestingly, some model-based RL methods with a known
model still voluntarily use the two phase scheme, like AlphaZero (Silver
et al., 2018). AlphaZero does not need to make a real step, since it could
also try to solve for the entire solution of Go from the root. However,
it nevertheless introduces ‘real steps’ (executed in the model). First,
this heuristically prunes away parts of the search tree, since solving
the entire problem from the root is simply not feasible (it reduces to
exhaustive search). Second, a real step also cleans the search tree, which
may have started to accumulate errors when we deal with learned
transition or value functions. Real steps therefore seem a necessary
aspect of exploration in larger problems.

We may ask ourselves whether Dyna (Sutton, 1990) uses one- or
two-phase exploration? Between trials in the real environment, Dyna
samples additional data from its learned, reversible model. Typically, it
uses the same type of exploration policy and back-up for the additional
samples as for data acquired from the real environment. Therefore, it is
clearly one-phase in our definition. Multiple phases refers to the use of
different exploration policies from the same state within one algorithm,
but does not depend on the order in which we update states.

When a reversible model is not available but should be approximated
from data, two-phase exploration is primarily studied as Bayes-adaptive
exploration (Guez, Silver, and Dayan, 2012). In this approach, we first
learn a Bayesian dynamics model from the available data. Then, we
plan to solve for the optimal action, while we average out over all
uncertainty in the dynamics model. We then execute this action, collect
new real world data, and repeat the above procedure. This is a provably
optimal approach to achieve high data efficiency in the real environment
(Guez, Silver, and Dayan, 2012), but comes at the expense of high
computational burden.

3.2.3.4 Reverse trials

Finally, there is a different approach to trial selection based on the
idea of reverse trials. All previous approaches take a forward view
on trials, utilizing information about the state-actions in the candidate



50 frap : a unifying framework for reinforcement learning and planning

set obtained from previous trials. However, we can also identify a
promising state-action pair for the next trial based on a change in the
value of its child state. For this section, we will denote a child of (s, a)
as (s′, a′). If we reached (s′, a′) through another trace (not including
(s, a)), and the estimate of (s′, a′) changed a lot, then it is likely that
our estimate of (s, a) should be updated as well. In other words, if
we learned that a certain state-action pair is good, then we can look
back at all the state-action pairs that could bring us here, and update
their estimates as well. This idea is better known as prioritized sweeping
(Moore and Atkeson, 1993).

Prioritized sweeping is actually a special form of a candidate set, but
since it is so conceptually different from the rest of the discussion (it
requires a reverse model), we nevertheless discuss it separately. The key
of prioritized sweeping is a reverse model T−1(s, a|s′), which tells us
which (s, a) can lead to s′. Given a change in some Q(s′, a′), prioritized
sweeping evaluates the priorities ρ(s, a) of all possible precursors of s′

based on the one-step temporal difference:

ρ(s, a) = T(s′|s, a) ·
∣∣∣R(s, a, s′) + γ max

a′
Q(s′, a′)−Q(s, a)

∣∣∣
∀ (s, a) ∼ T−1(s, a|s′). (3.4)

Here, we use T and R for the learned transition and reward functions,
although the principle equally applies to the ground-truth functions
T and R. When the priority ρ(s, a) exceeds some small ε, we add it
to the queue. We then update the state action pair on the top of the
queue, and repeat the above procedure for a fixed budget, after which
we make a new forward trial.

While forward trials try to figure out where good pay-off may be
present further ahead in the MDP, backward trials try to spread the
information about an obtained reward as quickly as possible over the
nearby states in state space in reverse order. This is graphically illus-
trated in Figure 3.4. Note the difference between multi-step methods,
which quickly propagate rewards along the same forward trace, and
prioritized sweeping, which spreads to all possible precursors.

3.2.4 How to estimate the cumulative return?

Once we have selected a trial, we obtain a sampled next state (or a dis-
tribution over possible next states) and its associated reward. However,



3.2 framework for reinforcement learning and planning 51

Figure 3.4: Prioritized sweeping. Regular back-ups are applied in reverse direc-
tion of the forward trials (red solid arrows). Prioritized sweeping
acknowledges that new reward/value information may also affect
other states that lead to a specific outcome. By learning a reverse
model, T̂−1(s, a|s′), we may identify states in the reverse direction
that are candidates for updating (green dashed arrows). The vi-
sualization shows that prioritized sweeping can be interpreted as
building a new tree in the reverse direction, to spread the obtained
reward information more quickly.

we are not interested in only the single reward of the transition, but
actually in the cumulative return. The quantity that we need is actually
visible in the one-step Bellman equation:

Q(st, at) = Est+1∼T
[
rt + γEat+1∼π [Q(st+1, at+1)]

]
. (3.5)

In the next section (on back-ups) we will discuss how to deal with
the two expectations in Eq. 3.5. However, we will first discuss how to
get an estimate of Q(st+1, at+1), i.e., the remaining cumulative reward
after the trial. Likely, there is a large subtree below (st+1, at+1), which
we can not fully enumerate.

The general form of the cumulative reward estimate takes the follow-
ing form:

Q̂K-step(st, at) =
K−1

∑
k=0

γk · rt+k + γKB(st+K), (3.6)

where K ∈ {1, 2, 3, .., ∞} denotes the sample depth and B(·) is a boot-
strap function. These are the two key considerations of cumulative re-
ward estimation, which we discuss below.



52 frap : a unifying framework for reinforcement learning and planning

3.2.4.1 Sample depth

We first need to determine the sample depth n.

• K = ∞: A quick way to get an estimate of the cumulative return
after the first reward rt is to sample a deep sequence of trials, and
add all the rewards in the trace. In this case (K → ∞, better known
as a Monte Carlo roll-out) we do not bootstrap. Although a Monte
Carlo roll-out gives an unbiased estimate of the value of the entire
remaining subtree, it does have high variance, as we sampled only
one realization of all the possible traces. Monte Carlo targets are
for example commonly used in MCTS (Browne et al., 2012).

• K = 1: On the other extreme we directly bootstrap after the
trial. One-step targets have low variance but are biased, since
the bootstrap estimate can have bias. The bootstrapping function
will be discussed in the next section. Well-known algorithms that
bootstrap after a single step are for example Q-learning (Watkins
and Dayan, 1992) and A? (Hart, Nilsson, and Raphael, 1968).

• K = n: We can also use an intermediate value for K, which is
known as an n− step target, for 1 < n < ∞.

• Reweighted: We can also combine/reweight targets of differ-
ent depths. Examples include eligibility traces (Schulman et al.,
2016; Sutton and Barto, 2018) and more sophisticated reweighting
schemes based on importance sampling (Munos et al., 2016).

3.2.4.2 Bootstrap function

When we stop sampling, we can plug in a fast estimate of the value of
the remaining subtree, denoted by B(·) in Eq. 3.6. This idea is called
bootstrapping. There are two main functions to bootstrap from:

• Learned value function: We can learn the function to bootstrap
from. The ideal candidate is the state value function V(s) or state-
action value function Q(s, a). These value function may also serve
as the solution representation (see Sec. 3.2.6), in which case they
serve two purposes. But also when we represent the solution with
a policy, we may still want to learn a value function to bootstrap
from.

• Heuristic: The second bootstrap approach uses a heuristic (value)
function (Pearl, 1984), which is a form of prior information. An



3.2 framework for reinforcement learning and planning 53

admissible heuristic H(s) or H(s, a) gives an optimistic estimate
of the cumulative return from a particular state or state-action
pair. In many tasks it is hard to obtain a good admissible heuristic,
since it should always be optimistic, but should not overestimate
the return by too much, as otherwise it is of little benefit. In some
planning settings we can obtain a good heuristic by first solving
a simplified version of the problem, for example by making a
stochastic problem deterministic (Yoon, Fern, and Givan, 2007).

In summary, we need to choose both a sample depth and bootstrap
function to obtain a cumulative reward estimate. Note that a Monte
Carlo roll-out is actually a deep sequence of trials. We can of course
form value estimates for other state-actions in the trace as well, but our
framework focuses on one particular state-action pair that we want to
update. Note that we can also make a combined value estimate, for
example from two Monte Carlo roll-outs, or from a depth-d limited
search. However, these methods simply repeatedly apply the above
principle, for example at the leafs of the depth-limited search. How
to combine multiple cumulative reward estimates is part of the next
section, on the back-up.

3.2.5 How to back-up?

The trial at st, at gave us a reward rt, a next state st+1 (or distribution
over next states), and an estimate of the cumulative return. We now
wish to back-up this information to improve our estimate of the value
at st, at. In Eq. 3.5, we still need to specify i) which policy to specify for
the back-up, ii) how to deal with the expectation over the actions, and
iii) how to deal with the expectation over the dynamics. We will discuss
each of them.

3.2.5.1 Back-up policy

We can in principle specify any back-up policy πback(a|s), which may
differ from the forward policy πfor(a|s) which we used for trial selec-
tion. When πback(a|s) equals πfor(a|s) we call the back-up on-policy. In
all other cases, the back-up is off-policy. The cardinal example of an
off-policy back-up is the greedy or max back-up policy, which greedily
selects the best action. A benefit of greedy back-ups is that they learn
the optimal policy, but they can be unstable in combination with func-
tion approximation and bootstrapping (Sutton and Barto, 2018). Some



54 frap : a unifying framework for reinforcement learning and planning

authors study other forms of off-policy back-ups (Coulom, 2006; Keller,
2015), for example more greedy than the exploration policy, but less
greedy than the max operator.

3.2.5.2 Expectation over the actions

Given the back-up policy, we can either make a sample or expected back-
up. A sample back-up samples from the policy, and backs up the value
behind this particular action. Sample back-ups are computationally
cheap, but need multiple samples to converge to the true value. In
contrast, expected back-ups exactly evaluate the expectation over the
actions. Sample back-ups are for example used in SARSA (Rummery
and Niranjan, 1994), while expected back-ups are used in Expected
Sarsa (Van Seijen et al., 2009) and (off-policy) in Tree Backup (Precup,
2000).

3.2.5.3 Expectation over the dynamics

Similar to the expectation over the actions, there are two main ways
to deal with the expectation over the dynamics: sample or expected.
When the exact transition probabilities are available, then we can exactly
evaluate the expectation. Otherwise, when we only have access to an
irreversible environment or to a generative model (given or learned),
we make a small step in the direction of the sampled value, which
will converge to the true value in over multiple back-ups. Although
sample-based back-ups provide less information, they can actually be
more efficient when many next states have a very small probability
(Sutton and Barto, 2018). A special case are deterministic dynamics
functions, for which the expected and sample update are equivalent.

The three categories together give rise to several back-up types, as
visualized in Figure 3.5. The vertical axis shows the back-up over the
dynamics, while the horizontal axis shows the back-up policy and
(nested) the way to deal with the action expectation. In the example, the
off-policy back-up (right column) is illustrated by the greedy policy. For
the off-policy greedy back-up, the sample and expected action methods
are the same, so the right column shows only a single graph centered in
the column. For completeness, we list the associated back-up equations
below:

• Bellman back-up:

Q̂(s, a) = Es′∼T (s′ |s,a)[R(s, a, s′) + γ ·Ea′∼π(a′ |s′)Q(s′, a′)]



3.2 framework for reinforcement learning and planning 55

Figure 3.5: Variants of 1-step back-up. The associated equations are listed in the
main text. Mentioned algorithms/back-ups include Value Iteration
(Sutton and Barto, 2018), Bellman back-up (Bertsekas, 1995), Q-
learning (Watkins and Dayan, 1992), Expected SARSA (Van Seijen et
al., 2009), SARSA (Rummery and Niranjan, 1994), A? (Hart, Nilsson,
and Raphael, 1968) and MCTS (Kocsis and Szepesvári, 2006).

• Q-value iteration:

Q̂(s, a) = Es′∼T (s′ |s,a)[R(s, a, s′) + γ ·max
a′∈A

Q(s′, a′)]

• Q-learning:

Q̂(s, a) = R(s, a, s′) + γ ·max
a′∈A

Q(s′, a′), for s′ ∼ T(·|s, a)

• SARSA:

Q̂(s, a) = R(s, a, s′) + γ ·Q(s′, a′), for s′ ∼ T(·|s, a), a′ ∼ π(·|s′)

• Expected SARSA:

Q̂(s, a) = R(s, a, s′) + γ ·Ea′∼π(a′ |s′)[Q(s′, a′)], for s ∼ T(s, a, s′)

We can now look back at the cumulative reward estimation methods
from the previous section, and better interpret the Monte Carlo estimate.
A MC roll-out is effectively a long sequence of trials, followed by sample-
transition, sample-action, on-policy back-ups. So these trials indeed have
their own specific back-ups to aid in the update of the root state-action
pair under consideration.



56 frap : a unifying framework for reinforcement learning and planning

3.2.6 How to represent the solution?

The back-up gave us an improved estimate of the value or policy at
some (s, a). However, we have not discussed yet how the solution will
actually be represented. There are two main considerations. First, we
need to decide what function we will represent. Second, we need to
decide how to represent it in memory.

3.2.6.1 Function type

There are several ways in which we can represent the solution:

• Value: A common solution form is a value function, typically in
the form of a state-action values Q : S ×A → R. This function
estimates the value of the current or optimal policy at all con-
sidered state-action pairs. For action selection, a value function
representation requires a mapping from action values to selection
probabilities, like an ε-greedy or Boltzmann policy.

• Policy: A policy π : S → p(A) maps every state to a probability
distribution over actions. A benefit of learning a policy is that we
can directly act in the environment by sampling form the policy
distribution. Therefore, this is usually the preferred approach for
continuous action spaces, since a max over a continuous action
value space requires a nested optimization before we can act.

• Both: Some approaches store both a value and a policy func-
tion, better known as actor-critic methods. The value function is
typically used to aid the policy update (see Sec. 3.2.7).

generalized value and policy We may extend the above func-
tions by also incorporating a goal that we attempt to reach, better
known as generalized value or policy functions (Schaul et al., 2015).
Generalized value and policy functions take as input the current state
and some target/goal state that we would like to reach, and output
the value or policy to reach that particular goal state. For example,
Qg : S × S ×A → R would for a particular current state s0, goal state
sg, and candidate action a, estimate the value Qg(s0, sg, a), under some
reward function that increases when we get closer to sg. The same prin-
ciple applies to a generalized policy πg. The main benefit of generalized
value functions is our ability to return to any desired state in state space.
The key underlying idea is that we may generalize in goal space, since



3.2 framework for reinforcement learning and planning 57

Figure 3.6: Representation of the solution. Example for a value function V(s)
on an one-dimensional, discretized state space. Left: Tabular repre-
sentation. We have obtained estimates for states 2, 4 and 5, while
1, 3 and 6 have not been visited yet. Right: Function approxima-
tion. Dots indicate the observed data points, the solid line shows
a neural network fit on these points. This function generalizes the
information in the observations to other (nearby) states, like 1, 3 and
6.

nearby goals likely share much of their value functions and optimal
policy to reach them. We further discuss the concept of generalization
in the next section.

There are some others examples of solution representations. For
example, some MCTS approaches make their real step decision based
on the counts at the root, rather than the value estimates. Counts could
be considered a separate function type as well. However, since it is a
close derivative of the value, we treat it as a special case of a value
function in our framework.

3.2.6.2 Function class and generalization

Once we determined which function to store, we have to decide how to
actually represent it in memory. This topic is closely intertwined with
the concept of generalization. At the top level, we can discriminate two
groups of approaches: i) tabular methods, which do not generalize at
all, and ii) function approximation methods, which do generalize. These
two approaches are illustrated in Figure 3.6, and will be discussed in
greater detail below:

• Tabular: The tabular representation, also known as atomic, symbolic
or list representation, treats each input (e.g., state) as a unique
element for which we store an individual estimate (e.g., value)



58 frap : a unifying framework for reinforcement learning and planning

(Fig. 3.6). Tabular representations are the dominant approach in
the planning literature, as the nodes in a tree are essentially tables.
Note that in a tree, the same state may appear multiple times, like
a table with duplicate entries. In the planning literature, a solution
to this problem are transposition tables, which share information
between multiple occurrences of the same state.

For tables, there is an additional important distinction based on
the storage duration. On the one hand, global tables store the value
or policy function for the entire state-action space. However, such
a table usually does not fit in memory in large problems. On the
other hand, we find local tables in planning methods like MCTS
(Browne et al., 2012). The local table is temporarily built during the
search, but after making a real step we throw away the part of the
tree that is no longer relevant in this episode. Another example
of local tables are trajectory optimization methods, as used in
optimal control, which output a single trajectory (discretized in
time).

• Function approximation: The second representation approach is
function approximation, which builds on the concept of gener-
alization. Generalization implies that similar inputs (states) to a
function will in general also have approximately similar output
(policy or value) predictions. Thereby, function approximation
allows us to share information between near similar states, which
a table can not do. A second benefit of function approximation is
that due to the approximation we can store a global solution for
large state spaces, for which a table would grow too large.

There is a variety of function approximation methods in the ma-
chine learning literature. At a high-level we can discriminate
parametric methods, like neural networks, and non-parametric
methods, like k-nearest neighbours. We will focus on parametric
methods here, since these have received most attention and shown
most success recently. The most popular groups of parametric
function approximation methods are deep neural networks (Good-
fellow, Bengio, and Courville, 2016). For example, if we decide to
learn a state-action value function, then we specify the function
class Qθ : S ×A×Θ→ R with parameters θ ∈ Θ. Our aim is to
chose the parameters θ in such a way that they accurately predict
the state-action estimates obtained from the back-up (as discussed
in the previous section).



3.2 framework for reinforcement learning and planning 59

Note that generalization is actually a spectrum, with complete
over-generalization on one extreme, and no generalization at all
on the other end. Tabular methods are one extreme, since they do
not generalize at all. But once we enter function approximation
methods, we still need to balance the amount of generalization
to the actual data, better known as balancing overfitting and
underfitting.

Reinforcement learning methods have mostly focused on function
approximation, while planning has mostly emphasized tabular rep-
resentation. Tabular methods are easy to implement, stable (since an
update to one state action pair does not affect other pairs), and provide
good separation between neighboring states. However, their biggest
limitation is the memory requirement, which scales exponentially in the
dimensionality of the state and action space. Therefore, global solution
tables are not feasible in large problems, while local tables cannot profit
from offline learning of a global solution.

The benefits of function approximation (generalization, and lower
memory requirements) were already mentioned above. Especially gen-
eralization can be crucial in large state spaces, where we seldom visit
exactly the same state twice, but often encounter approximate similarity.
A problem of function approximation is instability, since a local training
step also affects the predictions of state-action pairs around it. This is
less of a problem in supervised learning with a fixed training set, but
since RL collects its own data, a deviation in the policy or value may
cause the agent to never explore a certain area of the state-space again.
Replay databases (Lin and Mitchell, 1992; Mnih et al., 2015) are a way to
battle this instability, by reducing the correlation between training data
points.

There are some preliminary indications that the combination of func-
tion approximation and local tabular methods may actually provide the
best of both worlds (Moerland et al., 2020; Wang et al., 2019). These ideas
are inspired by for example AlphaGo Zero (Silver et al., 2017c), Guided
Policy Search (Levine and Koltun, 2013) and Dyna-2 (Silver, Sutton, and
Müller, 2008), which nest a local tabular planning method in a learning
loop. The hypothesis here is that local tabular planning smooths out er-
rors in the global value approximation, while the global approximation
provides the necessary information sharing and generalization for the
planning method to be effective.

Finally, note that the representations also need to be initialized. The
most common approaches are random (for function approximation) or



60 frap : a unifying framework for reinforcement learning and planning

uniform (for tables) initialization. Optimistic initialization, where we
initialize all state action value estimates above the maximum achievable
return, actually adds an exploration aspect to the initialization, and was
already discussed in Sec. 3.2.3.2.

3.2.7 How to update the solution?

The last step of our framework involves updating the solution represen-
tation (from Sec. 3.2.6) based on the backed-up value estimates (from
Sec. 3.2.5). While we have mostly discussed value estimation so far, we
will now suddenly see policy functions appear more often. The section
is split up in two parts. First, we discuss losses, which define the way
in which our solution can be improved based on the backed-up value.
Second, we discuss update rules, which can either be gradient-based or
gradient-free. The first part on losses only applies to the gradient-based
updates.

3.2.7.1 Loss

A loss is the main approach in learning to specify the objective. We
choose a loss in such a way that when we minimize it, our solution
improves. Therefore, it is usually a function of both the solution (Qθ(s, a)
or πθ(a|s)) and the back-up estimate (Q̂(s, a)). Below we discuss some
common losses for both value and policy.

value loss

• Squared loss: The most common loss for value function represen-
tations is the mean squared error. The squared error loss is

L(θ|st, at) =
1
2

(
Qθ(st, at)− Q̂(st, at)

)2
. (3.7)

We may also use other losses than the squared loss, as long as mini-
mization of the objective moves our solution closer to the new estimate.
For example, Hamrick et al. (2020) recently successfully used a cross-
entropy loss between the softmax of the Q-values from the search and
the softmax of the Q-values from the value approximation. However,
the squared loss is by far most common. In the next section we will
show that many common planning updates implicitly use the squared
loss as well.



3.2 framework for reinforcement learning and planning 61

policy loss There are various ways in which we may specify a
policy loss:

• Policy gradient: One way to update the policy from a backed-up
value estimate is based on the policy gradient theorem (Sutton and
Barto, 2018; Sutton et al., 2000; Williams, 1992). The theorem gives
an unbiased estimator of the gradient of our overall objective (the
cumulative reward achieved from the start state):

∇θV(s0) = Eπθ ,T
[ ∞

∑
t=0

Q(st, at) · ∇θ ln πθ(at|st)
]
, (3.8)

where the expectation runs over all traces induced by πθ and
T . In practice, the above gradient implicitly specifies a loss. For
example, when we use automatic differentiation software, we
would implement the policy gradient by sampling traces and
minimizing, at every visited state-action pair, the loss

L(θ|st, at) = −Q̂(st, at) · ln πθ(at|st) (3.9)

with respect to θ. This last equation clearly shows what the policy
gradient equation actually does. It specifies a relation between
value estimates Q̂(st, at) and the policy πθ(at|st). If we minimize
the above objective, we effectively ensure that actions with a high
value also get a high policy probability assigned (since the policy
needs to integrate to 1). Note that the policy gradients is not a
first-order derivative, but rather a zero-order gradient that tells
whether we should move the probability of a certain action up or
down. The close relationship between value back-ups and policy
gradients is also illustrated by Schulman, Chen, and Abbeel (2017).

• Deterministic policy gradient: Another popular way to improve
a policy based on value estimates is based on deterministic pol-
icy gradients (Lillicrap et al., 2015; Silver et al., 2014). These ap-
proaches first train a value function based on the methods of
the previous paragraph. When we ensure that the learned value
function is differentiable with respect to the input action, then we
can update the policy by differentiation through the policy action.
The associated loss is simply

L(θ|st, at) = −Qψ(s, πθ(a|s)), (3.10)



62 frap : a unifying framework for reinforcement learning and planning

where we introduced ψ for the value function parameters, to make
clear that the loss is with respect to the policy parameters.

• Value gradient: When we have a differentiable reward, transition
and policy function, then we can treat our back-up value as a
single computational graph, which we can directly optimize (illus-
trated in Figure 3.7). This approach is typically applied to sampled
traces, for example in PILCO (Deisenroth and Rasmussen, 2011).
After sampling a trace, our loss is simply the negative cumulative
return:

L(θ|st, at, .., s∞) = −Q̂(s, a) = −
∞

∑
t=0

rt. (3.11)

We call this objective the value gradient loss. The associated up-
date will be discussed in the next section. Note that the above
objective uses an on-policy, sample-action, sample-dynamics back-
up, with a sample depth of ∞ and no bootstrapping. However,
with a differentiable value function we could also use bootstrap-
ping,and differentiate through the value function as well.

• Cross-entropy policy loss: Again, we can in principle come up
with any type of policy loss that increase the probability of action
that have comparatively higher value estimates. For example,
AlphaGo Zero (Silver et al., 2017c) makes a heuristic decision for
the policy loss. Their MCTS planning procedure returns value
estimates and visitation counts at the root of the search. The
counts are closely related to the backed-up value estimates in
the search, as nodes with higher value estimates get more visits.
They propose to normalize the visitation counts to a probability
distribution, and train the policy network on a cross-entropy loss
with this distribution:

L(θ|st) = − ∑
a∈A

log πθ(a|st)
( n(st, a)

∑b n(st, b)

)
, (3.12)

where n(st, a) denotes the number of visits to action a at the MCTS
root st.



3.2 framework for reinforcement learning and planning 63

The last example illustrates that heuristically motivated losses can
work well in practice. The list is by no means exhaustive, and could,
for example, also incorporate approaches that cast sequential decision
making as an inference problem (Botvinick and Toussaint, 2012; Kappen,
Gómez, and Opper, 2012; Toussaint, 2009). The choice of a particular
loss function may also depend on the setting. For example, value gradi-
ents work well in tasks with relatively smooth transition and reward
functions, like robotics and control tasks, but have trouble in sparse
reward tasks. In short, there is a variety of possible losses for both value
and policy targets.

3.2.7.2 Update rule

The final step of our framework is to actually update our representation.
We identify two main approaches: gradient-based (which uses one of
the losses of the previous section) and gradient-free optimization.

gradient-based updates Most learning approach perform gradient-
based optimization. The general idea of gradient-based optimization
is to repeatedly update our parameters in the direction of the negative
gradient of the loss with respect to the parameters:

θ ← θ − α · ∂L(θ)
∂θ

, (3.13)

where α ∈ R+ is a learning rate. We will illustrate some examples:

• Value update on table: For a tabular value representation, the θ are
simply all the individual table entries Qθ(s, a). The derivative of
the squared loss (Eq. 3.7) then becomes

∂L(θ)
∂θ

= 2 · 1
2

(
Qθ(s, a)− Q̂(s, a)

)
= Qθ(s, a)− Q̂(s, a). (3.14)

Plugging this into Eq. 3.13 and reorganizing terms gives the well-
known tabular learning rule:

Qθ(s, a)← (1− α) ·Qθ(s, a) + α · Q̂(s, a). (3.15)

Note again that this update rule is actually the gradient update
of a squared error loss on a value table. This update also makes



64 frap : a unifying framework for reinforcement learning and planning

intuitive sense: we move our table entry Qθ(s, a) a bit in the
direction of our new estimate Q̂(s, a). Therefore, for the tabular
case, we want to keep α ∈ [0, 1].

We shortly discuss two special cases of the tabular learning rule,
which both frequently occur in the planning community:

– Replace update: The replace update completely replaces the
table entry with the new back-up estimate. In Eq. 3.15, this
happens when we set α = 1. In that case, it reduces to

Qθ(s, a)← Q̂(s, a). (3.16)

This effectively overwrites the solution with the new esti-
mate obtained from the back-up. We can only afford to do
this when we have some guarantees that our new estimate
will always improve over our previous estimate. This does
specifically happen when we have prior information, like an
admissible heuristic. The replace update is for example used
in A? (Hart, Nilsson, and Raphael, 1968) planning. When
such information is available, replace updates can be much
faster than learning updates, which are relatively slow to
converge. For example, for route planning on a map (where
the euclidean distance in a good admissible heuristic), we
would always prefer A? over Q-learning (Watkins and Dayan,
1992).

– Averaging update: The averaging update, the second special
case of the tabular learning update, ensures that our table
entry will remain equal to the the mean of all previous back-up
estimates. We introduce n to index the update iteration. Then
the update rule at every iteration that tracks the average is

Qθ(s, a)← n− 1
n

Qθ(s, a) +
1
n

Q̂(s, a). (3.17)

Comparing the above to Eq. 3.15, we see that the averaging
update is actually a learning update with α = 1

n . In other
words, we make the learning rate a function of the iteration
number. The averaging update is for example the standard
approach in MCTS (Browne et al., 2012).



3.2 framework for reinforcement learning and planning 65

The benefit of the averaging update is that it quickly moves
the table entry to a reasonable estimate. After the first itera-
tion, the estimate directly equals the first back-up estimate
(while a learning update takes many small steps to move
our predictions towards the true estimate). On the down-
side, fixed learning rates do eventually wash out the effect of
the initial estimates, which are typically less reliable. In con-
trast, averaging updates will always give the initial estimate
as much contribution to the table entry as the most recent
back-up estimate.

• Value update with function approximation: The same principles apply
for gradient-based updates in the context of function approxima-
tion. If our function approximator is differentiable, then we can
simply apply the chain rule to again find the derivative of the
loss with respect to the parameters. For example, training a value
function approximation on a squared loss (Eq. 3.7) would have a
gradient of

∂L(θ|s, a)
∂θ

=
(

Qθ(s, a)− Q̂(s, a)
)
· ∂Qθ(s, a)

∂θ
, (3.18)

where ∂Qθ(s,a)
∂θ are for example the derivatives in a neural network.

• Policy update with function approximation: The same chain rule
principles apply to the policy gradient loss, and also to the deter-
ministic policy gradient. For example, for the deterministic policy
gradient we have:

∂L(θ|s, a)
∂θ

= −
∂Qψ(s, a)

∂θ
= −

∂Qψ(s, a)
∂a

∂πθ(a|s)
∂θ

, (3.19)

where we again write ψ for the value parameters to distinguish
them from the policy parameters.

• Policy update for value gradient: Gradient-based planning, better
known as value gradients (Heess et al., 2015), is a special case
of a policy update. When we have a differentiable dynamics and
reward model, and specify a differentiable policy, then we can
actually directly differentiate the cumulative reward estimate with
respect to the policy parameters (Figure 3.7).



66 frap : a unifying framework for reinforcement learning and planning

Figure 3.7: Illustration of value gradients. Black arrows show the forward
specification of an MDP, with a reward function R(s, a), transi-
tion function T (s′|s, a), and our policy πθ(a|s) to act in the MDP.
If all of these functions are differentiable, then we can update the
policy parameters θ by taking the gradient of the cumulative pay-
off V(s0) = E[∑∞

t=0 γtr(st, at)], with respect to these parameters, as
indicated by the red dotted lines. This bears similarity to the way
recurrent neural networks are trained with backpropagation through
time.

We will here show the update equations for the gradient of the
expected cumulative return V(s) = E[∑T

t=0 r(st, at)|s0 = s]. To
keep the update equations readable, we will for this equation ab-
breviate partial differentiation with subscripts, i.e., Vs = ∂V(s)/∂s.
The gradient of the sampled trace is given by the following set of
recursive relations:

V̂θ = Raπθ + γV̂′s′Taπθ + γV̂′θ , with

V̂s = Rs +Raπs + γV̂′s′(Ts + Taπs). (3.20)

For every trace, the above gradient effectively sums over all paths
in Figure 3.7. In practice we sample a single trace or finite set
of traces to compute the gradients with respect to θ. Note the
additional V′θ term in the first equation, which appears since we
need to sum the gradients with respect to θ at all timesteps.

Well-known examples of gradient-based planning are PILCO
(Deisenroth and Rasmussen, 2011), which achieved high data-
efficiency on real-world (small) robotic control tasks, and the
linear-quadratic regulator (LQR) (Anderson and Moore, 2007;
Todorov and Li, 2005). Gradient-based planning does rely on



3.2 framework for reinforcement learning and planning 67

smooth, differentiable dynamics functions, which makes it mostly
applicable to continuous control tasks. Moreover, gradient propa-
gation may suffer from vanishing and exploding gradients, as is
also well-known for recurrent neural network (RNN) training.

There are two final remarks for gradient-based updates. First, all
above methods have analytic gradients, but we may also use finite
differencing to numerically approximate the gradient of our objective.
This for example common in optimal control. Second, we have not
defined yet how to choose the learning rate in Eq. 3.13. We neither want
to progress too quickly nor too slowly. Most methods use a line search
with manually tuned learning rate, but other approaches have been
popularized in RL as well. A successful approach is to first determine a
trust region, a region around the current solution in which we aim to
search for the next solution, which is for example used in trust region
policy optimization (TRPO) (Schulman et al., 2015) and proximal policy
optimization (PPO) (Schulman et al., 2017) algorithms.

gradient-free updates We have extensively covered losses and
learning-based updates. We will now also cover the competing ap-
proach, which uses gradient-free optimization. These approaches first
specify a parametrized policy function. They then repeatedly: i) perturb
the parameters in policy space, ii) evaluate the new solution by sam-
pling traces, and iii) decide whether the perturbed solution should be
retained. Example applications to MDP optimization include evolution-
ary strategies (Moriarty, Schultz, and Grefenstette, 1999; Salimans et al.,
2017; Whiteson and Stone, 2006), simulated annealing (Atiya, Parlos,
and Ingber, 2003) and the cross-entropy method (Mannor, Rubinstein,
and Gat, 2003; Rubinstein and Kroese, 2013).

These methods largely bypass the other parts of our framework. They
do not use any structural knowledge of the MDP, and never form local
estimates of values for a particular state. Instead, they only require an
evaluation function (sampling a set of traces), and treat the problem
as a black-box optimization setting. There is extensive literature on
gradient-free optimization methods, but these methods are not specific
to planning and learning in MDPs, and therefore fall outside the scope
of this framework.

This concludes our presentation of FRAP. The discussed dimensions,
considerations per dimension, and choices per consideration were al-
ready summarized in Table 3.1. The next section will illustrate the



68 frap : a unifying framework for reinforcement learning and planning

general applicability of FRAP, by analyzing a wide variety of planning
and RL algorithms along the dimensions of the framework.

3.3 conceptual comparison of well-known algorithms

The key point of FRAP is that planning and learning solve exactly the
same problem, and therefore (implicitly) have to make decisions on
all the dimensions mentioned in the framework. We illustrate this key
idea in Table 3.3. The table shows, for a variety of well-known planning
(blue), model-free RL (red) and model-based RL (green) algorithms, the
choices each algorithm makes on the dimensions of FRAP.

The most important observation from the table is that it reads like
a patchwork. On most dimensions, we see similar solution ideas ap-
pearing both within planning and reinforcement learning. For example,
candidate selection is mostly performed step-wise, but there are both
planning, model-free RL and model-based RL papers that use a frontier-
based candidate set. For the back-up, MCTS uses an on-policy, sample
action, sample transition approach, which is for example shared by
SARSA. While these algorithms differ on other dimensions, for example
the way they represent their solution, they are similar in their back-up
method. Monte Carlo targets for the return estimation appear in all
three classes, as do 1-step bootstrapping methods.

There seems to be consensus on few dimensions. For the computa-
tional effort dimensions, we do see that nearly all papers in the table
except for Dynamic Programming focus on the reachable state set, by
sampling forward from some start state distribution. This is indeed our
best bet if we do not want to suffer from the curse of dimensionality
(see Sec. 3.2.2).

One may wonder why policy gradient methods still use the value
back-up dimension. Policy gradients are actually a form of a loss, which
specify how the policy should change based on a new value estimate.
But the value estimate should still be obtained, and any of the methods
from Sections 3.2.4 and 3.2.5 still apply. For example, policy gradient
methods can be combined with Monte Carlo estimates (Williams, 1992),
but also with bootstrapping (Mnih et al., 2016).

Note that some approaches, such as PILCO (Deisenroth and Ras-
mussen, 2011) and policy gradients (Williams, 1992), completely rely
on a stochastic policy to explore, without any additional exploration
pressure. This is technically a form of optimistic initialization, since the
start policy should broadly cover state space. There is no additional



3.4 related work 69

exploration pressure, and for these methods it is crucial that the initial
policy hits a non-zero reward region, since otherwise there will be no
learning signal at all. Therefore, this approach seems less applicable to
large state spaces.

As discussed in Sec. 3.2.7, the replace and average update types
are special cases of the squared loss. Since the squared loss is never
explicitly specified in these tabular updates, we have entered ’squared’
between brackets in those cases. For Go-Explore (Ecoffet et al., 2019) we
have only considered their initial exploration phase in the table, and
omitted the second imitation learning phase in which they solidify their
own policy into a neural network. Some smaller comments on the table
are part of the table caption.

3.4 related work

There is surprisingly little work on a systematic categorization of either
planning or reinforcement learning algorithms. The two main exam-
ples are trial-based heuristic tree search (THTS) (Keller, 2015; Keller and
Helmert, 2013), and the textbook classification of back-up width and
depth by Sutton and Barto, 2018. We will discuss both.

THTS is closest to our work, specifying a framework to systematically
categorize planning methods. It contains six dimensions, which we will
each compare to our framework:

Table 3.3: (next two pages): Systematic overview of various learning, planning
and model-based RL methods, broken up according to FRAP. See
Table 3.1 for an overview of the components, as discussed throughout
Section 3.2. Colour coding: blue = planning, red = model-free RL,
green = model-based RL. Abbrevations of function approximation
types: NN = neural network, GP = Gaussian Process, k-NN = k-
nearest neighbour. Notes: †For Go-Explore (Ecoffet et al., 2019) we
only describe their primary exploration approach. In a second stage,
they solidify their policy with imitation learning. ◦: Real-time DP
leaves the sample depth for the back-up unspecified. In the table we
show the vanilla choice for DP itself, a sample depth of 0. $ Péré
et al. (2018) actually stores s0, sg → θ, i.e., a mapping from start and
goal state to policy parameters, which themselves define another
parametric policy.



70 frap : a unifying framework for reinforcement learning and planning

Pa
pe

r
En

vi
ro

n-
m

en
t

Le
ar

ne
d

m
od

el
C

om
p.

ef
-

fo
rt

Tr
ia

l
se

le
ct

io
n

C
an

di
da

te
Se

t
Ex

pl
or

at
io

n
Su

b-
ca

te
go

ry
Ph

as
es

R
ev

er
se

Tr
ia

ls
D

es
cr

ip
ti

on

D
yn

am
ic

Pr
og

ra
m

m
in

g
(B

el
l-

m
an

,1
9

6
6

)
R

ev
er

si
bl

e
an

al
yt

ic
A

ll
St

at
e

se
t

St
at

e
O

rd
er

ed
1

Sw
ee

p

D
ep

th
-fi

rs
t

ex
h.

se
ar

ch
(R

us
se

ll
an

d
N

or
vi

g,
2

0
1

6
)

R
ev

er
si

bl
e

an
al

yt
ic

R
ea

ch
.

St
ep

St
at

e
O

rd
er

ed
1

Sw
ee

p

H
eu

ri
st

ic
se

ar
ch

(e
.g

.,
A
?

(H
ar

t,
N

ils
so

n,
an

d
R

ap
ha

el
,1

9
6

8
))

R
ev

er
si

bl
e

an
al

yt
ic

R
ea

ch
.

Fr
on

ti
er

V
al

ue
Pr

io
r

1
G

re
ed

y
on

he
ur

is
ti

c

M
C

TS
(B

ro
w

ne
et

al
.,

2
0

1
2

)
R

ev
er

si
bl

e
sa

m
pl

e
R

ea
ch

.
St

ep
V

al
ue

U
nc

er
ta

in
ty

2
U

pp
er

co
nfi

de
nc

e
bo

un
d

R
ea

l-
ti

m
e

D
P

(B
ar

to
,

Br
ad

tk
e,

an
d

Si
ng

h,
1

9
9

5
)

R
ev

er
si

bl
e

an
al

yt
ic

R
ea

ch
.

St
ep

St
at

e
O

rd
er

ed
1

R
an

do
m

st
ar

ts

Q
-l

ea
rn

in
g

(W
at

ki
ns

an
d

D
ay

an
,

1
9

9
2

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
R

ea
ch

.
St

ep
St

at
e

O
rd

er
ed

1
R

an
do

m
st

ar
ts

SA
R

SA
+

el
ig

ib
ili

ty
tr

ac
e

(S
ut

-
to

n
an

d
Ba

rt
o,

2
0

1
8

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
R

ea
ch

.
St

ep
V

al
ue

M
ea

n
va

lu
es

1
e.

g.
,B

ol
tz

m
an

n

R
EI

N
FO

R
C

E
(W

ill
ia

m
s,

1
9

9
2

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
R

ea
ch

.
St

ep
R

an
do

m
-

1
St

oc
ha

st
ic

po
lic

y

D
Q

N
(M

ni
h

et
al

.,
2

0
1

5
)

Ir
re

ve
rs

ib
le

sa
m

pl
e

R
ea

ch
.

St
ep

V
al

ue
R

an
do

m
1

ε-
gr

ee
dy

PP
O

(S
ch

ul
m

an
et

al
.,

2
0

1
7

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
R

ea
ch

.
St

ep
V

al
ue

M
ea

n
va

lu
es

1
St

oc
ha

st
ic

po
lic

y
w

it
h

en
tr

op
y

re
gu

la
ri

za
ti

on

D
D

PG
(L

ill
ic

ra
p

et
al

.,
2

0
1

5
)

Ir
re

ve
rs

ib
le

sa
m

pl
e

R
ea

ch
.

St
ep

R
an

do
m

-
1

N
oi

se
pr

oc
es

s
(O

rn
st

ei
n-

U
hl

en
be

ck
)

G
o-

Ex
pl

or
e†

(E
co

ff
et

et
al

.,
2

0
1

9
)

Ir
re

ve
rs

ib
le

sa
m

pl
e

R
ea

ch
.

Fr
on

ti
er

St
at

e+
va

l+
ra

nd
N

ov
el

ty
+

pr
io

r+
ra

nd
om

1
Fr

on
ti

er
pr

io
r.:

vi
si

tf
re

q.
+

he
ur

is
ti

cs
.O

n
fr

on
-

ti
er

:r
an

do
m

pe
rt

ur
ba

ti
on

.

A
lp

ha
St

ar
(V

in
ya

ls
et

al
.,

2
0

1
9

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
R

ea
ch

.
St

ep
St

at
e+

V
al

ue
Pr

io
r+

m
ea

n
va

lu
es

1
Im

it
at

io
n

le
ar

ni
ng

+
sh

ap
in

g
re

w
ar

ds
+

en
-

tr
op

y
re

gu
la

ri
za

ti
on

D
yn

a-
Q

(S
ut

to
n,

1
9

9
0

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
X

R
ea

ch
.

St
ep

St
at

e+
V

al
ue

K
no

w
le

dg
e+

m
ea

n
va

lu
es

1
N

ov
el

ty
bo

nu
s

+
Bo

lt
zm

an
n

Pr
io

ri
ti

ze
d

sw
ee

pi
ng

(M
oo

re
an

d
A

tk
es

on
,1

9
9

3
)

Ir
re

ve
rs

ib
le

sa
m

pl
e

X
R

ea
ch

.
St

ep
St

at
e

N
ov

el
ty

1
X

V
is

it
at

io
n

fr
eq

ue
nc

y
+

R
ev

er
se

tr
ia

ls

PI
LC

O
(D

ei
se

nr
ot

h
an

d
R

as
-

m
us

se
n,

2
0

1
1

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
X

R
ea

ch
.

St
ep

R
an

do
m

-
2

St
oc

ha
st

ic
po

lic
y

on
in

it
ia

liz
at

io
n

A
lp

ha
G

o
(S

ilv
er

et
al

.,
2

0
1

7
c)

R
ev

er
si

bl
e

Sa
m

pl
e

R
ea

ch
.

St
ep

V
al

ue
+

ra
n-

do
m

U
nc

er
ta

in
ty

2
U

pp
er

co
nfi

de
nc

e
bo

un
d

+
no

is
e

K
no

w
le

dg
e,

e.
g.

,
su

rp
ri

se
(A

ch
ia

m
an

d
Sa

st
ry

,2
0

1
7

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
X

R
ea

ch
.

St
ep

St
at

e
K

no
w

le
dg

e
1

In
tr

in
si

c
re

w
ar

d
fo

r
su

rp
ri

se

C
om

pe
te

nc
e

IM
,e

.g
.,

(P
ér

é
et

al
.,

2
0

1
8

)
Ir

re
ve

rs
ib

le
sa

m
pl

e
X

R
ea

ch
.

Fr
on

ti
er

St
at

e
C

om
pe

te
nc

e
1

Sa
m

pl
in

g
in

le
ar

ne
d

go
al

sp
ac

e



3.4 related work 71

Pa
pe

r
C

um
ul

at
iv

e
re

tu
rn

B
ac

k-
up

R
ep

re
se

nt
at

io
n

U
pd

at
e

Sa
m

pl
e

de
pt

h
Bo

ot
st

ra
p

ty
pe

Ba
ck

-u
p

po
l-

ic
y

A
ct

io
n

ex
pe

ct
at

io
n

D
yn

am
ic

s
Ex

pe
ct

at
io

n
Fu

nc
ti

on
ty

pe
Fu

nc
ti

on
cl

as
s

Lo
ss

U
pd

at
e

ty
pe

D
yn

am
ic

Pr
og

ra
m

m
in

g
(B

el
l-

m
an

,1
9
6
6

)
1

Le
ar

ne
d

O
ff

-p
ol

ic
y

M
ax

Ex
p.

V
al

ue
G

lo
ba

lt
ab

le
(S

qu
ar

ed
)

R
ep

la
ce

D
ep

th
-fi

rs
t

ex
h.

se
ar

ch
(R

us
se

ll
an

d
N

or
vi

g,
2
0
1
6
)

∞
N

on
e

O
ff

-p
ol

ic
y

M
ax

Ex
p

V
al

ue
G

lo
ba

lt
ab

le
(S

qu
ar

ed
)

R
ep

la
ce

H
eu

ri
st

ic
se

ar
ch

(e
.g

.,
A
?

(H
ar

t,
N

ils
so

n,
an

d
R

ap
ha

el
,1

9
6
8

))
1

H
eu

ri
st

ic
O

ff
-p

ol
ic

y
M

ax
D

et
er

m
.

V
al

ue
G

lo
ba

lt
ab

le
(S

qu
ar

ed
)

R
ep

la
ce

M
C

TS
(B

ro
w

ne
et

al
.,

2
0
1
2

)
∞

N
on

e
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

V
al

ue
Lo

ca
lt

ab
le

(S
qu

ar
ed

)
A

ve
ra

ge

R
ea

l-
ti

m
e

D
P

(B
ar

to
,

Br
ad

tk
e,

an
d

Si
ng

h,
1
9
9
5

)
1
◦

Le
ar

ne
d

O
ff

-p
ol

ic
y

M
ax

Ex
p.

V
al

ue
G

lo
ba

lt
ab

le
(S

qu
ar

ed
)

R
ep

la
ce

Q
-l

ea
rn

in
g

(W
at

ki
ns

an
d

D
ay

an
,

1
9
9
2
)

1
Le

ar
ne

d
O

ff
-p

ol
ic

y
M

ax
Sa

m
pl

e
V

al
ue

G
lo

ba
lt

ab
le

Sq
ua

re
d

G
ra

di
en

t

SA
R

SA
+

el
ig

ib
ili

ty
tr

ac
e

(S
ut

-
to

n
an

d
Ba

rt
o,

2
0
1
8
)

1
−

n
(e

lig
ib

ili
ty

)
Le

ar
ne

d
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

V
al

ue
G

lo
ba

lt
ab

le
Sq

ua
re

d
G

ra
di

en
t

R
EI

N
FO

R
C

E
(W

ill
ia

m
s,

1
9
9
2

)
∞

N
on

e
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y
Fu

nc
.a

pp
ro

x.
(N

N
)

Po
lic

y
gr

ad
ie

nt
G

ra
di

en
t

D
Q

N
(M

ni
h

et
al

.,
2
0
1
5

)
1

Le
ar

ne
d

O
ff

-p
ol

ic
y

M
ax

Sa
m

pl
e

V
al

ue
Fu

nc
.a

pp
ro

x.
(N

N
)

Sq
ua

re
d

G
ra

di
en

t

PP
O

(S
ch

ul
m

an
et

al
.,

2
0
1
7

)
1
−

n
(e

lig
ib

ili
ty

)
Le

ar
ne

d
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y
Fu

nc
.a

pp
ro

x.
(N

N
)

Po
lic

y
gr

ad
ie

nt
G

ra
di

en
t

(t
ru

st
.r

eg
.)

D
D

PG
(L

ill
ic

ra
p

et
al

.,
2
0
1
5

)
1

Le
ar

ne
d

O
ff

-p
ol

ic
y

M
ax

Sa
m

pl
e

Po
lic

y+
va

lu
e

Fu
nc

.a
pp

ro
x.

(N
N

)
D

et
er

m
.p

ol
ic

y
gr

ad
.

+
sq

ua
re

d
G

ra
di

en
t

G
o-

Ex
pl

or
e†

(E
co

ff
et

et
al

.,
2
0
1
9

)
1

H
eu

ri
st

ic
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y
G

lo
ba

lt
ab

le
(S

qu
ar

ed
)

R
ep

la
ce

A
lp

ha
St

ar
(V

in
ya

ls
et

al
.,

2
0
1
9

)
1
-n (i
m

po
rt

an
ce

w
ei

gh
te

d)

Le
ar

ne
d

O
n-

po
lic

y
Sa

m
pl

e
Sa

m
pl

e
Po

lic
y+

va
lu

e
Fu

nc
.a

pp
ro

x.
(N

N
)

Po
lic

y
gr

ad
ie

nt
+

sq
ua

re
d

G
ra

di
en

t

D
yn

a
(S

ut
to

n,
1
9
9
0

)
1

Le
ar

ne
d

O
n-

po
lic

y
Sa

m
pl

e
Sa

m
pl

e
V

al
ue

G
lo

ba
lt

ab
le

Sq
ua

re
d

G
ra

di
en

t

Pr
io

ri
ti

ze
d

sw
ee

pi
ng

(M
oo

re
an

d
A

tk
es

on
,1

9
9
3

)
1

Le
ar

ne
d

O
ff

-p
ol

ic
y

M
ax

Ex
p.

V
al

ue
G

lo
ba

lt
ab

le
Sq

ua
re

d
G

ra
di

en
t

PI
LC

O
(D

ei
se

nr
ot

h
an

d
R

as
-

m
us

se
n,

2
0
1
1

)
∞

N
on

e
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y
Fu

nc
.a

pp
ro

x.
(G

P)
V

al
ue

gr
ad

ie
nt

G
ra

di
en

t

A
lp

ha
G

o
(S

ilv
er

et
al

.,
2
0
1
7
c)

M
C

TS
:1

-n
V

al
ue

:∞
Le

ar
ne

d
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y+
va

lu
e

Fu
nc

.a
pp

ro
x.

(N
N

)+
lo

ca
l

ta
bl

e

C
ro

ss
-e

nt
ro

py
+

Sq
ua

re
d

A
ve

ra
ge

+
G

ra
-

di
en

t

K
no

w
le

dg
e,

e.
g.

,
su

rp
ri

se
(A

ch
ia

m
an

d
Sa

st
ry

,2
0
1
7

)
∞

N
on

e
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

Po
lic

y
Fu

nc
.a

pp
ro

x.
(N

N
)

Po
lic

y
gr

ad
ie

nt
G

ra
di

en
t

C
om

pe
te

nc
e

IM
,e

.g
.,

(P
ér

é
et

al
.,

2
0
1
8

)
∞

N
on

e
O

n-
po

lic
y

Sa
m

pl
e

Sa
m

pl
e

G
en

er
al

iz
ed

po
lic

y$
Fu

nc
.a

pp
ro

x.
(k

-
N

N
)

k-
N

N
lo

ss
G

ra
di

en
t-

fr
ee



72 frap : a unifying framework for reinforcement learning and planning

• Initialization: In THTS, ‘initialization’ refers to the value a new
node in the tree gets assigned when it is generated. The framework
describes one possible approach, which is initializing the value
with a heuristic. In our framework, this idea is captured as one
of the options in the ‘bootstrap’ consideration of the cumulative
return estimation dimension (Sec. 3.2.4.2), where we also discuss
other methods.

• Outcome selection: In THTS, ‘outcome selection’ refers to the way
we generate the next state or state distribution depending on the
action. It describes one option: ‘Monte Carlo selection’, which
samples each next state according to its probability under T . In
our framework, this is equal to the sample-based dynamics back-
up, discussed in Sec. 3.2.5.3). Note that in our framework we
treat this consideration as a back-up choice. If we only sample
one action, then we can only back-up a single action, while if we
consider the probabilities of all next states, then we can also make
an expected back-up. Forward and backward over the dynamics
model are thereby directly linked.

• Back-up: In THTS the ‘back-up’ dimension covers possible choices
like ‘Monte Carlo back-up’ (characterized by ‘averaging’ updates
in our framework), ’Temporal Difference back-up’ (characterized
by a bootstrap depth of 1 in our framework), ‘Selective back-ups’
(characterized by a ‘off-policy’ back-up in our framework), etc.
To our view, the back-up dimension of THTS actually groups
together multiple considerations of the cumulative reward, back-
up and update dimensions of our framework. FRAP does properly
disentangle these aspects.

• Trial length: This dimension describes in THTS by how many trials
we expand the search graph. This is clearly related to the ‘sample
depth’ dimension of cumulative reward estimation (Sec. 3.2.4.1) in
our framework. However, there is an important additional differ-
ence. THTS only counts the graph expansions, which for example
for MCTS gives a sample depth of 1 per iteration (ignoring the
roll-out). We disagree, as the roll-out is actually a sequence of
new trials. We also make back-ups along the roll-out path, but
we simply do not use these intermediate estimates to update our
representation, which is a separate dimension in our framework.

• Action selection: This dimension in THTS contains the categories
‘Greedy’, ‘Uniform’, ‘ε-greedy’, ‘Boltzmann’ and ‘Upper Confi-



3.4 related work 73

dence Bound’. In our framework, this equals part of the explo-
ration dimension (Sec. 3.2.3.2). However, THTS does not further
substructure this dimensions like we do, and thereby fails to in-
corporate a variety of other methods like intrinsic motivation,
frontier-based candidate sets, one- versus two-phase exploration,
and reverse trials.

• Recommendation function: The final dimension in THTS is the rec-
ommendation function, which takes in a search graph and returns
a probability distribution over the actions at the root. This cat-
egory is specific to the online search setting, when we are only
interested in the policy at the root. Instead, FRAP contains an
entire dimension for solution representation. The above recom-
mendation is a form of a local policy table in our framework,
from which we can read the recommendation decision. But FRAP
also includes global representations and various kinds of function
approximation methods.

THTS was an important inspiration for the current framework, by
proposing that there is a common underlying algorithmic space beneath
all MDP search algorithms. However, FRAP extends THTS in many
ways, by including the entire spectrum of learning methods (and all its
associated RL literature), and by adding and splitting several dimen-
sions to overcome the overlap and confusion of some dimensions of
THTS.

Sutton and Barto (2018) also discuss a categorization of planning
and learning based on the width and depth of the back-ups. Together
these lead to four extremes: exhaustive search (full breadth and depth),
Dynamic Programming (full breadth, single depth), Monte Carlo esti-
mation (single breadth, full depth), and temporal difference learning
(single breadth, single depth). The depth is clearly represented by the
sample depth of the cumulative reward estimation in our framework.
The breadth is in FRAP split up in the expectation over the actions and
dynamics in the back-up. Note that FRAP considers breadth a back-up
dimension, and therefore considers exhaustive search as a long ordered
series of 1-step back-ups. Instead, Sutton and Barto (2018) consider
exhaustive search as a single, large, broad and deep back-up. Both
views can exist next to one another. Our view better fits a systematic
framework that disentangles the elementary operations in search and
RL, but the view of Sutton and Barto (2018) is conceptually insightful
as well, when we think of an entire planning iteration as creating one
new value target.



74 frap : a unifying framework for reinforcement learning and planning

3.5 discussion

This chapter introduced the framework for reinforcement learning and
planning (FRAP), as a systematic approach to categorize and compare
planning and reinforcement learning approaches. We will now put our
work in a broader perspective, and identify possible implications for
future work.

First of all, we did not include stopping criteria in our framework.
Nearly all algorithms empirically stop based on a fixed hyperparameter,
or based on manual intervention by a human logging the performance.
While some algorithms do have convergence guarantees, like DP (Bell-
man, 1966), MCTS (Browne et al., 2012), A? (Hart, Nilsson, and Raphael,
1968) and many RL algorithms with GLIE (greedy in the limit with
infinite exploration) assumptions, it is typically infeasible to assess
convergence during execution. The only algorithms that do assess con-
vergence need to either make sweeps through the entire state space
(like dynamic programming and exhaustive search), which is the only
way to guarantee that we have at a certain moment visited all states
frequently enough, or require an admissible heuristic, which ensures
that we can stop expanding before visiting all states (Hart, Nilsson, and
Raphael, 1968).

tractability of mdp optimization The framework also allows
us to zoom out and identify the fundamental ways in which a MDP
search can be made tractable. The MDP problem essentially specifies
an infinitely deep MAX-EXP tree which we can never fully enumerate.4

On the most fundamental level, without any consideration of two-phase
exploration and a real environment versus planning model, there are
only four ways in which we can somehow reduce the size of the true
underlying MDP tree:

1. Reachable states: focus on reachable states instead of all states (Sec.
3.2.2).

2. Exploration-exploitation: gradually focus from reachable to relevant
states, i.e., reduce the breadth of the problem through exploration-
exploitation balancing (Sec. 3.2.3).

3. Generalization: share relevance information of one state to other
appearances of (approximately) the same state (Sec. 3.2.6).

4 Note that we focus on infinite-horizon returns, see Chapter 2



3.5 discussion 75

4. Priors: We do not really consider this a fundamental solution
approach, as it requires task specific information. It is however a
way to solve an otherwise intractable MDP.

A fifth way to make the problem tractable, which was not discussed
in our framework, involves compressing the MDP itself, for example
through temporal abstraction (better known as hierarchical RL (Barto
and Mahadevan, 2003)) This may define a temporally abstract MDP,
in which it is easier to solve for the solution. However, this topic falls
outside the scope of this framework.

differences between research fields One question that arises
from FRAP is: what are the true differences between planning and re-
inforcement learning? The defining difference was already discussed
in Section 2.2. Learning algorithms assume an irreversible environ-
ment (‘unknown model’), while planning algorithm assume a reversible
environment (‘known model’). Therefore, planning algorithms can re-
peatedly plan forward from the same state, which RL algorithms cannot.
On a conceptual level, the difference is mostly about the order in which
we do the updates. Once again, 100 traces of MCTS or 100 traces of
Q-learning conceptually do the same: they walk forward, acquire in-
formation, make back-ups, and update a (local) representation, all to
better inform next traces/episodes.

All other differences except for the visitation order seem to be based
on convention rather than necessity. We will provide some examples of
common conventions in both fields. For example, planning algorithms
tend to use (local) tabular representations, in the form of a (discrete)
search tree. In contrast, RL algorithms tend to use global representa-
tions of the solution, and have put much more emphasis on function
approximation. The planning community has put more focus on the use
of bootstrapping from heuristics, while the RL community has focused
on bootstrapping from learned value functions. Uncertainty-based ex-
ploration has been successful in planning approaches like MCTS, but
has also appeared in RL research (Kaelbling, 1993). Frontiers originate
in research on planning, but competence-based intrinsic motivation
now applies similar principles in RL. Sample-based back-ups mostly
originate in RL research, where we interact with an irreversible envi-
ronment and have to rely on sample action, sample dynamics back-ups.
However, exactly the same back-up has also become popular in the
planning approach of MCTS. In short, both fields have emphasized
their own elements of the overall problem, but have at the same time



76 frap : a unifying framework for reinforcement learning and planning

invented similar solutions and approaches, which blurs the algorithmic
line between both fields.

future work The framework may also help to identify potential
directions for future research. We will provide some potential directions
here. First of all, the strongest boundary in Table 3.3 is the type of
representation used. Planning methods use local representations, while
reinforcement learning methods use global representations. Clearly,
these two types of representations can be combined, where we tem-
porarily store local solutions, which we after a while use to update a
global solution. These approaches of course fall in the model-based RL
spectrum, which has been known for long (Sutton, 1990).

However, recent work, like AlphaGo Zero (Silver et al., 2017c) and
Guided Policy Search (Levine and Koltun, 2013), has shown that we
have far from completely understood the potential of integrated plan-
ning and learning approaches yet. We will further investigate this topic
in Chapter 7 as well, but in general believe that the combination of local,
atomic and global, generalizing representations still has much potential
to offer.

As a second example, we hypothesize that ‘frontier’ approaches
deserve extra attention the RL community. While frontiers originate in
planning, they have no use in model-free RL. However, model-based RL
can definitely profit from frontiers for exploration, for example in the
direction of competence-based intrinsic motivation. Go-Explore (Ecoffet
et al., 2019), which uses a frontier-like approach in an RL agent, is an
interesting recent example in this direction as well.

Another example of a future research direction could be reverse
trials and prioritized sweeping. This time the direction of influence
is reversed, since this topic originates in RL and has received little
attention in planning. Reverse trials may help spread information over
the state-space much faster, and can be seen as a form of planning in
the backwards direction. Potentially, we could even apply successful
planning algorithms, like MCTS, in the backwards direction. Given the
success of prioritized sweeping in tabular models, and some interesting
recent applications in high-dimensional problems (Agostinelli et al.,
2019; Corneil, Gerstner, and Brea, 2018; Edwards, Downs, and Davidson,
2018), this should be a promising direction for future research.

Another potential idea to extract from Table 3.3 is the combination
of state-based and value-based exploration methods. Most algorithms
chose one of both, e.g., they either explore based on value function
uncertainty, or they explore based on state characteristics like intrinsic



3.6 conclusion 77

motivation. Few papers have combined these approaches, while there is
no practical limitation to do this, as for example shown by Ecoffet et al.
(2019).

We also see that both fields have been dominated by gradient-based
updates (since we showed that tabular planning updates can actually
be cast as a form of gradient-based updating). While gradient-based
optimization has been the driving force behind much of the progress
in machine learning in the last decade, recent papers, for example by
Jaderberg et al. (2019), show that the combination of gradient-based
and gradient-free updating can give strong results as well.

In a similar direction, we also believe that ‘episodic memory’ ap-
proaches (Pritzel et al., 2017), where we do not even update but simply
store raw traces, could get more attention. These may for example help
in the context of exploration, to ensure that we can get back to a particu-
lar state. This is an example of a different form of tabular representation
with a non-gradient based update (or actually an absent update, since
we store the raw trace).

We also see that, especially in the reinforcement learning direction,
there is quite some variation in the types of loss functions used, although
most papers use the ones that we explicitly mentioned in this paper.
However, for example, Hamrick et al. (2020) recently proposed a new
type of loss to train a discrete policy network against value estimates,
based on a cross-entropy loss with the softmax of the value estimates.
This is just an example, but there could be more types of loss function
to better integrate planning results into global approximations.

Altogether, these are some examples of possible interpretations of Ta-
ble 3.3, while there could be more depending on your own background.
We will experimentally show another example of a possible connection
between both fields in Chapter 8. Nevertheless, besides these directions
of future work, we believe the main contribution of the paper is the
overview and structure to both fields it may provide.

3.6 conclusion

This concludes the description of our framework for reinforcement
learning and planning (FRAP). We briefly summarize the main ideas:

• We can disentangle planning algorithms, like A?, and RL algo-
rithms, like Q-learning, into one underlying framework. Any algo-
rithm that solves a MDP optimization (implicitly) makes decisions
on: i) the considered state set, ii) trial selection and exploration,



78 frap : a unifying framework for reinforcement learning and planning

iii) cumulative reward estimation, iv) value back-up, v) solution
representation and vi) update of the solution. These dimensions,
with their relevant considerations, are summarized in Table 3.1.

• A key conclusion of the framework is that the lines between
planning and learning are actually blurry, and frequently based
on convention rather than necessity. Both fields share the same
underlying algorithmic space.

• MDP optimization can in principle be approached as a black-box
optimization problem. However, our framework illustrates the
various ways in MDP specific characteristics can be systematically
incorporated in the solution approach.

• Altogether, the framework may serve several purposes: i) provide
a common language for researchers in both planning and RL to
categorize their solution approach, ii) inspire future research, for
example through novel combinations of planning and learning,
and iii) serve an educational purpose, for students, and for re-
searchers from either planning or RL who consider working at
the intersection of both fields.



4M O D E L - B A S E D R E I N F O R C E M E N T L E A R N I N G : A
S U RV E Y 1

abstract

Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is a key challenge in artificial intelligence. Two key approaches to this
problem are reinforcement learning (RL) and planning. This chapter presents a survey
of the integration of both fields, better known as model-based reinforcement learning.
Model-based RL has two main steps. First, we systematically cover approaches to
dynamics model learning, including challenges like dealing with stochasticity,
uncertainty, partial observability, and temporal abstraction. Second, we present a
systematic categorization of planning-learning integration, including aspects like:
where to start planning, what budgets to allocate to planning and real data collection,
how to plan, and how to integrate planning in the learning and acting loop. After these
two section, we also discuss implicit model-based RL as an end-to-end alternative for
model learning and planning, and we cover the potential benefits of model-based RL,
like enhanced data efficiency, targeted exploration, and improved stability. Throughout
the survey, we also draw connections to several related RL fields, like hierarchical RL
and transfer. Altogether, the survey presents a broad conceptual overview of
planning-learning combinations for MDP optimization.

4.1 introduction

Model-based reinforcement learning combines planning and learning in
a single algorithm. We defined model-based RL as: ‘any MDP approach
that uses i) a model (known or learned) and ii) a global solution,
like a learned value or policy function’. Model-based RL has shown
great success (Deisenroth and Rasmussen, 2011; Levine and Koltun,
2013; Silver et al., 2017c), but, as mentioned before, literature lacks a
systematic review of the field (although Hamrick et al. (2020) does
provide a short review, see Sec. 4.7 for a detailed discussion of related
work). This chapter aims to fill this gap, by presenting a broad overview
of the possible combinations of planning and learning.

1 Chapter based on: Moerland TM, Broekens J, Jonker CM. Model-based Reinforcement
Learning: A Survey. In submission.

79



80 model-based reinforcement learning : a survey

The survey consist of four key sections. We first cover approaches to
dynamics model learning, including important challenges like stochastic-
ity, uncertainty, partial observability, non-stationarity, state abstraction,
and temporal abstraction (Sec. 4.3). Then, we cover the integration of
planning and learning, i.e., the ways we may use a (learned) dynamics
model to solve for a (learned) policy (Sec. 4.4). Afterwards, Section
4.5 covers the implicit approach to model-based RL, as opposed to
the explicit approaches of Sections 4.3 and 4.4. Finally, Sec. 4.6 cov-
ers the potential benefits of model-based reinforcement learning, such
as data efficiency, targeted exploration, stability, transfer, safety and
explainability.

Model-based RL is a fundamental approach to sequential decision
making, and many other sub-fields in RL have a close connection to
model-based RL. For example, hierarchical reinforcement learning (Barto
and Mahadevan, 2003) can be approached in a model-free and model-
based way. In the latter case, the higher-level action space defines a
model with temporal abstraction. Model-based RL is also an important
approach to transfer learning (Taylor and Stone, 2009) (through model
transfer between tasks) and targeted exploration (Thrun, 1992). When
applicable, the survey also presents short overviews of such related RL
research directions.

The remainder of this chapter is organized as follows. We first discuss
the main algorithmic categories within model-based RL (Sec. 4.2). Then,
we present the main content of the survey, on model learning (Sec. 4.3),
planning-learning integration (Sec. 4.4), implicit model-based RL (Sec.
4.5, and the benefits of model-based RL (Sec. 4.6). At the end of the
survey, we also present Related Work (Sec. 4.7), Discussion (Sec. 4.8),
and Summary (Sec. 4.9) sections.

4.2 categories of model-based reinforcement learning

We refer the reader to Chapter 2 for a formal introduction to the MDP
problem, relevant notation, and an introduction to planning, reinforce-
ment learning and model-based RL. We defined model-based RL as:
‘any MDP approach that uses 1) a model (known or learned), i.e., re-
versible access to the MDP dynamics, and 2) a global solution, like a
learned value or policy function’. The first model-based RL algorithm
was developed by Sutton (1990), although similar ideas were proposed
around the same time in the search community, in the form of Learn-
ing Real-Time A? (Korf, 1990). Note that the underlying principles of



4.2 categories of model-based reinforcement learning 81

Table 4.1: Categories of planning-learning integration. The top two rows show
the two separate research fields of model-free RL and planning. The
table shows three forms of explicit integration of planning and learn-
ing, depending on whether the model is learned and/or whether a
global value or policy is learned.

Model Learned
model

Global
value/policy

Model-free RL X

Planning X

Model-based RL with a learned model X X X

Model-based RL with a known model X X

Planning over a learned model X X

integrated planning and learning at least date back to the Checkers
programme by Samuel (1967).

It is important to note that, in the context of planning and learning
integration, learning is actually an overloaded term, since it may hap-
pen at two locations: 1) to approximate a dynamics model, and 2) to
approximate a value or policy function. This leads to the following
three categories of explicit planning-learning integration (summarized
in Table 4.1):

• Model-based RL with a learned model, where we both learn a model
and learn a global value or policy. An example is Dyna (Sutton,
1991).

• Model-based RL with a known model, where we have a known model
and use planning to learn a global value and/or policy. An exam-
ple is AlphaGo Zero (Silver et al., 2017c).

• Planning over a learned model, where we learn a model and (locally)
plan over it, without learning a global value or policy function.
An example is Embed2Control (Watter et al., 2015).

Note that the last category is not considered model-based RL, since it
does not learn a global solution to the problem. However, it is a form
of planning-learning integration (and some researchers may actually
consider it model-based RL), and we therefore will include this topic
in the survey. Also, note that the line between replay databases (Lin,
1992) and model-based RL with a learned tabular model is very blurry



82 model-based reinforcement learning : a survey

(Hasselt, Hessel, and Aslanides, 2019; Vanseijen and Sutton, 2015),
which of course also applies to the relation with episodic memory
(Pritzel et al., 2017).

It is important to distinguish the above categories, because they
need to cope with different challenges. For example, approaches with
a learned dynamics model typically need to account for uncertainty,
while approaches with a known/given dynamics model can ignore this
issue, an put stronger emphasis on asymptotic performance. We will
extensively encounter these categories in Sec. 4.4 on planning-learning
integration. We will now start our survey of the field, starting with the
common first step of model-based RL: dynamics model learning.

4.3 dynamics model learning

The first step of model-based RL usually involves learning the dynamics
model from observed data. In the control literature, dynamics model
learning is better known as system identification (Åström and Eykhoff,
1971; Ljung, 2001). We will first cover the general considerations of
learning a one-step model (Sec. 4.3.1). Afterwards, we extensively cover
the various challenges of model learning, and their possible solutions.
These challenges are stochasticity (Sec. 4.3.2), uncertainty due to limited
data (Sec. 4.3.3), partial observability (Sec. 4.3.4), non-stationarity (Sec.
4.3.5), multi-step prediction (4.3.6), state abstraction (Sec. 4.3.7) and
temporal abstraction (Sec. 4.3.8). The reader may wish to skip some of
these section if the particular challenge is not relevant to your research
problem or task of interest.

4.3.1 Basic considerations

Model learning is essentially a supervised learning problem (Jordan
and Rumelhart, 1992), and many topics from the supervised learning
community apply here. We will first focus on a simple one-step model,
and discuss the three main considerations: what type of model do we
learn, what type of estimation method do we use, and in what region
should our model be valid?

type of model The first question is: what do we actually consider
to be a model? We will here focus on dynamics models. A model of the
reward function can usually be easily added by predicting an additional



4.3 dynamics model learning 83

scalar. Given a batch of one-step transition data {st, at, rt, st+1}, there
are three main types of dynamics function we might be interested in:

• Forward model: (st, at) → st+1. This predicts the next state given
a current state and chosen action. It is by far the most common
type of model, and can be used for lookahead planning.

• Backward/reverse model: st+1 → (st, at). This model predicts which
states are the possible precursors of a particular state. Thereby, we
can plan in the backwards direction, which is for example used in
prioritized sweeping (Moore and Atkeson, 1993).

• Inverse model: (st, st+1) → at. An inverse model predicts which
action is needed to get from one state to another. It is for example
used in RRT planning (LaValle, 1998). As we will later see, this
function can also be useful as part of representation learning (Sec.
4.3.7).

Model-based RL has mostly focused on forward models, and these will
also be the main focus of our discussion.

estimation method We next need to determine what type of
approximation method (supervised learning method) we will use. We
discriminate between parametric and non-parametric methods, and
between exact and approximate methods.

• Parametric: Parametric methods are the most popular approach for
model approximation. Compared to non-parametric methods, a
benefit of parametric methods is that their number of parameters
is independent of the size of the observed dataset. There are two
main subgroups:

– Exact: A cardinal distinction in learning is between exact/tab-
ular and approximate methods. For a discrete MDP (or a
discretized version of a continuous MDP), a tabular method
maintains a separate entry for every possible transition. For
example, in a stochastic MDP (in which we need to learn a
probability distribution, see next section) a tabular maximum
likelihood model (Sutton, 1991) estimates the probability of
each possible transition as

T(s′|s, a) =
n(s, a, s′)

∑s′ n(s, a, s′)
, (4.1)



84 model-based reinforcement learning : a survey

where T denotes the approximation of the true dynamics T ,
and n(s, a, s′) denotes the number of times we observed s′

after taking action a in state s. This approach effectively nor-
malizes the observed transition counts. Tabular models were
popular in initial model-based RL (Sutton, 1990). However,
they do not scale to high-dimensional problems, as the size of
the required table scales exponentially in the dimensionality
of S .

– Approximate: We may also approximate the function, which
will scale down the memory requirements, introduce gen-
eralization of information between similar states. Function
approximation is therefore the preferred approach in higher-
dimensional problems. We may in principle use any para-
metric approximation method to learn the model. Exam-
ples include linear regression (Parr et al., 2008; Sutton et al.,
2008), Dynamic Bayesian networks (DBN) (Hester and Stone,
2012b), nearest neighbours (Jong and Stone, 2007), random
forests (Hester and Stone, 2013), support vector regression
(Müller et al., 1997) and neural networks (Narendra and
Parthasarathy, 1990; Oh et al., 2015; Wahlström, Schön, and
Deisenroth, 2015; Werbos, 1989). Especially (deep) neural
networks have become very popular in the last decade, for
function approximation in general (Goodfellow, Bengio, and
Courville, 2016), and therefore also for dynamics approxi-
mation. Compared to the other methods, neural networks
especially scale (computationally) well to high-dimensional
inputs, while being able to flexibly approximate non-linear
functions. Nevertheless, other approximation methods still
have their use as well.

• Non-parametric: The other main supervised learning approach
is non-parametric approximation. The main property of non-
parametric methods is that they directly store and use the data to
represent the model.

– Exact: Replay buffers (Lin, 1992) can actually be regarded as
non-parametric versions of tabular methods. While a table
has parameters (all table entries) and thereby a fixed size
determined by the MDP dynamics, a replay buffer can theo-
retically continue to store all data, although we of course cap
the size in practice.



4.3 dynamics model learning 85

– Approximate: We may also apply non-parametric methods
when we want to be able to generalize information to similar
states. For example, Gaussian processes (Deisenroth and
Rasmussen, 2011; Wang, Hertzmann, and Fleet, 2006) have
been a popular non-parametric approach. Gaussian processes
can also provide good uncertainty estimates, which we will
further discuss in Sec. 4.3.3.

The computational complexity of non-parametric methods de-
pends on the size of the dataset, which makes them less applicable
to high-dimensional problems, where we usually require more
data.

Throughout this work, we sometimes refer to the term ‘function ap-
proximation’. We then imply all non-tabular (non-exact) methods, i.e.,
all methods that generalize information between states.

region in which the model is valid The third important
consideration is the region of state space in which we aim to make the
model valid:

• Global: These models approximate the dynamics over the entire
state space. This is the main approach of most model learning
methods. It can be challenging to generalize well over the entire
state space, but it is the main way to store all information from
previous observations.

• Local: The other approach is to only locally approximate the dy-
namics, and each time discard the local model after planning over
it. This approach is especially popular in the control community,
where they frequently fit local linear approximations of the dy-
namics around some current state (Atkeson, Moore, and Schaal,
1997; Bagnell and Schneider, 2001; Levine and Abbeel, 2014). A
local model restricts the input domain in which the model should
be valid, and is also fitted to a restricted set of data. A benefit
of local models is that we may use a more restricted function
approximation class (like linear), and potentially have less insta-
bility compared to global approximation. On the downside, we
continuously have to estimate new models, and do not continue
to learn from all collected data (since it is infeasible to store all
previous datapoints).



86 model-based reinforcement learning : a survey

The distinction between global and local is equally relevant for repre-
sentation of a value or policy function, as we will see in Sections 4.4
and 4.6.

This concludes our discussion of the three basic considerations of
model learning. In practice, most model learning focuses on a partic-
ular combination of these: a forward model, with parametric function
approximation, and global coverage. We will now discuss the more
advanced challenges of model learning, in which this setting will also
get most attention.

4.3.2 Stochasticity

In a stochastic MDP the transition function specifies a distribution
over the possible next states, instead of returning a single next state
(Figure 4.1, left). In those cases, we should also specify a model that can
approximate entire distributions. Otherwise, when we for example train
a deterministic neural network fφ(s, a) on a mean-squared error loss
(e.g., Oh et al. (2015)), then the network will actually learn to predict
the conditional mean of the next state distribution (Moerland, Broekens,
and Jonker, 2017b). This problem is illustrated in Figure 4.1, right.

We can either approximate the entire next state distribution (descrip-
tive models), or approximate a model from which we can only draw
samples (generative model). Descriptive models are mostly feasible in
small state spaces. Examples include tabular models, Gaussian mod-
els (Deisenroth and Rasmussen, 2011) and Gaussian mixture models
(Khansari-Zadeh and Billard, 2011), where the mixture contribution
typically involved expectation-maximization (EM) style inference (Ghahra-
mani and Roweis, 1999). However, these methods do not scale well to
high-dimensional state spaces.

In high-dimensional problems, there has been much recent effort
on generative models based on neural network approximation (deep
generative models). One approach is to use variational inference (VI)
to estimate dynamics models (Babaeizadeh et al., 2017; Buesing et al.,
2018; Depeweg et al., 2016; Moerland, Broekens, and Jonker, 2017b).
Competing approach include generative adversarial networks (GANs),
autoregressive full-likelihood models, and flow-based density models,
which were applied to sequence modeling by Yu et al. (2017), Kalch-
brenner et al. (2017) and Ziegler and Rush (2019), respectively. Detailed
discussion of these methods falls outside the scope of this survey, but



4.3 dynamics model learning 87

Figure 4.1: Illustration of stochastic transition dynamics. Left: 500 samples from
an example transition function T (s′|s, a). The vertical dashed line in-
dicates the cross-section distribution on the right. Right: distribution
of st+1 for a particular s, a. We observe a multimodal distribution.
The conditional mean of this distribution, which would be predicted
by mean squared error (MSE) training, is shown as a vertical line.

there is no clear consensus yet which deep generative modeling ap-
proach works best.

4.3.3 Uncertainty

A crucial challenge of model-based learning is dealing with uncer-
tainty due to limited data. Uncertainty due to limited data (also known
as epistemic uncertainty) clearly differs from the previously discussed
stochasticity (also known as aleatoric uncertainty) (Der Kiureghian and
Ditlevsen, 2009), in the sense that uncertainty can be reduced by ob-
serving more data, while stochasticity can never be reduced. We clearly
want to be able to estimate the remaining uncertainty in our model
estimate, to assess whether our plan is actually reliable. Uncertainty is
even relevant in the absence of stochasticity, as illustrated in Figure 4.2.

We therefore want to estimate the uncertainty around our predictions.
Then, when we plan over our model, we can detect when our predictions
become less trustworthy. There are two principled approaches to uncer-
tainty estimation in statistics: frequentist and Bayesian. A frequentist
approach is for example the statistical bootstrap, applied to model esti-
mation by Fröhlich, Theis, and Hasenauer (2014) and Chua et al. (2018).
Bayesian RL methods were previously surveyed by Ghavamzadeh et
al. (2015). Especially successful have been non-parametric Bayesian
methods like Gaussian Processes (GPs), for example used for model
estimation in PILCO (Deisenroth and Rasmussen, 2011). However, GPs



88 model-based reinforcement learning : a survey

Figure 4.2: Illustration of uncertainty due to limited data. Red dotted line de-
picts an example ground truth transition function. Left: Gaussian
Process fit after 3 observations. The predictions are clearly off in the
right part of the figure, due to wrong extrapolation. The shaded area
shows the 95% confidence interval, which does identify the remain-
ing uncertainty, although not completely correct. Right: Gaussian
Process fit after 10 observations. Predictions are much more certain
now, mostly matching the true function. There is some remaining
uncertainty on the far right of the curve.

scale (computationally) poorly to high-dimensional state spaces. There-
fore, there has been much recent interest in Bayesian methods for neural
network approximation of dynamics, for example based on variational
dropout (Gal, McAllister, and Rasmussen, 2016) and variational infer-
ence (Depeweg et al., 2016). Note that uncertainty estimation is also
an active research topic in the deep learning community itself, and
advances in those fields will likely benefit model-based RL as well.
While this section discussed uncertainty estimation, we will discuss
how to deal with model uncertainty during planning in Sec. 4.4.

4.3.4 Partial observability

Partial observability occurs in an MDP when the current observation
does not provide all information about the ground truth state of the
MDP. Note the difference between partial observability and stochasticity.
Stochasticity is fundamental noise in the transition of the ground truth
state, and can not be mitigated. Instead, partial observability originates
from a lack of information in the current observation, but can partially
be mitigated by incorporating information from previous observations.
For example, a first-person view agent can not see what is behind it



4.3 dynamics model learning 89

right now, but it can remember what it saw behind it a few observations
ago, which mitigates the partial observability.

So how do we incorporate information from previous observations?
There are four main approaches: i) windowing, ii) belief states, iii)
recurrency and iv) external memory (Figure 4.3).

• Windowing: In the windowing approach we concatenate the n
most recent observations and treat these together as the state
(Lin and Mitchell, 1992). McCallum (1997) extensively studies
how to adaptively adjust the window size. In some sense, this is
the tabular solution to partial observability. Although effective in
small problems, there are several important limitations. First of
all, the size of the model grows linearly in n (the history length),
which makes them less applicable in high-dimensional problems
or with large n. More importantly, they do not generalize at all
between similar histories, which makes it hard to apply them in
high-dimensional problems as well (where we seldomly encounter
exactly the same history twice).

• Belief states: Belief states explicitly partition the learned dynam-
ics model in an observation model p(o|s) and a latent transition
model T (s′|s, a) (Chrisman, 1992). This structure reminds of the
sequence modeling approach of state-space models (Bishop, 2006),
like hidden Markov models (HMM). Estimation of model param-
eters is usually based on expectation-maximization (EM) schemes
(Ghahramani and Hinton, 1996). There are also specific planning
methods for belief state models, known as POMDP planners (Kur-
niawati, Hsu, and Lee, 2008; Silver and Veness, 2010; Spaan and
Vlassis, 2004). However, belief state models usually require prior
knowledge on the belief state structure, and have trouble scaling
to high-dimensional problems (since the expectation step becomes
intractable).

• Recurrency: The most popular solution to partial observability is
probably the use of recurrent neural networks, first applied to dy-
namics learning in Lin (1993) and Parlos, Chong, and Atiya (1994).
A variety of papers have studied RNNs in high-dimensional set-
tings in recent years (Chiappa et al., 2017; Gemici et al., 2017; Ha
and Schmidhuber, 2018). Since the transition parameters of the
RNN are shared between all timesteps, the model size is indepen-
dent of the history length, which is one the main benefits of RNNs.



90 model-based reinforcement learning : a survey

Figure 4.3: Example approaches to partial observability. The window approach
concatenates the most recent n frames and treats this as a new
state. The recurrent approach learns a recurrent mapping between
timesteps to propagate information. The Neural Turing Machine
uses an external memory to explicitly write away information and
read it back when relevant, which is especially applicable to long-
range dependencies.

They also neatly integrate with gradient-based training and high-
dimensional state spaces. However, they do suffer from vanishing
and exploding gradients to model long-range dependencies. This
may be partly mitigated by long short-term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997) or temporal skip connections
(El Hihi and Bengio, 1996). Beck et al. (2020) recent proposed
aggregators, which are more robust to long-range stochasticity in
the observed sequences, as frequently present in RL tasks.

• External memory: The final approach to partial observability is
the use of an external memory. Peshkin, Meuleau, and Kaelbling
(1999) already gave the agent access to arbitrary bits in its state
that could be flipped by the agent. Over time it learned to correctly
flip these bits to memorize historical information. A more flexible
extension of this idea are Neural Turing Machines (NTM) (Graves,
Wayne, and Danihelka, 2014), which have read/write access to
an external memory, and can be trained with gradient descent.
Gemici et al. (2017) study NTMs in the context of model learning.
External memory is especially useful for long-range dependencies,
since we do not need to keep propagating information, but can
simply recall it once it becomes relevant. The best way to store
and recall information is however still an open area of research.

Partial observability is an inherent property of nearly all real-world
tasks. When we ignore partial observability, our solution may com-
pletely fail. Therefore, many research papers that actually focus on
some other question, still need to incorporate methodology to battle the



4.3 dynamics model learning 91

partial observability in the domain. Finally, note that the above partial
observability methodology is equally applicable to a learned policy or
value function.

4.3.5 Non-stationarity

Non-stationarity in a MDP occurs when the true transition and/or
reward function change(s) over time. When the agent keeps trusting
its previous model, without detecting the change, then its performance
may deteriorate fast. Figure 4.4 illustrates the problem.

The main approach to non-stationarity are partial models (Doya et al.,
2002). Partial models are an ensemble of stationary models, where the
agents tries to detect regime switches and switches between models
accordingly. Da Silva et al. (2006) detect a switch based on the prediction
errors in transition and reward models. Nagabandi, Finn, and Levine
(2018) makes a soft assignment based on a Dirichlet process. Jaulmes,
Pineau, and Precup (2005) propose a simpler approach than partial
models, by simply strongly decaying the contribution of older data
(which is similar to a high learning rate). However, a high learning rate
also introduces a lot of instability in training.

Transfer learning (Taylor and Stone, 2009) and meta-learning (Li et al.,
2017) can actually be seen as special cases of non-stationarity, since
we deal with optimization over a sequence of tasks. For example, Fu,
Levine, and Abbeel (2016) aim to learn a generic neural network prior,
which can be quickly adapted to new tasks. We further discuss transfer
learning in Sec. 4.6.4.

4.3.6 Multi-step Prediction

After learning a model we intend to plan over it, which usually involves
a multi-step look-ahead. The models we discussed so far made 1-step
predictions of the next state. We can make multi-step predictions with
such models by repeatedly feeding the prediction back into the learned
model. However, since our learned model was never optimized to
make long range predictions, accumulating errors may actually cause
our multi-step predictions to diverge from the true dynamics. Several
authors have identified this problem (Machado et al., 2018; Talvitie,
2014, 2017; Venkatraman, Hebert, and Bagnell, 2015).

There are two approaches to obtain better multi-step predictions: i)
different loss functions and ii) separate dynamics functions for 1,2..n-



92 model-based reinforcement learning : a survey

Figure 4.4: Illustration of non-stationarity. Left: First 150 data points sampled
from initial dynamics. Black line shows the prediction of a neural
network with 2 hidden layers of 50 units and tanh activations trained
for 150 epochs. Right: Due to non-stationarity the dynamics changed
to the blue curve, from which we sample an additional 50 points.
The black curve shows the new neural network fit without detection
of the dynamics change, i.e., treating all data as valid samples from
the same transition distribution. We clearly see the network has
trouble adapting to the new regime, as it still tries to fit to the old
dynamics data points as well.

step predictions. In the first approach we simply include multi-step
prediction losses in the overall training target (Abbeel and Ng, 2005;
Chiappa et al., 2017; Hafner et al., 2019b; Ke et al., 2019). These models
still make 1-step predictions, but during training they are unrolled for
n steps and trained on a loss with the ground truth n-step observation.
The second solution is to learn a specific dynamics model for every
n-step prediction (Asadi et al., 2018). In that case, we learn for example
a specific function T3(ŝt+3|st, at, at+1, at+2), which makes a three step
prediction conditioned on the current state and future action sequence.
Some authors directly predict entire trajectories, which combines pre-
dictions of multiple depths (Mishra, Abbeel, and Mordatch, 2017). The
second approach will likely have more parameters to train, but pre-
vents the instability of feeding an intermediate prediction back into the
model.

Some papers do not explicitly specify how many steps in the future
to predict (Neitz et al., 2018), but for example automatically adjust this
based on the certainty of the predicted state (Jayaraman et al., 2018). The
topic of multi-step prediction also raises a question about performance
measures. If our ultimate goal is multi-step planning, then one-step
prediction errors are likely not a good measure of model performance.



4.3 dynamics model learning 93

4.3.7 State abstraction

Representation learning is a crucial topic in reinforcement learning and
control (Lesort et al., 2018). Good representations are essential for good
next state predictions, and equally important for good policy and value
functions. Representation learning, also referred to as dimensionality
reduction, is an important research field in machine learning itself,
and many advances in state abstraction for model estimation build on
results in the broader representation learning community.

Early application of representation learning in RL include (soft) state
aggregation (Singh, Jaakkola, and Jordan, 1995) and principal compo-
nent analysis (PCA) (Nouri and Littman, 2010). Mahadevan (2009) cov-
ers various approaches to learning basis functions in Markov Decision
Processes. However, by far the most successful approach to representa-
tion learning in recent years have been deep neural networks, with a
variety of example applications to model learning (Chiappa et al., 2017;
Oh et al., 2015; Watter et al., 2015).

A (deep) neural network dynamics model is typically factorized
in three parts: i) an encoding function zt = f enc

φ (st), which maps the
observation to a latent representation zt, ii) a latent dynamics function
zt+1 = f trans

φ (zt, at), which transitions to the next latent state based on
the chosen action, and iii) a decoder function st+1 = f dec

φ (zt+1), which
maps the latent state back to the next state prediction. This structure,
visualized in Figure 4.6 (item 4), reminds of an auto-encoder (with
added latent dynamics), as frequently used for representation learning
in the deep learning community.

There are three important additional themes for state representation
learning in dynamics models: i) how do we ensure that we can plan at
a latent level, ii) how may we better structure our models to emphasize
objects and their physical interactions, and iii) how may we construct
loss functions that retrieve more informative representations.

planning at a latent level We ideally want to be able to
plan at a latent level. Since the representation space is usually smaller
than the observation space, this may save much computational effort.
However, we must ensure that the predicted next latent state lives in the
same embedding space as the encoded current latent state. Otherwise,
repeatedly feeding the latent prediction into the latent dynamics model
will lead to predictions that diverge from the truth. One approach is
to add an additional loss that enforces the next state prediction to



94 model-based reinforcement learning : a survey

be close to the encoding of the true next state (Watter et al., 2015).
An alternative are deep state-space models, like deep Kalman filters
(Krishnan, Shalit, and Sontag, 2015) or deep variational Bayes filters
(Karl et al., 2016). These require probabilistic inference of the latent
space, but do automatically allow for latent level planning.

We may also put additional restrictions on the latent level dynamics
that allow for specific planning routines. For example, (iterative) linear-
quadratic regulator (LQR) (Todorov and Li, 2005) planning requires a
linear dynamics function. Several authors (Fraccaro et al., 2017; Van
Hoof et al., 2016; Watter et al., 2015) linearize their learned model on
the latent level, and subsequently apply iLQR to solve for a policy (Van
Hoof et al., 2016; Watter et al., 2015; Zhang et al., 2019). In this way,
the learned representations may actually simplify planning, although
it does require that the true dynamics can be linearly represented at
latent level.

State abstraction is also related to grey-box system identification. In
system identification (Åström and Eykhoff, 1971), the control term
for model learning, we may discriminate ‘black box’ and ‘grey box’
approaches (Ljung, 2001). Black box methods, which do not assume
any task-specific knowledge in their learning approach, are the main
topic of Section 4.3. Grey box methods do partially embed task-specific
knowledge in the model, and estimate remaining free parameters from
data. The prior knowledge of grey box models is usually derived from
the rules of physics. One may use the same idea to learn state abstrac-
tions. For example, in a robots task with visual observations, we may
known the required (latent) transition model (i.e., f trans

φ is known from
physics), but not the encoding function from the visual observations
( f enc

φ is unknown). Wu et al. (2015) give an example of this approach,
where the latent level dynamics are given by a known, differentiable
physics engine, and we optimize for the encoding function from image
observations.

objects A second popular approach to improve representations is
by focusing on objects and their interactions. Infants are able to track
objects at early infancy, and the ability to reason about object interaction
is indeed considered a core aspect of human cognition (Spelke and
Kinzler, 2007). In the context of RL, these ideas have been formulated as
object-oriented MDPs (Diuk, Cohen, and Littman, 2008) and relational
MDPs (Guestrin et al., 2003). Compared to models that predict raw
pixels, such object-oriented models may better generalize to new, unseen



4.3 dynamics model learning 95

environments, since they disentangle the physics rules about objects
and their interactions.

We face two important challenges to learn an object-oriented model:
1) how do we identify objects, and 2) how do we model interaction
between objects at a latent level. Regarding the first questions, several
methods have provided explicit object recognizers in advance (Fragki-
adaki et al., 2015; Kansky et al., 2017), but other recent papers manage to
learn them from the raw observations in a fully unsupervised way (Van
Steenkiste et al., 2018; Watters et al., 2019; Xu et al., 2019). The interac-
tion between objects is typically modeled like a graph neural network. In
these networks, the nodes should capture object features (e.g., appear-
ance, location, velocity) and the edge update functions predict the effect
of an interaction between two objects (Van Steenkiste et al., 2018). There
is a variety of recent successful examples in this direction, like Schema
Networks (Kansky et al., 2017), Interaction Networks (Battaglia et al.,
2016), Neural Physics Engine (Chang et al., 2016), Structured World
Models (Kipf, Pol, and Welling, 2020) and COBRA (Watters et al., 2019).
In short, object-oriented approaches tend to embed (graph) priors into
the latent neural network structure that enforce the model to extract
objects and their interactions. We refer the reader to Battaglia et al.
(2018) for a broader discussion of relational world models.

better loss functions Another way to achieve more informative
representations is by constructing better loss functions. First of all, we
may share the representation layers of the model with other prediction
tasks, like predicting the reward function. The idea to share different
prediction targets to speed-up representation learning is better known
as an ‘auxilliary loss’ (Jaderberg et al., 2016).

We may also construct other losses for which we do not directly
observe the raw target. For example, a popular approach is to predict the
relative effect of actions: st+1 − st (Finn, Goodfellow, and Levine, 2016).
Such background subtraction ensures that we focus on moving objects.
An extension of this idea is contingency awareness, which describes the
ability to discriminate between environment factors within and outside
our control (Watson, 1966). We would also like to emphasize these
controllable aspects in our representations. One way to achieve this is
through an inverse dynamics loss, where we try to predict the action
that achieves a certain transition: (s, s′)→ a (Pathak et al., 2017). This
will focus on those parts of the state that the chosen action affects. Other
approaches that emphasize controllable factors can be found in Choi
et al. (2018), Sawada (2018), and Thomas et al. (2018).



96 model-based reinforcement learning : a survey

There is another important research line that improves representations
through contrastive losses. A contrastive loss is not based on a single data
point, but on the similarity or dissimilarity with other observations. As
an example, Sermanet et al. (2018) record the same action sequence from
different viewpoints, and obtains a compact representation by enforcing
similar states from different viewpoints to be close to eachother in
embedding space. Ghosh, Gupta, and Levine (2018) add a loss based on
the number of actions needed to travel between states, which enforces
states that are dynamically close to be close in representation space as
well. This is an interesting idea, since we use representation learning
to actually make planning easier. Contrastive losses have also been
constructed from the rules of physics in robotics tasks (Jonschkowski
and Brock, 2015), have been applied to Atari models (Anand et al., 2019),
and have combined with the above object-oriented approach (Kipf, Pol,
and Welling, 2020).

Finally, there is an additional way to improve representations through
value equivalent models (Grimm et al., 2020). These models are trained on
their ability to predict a value or (optimal) action. We decide to cover
this idea in Sec. 4.5 on implicit model-based RL, which covers methods
that optimize elements of the model-based RL process for the ability
to output an (optimal) action or value. In short, this section discussed
the several ways in which the state representation learning of models
may be improved, for example by embedding specific substructure
in the networks (e.g., to extract objects and their interactions), or by
constructing smarter loss functions.

4.3.8 Temporal abstraction

The MDP definition typically involves low-level, atomic actions executed
at a high-frequency. This generates deep search trees with long-range
credit assignment. However, many of these paths give the same end-
state, and some end-states are more useful than others. The idea of
temporal abstraction, better known as hierarchical reinforcement learn-
ing (Barto and Mahadevan, 2003; Hengst, 2017; Thrun and Schwartz,
1995), is to identify a high-level action space that extends over multiple
timesteps (Figure 4.5). Temporal abstraction may reduce both the sam-
ple (Brunskill and Li, 2014) and computational complexity (Mann and
Mannor, 2014) of solving the MDP.

There are a variety of frameworks to define abstract actions. One
popular choice is the options framework (Sutton, Precup, and Singh,



4.3 dynamics model learning 97

1999). Options are a discrete set of high-level actions. Each option u has
its own initiation set Iu ∈ S from which the option can be started, a sub-
policy πu for execution, and a state-dependent termination probability
βu(s) for the option to end in a reached state. A popular competing
approach are goal-conditioned policy/value functions (GCVF), also known
as universal value function approximators (Schaul et al., 2015). These
ideas originally date back to work on Feudal RL (Dayan and Hinton,
1993). GCVFs use a goal space G as the abstract action space. They
learn a goal-conditioned value function Qg(s, a, g), which estimates
the value of a in s if we attempt to reach g. We train such models
on a goal-parametrized reward function, which for example rewards the
agent for getter closer to g in Euclidean distance (Nachum et al., 2018).
Afterwards, we can plan by chaining multiple subgoals.

Options and goal-conditioned value functions show conceptual differ-
ences. Most importantly, options have a separate sub-policy per option,
while GCVFs attempt to generalize over goals/subpolicies. Moreover,
options fix the initiation and termination set based on state information,
while GCVFs can initiate and terminate everywhere. Note that GCVFs
in some sense interpolate between one-step models (pick a really close
goal) and model-free RL (directly impute the final goal in the GCVF),
as for example shown by Pong et al. (2018).

discovery of relevant sub-routines Whether we use options,
GCVFs, or some other definition of abstract actions, the most important
question is: how do we actually identify the relevant subroutines, i.e.,
relevant end-states for our options, or goal states for our GCVF. We
summarize the most important approaches below:

• Graph structure: This approach identifies ‘bottleneck’ states as end-
points for the subroutines. A bottleneck is a state that connects two
densely interconnected subgraphs in the MDP graph (Menache,
Mannor, and Shimkin, 2002). Therefore, a bottleneck is a crucial
state in order to reach another region of the MDP, and therefore a
candidate subgoal. There are several ways to identify bottlenecks:
McGovern and Barto (2001) identify bottlenecks from overlapping
states in successful trials, Şimşek, Wolfe, and Barto (2005) run a
graph partitioning algorithms on a reconstruction of the MDP
graph, and Goel and Huber (2003) search for states with many
predecessors, but whose successors do not have many predeces-
sors. The bottleneck approach received much attention in smaller



98 model-based reinforcement learning : a survey

Figure 4.5: Conceptual illustration of a two-level hierarchy, partially based on
Nachum et al. (2018). Standard low-level interaction is shown with
solid lines, temporal abstraction is shown with dashed lines. The
high-level controller picks a high-level action (goal) gt according to
πhigh. After fixing gt, the low level controller executes the relevant
subpolicy, for example in the form of a goal-conditioned policy
πlow(s, g). The number of steps between high-level actions can be
fixed or variable, depending on the framework. The illustration
assumes full observability, in which case we only need to condition
πhigh on the current observation. We may also feed g back into
the next high-level decision to enable temporal correlation between
goals.

problems, but have received less attention in higher-dimensional
problems.

• State-space coverage: Another idea is to spread the end-states of
subroutines over the entire state-space, in order to reach good
coverage. Most approaches first cluster the state space, and sub-
sequently learn a dynamics model to move between the cluster
centers (Lakshminarayanan et al., 2016; Machado, Bellemare, and
Bowling, 2017; Mannor et al., 2004). Instead of the raw state space,
we may also cluster in a compressed representation of it (Ghosh,
Gupta, and Levine, 2018) (see previous section as well).

• Compression (information-theoretic): We may also attempt to simply
compress the space of possible end-points. This idea is close
to the state space coverage ideas above. Achiam et al. (2018),
Eysenbach et al. (2019), and Gregor, Rezende, and Wierstra (2016)
associate the distribution of observed end-states with a noise



4.3 dynamics model learning 99

Figure 4.6: Overview of different types of mappings in model learning. 1) Stan-
dard Markovian transition model st, at → st+1. 2) Partial observabil-
ity (Section 4.3.4). We model s0...st, at → st+1, leveraging the state
history to make an accurate prediction. 3) Multi-step prediction
(Section 4.3.6), where we model st, at...at+n−1 → st+n, to predict the
n step effect of a sequence of actions. 4) State abstraction (Section
4.3.7), where we compress the state into a compact representation
zt and model the transition in this latent space. 5) Temporal/action
abstraction (Section 4.3.8), better known as hierarchical reinforce-
ment learning, where we learn an abstract action ut that brings us
to st+n. Temporal abstraction abstraction directly implies multi-step
prediction, as otherwise the abstract action ut is equal to the low
level action at. All the above ideas (2-5) are orthogonal and can be
combined.

distribution. After training, the noise distribution acts as a high-
level action space from which we can sample. Various approaches
also include additional information-theoretic regularization of this
compression. For example, Gregor, Rezende, and Wierstra (2016)
add the criterion that action sequences in the compressed space
should make the resulting state well predictable (‘empowerment’).
Other examples are provided by Florensa, Duan, and Abbeel
(2017), Fox, Moshkovitz, and Tishby (2016), and Hausman et al.
(2018).

• Reward relevancy: The idea of this approach is that relevant sub-
routines will help incur extra reward, and they should therefore
automatically emerge from a black-box optimization approach.
These approaches embed the structure of subroutines into their
algorithms, ensure that the overall model is differentiable, and
run an end-to-end optimization. Examples are the Option-Critic
(Bacon, Harb, and Precup, 2017; Riemer, Liu, and Tesauro, 2018)



100 model-based reinforcement learning : a survey

and Feudal Networks (Vezhnevets et al., 2017), with more exam-
ples in Frans et al. (2018), Heess et al. (2016), Levy, Platt, and
Saenko (2019), and Nachum et al. (2018). Daniel et al. (2016) and
Fox et al. (2017) use probabilistic inference based on expectation-
maximization, where the E-step infers which options are active,
and the M-step maximizes with respect to the value. A challenge
for end-to-end approaches is ensuring diversity, i.e., preventing
that a single subroutine starts to solve the entire task (or that every
subroutine terminates after one step).

• Priors: Finally, we may also use prior knowledge to identify useful
subroutines. Sometimes, the prior knowledge is domain-specific,
like pre-training on hand-coded sub-tasks (Heess et al., 2016;
Tessler et al., 2017). Kulkarni et al. (2016) identify all objects in the
scene as end-points, which may generalize over domains when
combined with a generic object recognizer. Several papers also
infer relevant subroutines from expert demonstrations (Fox et al.,
2017; Hamidi et al., 2015; Konidaris et al., 2012), which is of course
also a form of prior knowledge.

This concludes our discussion of temporal abstraction, and of model
learning as a whole. As a summary, Figure 4.6 present a conceptual
overview of four of the challenges we discussed (partial observability,
multi-step prediction, state abstraction and temporal abstraction), and
the type of connectivity that they require. As we have seen, there are a
variety of challenges and issues in model learning. In the next section,
we will discuss how this learned model may actually be used to act and
learn in the environment.

4.4 integration of planning and learning

The importance of models for intelligence has been long recognized in
various research fields: machine learning (Bellman, 1966; Jordan and
Rumelhart, 1992), neuroscience (Doll, Simon, and Daw, 2012; Tolman,
1948) and behavioural psychology (Craik, 1943; Doll, Simon, and Daw,
2012; Wolpert, Ghahramani, and Jordan, 1995). In this section we will
discuss the integration of planning and learning to arrive at a policy
π(a|s), i.e., a local or global specification of action prioritization. We
will specify a framework that disentangles the essential questions in the
integration of planning and learning. The four main questions we need
to answer are:



4.4 integration of planning and learning 101

1. At which state do we start planning? (Sec. 4.4.1)

2. How much planning budget do we allocate for planning and real
data collection? (Sec. 4.4.2)

3. How to plan? (Sec. 4.4.3)

4. How to integrate planning in the learning and acting loop? (Sec.
4.4.4)

These dimensions each have several important subconsiderations. The
overall framework is summarized in Table 4.2, and will be discussed in
the following sections.

4.4.1 At which state to start planning?

A model allows us to plan over it. The natural first question is: at which
state shall we start planning? There are several options:

• Random: A straightforward approach is to randomly select states
throughout state space. This is for example the approach of Dy-
namic Programming (Bellman, 1966), which selects all possible
states in a sweep. The major drawback of this approach is that
it does not scale to high dimensional problems, since the total
number of states grows exponentially in the dimensionality of the
state space. The problem is that we will likely update many states
that are not even reachable from the start state.

• Visited: We may ensure that we only plan at reachable states by
selecting previously visited states as starting points. This approach
is for example chosen by Dyna (Sutton, 1990).

• Prioritized: Sometimes, we may be able to obtain an ordering over
the reachable states, identifying their relevancy for a next planning
update. A good example is Prioritized Sweeping (Moore and
Atkeson, 1993), which identifies states that likely need updating.
Prioritization is also popular in replay database, but these are not
considered model-based RL.

• Current: Finally, a common approach is to only spend planning
effort at the current state of the real environment. This puts much
emphasis at finding a better solution or more information in
the region where we are currently operating. Even model-based
RL methods with a known model, like AlphaGo Zero (Silver



102 model-based reinforcement learning : a survey

Table 4.2: Overview of dimensions of planning-learning integration. These con-
siderations are discussed throughout Sec. 4.4. Table 4.3 summarizes
several model-based RL algorithms on these dimensions.

Dimension Consideration Choices

1. Start state
(4.4.1)

- Start state Random↔ visited↔ prioritized↔ current

2. Budget (4.4.2) - Number of real steps
before planning

1↔ n, episode, etc.

- Effort per planning cy-
cle

1↔ n ↔ convergence

3. Planning ap-
proach (4.4.3)

- Type Discrete↔ gradient-based

- Direction Forward↔ Backward

- Breadth 1↔ adaptive↔ full

- Depth 1↔ interm./adaptive↔ full

- Uncertainty Data-close↔ Uncertainty propagation
(-Prop.method: parametric↔ sample)

4. Integration
in learning loop
(4.4.4)

- Planning input from
learned function

Yes (value/policy)↔ No

- Planning output for
training targets

Yes (value/Policy)↔ No

- Planning output for ac-
tion selection

Yes↔ No



4.4 integration of planning and learning 103

et al., 2017c), sometimes voluntarily introduce the notion of a
real environment and current state. The real environment step
introduces a form of pruning, as it ensures that we move forward
at some point, obtaining information about deeper nodes (see
Moerland, Broekens, and Jonker, 2020a as well).

4.4.2 How much budget do we allocate for planning and real data collection?

We next need to decide i) after how many real environment steps we
start to plan, and ii) once we start planning, what budget we allo-
cate? Together, these two questions determine an important trade-off in
model-based RL.

when to start planning? We first need to decide how many
real steps we will make before a new planning cycle. Many approaches
plan after every real environment step. For example, Dyna (Sutton,
1990) makes up to a hundred planning steps after every real step. Other
approaches collect a larger set of data before they start to plan. For
example, PILCO (Deisenroth and Rasmussen, 2011) collects data in
entire episodes, and replans an entire solution after a set of new real
transitions has been collected. The extreme end of this spectrum is batch
reinforcement learning (Lange, Gabel, and Riedmiller, 2012), where
we only get a single batch of transition data from a running system,
and we need to come up with a new policy without being able to
interact with the real environment. Some methods may both start with
an initial batch of data to estimate the model, but also interact with the
environment afterwards (Watter et al., 2015).

how much time to spend on planning? Once we decide to
start planning, the second key question is: how much planning budget
do we allocate. We define a planning cycle to consist of multiple plan-
ning iterations, where each iteration is defined by fixing a new planning
start state. The total planning effort is then determined by two factors:
i) how many times do we fix a new start state (i.e., start a new planning
iteration), and ii) how much effort does each iteration get?

We will use Dyna (Sutton, 1990) and AlphaGo Zero (Silver et al.,
2017c) as illustrative examples of these two questions. In between every
real environment step, Dyna samples up to a 100 one-step transitions.
This means we have 100 planning iterations, each of budget 1. In con-
trast, in between every real step AlphaGo Zero does a single MCTS



104 model-based reinforcement learning : a survey

iteration, which consists of 1600 traces, each of approximate depth
200. Therefore, AlphaGo Zero performs 1 planning iteration, of bud-
get ∼ 1600 ∗ 200 = 320.000. The total budget per planning cycle for
Dyna and AlphaGo Zero are therefore 100 and ∼ 320.000, respectively.
Note that we measure planning budget as the number of model calls
here, while the true planning effort of course also depends on the
computational burden of the planning algorithm itself.

Some approaches, especially the ones that target high data efficiency
(see Sec. 4.6.1) in the real environment, allow for a very high planning
budget once they start planning. These methods for example plan until
convergence on an optimal policy (given the remaining uncertainty)
(Deisenroth and Rasmussen, 2011). We call this a squeezing approach,
since we attempt to squeeze as much information out of the available
transition data as possible. We further discuss this approach in Sec.
4.6.1.

adaptive trade-off Our choice on the above two dimensions es-
sentially specifies a trade-off between planning and real data collection,
with model-free RL (no planning effort) and exhaustive search (infinite
planning effort) on both extremes. Most model-based RL approaches
set the above two considerations to fixed (intermediate) values. How-
ever, humans clearly make a much more adaptive trade-off, where they
adaptively decide a) when to start planning, and b) how much time to
spend on that plan (i.e., the two considerations discussed above). This
has indeed been an active topic of research in human psychology as
well. Keramati, Dezfouli, and Piray (2011) present this as a speed/accu-
racy trade-off, where habitual, reactive behaviour (no planning) is fast
but potentially inaccurate, while extensive planning is slow but more
accurate. See Hamrick (2019) for a more detailed discussion. We also
return to this topic in Sec. 4.6.3.

A few authors have investigated an adaptive trade-off between plan-
ning and acting in model-based RL. Pascanu et al. (2017) add a small
penalty for every planning step to the overall objective, which ensures
that planning should provide reward benefit. This approach is very
task specific. Hamrick et al. (2017) learn a meta-controller over tasks
that learns to select the planning budget per timestep. In contrast to
these optimization-based approaches, Kalweit and Boedecker (2017)
derive the ratio between real and planned data from the variance of the
estimated Q-function. When the variance of the Q-function is high, they
sample additional data from the model. This ensures that they only use
ground-truth data near convergence, but accept noisier model-based



4.4 integration of planning and learning 105

data in the beginning. Lu, Mordatch, and Abbeel (2019) propose a
similar idea based on the epistemic uncertainty of the value function,
by also increasing planning budgets when the uncertainty rises above
a threshold. However, when we have a learned model, we probably
do not want to plan too extensively in the beginning of training either
(since the learned model is then almost random), so there are clear open
research questions here.

4.4.3 How to plan?

The third crucial consideration is: how to actually plan? Of course, we
do not aim to provide a full survey of planning methods here, and
refer the reader to Moerland, Broekens, and Jonker (2020a) for a recent
framework to categorize planning and RL methods. Instead, we focus
on some crucial decisions we have to make for the integration, on a)
the use of potential differentiability of the model, b) the direction of
planning, c) the breadth and depth of the plan, and d) the way of
dealing with uncertainty.

type One important distinction between planning methods is whether
they require differentiability of the model:

• Discrete planning: This is the main approach in the classic AI and
reinforcement learning communities, where we make discrete
back-ups which are stored in a tree, table or used as training tar-
gets to improve a value or policy function. We can in principle use
any preferred planning method. Examples in the context of model-
based RL include the use of probability-limited search (Lai, 2015),
breadth-limited depth-limited search (François-Lavet et al., 2019),
Monte Carlo search (Silver, Sutton, and Müller, 2008), Monte
Carlo Tree Search (Anthony, Tian, and Barber, 2017; Jiang, Ek-
wedike, and Liu, 2018; Moerland et al., 2018a; Silver et al., 2017c),
minimax-search (Baxter, Tridgell, and Weaver, 1999; Samuel, 1967),
or a simple one-step search (Sutton, 1990). These methods do not
require any differentiability of the model.

• Differential planning: The gradient-based approach requires a dif-
ferentiable model. If the transition and reward models are differen-
tiable, and we specify a differentiable policy, then we can directly
take the gradient of the cumulative reward objective with respect
to the policy parameters. While a real world environment or sim-



106 model-based reinforcement learning : a survey

ulator is by definition not differentiable, our learned model of
these dynamics (for example a neural network) usually is differen-
tiable. Therefore, model-based RL can suddenly utilize differential
planning methods, exploiting the differentiability of the learned
model. Note that differentiable models may also be obtained from
the rules of physics, for example in differentiable physics engines
(Avila Belbute-Peres et al., 2018; Degrave, Hermans, Dambre, et al.,
2019).

A popular example is the use of iterative linear quadratic reg-
ulator planning (Todorov and Li, 2005), which requires a linear
model, and was for example used as a planner in Guided Pol-
icy Search (Levine and Koltun, 2013). In the RL community, the
gradient-based planning approach is better known as value gra-
dients (Fairbank and Alonso, 2012; Heess et al., 2015). Success-
ful examples of model-based RL that use differential planning
are PILCO (Deisenroth and Rasmussen, 2011), which differenti-
ates through a Gaussian Process dynamics model, and Dreamer
(Hafner et al., 2019a) and Temporal Segment Models (Mishra,
Abbeel, and Mordatch, 2017), which differentiate through a (la-
tent) neural network dynamics model.

Gradient-based planning is especially popular in the robotics and
control community, since it requires relatively smooth underlying tran-
sition and reward functions. In those cases, it can be very effective.
However, it is less applicable to discrete problems and sparse reward
functions.

direction We also have to decide on the direction of planning (see
also Sec. 4.3.1):

• Forward: Forward simulation (lookahead) is the standard approach
in most planning and model-based RL approaches, and actually
assumed as a default in all other paragraphs of this section. We
therefore do not further discuss it.

• Backward: We may also learn a reverse model, which tells us
which state-action pairs lead to a particular state (s′ → s, a). A
reverse model may help spread information more quickly over the
state space. This idea is better known as Prioritized sweeping (PS)
(Moore and Atkeson, 1993). In PS, we track which state-action
value estimates have changed a lot, and then use the reverse model
to identify their possible precursors, since the estimates of these



4.4 integration of planning and learning 107

state-actions are now likely to change as well. This essentially
builds a search tree in the backward direction, where the planning
algorithm follows the direction of largest change in value estimate.

Various papers have shown the benefit of prioritized sweeping
with tabular models (Dearden, Friedman, and Andre, 1999; Moore
and Atkeson, 1993; Wiering and Schmidhuber, 1998), which are
trivial to invert. These ideas were extended to linear approxima-
tion (Sutton et al., 2012) and nearest-neighbour approximation
of the dynamics (Jong and Stone, 2007) as well. More recently,
backward models were studied in high-dimensional problems
using neural network approximation, for example by Agostinelli
et al. (2019), Edwards, Downs, and Davidson (2018), and Corneil,
Gerstner, and Brea (2018).

breadth and depth A new planning iteration starts to lookahead
from a certain start state. We then still need to decide on the the breadth
and the depth of the lookahead. For model-free RL approaches, breadth
is not really a consideration, since we can only try a single action in a
state (a breadth of one). However, a model is by definition reversible,
and we are now free to choose and adaptively balance the breadth and
depth of the plan. We will list the possible choices for both breadth and
depth, which are summarized in Figure 4.7.

For the breadth of the plan, there are three main choices:

• Breadth = 1: These methods only sample single transitions or indi-
vidual traces from the model, and still apply model-free updates
to them. Therefore, they still use a breadth of one. The cardinal
example of this approach is Dyna (Sutton, 1990), which sampled
additional one-step data for model-free Q-learning (Watkins and
Dayan, 1992) updates. More recently, Kalweit and Boedecker (2017)
applied the above principle to deep deterministic policy gradient
(DDPG) updates, Kurutach et al. (2018) to trust region policy
optimization (TRPO) updates and Gu et al. (2016) to normalized
advantage function (NAF) updates.

• Breadth = adaptive: Many planning methods adaptively scale the
breadth of planning. The problem is of course that we cannot
afford to go full breadth and full depth, because exhaustive search
is computationally infeasible. A method that adaptively scales
the breadth of the search is for example Monte Carlo Tree Search
(Browne et al., 2012), by means of the upper confidence bounds



108 model-based reinforcement learning : a survey

formula. This ensures that we do go deeper in some arms, before
going full wide at the levels above. This approach was for example
applied in AlphaGo Zero (Silver et al., 2017c).

• Breadth = full: Finally, we may of course go full wide over the
action space, before we consider searching on a level deeper. This
is for example the approach of Dynamic Programming, which
goes full wide with a depth of one. In the context of model-based
RL, few methods have taken this approach.

For the depth of the plan, there are four choices:

• Depth = 1: We may of course stop after a depth one. For example,
Dyna (Sutton, 1990) sampled transition of breadth one and depth
one.

• Depth = intermediate: We may also specify an intermediate search
depth. RL researchers have looked at balancing the depth of
the back-up for long, since it trades off bias against variance
(a shallow back-up has low variance, while a deep back-up is
unbiased). In the context of Dyna, Holland, Talvitie, and Bowling
(2018) explicitly studied the effect of deeper roll-outs, showing
that traces longer than depth 1 give better learning performance.
Of course, we should be careful that deeper traces do not depart
from the region where the model is accurate.

• Depth = adaptive: Adaptive methods for depth go together with
adaptive methods for breadth. For example, a MCTS tree does not
have a single depth, but usually has a different depth for many of
its leafs.

• Depth = full: This approach samples traces in the model until an
episode terminates, or until a large horizon. PILCO and Deep
PILCO for example sample deep traces from their models (Gal,
McAllister, and Rasmussen, 2016).

This is of course a very shallow treatment of the crucial breadth versus
depth balancing in planning, which has a close relation to exploration
methods as well. However, the focus of this survey is the integration of
planning and learning, not the actual planning method itself. From a
model-based RL perspective, the crucial realization is that compared
to model-free RL, we can suddenly use a breadth larger than one.
Nevertheless, many model-based RL methods still choose to stick to a



4.4 integration of planning and learning 109

Figure 4.7: Breadth and depth of a single planning iteration. For every plan-
ning iteration, we need to decide on the breadth and depth of the
lookahead. In practice, planning iterations usually reside somewhere
left of the red dashed line, since we cannot afford a full breadth,
full depth (exhaustive) search. Most planning methods, like MCTS,
adaptively balance breadth and depth throughout the tree, where
the breadth and depth differ throughout the tree. Figure is based on
Sutton and Barto, 2018, who used it to categorize different types of
back-ups. A single planning iteration, which we define by fixing a
new root state, can indeed be seen as a large back-up.

breadth of one in their model samples, likely because this gives seamless
integration with model-free updates. We further discuss this topic in
Sec. 4.6.1.

dealing with uncertainty When we plan over a learned model,
we usually also need to deal with the uncertainty of a learned model.
There are two main approaches:



110 model-based reinforcement learning : a survey

• Data-close planning: The first approach is to ensure that the plan-
ning iterations stay close to regions where we have actually ob-
served data. For example, Dyna (Sutton, 1990) samples start states
at the location of previously visited states, and only samples one-
step transitions, which ensures that we do not depart from the
known region of state space. Other approaches, like Guided Policy
Search (Levine and Abbeel, 2014), explicitly constraint the new
plan to be close to the current policy (which generated the data
for the model).

• Uncertainty propagation: We may also explicitly estimate model
uncertainty, which allows us to robustly plan over long horizons.
Once we depart too far from the observed data, model uncertainty
will increase, predictions will start to spread out over state space,
and the learning signal will naturally vanish. Estimation of model
uncertainty was already discussed in Sec. 4.3.3. We will here focus
on propagation of uncertainty over timesteps, since the next state
uncertainty is of course conditioned on the uncertainty of the
previous step. There are two main propagation approaches:

– Parametric: This propagation method fits a parametric distri-
bution to the uncertainty at every timestep. This approach
is for example used by PILCO (Deisenroth and Rasmussen,
2011), which derives closed form analytic expressions to track
the uncertainty. However, analytic parametric propagation is
not possible for more complicated models, like for example
neural networks.

– Sample-based: This propagation approach, also known as par-
ticle methods, tracks the distributions of uncertainty by prop-
agating a set of particles forward. The particles together
represent the predicted distribution at a certain number of
steps. Particle methods are for example used in Deep PILCO
(Gal, McAllister, and Rasmussen, 2016) and PETS (Chua et
al., 2018). Note that fitting to a distribution, or matching
moments of distributions, may have a regularizing effect.
Therefore, Deep PILCO (Gal, McAllister, and Rasmussen,
2016) does propagate particles through the dynamics func-
tion, but then refits these particles to a (Gaussian) distribution
at every step. See Chua et al. (2018) for a broader discussion
of uncertainty propagation approaches.



4.4 integration of planning and learning 111

We may also use uncertainty to determine the depth of our value
estimates. Stochastic ensemble value expansion (STEVE) (Buckman
et al., 2018) reweights value targets of different depths according
to their associated uncertainty, which is derived from both the
value function and transition dynamics uncertainty. Thereby, we
base our value estimates on those predictions which have highest
confidence.

This concludes our discussion of the actual planning approach in
planning-learning integration. As mentioned before, there are many
more considerations in a planning algorithm, like managing exploration
(balancing breadth and depth in the search tree). However, these are not
challenges of planning-learning integration, and therefore not further
covered in this section.

4.4.4 How to integrate planning in the learning and acting loop?

We have now specified how to plan (the start point, budget and planning
method). However, we still need to integrate planning in the larger
learning and acting loop. Figure 4.8, which we already introduced in
the Introduction chapter (Fig. 1.1), presents a conceptual overview of
the overall training loop. We have so far focused on the planning box
(arrow a), but we will now focus on the connection of planning to other
aspects of the learning loop. These include: i) directing new planning
iterations based on learned knowledge in value or policy functions
(Fig. 4.8, arrow b), ii) using planning output to update learned value
or policy functions (Fig. 4.8, arrow c), and iii) using planning output to
select actions in the real world (Fig. 4.8, arrow d).

planning input from learned functions The learned value
or policy functions may store much information about the current
environment, which may help to focus the next planning iteration. We
distinguish the use of value and policy information:

• Value priors: The most common way to incorporate value infor-
mation is through bootstrapping (Sutton and Barto, 2018), where
we plug in the current prediction of a state or state-action value
to prevent having to search deeper (reducing the depth of the
search). Various model-based RL algorithm use bootstrapping in
their planning approach, for example Baxter, Tridgell, and Weaver
(1999), Jiang, Ekwedike, and Liu (2018), Moerland et al. (2018a),



112 model-based reinforcement learning : a survey

Figure 4.8: Procedural details of planning/learning integrations. Arrows (num-
bered a-g) indicate possible connections. a) plan over a learned
model, b) use information from a policy/value network to improve
the planning procedure, c) use the result from planning as training
targets for a policy/value, d) act in the real world based on the
planning outcome, e) act in the real world based on a policy/value
function, f) generate training targets for the policy/value based on
real world data, g) generate training targets for the model based on
real world data. Most algorithms only implement a subset of these
connections. See Figure 4.9 for an illustration of the subsets used by
different algorithms.

and Silver et al. (2017c). Note that bootstrapping is also a very
common principle in model-free RL. We may also use the learned
value function to initialize the values of the action nodes at the
root of the search (Hamrick et al., 2020; Silver, Sutton, and Müller,
2008), which we could interpret as a form of bootstrapping at
depth 0.

• Policy priors: We can also leverage a learned policy in a new
planning iteration. Several ideas have been proposed. AlphaGo
Zero (Silver et al., 2017c) uses the probability of an action as a prior
multiplication term on the upper confidence bound term in MCTS
planning. This gives extra exploration pressure to actions with



4.4 integration of planning and learning 113

high probability under the current policy network. Guided Policy
Search (GPS) (Levine and Koltun, 2013) penalizes a newly planned
trajectory for departing too much from the trajectory generated
by the current policy network. As a final example, Guo et al.
(2014) let the current policy network decide at which locations to
perform the next search, i.e., the policy network influences the
distribution of states used as a starting point for planning (Sec.
4.4.1, a form of prioritization). There are various ways in which
we may incorporate prior knowledge from a policy, and there
seems to be open research ground to identify the best of these
approaches.

planning update for policy or value update Model-based
RL methods eventually seek a global approximation of the optimal
value or policy function. The planning result may be used to update
this global approximation. We generally need to i) construct a training
target from the search, and ii) define a loss for training. We again discuss
value and policy updates separately:

• Value update: A typical choice for a value target is the state(-action)
value estimate at the root of the search tree. The estimate of
course depends on the back-up policy, which can either be on-
or off-policy. For methods that do not go wide over the actions,
like Dyna (Sutton, 1990), we may use a classic Q-learning target
(one-step, off-policy). For planning cycles that do go wide (and
deep), we can combine on- and off-policy back-ups throughout
the tree in various ways. Willemsen, Baier, and Kaisers (2020)
present a recent study of the different types of back-up policies
in a tree search. After constructing the value target, the value
approximation is usually trained on a mean-squared error (MSE)
loss (Moerland et al., 2018a; Veness et al., 2009). However, other
options are possible as well, like a cross-entropy loss between the
softmax of the Q-values from the search and the Q-values of a
learned neural network (Hamrick et al., 2020).

• Policy update: For the policy update we again observe a variety of
training targets and losses, depending on the type of planning
procedure that is used. For example, AlphaGo Zero (Silver et al.,
2017c) uses MCTS planning, and constructs a policy training target
by normalizing the visitation counts at the root node. The policy
network is then trained on a cross-entropy loss with this distribu-
tion. Guo et al. (2014) apply the same idea with a one-hot encoding



114 model-based reinforcement learning : a survey

of the best action, while Moerland et al. (2018a) cover an extension
to a loss between discrete counts and a continuous policy net-
work. As a completely different approach, Guided policy search
(GPS) (Levine and Abbeel, 2014) minimizes the Kullback-Leibler
(KL)-divergence between a planned trajectory and the output of
the policy network. Some differential planning approaches also
directly update a differentiable global representation (Deisenroth
and Rasmussen, 2011).

We may also train a policy based on a value estimate. For example,
Policy Gradient Search (PGS) (Anthony et al., 2019) uses the policy
gradient theorem (Williams, 1992) to update a policy from value
estimates in a tree. Note that gradient-based planning (discussed
in Sec. 4.4.3) also belongs here, since it directly generates gradients
to update the differentiable policy.

Most of the above methods construct training targets for value or pol-
icy at the root of the search. However, we may of course also construct
targets at deeper levels in the tree (Veness et al., 2009). This extracts
more information from the planning cycle. Many papers update their
value or policy from both planned and real data, but other papers
exclusively train their policy or value from planning (Deisenroth and
Rasmussen, 2011; Depeweg et al., 2016; Ha and Schmidhuber, 2018;
Kurutach et al., 2018), using real data only to train the dynamics model.

Note that arrows b and c in Figure 4.8 form a closed sub-loop in the
overall integration. There has been much recent interest in this sub-loop,
which iterates planning based on policy/value priors (arrow b), and
policy/value learning based on planning output (arrow c). A successful
algorithms in this class is AlphaGo Zero (Silver et al., 2017c), which is an
instance of multi-step approximate real-time dynamic programming (MSA-
RTDP). MSA-RTDP extends the classic DP ideas by using a ‘multi-step’
lookahead, learning the value or policy (‘approximate’), and operating
on traces through the environment (‘real-time’). Efroni, Ghavamzadeh,
and Mannor (2019) theoretically study MSA-RTDP, showing that higher
planning depth d decreases sample complexity in the real environment
at the expense of increased computational complexity. Although this
result is intuitive, it does show that planning may lead to better in-
formed real-world decisions, at the expense of increased (model-based)
thinking time. In addition, iterated planning and learning may also lead
to more stable learning, which we discuss in Sec. 4.6.3.



4.4 integration of planning and learning 115

planning output for action selection in the real envi-
ronment We may also use planning to select actions in the real
environment. While model-free RL has to use the value or policy ap-
proximation to select new action in the environment (Fig. 4.8, arrow
e), model-based RL may also select actions directly from the planning
output (Fig. 4.8, arrow d). Some methods only use planning for action
selection, not for value/policy updating (Silver, Sutton, and Müller,
2008; Tesauro and Galperin, 1997), for example because planning up-
dates can have uncertainty. However, many methods actually combine
both uses (Anthony, Tian, and Barber, 2017; Moerland et al., 2018a;
Silver et al., 2018, 2017c).

Selection of the real-world actions may happen in a variety of ways.
First of all, we may greedily select the best action from the plan. This
is the typical approach of methods that ‘plan over a learned model’
(Table 4.1). The cardinal example in this group are model predictive control
(MPC) or receding horizon control approaches. In MPC, we find the greedy
action of a k-step lookahead search, execute the greedy action, observe
true next state, and repeat the same procedure from there. The actual
planning algorithm in MPC may vary, with examples including iLQR
(Watter et al., 2015), direct optimal control (Chua et al., 2018; Nagabandi
et al., 2018b), Dijkstra’s algorithm (Kurutach et al., 2018), or repeated
application of an inverse model (Agrawal et al., 2016). MPC approaches
do not use learning for the value or policy function, and are therefore
not model-based RL. MPC easily deals with (changing) constraints
on the state and action space (Kamthe and Deisenroth, 2017), and is
especially popular in robotics and control tasks.

Note that we do not have to execute the greedy action after plan-
ning. Some approaches introduce additional exploration noise over the
greedy planning action (Silver et al., 2017c). Other methods intentionally
include exploration criteria for their real action. For example, Dearden,
Friedman, and Russell (1998) explore based on the 1value of perfect
information’ (VPI), which estimates from the model what exploratory
action has the highest potential to change the greedy policy. Indeed,
we may actually ‘plan for exploration’, i.e., decide which exploratory
sequence of real world actions is most promising by means of plan-
ning (Lowrey et al., 2018; Sekar et al., 2020). Planning may identify
temporally correlated action sequences that perform deep exploration
towards new reward regions, which local exploration methods would
fail to identify due to jittering behaviour (Osband et al., 2016). We call
this approach two-phase exploration (first exploring within a plan, then



116 model-based reinforcement learning : a survey

exploring in the real, irreversible environment), and extensively discuss
the benefits of this idea in Sec. 4.6.

This concludes our discussion of the main considerations in planning-
learning integration. Table 4.2 summarizes the framework, showing the
potential decisions on each dimension.

4.4.5 Conceptual comparison of approaches

This chapter discussed the various ways in which planning and learn-
ing can be integrated. We will present two summaries of the discussed
material. First of all, Figure 4.9 summarizes the different types of con-
nectivity that may be present in planning-learning integration. The
figure is based on the scheme of Figure 4.8, as used throughout this
section, and the classification of model-based RL methods described in
Table 4.1.

We see how well-known model-based RL algorithms like Dyna (Sut-
ton, 1991) and AlphaGo Zero (Silver et al., 2017c) use different connec-
tivity. For example, Dyna learns a model, which AlphaGo Zero assumes
to be known, and AlphaGo Zero select actions from planning, while
Dyna uses the learned value approximation. The bottom row shows
Embed2Control (Watter et al., 2015), a method that only plans over a
learned model, and completely bypasses any global policy or value
approximation. For comparison, the bottom-right of the figure shows
a model-free RL approach, like DQN (Mnih et al., 2015) or SARSA
(Rummery and Niranjan, 1994) with eligibility traces.

As a second illustration, Table 4.3 compares several well-known
model-based RL algorithms on the dimensions of our framework for
planning-learning integration (Table 4.2). We see how different inte-
gration approaches make widely different choices on each of the di-
mensions. It is hard to judge whether some integration approaches are
better than others. These aspects also partially depend on the prob-
lem type at hand. For example, when we have large computational
resources available, we may be able to afford the high planning budget
per timestep used by AlphaGo Zero (Silver et al., 2017c), which aims for
high asymptotic performance. Gradient-based planning can be useful,
but is mostly applicable to continuous control tasks. Backward planning
(prioritized sweeping) can be useful, but does require us to learn a
backward model. For many considerations, there are both pros and
cons. Usually, the eventual decision depends on the type of benefit



4.5 implicit model-based rl 117

(of model-based RL) we aim for, which will be discussed in the next
section.

4.5 implicit model-based rl

We have so far discussed the two key steps of model-based RL: 1) model
learning and 2) planning over the model to recommend an action
or improve a learned policy or value function. All the methodology
discussed so far was explicit, in a sense that we manually designed each
step of the process. This is the classical, explicit approach to model-
based RL (and to algorithm design in general), in which we manually
design the individual elements of the algorithms.

An interesting observation about the above process is that, although
we may manually design various aspects of the model-based RL algo-
rithm, we ultimately only care about one thing: identifying the (optimal)
value or policy. In other words, the entire model-based RL procedure
(model learning, planning, and possibly integration in value/policy ap-
proximation) can from the outside be seen as a model-free RL problem.
Eventually, we want our entire system to be able to predict an (optimal)
action or value. This intuition leads us to the field of implicit model-
based RL. The common idea underneath all these approaches is to take
one or more aspects of the model-based RL process and optimize these
for the ultimate objective, i.e., (optimal) value or policy computation.

In particular, we will focus on methods that use gradient-based
optimization. In those case, we embed (parts of) the model-based RL
process within a computational graph, which eventually outputs a
value or action recommendation. Since the graph remains end-to-end
differentiable, we may optimize one or more elements of our model-
based RL procedure for a value or action recommendation. One would
be tempted to call the field end-to-end model-based RL, but not that
the underlying principles are more general, and could also work with
gradient-free optimization.

We may use implicit model-based RL to replace each (or both) of
the steps of explicit model-based RL: 1) to learn implicit transition
models, better known as value equivalent models (Sec. 4.5.1), and 2) to
implicitly learn how to plan (Sec. 4.5.2). We will first discuss each category
individually, and afterwards discuss how they can also be combined
(Sec. 4.5.3). An overview of the ideas and papers in the following
sections is provided in Table 4.4.



118 model-based reinforcement learning : a survey

Figure 4.9: Comparison of planning and learning algorithms, based on the gen-
eral visualization of learning/planning integration from Figure 4.8.
Thick lines are used by an algorithm. Dyna (Sutton, 1991) (top-left) is
an example of model-based RL with a learned model. AlphaGo Zero
(Silver et al., 2017c) (top-right) is an example of model-based RL with
a known model. Note that therefore the model does not need up-
dating from data. Embed2Control (Watter et al., 2015) (bottom-left)
is an example of planning over a learned model. For comparison,
the bottom right shows a model-free RL algorithm, like Deep Q-
Network (Mnih et al., 2015) or SARSA (Rummery and Niranjan,
1994) with eligibility traces

.



4.5 implicit model-based rl 119

Ta
bl

e
4

.3
:S

ys
te

m
at

ic
co

m
pa

ri
so

n
of

d
iff

er
en

t
m

od
el

-b
as

ed
R

L
al

go
ri

th
m

s
on

th
e

d
im

en
si

on
s

of
pl

an
ni

ng
-l

ea
rn

in
g

in
te

gr
at

io
n

(S
ec

.4
.4

).
C

ol
ou

r
co

d
in

g:
gr

ee
n

=
m

od
el

-b
as

ed
R

L
w

it
h

a
le

ar
ne

d
m

od
el

,r
ed

=
m

od
el

-b
as

ed
R

L
w

it
h

a
kn

ow
n

m
od

el
,b

lu
e

=
pl

an
ni

ng
ov

er
a

le
ar

ne
d

m
od

el
(s

ee
Ta

bl
e

4
.1

).
U

nc
er

ta
in

ty
es

ti
m

at
io

n
m

et
ho

d
s:

G
P

=
G

au
ss

ia
n

P
ro

ce
ss

,B
E

=
bo

ot
st

ra
p

en
se

m
bl

e.
U

nc
er

ta
in

ty
p

ro
p

ag
at

io
n

m
et

ho
ds

:P
ar

=
pa

ra
m

et
ri

c
pr

op
ag

at
io

n,
Sa

m
=

sa
m

pl
e-

ba
se

d
pr

op
ag

at
io

n
(p

ar
tic

le
m

et
ho

ds
).

†
=

Be
fo

re
le

ar
ni

ng
,t

he
au

th
or

s
co

lle
ct

an
in

it
ia

lb
at

ch
of

tr
ai

ni
ng

d
at

a
fo

r
th

e
m

od
el

.T
he

nu
m

be
r

of
re

al
st

ep
s

be
fo

re
th

e
fir

st
pl

an
is

th
er

ef
or

e
3
.0

0
0
-3

0
.0

0
0

,d
ep

en
d

in
g

on
th

e
ta

sk
.A

ft
er

w
ar

ds
,t

he
y

st
ar

t
to

in
te

ra
ct

w
it

h
th

e
en

vi
ro

nm
en

t,
pl

an
ni

ng
at

ev
er

y
st

ep
.?

=
gr

ad
ie

nt
-b

as
ed

pl
an

ne
rs

im
pr

ov
e

a
re

fe
re

nc
e

tr
aj

ec
to

ry
ba

se
d

on
gr

ad
ie

nt
s.

A
lth

ou
gh

th
er

e
is

on
ly

tr
aj

ec
to

ry
,t

he
gr

ad
ie

nt
do

es
im

pl
ic

itl
y

go
w

id
e

ov
er

th
e

ac
tio

ns
,s

in
ce

it
te

lls
us

in
w

hi
ch

di
re

ct
io

n
th

e
co

nt
in

uo
us

ac
ti

on
sh

ou
ld

be
m

ov
ed

.

Pa
pe

r
St

ar
t

st
at

e
B

ud
ge

t
H

ow
to

pl
an

?
In

te
gr

at
io

n
w

it
hi

n
le

ar
ni

ng
lo

op

R
ea

ls
te

ps
be

fo
re

pl
an

Bu
dg

et
pe

r
pl

an
ni

ng
cy

cl
e

Ty
pe

D
ir

ec
ti

on
Br

ea
dt

h
&

de
pt

h
U

nc
er

ta
in

ty
In

pu
t

fr
om

va
lu

e/
po

l-
ic

y

O
ut

pu
t

to
va

lu
e/

po
l-

ic
y

O
ut

pu
t

fo
r

ac
ti

on
se

le
ct

io
n

D
yn

a
(S

ut
to

n,
1

9
9

0
)

V
is

it
ed

1
1

0
-1

0
0

st
ep

s
D

is
cr

et
e

Fo
rw

ar
d

B=
1

,D
=1

D
at

a-
cl

os
e

V
V

-

P
ri

or
it

iz
ed

sw
ee

p
in

g
(M

oo
re

an
d

A
tk

es
on

,
1

9
9

3
)

Pr
io

ri
tiz

ed
1

1
0

st
ep

s
D

is
cr

et
e

Ba
ck

w
ar

d
B=

fu
ll,

D
=1

-
V

V
-

P
IL

C
O

(D
ei

se
nr

ot
h

an
d

R
as

m
us

se
n,

2
0

1
1

)
St

ar
t

Ep
is

od
e

↑
↑

(c
on

ve
rg

en
ce

)
G

ra
di

en
t

Fo
rw

ar
d

B
>

1
?
,

D
=f

ul
l

U
nc

er
ta

in
ty

(G
P

+
Pa

r)
P

P
-

G
u

id
ed

p
ol

ic
y

se
ar

ch
(L

ev
in

e
an

d
A

bb
ee

l,
2

0
1

4
)

C
ur

re
nt

Ep
is

od
e

5
-2

0
ro

llo
ut

s
G

ra
di

en
t

Fo
rw

ar
d

B=
5

-4
0

,
D

=f
ul

l
D

at
a-

cl
os

e
P

P
-

A
lp

ha
G

o
Z

er
o

(S
ilv

er
et

al
.,

2
0

1
7

c)
C

ur
re

nt
1

∼
3

2
0

.0
0

0
D

is
cr

et
e

Fo
rw

ar
d

ad
ap

ti
ve

-
V

+P
P

X

SA
V

E
(H

am
ri

ck
et

al
.,

2
0

2
0

)
C

ur
re

nt
1

1
0

-2
0

D
is

cr
et

e
Fo

rw
ar

d
ad

ap
ti

ve
-

V
V

X

E
m

be
d

2
C

on
tr

ol
(W

at
te

r
et

al
.,

2
0

1
5

)
C

ur
re

nt
1

†
M

PC
de

pt
h

1
0

G
ra

di
en

t
Fo

rw
ar

d
B
>

1
?
,

D
=1

0

-
-

-
X

PE
TS

(C
hu

a
et

al
.,

2
0

1
8

)
C

ur
re

nt
1

M
PC

de
pt

h
1

0
-1

0
0

D
is

cr
et

e
Fo

rw
ar

d
B
>

1
,

D
=1

0
-1

0
0

U
nc

er
ta

in
ty

(B
E

+
Sa

m
)

P
-

X



120 model-based reinforcement learning : a survey

4.5.1 Value equivalent models

Standard model learning approaches, as discussed in Section 4.3, learn
a forward model that predicts the next state of the environment. How-
ever, such models may predict several aspects of the state that are not
relevant for the value. In some domains, the forward dynamics might be
complicated to learn, but the aspects of the dynamics that are relevant
for value prediction might be much smoother and easier to learn. This is
the key insight below value equivalent models (Grimm et al., 2020). Value
equivalent models are unrolled inside the computation graph to predict
a future value, instead of a future state. As such, these models are
enforced to emphasize value-relevant characteristics of the environment.
Thereby, value equivalent models are really representation learning
technique for model learning, as already mentioned at the end of Sec.
4.3.7. They can be combined with any other type of loss function as
well, like the ability to predict a future reward.

An example of a successful value-equivalent approach is MuZero
(Schrittwieser et al., 2019). During training, Muzero gets a state and
action sequence as input, and internally unrolls its model to predict the
multi-step, action-conditional value (i.e., on-policy). The training targets
for these predictions are obtained from a model-free value estimate.
The value-equivalent model can then be used in MCTS procedure,
which achieved state-of-the-art performance in the Chess, Go and Shogi,
matching or outperforming the performance of AlphaZero (Silver et al.,
2018). Value Prediction Networks (VPN) (Oh, Singh, and Lee, 2017) take
a very similar approach, but specify a b-best, depth-d search (where b
and d are hyperparameters) on the model.

A slightly different approach is taken by the Predictron (Silver et al.,
2017a). It only receives a state as input (not a sequence of actions),
and internally unrolls its models to predict the value of that state.
When we want to select an optimal action (plan), we can unroll the
Predictron for each available action in a state. Note that MuZero, VPN
and the Predictron all include a state encoding function that gets trained
on the same value-equivalent target, which can therefore helps for
representation learning (Sec. 4.3.7) as well. Moreover, all three unroll
their model in an implicit policy evaluation setting, along a single trace.
Planning, which includes policy improvement, is still explicit, and does
not happen inside the computational graph.

implicit planning We may also embed an entire planning proce-
dure in a computational graph, which would include some form of a



4.5 implicit model-based rl 121

policy improvement operation (like a maximization of actions). We will
call the idea, embedding an entire planning loop inside a computational
graph, implicit planning. When the planning operations in this graph are
differentiable, we may still be able to use end-to-end differentiation.

An implicit planning graph should output either 1) the optimal action
or policy or 2) the optimal value. We can therefore train them on two
types of losses. In the first case, we may use an imitation learning loss
with the ground-truth optimal action. The underlying idea is to train on
a series of tasks for which we already known the optimal solution, and
afterwards apply the obtained solution to new problems. Second, when
we have no expert demonstrations available, we may let our planning
graph output the optimal value, and train on a standard model-free RL
target (RL loss). The standard model-free RL target will gradually start
to estimate the optimal value, which will generate a training signal for
our planning graph.

We may use the above idea to optimize for certain elements of the
implicit planning graph. There are two main options: 1) optimize for
the transition model that appears in the graph, which is again a form
of a value-equivalent model, or 2) optimize for the actual planning
operations in the graph. We will discuss each of these in the next
sections.

value equivalent models from an implicit planning graph

Two papers that optimize a value equivalent model in an implicit
planning graph are Value Iteration Networks (VIN) (Tamar et al., 2016)
and Universal Planning Networks (UPN) (Srinivas et al., 2018). Both
papers embed a known, differentiable planning procedure in the graph
(VINs embed value iteration, UPNs embed value-gradients). The entire
planning procedure consist of multiple cycles through the planner,
which within contains multiple passes through the transition (and
reward) models. Both methods then optimize the model against either
an imitation los with the ground-truth action or a standard RL loss.

This essentially learns a value-equivalent model, since our planner
requires a model that is able to predict correct value information in order
to identify the correct optimal action. However, the internal structure of
VINs and UPNs does differ from MuZero, VPNs and the Predictron,
since they do include policy improvement operations inside. Therefore,
these value equivalent models may learn slightly different aspects of
the dynamics (i.e., MuZero and VPNs train to make correct multi-step
predictions everywhere, while VINs and UPNs would extra emphasize



122 model-based reinforcement learning : a survey

aspects relevant to estimate the optimal policy). In the next section, we
discuss the second application of implicit planning.

4.5.2 Learning to plan

We may also use the implicit planning idea to optimize for the planning
operations themselves. So far, we encountered two ways in which
learning may enter model-based RL: i) to learn a dynamics model
(Sec. 4.3), and ii) to learn a value or policy function (from planning
output) (Sec. 4.4). We now encounter a third level in which learning
may enter model-based RL: to learn to plan. The idea is to optimize our
planner over a sequence of tasks to eventually obtain a better planning
algorithm, which is a form of meta-learning (Vanschoren, 2019).

Learning to plan is likely inspired by the success of end-to-end learn-
ing in the deep learning community. While manually designed features
were for long the common approach in fields like computer vision, it
turned out that end-to-end optimization was better able to find repre-
sentations. The same idea can be extended to entire algorithms, which
may be better constructed through optimization than through manual
design. We may call this general approach algorithmic function approxi-
mation (Guez et al., 2019). Note that algorithmic function approximation
differs from standard feedforward approximators, which compute the
target in a single pass. Instead, algorithmic function approximators have
a recurrent internal structure, and - importantly - their predictions may
improve given additional internal cycles. They also differ from the standard
use of recurrent neural networks (RNNs), which are typically used to
deal with additional inputs or outputs (often in the time dimension).
Instead, algorithmic function approximators have a fixed length input
and output, but still perform internal cycles to compute the prediction.

We will discuss three examples of learning to plan: MCTSNets (Guez
et al., 2018), Imagination-augmented agents (I2A) (Racanière et al., 2017),
and Imagination-based planner (IBP) (Pascanu et al., 2017). MCTSNets
optimize elements of the MCTS algorithm, like selection, back-up and
final recommendation, against the ability to output the correct optimal
action in the game Sokoban. The dynamics model in MCTSNets is
assumed to be known. In contrast, both I2A and IBP first separately
learn a standard forward dynamics model, as extensively discussed
in Sec. 4.3. In the planning graph, I2A then learns how to aggregate
the information in these roll-outs, and how this should influence the
learned policy.



4.5 implicit model-based rl 123

Both MCTSNets and I2A optimize only part of the planning pro-
cedure, but also leave some manual design, like the order of node
expansion. Imagination-based planner (IBP) (Pascanu et al., 2017) takes
learning to plan even a step further, by introducing a differentiable
manager network that in each iteration decides 1) whether we want
to continue planning from this state, and 2) from which node in the
current tree this expansion should take place. The IBP graph is still
fully differentiable, and trained against a combination of a standard RL
loss and the internal cost of simulation. The latter ensures that the man-
ager will not continue to plan forever, which is necessary because this
planning algorithm really gets almost full freedom in its algorithmic
planning space. The authors show that the agent indeed learns how to
plan as well as for how long to plan.

4.5.3 Combined learning of models and planning

We may also combine both ideas introduced in the previous sections
(value equivalent models and learning to plan). If we specify a pa-
rameterized differentiable model and a parameterized differentiable
planning procedure, then we can optimize the resulting computational
graph jointly for the model and the planning operations. This of course
creates a harder optimization problem, since the gradients for the plan-
ner depend on the quality of the model, and vice versa. However, it is
the most end-to-end approach to model-based RL we can imagine, as
all aspects discussed in Sections 4.3 and 4.4 get wrapper into a single
optimization.

A partially structured approach in this category is TreeQN (Farquhar
et al., 2018). Like previous examples, TreeQN looks on the outside like
a standard value network, but is internally structured like a planner.
The planning algorithm of TreeQN unrolls itself up to depth d in all
directions, and aggregates the output of these predictions through a
back-up network. The back-up network outputs the value estimate
for the input state, which is optimized against a standard RL loss.
This approach internally optimizes both the model (used in the depth
d lookahead) and part of the planner (in the form of the back-up
aggregation). It is therefore a structured ‘learning to plan’ approach,
although the planner does not have the same freedom as IBP from the
previous section.

Full algorithmic freedom is provided by the Deep Repeated ConvL-
STM (DRC) (Guez et al., 2019). The authors take the most black-box



124 model-based reinforcement learning : a survey

approach possible, which they appropriately name ‘model-free plan-
ning’. DRC is a high-capacity recurrent neural network, but does not
have any planning or MDP specific internal structure. Instead, the DRC
is repeatedly unrolled, and the output is optimized against the ability
to predict a standard model-free RL objective. It is entirely up to the
RNN to internally learn both an appropriate (value-equivalent) model
and an appropriate planning procedure. The authors show that their
final RNN indeed shows signs of planning characteristics, like a test
performance that increased with additional computational time.

This concludes our discussion of implicit model-based RL. An overview
of the discussed papers and methodology is presented in Table 4.4. The
strength of the implicit model-based RL approach is tied to the strength
of optimization in general, and other fields of machine learning have al-
ready shown that optimization may beat human design intuition (given
enough data and computational resources). Moreover, value equivalent
models may be beneficial in problems where dynamics are complicated,
but the dynamics relevant for value estimation are much smoother.

However, the implicit approach has its challenges as well. For the
value-equivalent transition models, all learned predictions focus on the
value and reward information, which is derived from a scalar signal (the
reward). These methods may therefore not capture all of the relevant
characteristics of the environment, and this may become apparent when
we face a new task (with a different reward function). A similar problem
may occur for optimization of the planner, since we do not want it to
exploit task-specific characteristics (like the knowledge that we should
always plan towards the left side of the room). The real solution to
these problems is to train on a wide variety of tasks (reward functions).
This is of course computationally demanding, especially since the im-
plicit model-based RL is already computationally demanding itself (the
computational graphs grow very large, and the optimization can be un-
stable). Model-based RL therefore faces the same fundamental question
as many other artificial intelligence and machine learning directions: to
what extend should our systems incorporate human priors (explicit), or
rely on black-box optimization instead (implicit).

4.6 benefits of model-based reinforcement learning

Model-based RL may provide several benefits, which we will discuss
in this section. However, in order to identify benefits, we first need to



4.6 benefits of model-based reinforcement learning 125

Ta
bl

e
4

.4
:C

om
pa

ri
so

n
of

im
pl

ic
it

m
od

el
-b

as
ed

R
L

ap
pr

oa
ch

es
.R

ow
s:

al
go

ri
th

m
co

lo
ur

co
di

ng
,y

el
lo

w
=

ex
pl

ic
it

m
od

el
-b

as
ed

R
L

(f
or

co
m

pa
ri

so
n)

,
gr

ee
n

=
va

lu
e

eq
u

iv
al

en
t

m
od

el
s

(S
ec

.4
.5

.1
),

re
d

=
le

ar
ni

ng
to

p
la

n
(S

ec
.4

.5
.2

),
bl

u
e

=
co

m
bi

na
ti

on
of

va
lu

e
eq

u
iv

al
en

t
m

od
el

s
an

d
le

ar
ni

ng
to

pl
an

(S
ec

.4
.5

.3
).

C
ol

um
ns

:I
m

pl
ic

it
pl

an
ni

ng
im

pl
ie

s
so

m
e

fo
rm

of
po

lic
y

im
pr

ov
em

en
ti

n
th

e
co

m
pu

ta
tio

n
gr

ap
h.

Le
ar

ni
ng

to
pl

an
im

pl
ie

s
th

at
th

is
im

pr
ov

em
en

to
pe

ra
tio

n
is

ac
tu

al
ly

op
tim

iz
ed

.F
or

pl
an

ni
ng

,w
e

sh
or

tly
m

en
tio

n
th

e
sp

ec
ifi

c
pl

an
ni

ng
st

ru
ct

ur
e

be
tw

ee
n

br
ac

ke
ts

.M
C

TS
=

M
on

te
C

ar
lo

Tr
ee

Se
ar

ch
,i

LQ
R

=
it

er
at

iv
e

Li
ne

ar
Q

ua
dr

at
ic

R
eg

ul
at

or
,R

N
N

=
re

cu
rr

en
t

ne
ur

al
ne

tw
or

k.

Pa
pe

r
M

od
el

Pl
an

ni
ng

K
no

w
n

st
at

e-
pr

ed
ic

ti
on

Le
ar

ne
d

st
at

e-
pr

ed
ic

ti
on

Le
ar

ne
d

va
lu

e-
eq

ui
va

le
nt

Ex
pl

ic
it

Im
pl

ic
it

Le
ar

ni
ng

to
pl

an

A
lp

ha
Z

er
o

(S
ilv

er
et

al
.,

2
0
1
8
)

x
x

(M
C

TS
)

D
yn

a
(S

ut
to

n,
1
9
9
0
)

x
x

(o
ne

-s
te

p)

Em
be

d
to

C
on

tr
ol

(E
2
C

)
(W

at
te

r
et

al
.,

2
0
1
5

)
x

x
(i

LQ
R

)

M
uZ

er
o

(S
ch

ri
tt

w
ie

se
r

et
al

.,
2
0
1
9
)

x
x

(M
C

TS
)

V
al

ue
pr

ed
ic

ti
on

ne
tw

or
ks

(V
PN

)
(O

h,
Si

ng
h,

an
d

Le
e,

2
0
1
7

)
x

x
(b

-b
es

t,
de

pt
h-

d
pl

an
)

Pr
ed

ic
tr

on
(S

ilv
er

et
al

.,
2
0
1
7

a)
x

x
(R

ol
l-

ou
t)

V
al

ue
It

er
at

io
n

N
et

w
or

ks
(V

IN
)(

Ta
m

ar
et

al
.,

2
0
1
6

)
x

x
(v

al
ue

it
er

at
io

n)

U
ni

ve
rs

al
Pl

an
ni

ng
N

et
w

or
ks

(U
PN

)
(S

ri
ni

va
s

et
al

.,
2
0
1
8

)
x

x
(g

ra
d-

ba
se

d
pl

an
ni

ng
)

M
C

TS
N

et
(G

ue
z

et
al

.,
2
0
1
8

)
x

x
x

(M
C

TS
ag

gr
eg

at
io

n)

Im
ag

in
at

io
n-

au
gm

en
te

d
ag

en
ts

(I
2
A

)
(R

ac
an

iè
re

et
al

.,
2
0
1
7
)

x
x

x
(R

ol
l-

ou
t

ag
gr

eg
at

io
n)

Im
ag

in
at

io
n-

ba
se

d
pl

an
ne

r
(I

BP
)

(P
as

-
ca

nu
et

al
.,

2
0
1
7

)
x

x
x

(T
re

e
co

ns
tr

.+
ag

gr
eg

at
io

n)

Tr
ee

Q
N

(F
ar

qu
ha

r
et

al
.,

2
0
1
8
)

x
x

x
(T

re
e

ag
gr

eg
at

io
n)

D
ee

p
R

ep
ea

te
d

C
on

vL
ST

M
(D

R
C

)
(G

ue
z

et
al

.,
2
0
1
9

)
x

x
x

(R
N

N
)



126 model-based reinforcement learning : a survey

discuss performance criteria, and establish terminology about the two
types of exploration in model-based RL.

performance criteria There are two main evaluation criteria for
(model-based) RL algorithms:

• Cumulative reward/optimality: the quality of the solution, measured
by the expected cumulative reward that the solution achieves.

• Time complexity: the amount of time needed to arrive at the solu-
tion, which actually has three subcategories:

– Real-world sample complexity: how many unique trials in
the real (irreversible) environment do we use?

– Model sample complexity: how many unique calls to a
(learned) model do we use? This is an infrequently reported
measure, but may be a useful intermediate.

– Computational complexity: how much unique operations
(flops) does the algorithm require.

Papers usually report learning curves, which show optimality (cu-
mulative return) on the y-axis and one of the above time complexity
measures on the x-axis. As we will see, model-based RL may actually
be used to improve both measures.

We will now discuss the potential benefits of model-based RL (Figure
4.10). First, we will discuss enhanced data efficiency (Sec. 4.6.1), which
uses planning (increased model sample complexity) to reduce the real-
world sample complexity. Second, we discuss exploration methods that
use model characteristics (Sec. 4.6.2). As a third benefit, we discuss
the potential of model-based RL with a known model to reach higher
asymptotic performance (optimality/cumulative reward) (Sec. 4.6.3).
A fourth potential benefit is transfer (Sec. 4.6.4), which attempts to
reduce the sample complexity on a sequence of tasks by exploiting
commonalities. Finally, we also shortly touch upon safety (Sec. 4.6.5),
and explainability (Sec. 4.6.6).

4.6.1 Data Efficiency

A first approach to model-based RL uses planning to reduce the real-
world sample complexity. Real-world samples are expensive, both due
to wall-clock time restrictions and hardware vulnerability. Enhanced
data efficiency papers mostly differ by how much effort they invest per



4.6 benefits of model-based reinforcement learning 127

planning cycle (Sec. 4.4.2). A first group of approaches tries to squeeze
out as much information as possible in every planning loop. These
typically aim for maximal data efficiency, and apply each planning
cycle until some convergence criterion. Note that batch reinforcement
learning (Lange, Gabel, and Riedmiller, 2012), where we only get a
single batch of data from a running system and need to come up with
an improved policy, also falls into this group. The second group of
approaches continuously plans in the background, but does not aim to
squeeze all information out of the current model.

• Squeezing: The squeezing approach, that plans from the current
state or start state until (near) convergence, has theoretical mo-
tivation in the work on Bayes-adaptive exploration (Duff and
Barto, 2002; Guez, Silver, and Dayan, 2012). All data efficiency
approaches crucially need to deal with model uncertainty, which
may be estimated with a Bayesian approach (Asmuth et al., 2009;
Castro and Precup, 2007; Guez, Silver, and Dayan, 2012). These
approaches are theoretically optimal in real world sample com-
plexity, but do so at the expense of high computational complexity,
and crucially rely on correct Bayesian inference. Due to these last
two challenges, Bayes-adaptive exploration is not straightforward
to apply in high-dimensional problems.

Many empirical papers have taken the squeezing approach, at
least dating back to Atkeson and Santamaria (1997) and Boone
(1997). We will provide a few illustrative examples. A break-
through approach was PILCO (Deisenroth and Rasmussen, 2011),
which used Gaussian Processes to account for model uncertainty,
and solved a real-world Cartpole problem in less than 20 seconds
of experience. Both PETS (Chua et al., 2018) used a bootstrap
ensemble to account for uncertainty, and scales up to a 7 degrees-
of-freedom (DOF) action space, while model-based policy opti-
mization (MBPO) (Janner et al., 2019), using a similar bootstrap
ensemble for model estimation, even scales up to a 22 DOF hu-
manoid robot (in simulation). Embed2Control (Wahlström, Schön,
and Deisenroth, 2015) managed to scale model-based RL to a pixel
input problem. Operating on a 51x51 pixel view of Pendulum
swing-up, they show a 90% success rate after 15 trials of a 1000

frames each.

• Mixing: The second group of approaches simply mixes model-
based updates with model-free updates, usually by making model-



128 model-based reinforcement learning : a survey

based updates (in the background) throughout the (reachable)
state space. The original idea dates back to the Dyna architecture
of Sutton (1990), who reached improved data efficiency of up to
20-40x in a gridworld problem. In the context of high-dimensional
function approximation, Gu et al. (2016) and Nagabandi et al.
(2018b) used the same principle to reach a rough 2-5 times im-
provement in data efficiency.

An added motivation for the mixing approach is that we may
still make model-free updates as well. Model-free RL generally
has better asymptotic performance than model-based RL with a
learned model. By combining model-based an model-free updates,
we may speed-up learning with the model-based part, while still
reaching the eventual high asymptotic performance of model-free
updates. Note that model-based RL with a known model may
actually reach higher asymptotic performance (Sec. 4.6.3) than
model-free RL, which shows that the instability is really caused
by the uncertainty of a learned model.

In short, model-based RL has a strong potential to increase data
efficiency, by means of two-phase exploration. Strong improvements in
data efficiency have been shown, but are not numerous, possibly due to
the lack of stable uncertainty estimation in high-dimensional models,
or the extensive amount of hyperparameter tuning required in these
approaches. Nevertheless, good data efficiency is crucial for scaling RL
to real world problems, like robotics (Kober, Bagnell, and Peters, 2013),
and is a major motivation for the model-based approach.

4.6.2 Exploration

Exploration is a crucial topic in reinforcement learning. There are two
main ways in which models and planning may benefit exploration: i)
through two-phase exploration, and/or ii) through state-based explo-
ration. We first introduce these two ideas:

• One-phase versus two-phase exploration: Model-free RL methods and
pure planning methods use ‘one-phase’ exploration. One-phase
exploration means that they use the same exploration principle in
the entire algorithm, i.e., either within a trace (model-free RL) or
within a tree (planning). The aim of one-phase exploration is to
reduce real-world sample complexity (model-free RL) or reduce
model sample complexity (planning).



4.6 benefits of model-based reinforcement learning 129

Figure 4.10: Benefits of model-based reinforcement learning, as discussed in
Section 4.6.

In contrast, model-based RL agents use ‘two-phase exploration’,
since they may combine 1) an exploration strategy within the
planning cycle, and 2) a (usually more conservative) strategy for
the irreversible (real environment) step. In the case of model-based
RL with a learned model, the aim of this approach is usually to
reduce real world sample complexity at the expense of increased
model sample complexity. This has a close relation to the previous
section (on data efficiency), although we there mostly focused
on additional model-based back-ups, not exploration. In the case
of model based RL with a known model we also observe two-
phase exploration, like confidence bound methods inside the tree
search and Dirichlet noise for the real steps in AlphaGo Zero
(Silver et al., 2017c). However, with a known model (in which
case planning and real steps happen in the same model) the
second phase rather seems a pruning technique, to ensure that we
terminate the planning cycle at some point and advance.

• Value-based versus state-based exploration (intrinsic motivation): Most
RL approaches use a form of ‘value-based’ exploration. Value-
based methods base their exploration strategy on the current
value estimates of the available actions. Actions with a higher
value estimate will also get a higher probability of selection,



130 model-based reinforcement learning : a survey

Table 4.5: Categories of exploration methods. Grey cells are considered ‘model-
based exploration’, since they either use state-based characteristics
and/or plan over the model to find better exploration decisions (two-
phase exploration).

One-phase exploration Two-phase exploration

Value-based exploration e.g., ε-greedy, value
function uncertainty

e.g., planning to find a
high value/reward region

State-based exploration e.g., intrinsic reward for
novelty without planning

e.g., planning towards an
novel (goal) state

where the perturbation may for example be random (Mnih et
al., 2015; Plappert et al., 2017) or based on uncertainty estimates
around these values (Auer, 2002; Moerland, Broekens, and Jonker,
2017a; Osband et al., 2016). The model-based alternative is to use
‘state-based’ exploration. In this case, we do not determine the
exploration potential of a state based on reward or value relevancy,
but rather based on state-specific, reward independent properties
derived from the interaction history with that state. A state may
for example be interesting because it is novel or has high uncer-
tainty in its model estimates. These approaches are better known
as intrinsic motivation (IM) (Chentanez, Barto, and Singh, 2005).

The two above distinctions form four combinations, as visualized in
Table 4.5. We define model-based exploration as ‘any exploration approach
that uses either state-based exploration and/or two-phase exploration’
(indicated by the grey boxes in Table 4.5). Note that we consider all
state-based exploration methods to be model-based RL. State-based
exploration methods often use model-based characteristics or a density
model over state space, which in the tabular case can directly be derived
from a tabular model. We therefore include all state-based exploration
as model-based RL, even when it is applied in one-phase (e.g, with
model-free value approximation).

Literature on model-based RL is mostly structured along the distinc-
tion between knowledge-based and competence-based intrinsic moti-
vation (Oudeyer, Kaplan, and Hafner, 2007; Oudeyer, Kaplan, et al.,
2008). We will cover both fields, but we first discuss three underlying
distinctions, one for the forward and two for the backwards phase, that
are crucial to understand the challenge of exploration in general:



4.6 benefits of model-based reinforcement learning 131

• Shallow versus deep exploration: Every exploration method can be
classified as either shallow or deep. Shallow exploration methods
redecide on their exploratory decision at every timestep. In the
model-free RL context, ε-greedy exploration is a good example
of this approach. The potential problem of these approaches is
that they do not stick with an exploratory plan over multiple
timestep. This may lead to ‘jittering’ behaviour, where we make
an exploratory decision in a state, but decide to undo it at the next
timestep. Intuitively, we want rather want to fix an interesting
exploration target in the future, first use exploitation to get close
to that new target, and only then start to explore (i.e., commit to
a sequence of actions).

Deep exploration (Osband et al., 2016) methods aim to correlate
exploration decision over multiple timesteps (note that ‘deep’ in
this case has nothing to do with the depth of a network). In the
model-free RL setting, we may try to achieve deeper exploration
through, for example, parameter space noise over episodes (Plap-
pert et al., 2017) or through propagation of value uncertainty
estimates (Moerland, Broekens, and Jonker, 2017a; Osband et al.,
2016). However, deep exploration is very natural to model-based
RL, since the planning cycle can perform a deeper lookahead, to
which we can then commit in the real environment (Lowrey et al.,
2018; Sekar et al., 2020). Note that for model-based exploration
there is one caveat: when we plan for a deep sequence, but then
only execute the first action of the sequence and replanning (a
receding-horizon), then we still have the risk of jittering behaviour.

• Task-conflated versus task-separated exploration back-ups: Once we
identify an interesting new state (e.g., because it is novel), we
want to back-up this information to possibly return there in a next
episode. Therefore, back-ups are a crucial element of the explo-
ration cycle. Many intrinsic motivation approaches use intrinsic
rewards (Chentanez, Barto, and Singh, 2005) (e.g., for novelty),
and simply add these to the extrinsic reward. The exploration
signal is then propagated inside the global value/policy function,
combined with the true task information. A downside of task-
conflated propagation is that it modifies the global solution, since
it conflates task relevance with exploration relevancy. Therefore,
after an intrinsic reward has worn out, it may take time to fade
out its effect on the value function.



132 model-based reinforcement learning : a survey

As an alternative, we may also use task-separated exploration back-
ups. In these cases, the global solution (value or policy function)
is explicitly separated from the exploration information, like the
way to get back to a particular interesting region. For example,
Shyam, Jaśkowski, and Gomez (2019) propose to store separate
value functions for the intrinsic and extrinsic rewards. As an
alternative, we may also store the exact trace towards particular
goals, which has a relation to episodic memory (Pritzel et al., 2017).
For example, Ecoffet et al. (2019) assume that we can exactly reset
an agent to any state we previously reached. Alternatively, we
may also separately learn the policy parameters that reached a
particular state (Laversanne-Finot, Pere, and Oudeyer, 2018). Task-
separated back-ups introduce more complexity for learning, but
also seem a more principled approach to separate exploration
from exploitation.

• Shallow versus deep exploration back-ups: Similar to shallow and deep
exploration (in the forward sense), the depth of the back-up is also
important for exploration. As well-known from classic RL theory,
a back-up can be shallow (e.g., a one-step target) or deep (e.g., a
Monte Carlo target or n-step method) (Sutton and Barto, 2018).
When we search for the optimal solution, one-step back-ups can
be off-policy and therefore have the benefit of converging to the
optimal solution. Therefore, shallow back-ups clearly have their
benefit for convergence. However, from an exploration perspective,
they have a potential drawback. Imagine we just encountered an
interesting novel state, but we only back-up this information for
one-step towards the previous state. In the next episode, we will
not be able to see the information near the start location (it has
not been propagated far enough). Ecoffet et al. (2019) call this
the ‘detachment’ problem for exploration. The agent then has to
stumble around again until it finds a new intrinsic reward, or a
state to which the previous intrinsic reward was backed-up.

The detachment problem can of course be partially mitigated
through experience replay (Lin and Mitchell, 1992), or even better,
prioritized sweeping (Moore and Atkeson, 1993). However, we
can also use a deep back-up, like a Monte Carlo target for value-
based propagation. When we combine this with a value-separate
back-up (see above), then the Monte Carlo target only affects the
exploration information, not the global solution. We may then not
store the quickest route back to the novel state, but we do not care



4.6 benefits of model-based reinforcement learning 133

about optimality yet, we just want to get back there. Alternatively,
we can also store the entire trace or policy parameters needed to
reach a particular interesting state or region, which is by definition
deep. In any case, deep back-ups may strongly accelerate our
ability to build on novel discoveries.

With these concepts in mind, we will now discuss model-based explo-
ration. We will follow the intrinsic motivation literature (i.e., state-based
exploration) (Chentanez, Barto, and Singh, 2005), which is traditionally
split up in two sub-fields (Oudeyer, Kaplan, et al., 2008): 1) knowledge-
based intrinsic motivation, and 2) competence-based intrinsic motivation.

knowledge-based intrinsic motivation Knowledge-based
IM prioritizes those state for exploration where we may acquire new
information about the MDP. This approach is generally combined with
intrinsic rewards and task-conflated propagation. We specify an in-
trinsic reward function ri(s) or ri(s, a, s′), which estimates the saliency
of a particular state or state transition, and let the agent optimize a
combination of extrinsic and intrinsic reward:

rt(s, a, s′) = re(s, a, s′) + η · ri(s, a, s′), (4.2)

where re denotes the external reward, and η ∈ R is a hyperparameter
that controls the relative strength of the intrinsic motivation.

There are various ways to specify ri. By far the largest category uses
the concept of novelty (Bellemare et al., 2016; Hester and Stone, 2012a;
Sequeira, Melo, and Paiva, 2014). For example, the Bayesian Exploration
Bonus (BEB) (Kolter and Ng, 2009) uses

ri(s, a, s′) ∝ 1/(1 + n(s, a)), (4.3)

where n(s, a) denotes the number of visits to state-action pair (s, a).
Novelty ideas were recently studied in high-dimensional problems as
well, using the concept of pseudo-counts, which closely mimick density
estimates (Bellemare et al., 2016; Ostrovski et al., 2017).

There are various other ways to specify the intrinsic reward signal.
Long before the term knowledge-based IM became established, Sutton
(1990) already included an intrinsic reward for recency:

ri(s, a, s′) =
√

l(s, a), (4.4)



134 model-based reinforcement learning : a survey

where l(s, a) denotes the number of timesteps since the last trial at
(s, a). More recent examples of intrinsic rewards include model prediction
error (Pathak et al., 2017; Stadie, Levine, and Abbeel, 2015), surprise
(Achiam and Sastry, 2017), information gain (Houthooft et al., 2016), and
feature control (the ability to change elements of our state over time)
(Dilokthanakul et al., 2019). Note that intrinsic rewards for recency
and model prediction error may help overcome non-stationarity (Sec.
4.3.5) as well (Lopes et al., 2012). Multiple intrinsic rewards can also
be combined, like a combination of novelty and model uncertainty
(Hester and Stone, 2012a). Note that many of these intrinsic motivation
ideas originate in emotion theory, which was surveyed for RL agents by
Moerland, Broekens, and Jonker (2018a).

Novelty is a very common concept in exploration research, also
outside the intrinsic motivation framework. Another model-based ap-
proach to exploration is the probably approximately correct (PAC)-MDP
framework (Kakade et al., 2003), of which R-Max (Brafman and Ten-
nenholtz, 2002) is an example. R-Max assumes every transition has
maximal reward until it has at least been visited a certain number of
times. We consider this a model-based approach, since it needs to keep
a count-based model over all transitions, although R-Max does not use
planning (it is a one-phase exploration method).

Many of the above knowledge-based IM methods are implemented
in a one-phase way, i.e., the intrinsic reward is computed when en-
countered, but there is not explicit planning towards it. We can of
course also combine knowledge-based IM with two-phase exploration
(Sekar et al., 2020), i.e. ‘plan to explore’. As mentioned before, nearly
all knowledge-based IM approaches use task-conflated propagation,
while Shyam, Jaśkowski, and Gomez (2019) do learn separate value
functions for the intrinsic and extrinsic rewards. The back-up depth of
knowledge-based IM varies from shallow to deep, depending on the
type of value back-up.

competence-based intrinsic motivation Competence-based
intrinsic motivation builds on the same curiosity principles as knowledge-
based IM. However, competence-based IM selects new exploration tar-
gets based on learning progress, which focuses on the competence of
the agent, rather than the knowledge about the MDP. The goal is to
generate a curriculum of tasks for learning progress (Bengio et al., 2009).
A formalization of these ideas are Intrinsically Motivated Goal Explo-
ration Processes (IMGEP) (Baranes and Oudeyer, 2009). They consist of



4.6 benefits of model-based reinforcement learning 135

three steps: 1) learn a goal space, 2) sample a goal, and 3) plan towards
the goal.

Goal space learning was already discussed in Sec. 4.3.7 and 4.3.8.
The general aim is to capture the salient directions of variation in a
task in a representation. For competence-based IM, it may be useful
to learn a disentangled representation, where each controllable object is
captured by a separate dimension in the representation. Then, we can
create a better curriculum by sampling new subgoals that alter only
one controllable object at a time (Laversanne-Finot, Pere, and Oudeyer,
2018).

The second step, goal space sampling, is a crucial part of competence-
based IM. We aim to select a goal that has high potential for learning
progress (Baranes and Oudeyer, 2013; Oudeyer, Kaplan, and Hafner,
2007). One approach is to track a set of goals, and reselect those goals
for which the achieved return has shown positive change recently
(Laversanne-Finot, Pere, and Oudeyer, 2018; Matiisen et al., 2017). As
an alternative, we may also fit a generative model to sample new goals
from, which may for example be trained on all previous goals (Péré
et al., 2018) or on a subset of goals of intermediate difficulty (Florensa et
al., 2018). Note that the concept of learning progress has also appeared
in knowledge-based IM literature (Schmidhuber, 1991b).

In the third step, we actually attempt to reach the sampled goal.
The key idea is that we should already know how to get close to the
new goal, since we sampled it close to a previously reached state.
Goal-conditioned value functions (discussed in Sec. 4.3.8) can be one
way to achieve this, but we may also attempt to learn a mapping from
current state and goal to policy parameters (Laversanne-Finot, Pere, and
Oudeyer, 2018). These latter approach attempts to generalize in policy
parameter space, and can be considered near episodic propagation
approaches.

Competence-based IM often uses deep exploration and task-separated,
deep back-ups. However, the true difference between knowledge and
competence-based approaches is the type of information that makes a
state/goal salient (knowledge, e.g. novelty, or competence, i.e., learning
progress). All other distinctions mentioned in the beginning of this
section are applicable to both. The vanilla approach in each category is
illustrated in Figure 4.11.

Finally, this section on model-based exploration has not discussed any
hierarchical RL methods, since these were already covered in Sec. 4.3.8.
Hierarchy can be used in a model-free or model-based way. In both



136 model-based reinforcement learning : a survey

Figure 4.11: Knowledge-based versus competence-based intrinsic motivation.
Solid circle identifies the current agent position. Left: In knowledge-
based intrinsic motivation, every state (the arrows show two exam-
ples) in the domain gets associated with an intrinsic reward based
on local characteristics, like visitation frequency, uncertainty of the
model, prediction error of the model, etc. Right: In competence-
based intrinsic motivation, we learn some form of a goal-space that
captures (and compresses) the directions of variation in the domain.
We then sample a new goal, for example at the edge of our current
knowledge base, and explicitly try to reach it, re-using the way we
previously got close to that state.

cases, good higher level actions can strongly reduce the exploration
complexity, like the depth of a tree during planning. As discussed in
Sec. 4.3.8, good end-points for hierarchical actions can for example be
obtained from global coverage of state space, which reminds of the goal
spaces used in competence-based intrinsic motivation. In any cases,
hierarchy will like be a crucial component of (model-based) exploration
as well.

4.6.3 Stability

Another benefit of model-based RL, in the context of a known model,
seems better asymptotic performance. For model-based RL with a
learned model, the common knowledge is that we may improve data
efficiency, but loose asymptotic performance in the long run. However,
recent attempts of model-based RL with a known model, like AlphaGo
Zero (Silver et al., 2017c) and Guided Policy Search (Levine and Koltun,
2013), manage to outperform model-free attempts on long-run empirical
performance. This suggests that with a perfect (or good) model, model-
free RL may actually lead to better (empirical) asymptotic performance.
Moreover, MuZero (Schrittwieser et al., 2019) uses a (value-equivalent)



4.6 benefits of model-based reinforcement learning 137

learned model and actually outperforms the asymptotic performance
of AlphaGo Zero.

A possible explanation for the mutual benefit of planning and learn-
ing originates from the type of representation they use. The atomic
(tabular) representation of planning does not scale to large problems,
since the table would grow too large. The global approximation of learn-
ing provides the necessary generalization, but will inevitably make local
approximation errors. However, when we add local planning to learn-
ing, the local representation may help to locally smooth out the errors
in the function approximation, by looking ahead to states with more
clearly discriminable value predictions. These local representations are
often tabular/exact, and can thereby give better local separation. For
example, in Chess the learned value prediction for the current state of
the board might be off, but through explicit lookahead we may find
states that are a clear win or loss in a few steps. As such, local planning
may help learning algorithms to locally smooth out the errors in its
approximation, leading to better asymptotic performance.

There is some initial work that supports these ideas. Silver, Sutton,
and Müller (2008) already described the use of transient and permanent
memory, where the transient memory is the local plan that fine-tunes
the value estimates. Both Moerland et al. (2020) and Wang et al. (2019)
recently studied the trade-off between planning and learning (already
mentioned in Sec. 4.4.2), finding that optimal performance requires an
intermediate planning budget per real step, and not a very high budget
(exhaustive search), or no planning budget per timestep at all (model-
free RL). Since model-free RL is notoriously unstable in the context of
function approximation (Henderson et al., 2018), we may hypothesize
that the combination of global function approximation (learning) and
local atomic/tabular representation (planning) helps stabilize learning
and achieve better asymptotic performance (see Hamrick et al. (2020)
as well).

To conclude, we note that this combination of local planning and
global approximation also exists in humans. In cognitive science, this
idea is known as dual process theory (Evans, 1984), which was more
recently popularized as ‘thinking fast and slow’ (Kahneman, 2011).
Anthony, Tian, and Barber (2017) connect planning-learning integration
to these ideas, suggesting that global policy or value functions are like
‘thinking fast’, while local planning relates to explicit reasoning and
‘thinking slow’.



138 model-based reinforcement learning : a survey

4.6.4 Transfer

In transfer learning (Lazaric, 2012; Taylor and Stone, 2009) we re-use
information from a source task to speed-up learning on a new task. The
source and target tasks should neither be the same, as then transfer
is trivial, nor completely unrelated, as then there is no information to
transfer. Konidaris (2006) covers a framework for transfer, specifying
three types: i) transfer of a dynamics model, ii) transfer of skills or
sub-routines, and iii) transfer of ‘knowledge’, like shaping rewards
and representations. For this model-based RL survey we only discuss
the first category, transfer of a dynamics model. There are largely two
scenarios: i) similar dynamics function but different reward function, for
example a new level in a video game, and ii) slightly changed transition
dynamics, for example transfer from simulation to real-world tasks. We
discuss examples in both categories.

same dynamics with different reward The first description
of model transfer with a changed reward function is by Atkeson and
Santamaria (1997). The authors change the reward function in a Pen-
dulum swing-up task after 100 trials, and show that the model-based
approach is able to adapt much faster, requiring less data from the real
environment. Later on, the problem (different reward function with sta-
tionary dynamics) became better known as multi-objective reinforcement
learning (MORL) (Roijers et al., 2013; Roijers and Whiteson, 2017). A
multi-objective MDP has a single dynamics function but multiple re-
ward functions. These rewards can be combined in different ways, each
of which lead to a new task specification. There are many model-free
approaches for the MORL setting (Roijers et al., 2013), with model-based
examples given by Wiering, Withagen, and Drugan (2014), Yamaguchi
et al. (2019). Other examples of model-based transfer to different reward
functions (goals) are provided by Sharma et al. (2019) and Sekar et al.
(2020).

Another approach designed for changing reward functions is the
successor representation (Barreto et al., 2017; Dayan, 1993). Successor
representations summarize the model in the form of future state oc-
cupancy statistics. It thereby falls somewhere in between model-free
and model-based methods (Momennejad et al., 2017), since these meth-
ods can partially adapt to a different reward function, but it does not
fully compute new occupancy statistics like a full model-based method
would.



4.6 benefits of model-based reinforcement learning 139

different dynamics In the second category we find transfer to
a task with slightly different dynamics. Conceptually, Konidaris and
Barto (2007) propose to disentangle the state into an agent space (which
can directly transfer) and a problem space (which defines the new task).
However, disentanglement of agent and problem space is still hard
without prior knowledge.

One way to achieve good transfer is by learning representations that
generalize well. The object-oriented and physics-based approaches, al-
ready introduced in Sec. 4.3.7, have shown success in achieving this.
For example, Schema Networks (Kansky et al., 2017) learn object in-
teractions in Atari games, and manage to generalize well to several
variations of Atari Breakout, like adding a new wall or slightly changing
the dynamics (while still complying with the overall physics rules).

Simulation-to-real transfer is popular in robotics, but most researchers
transfer a policy or value function (Tobin et al., 2017). Example ap-
proaches that do transfer a dynamics model to the real world are
Christiano et al. (2016) and Nagabandi et al. (2018a). Several researchers
also take a zoomed out view, where they attempt to learn a distribution
over the task space, better known as multi-task learning (Caruana, 1997).
Then, when a new task comes in, we may quickly identify in which clus-
ter of known tasks (dynamics models) it belongs (Wilson et al., 2007).
Another approach is to learn a global neural network initialization that
can quickly adapt to new tasks sampled from the task space (Clavera
et al., 2018), which implicitly transfers knowledge about the dynamics
of related tasks.

In short, transfer is one of the main benefits of model-based RL. Van
Seijen et al. (2020) even propose a metric, the Local Change Adaptation
(LoCA) regret, to compare model-based RL algorithms based on their
ability to learn on new, slightly altered tasks. An overview of transfer
methods for deep reinforcement learning in general is provided by Zhu,
Lin, and Zhou (2020).

4.6.5 Safety

Safety is an important issue, especially when learning on real-world
systems (Amodei et al., 2016). For example, with random exploration it
is easy to break a robot before any learning has taken place. Berkenkamp
et al. (2017) studies a model-based safe exploration approach based on
the notion of asymptotic stability. Given a ‘safe region’ of the current
policy, we want to explore while ensuring that we can always get back



140 model-based reinforcement learning : a survey

to the safe region. As an alternative, Aswani et al. (2013) keep two
models: the first one is used to decide on an exploration policy, while
the second model has uncertainty bounds and is used for verification
of the safety of the proposed policy. Ostafew, Schoellig, and Barfoot
(2016) ensure constraints by propagating uncertainty information in a
Gaussian Process model. Safety is a vital aspect of real-world learning,
and it may well become an important motivation for model-based RL
in forthcoming years.

4.6.6 Explainability

Explainable artificial intelligence (XAI) has received much attention in
the AI community in recent years. Explainable reinforcement learning
(XRL) was studied by Waa et al. (2018), who generated explanations
from planned traces. The authors also study contrastive explanations,
where the user can ask the agent why it did not follow another policy.
There is also work on RL agent transparency based on emotion elicita-
tion during learning (Moerland, Broekens, and Jonker, 2018a), which
largely builds on model-based methods. Finally, Shu, Xiong, and Socher
(2017) study language grounding in reinforcement learning, which is
an important step to explainability as well. Explainability is now widely
regarded as a crucial prerequisite for AI to enter society. Model-based
RL may be an important element of explainability, since it allows the
agent to communicate not only its goals, but also the way it intends to
achieve them.

4.6.7 Disbenefits

Model-based RL has disbenefits as well. First, model-based RL typically
requires additional computation, both for training the model, and for
the planning operations themselves. Second, model-based RL methods
with a learned model can be very unstable due to uncertainty and ap-
proximation errors in the model. Therefore, although these approaches
can be more data efficient, they also tend to have lower asymptotic
performance. We already extensively discussed how to deal with model
uncertainty. Third, model-based RL methods require additional memory,
for example to store the model. However, with function approximation
this is typically not a large limitation. Finally, model-based RL algo-
rithms typically have more tunable hyperparameters than model-free
algorithms, including hyperparameters to estimate uncertainty, and



4.7 related work 141

hyperparameters to balance planning and real data collection. Most of
these disbenefits are inevitable, and we are essentially trading extra
computation, memory and potential instability (for a learned model)
against better data efficiency, targeted exploration, transfer, safety and
explainability.

4.7 related work

While model-based RL has been very successful and received much
attention (Deisenroth and Rasmussen, 2011; Levine and Koltun, 2013;
Silver et al., 2017c), a survey of the field currently lacks in literature.
Hester and Stone (2012b) gives a book-chapter presentation of model-
based RL methods, but their work does not provide a full overview,
nor does it incorporate the vast recent literature on neural network
approximation in model-based reinforcement learning.

Chapter 3 presented a framework for reinforcement learning and
planning that disentangles their common underlying dimensions, but
does not focus on their integration. In some sense, Chapter 3 looks
‘inside’ each planning or reinforcement learning cycle, strapping their
shared algorithmic space down into its underlying dimensions. Instead,
our work looks ‘over’ the planning cycle, focusing on how we may
integrate planning, learning and acting to provide mutual benefit.

Hamrick (2019) presents a recent coverage of mental simulation (plan-
ning) in deep learning. While technically a model-based RL survey, the
focus of Hamrick (2019) lies with the relation of these approaches to
cognitive science. Our survey is more extensive on the model learning
and integration side, presenting a broader categorization and more
literature. Nevertheless, the survey by Hamrick (2019) is an interesting
companion to the present work, for deeper insight from the cognitive
science perspective. Plaat, Kosters, and Preuss (2020) also provide a
recent description of model-based RL in high-dimensional state spaces,
and puts additional emphasis on implicit and end-to-end model-based
RL (see Sec. 4.5 as well).

Finally, several authors (Nguyen-Tuong and Peters, 2011; Polydoros
and Nalpantidis, 2017; Sigaud, Salaün, and Padois, 2011) have specif-
ically surveyed structured model estimation in robotics and control
tasks. In these cases, the models are structured according to the known
laws of physics, and we want to estimate a number of free parameters
in these models from data. This is conceptually similar to Sec. 4.3, but
our work discusses the broader supervised learning literature, when



142 model-based reinforcement learning : a survey

applicable to dynamics model learning. Thereby, the methods we dis-
cuss do not need any prior physics knowledge, and can deal with much
larger problems. Moreover, we also include discussion of a variety of
other model learning challenges, like state and temporal abstraction.

4.8 discussion

This chapter surveyed the full spectrum of model-based RL, includ-
ing model learning, planning-learning integration, and the benefits of
model-based RL. To further advance the field, we need to discuss two
main topics: benchmarking, and future research directions.

benchmarking Benchmarking is crucial to the advancement of a
field. For example, major breakthroughs in the computer vision commu-
nity followed the yearly ImageNet competition (Krizhevsky, Sutskever,
and Hinton, 2012). We should aim for a similar benchmarking approach
in RL, and in model-based RL in particular.

A first aspect of benchmarking is proper assessment of problem diffi-
culty. Classic measures involve the breadth and depth of the full search
tree, or the dimensionality of the state and action spaces. While state
dimensionality was for long the major challenge, breakthroughs in deep
RL are now partially overcoming this problem. Therefore, it is impor-
tant that we start to realize that state and action space dimensionality
are not the only relevant measures of problem difficulty. For example,
sparse reward tasks can be very challenging for exploration, even in low
dimensions. Osband et al. (2019) recently proposed a benchmarking
suite that disentangles the ability of an algorithm to deal with different
types of challenges.

A second part of benchmarking is actually running and comparing
algorithms. Although many benchmarking environments for RL have
been published in recent years (Bellemare et al., 2013; Brockman et al.,
2016), and benchmarking of model-free RL has become quite popular,
there is relatively little work on benchmarking model-based RL algo-
rithms. Wang et al. (2019) recently made an important first step in this
direction by benchmarking several model-based RL algorithms, and the
field would profit from more efforts like these.

For reporting results, an important remaining challenge for the entire
RL community is standardization of learning curves and results. The
horizontal axis of a learning curve would ideally show the number of
unique flops (computational complexity) or the number of real world



4.8 discussion 143

or model samples. However, many papers report ‘training time in
hours/days’ on the horizontal axis, which is of course heavily hardware
dependent. Other papers report ‘episodes’ on the horizontal axis, while
a model-based RL algorithm uses much more samples than a model-
free algorithm per episode. When comparing algorithms, we should
always aim to keep either the total computational budget or the total
sample budget equal.

future work There is a plethora of future work directions in the
intersection of planning and learning. We will mention a few research
areas, which already received much attention, but have the potential to
generate breakthroughs in the field.

• Asymptotic performance: Model-based RL with a learned model
tends to have better sample complexity, but inferior asymptotic
performance, compared to model-free RL. This is an important
limitation. AlphaGo Zero recently illustrated that model-based
RL with a known model should be able to surpass model-free
RL performance. However, in the context of a learned model,
a major challenge is to achieve the same optimal asymptotic
performance as model free RL, which probably requires better
ways of estimating and dealing with model uncertainty.

• Hierarchy: A central challenge, which has already received much
attention, is temporal abstraction (hierarchical RL). We still lack
consistent methods to identify useful sub-routines, which com-
press, respect reward relevancy, identify bottleneck states and/or
focus on interaction with objects and salient domain aspects. The
availability of good temporal abstraction can strongly reduce the
depth of a tree search, and is likely a key aspect of model-based
learning.

• Exploration & Competence-based intrinsic motivation: A promis-
ing direction within exploration research could be competence-
based intrinsic motivation (Oudeyer, Kaplan, and Hafner, 2007),
which has received less attention than its brother knowledge-
based intrinsic motivation (see Sec. 4.6.2). By sampling goals close
to the border of our currently known set, we generate an auto-
mated curriculum, which may make exploration more structured
and targeted.

• Transfer: We believe model-based RL could also put more empha-
sis on the transfer setting, especially when it comes to evaluating



144 model-based reinforcement learning : a survey

data efficiency. It can be very hard to squeeze out all information
on a single, completely new task. Humans mostly use forward
planning on reasonably certain models that generalize well from
previous tasks. Shifting RL and machine learning from single task
optimization to more general artificial intelligence, operating on a
variety of tasks, is an important challenge, in which model-based
RL may definitely play an important role.

• Balancing: Another important future question in model-based RL
is balancing planning, learning and real data collection. These
trade-offs are typically tuned as hyperparameters, which seem to
be crucial for algorithm performance (Moerland et al., 2020; Wang
et al., 2019). Humans naturally decide when to start planning,
and for how long (Kahneman, 2011). Likely, the trade-off between
planning and learning should be a function of the collected data,
instead of a fixed hyperparameter.

• Prioritized sweeping: Prioritized sweeping has been very success-
ful in tabular settings, when the model is trivial to revert. As
mentioned throughout the survey, it has also been applied to high-
dimensional approximate settings, but this creates a much larger
challenge. Nevertheless, exploration in the forward direction may
actually be just as important as propagation in the backwards
direction, and prioritized sweeping in high-dimensional problems
is definitely a topic that deserves attention.

• Optimization: Finally, note that RL is effectively an optimization
problem. While this survey has focused on the structural aspects
of this challenge (what models to specify, how to algorithmically
combine them, etc.), we also observe much progress in combin-
ing optimization methods, like gradient descent, evolutionary
algorithms, automatic hyperparameter optimization, etc. Such
research may have an equally big impact on progress in MDP
optimization and sequential decision making.

4.9 summary

This concludes our survey of model-based reinforcement learning. We
will briefly summarize the key points:

• Nomenclature in model-based RL is somewhat vague. We define
model-based RL as ‘any MDP approach that uses i) a model



4.9 summary 145

(known or learned) and ii) learning to approximate a global value
or policy function’. We distinguish three categories of planning-
learning integration: ‘model-based RL with a learned model’,
‘model-based RL with a known model’, and ‘planning over a
learned model’ (Table 4.1).

• Model-based reinforcement learning may first require approxima-
tion of the dynamics model. Key challenges of model learning
include dealing with: environment stochasticity, uncertainty due
to limited data, partial observability, non-stationarity, multi-step
prediction, and representation learning methods for state and
temporal abstraction (Sec. 4.3).

• Integration of planning and learning involves a few key aspects:
i) where to start planning, ii) how much budget to allocate to
planning and acting, iii) how to plan, and iv) how to integrate the
plan in the overall learning and acting loop. Planning-learning
methods widely vary in their approach to these questions (Sec.
4.4).

• Explicit model-based RL manually designs model learning, plan-
ning algorithms and the integration of these. In contrast, implicit
model-based RL optimizes elements of this process, or the entire
model-based RL computation, against the ability to predict an
outer objective, like a value or optimal action (Sec. 4.5).

• Model-based RL can have various benefits, including aspects like
data efficiency, targeted exploration, transfer, safety and explain-
ability (Sec. 4.6). Recent evidence indicates that the combination of
planning and learning may also provide more stable learning, pos-
sibly due to the mutual benefit of global function approximation
and local tabular representation.

In short, both planning and learning are large research fields in MDP
optimization that depart from a crucially different assumption: the
type of access to the environment. Cross-breeding of both fields has
been studied for many decades, but a systematic categorization of the
approaches and challenges to model learning and planning-learning
integration lacked so far. Recent examples of model-based RL with a
known model (Levine and Koltun, 2013; Silver et al., 2017c) have shown
impressive results, and suggest much potential for future planning-
learning integrations. This survey conceptualized the advancements in



146 model-based reinforcement learning : a survey

model-based RL, thereby: 1) providing a common language to discuss
model-based RL algorithms, 2) structuring literature for readers that
want to catch up on a certain subtopic, for example for readers from
either a pure planning or pure RL background, and 3) pointing to future
research directions in planning-learning integration.



Part III

E X P E R I M E N TA L I N T E G R AT I O N O F
P L A N N I N G A N D L E A R N I N G





5S T O C H A S T I C D Y N A M I C S A P P R O X I M AT I O N W I T H
C O N D I T I O N A L VA R I AT I O N A L I N F E R E N C E 1

abstract

In this chapter we study how to learn stochastic, multimodal transition dynamics in
reinforcement learning (RL) tasks. We focus on evaluating transition function
estimation, while we defer planning over this model to future work. Stochasticity is a
fundamental property of many task environments. However, discriminative function
approximators have difficulty estimating multimodal stochasticity. In contrast, deep
generative models do capture complex high-dimensional outcome distributions. First we
discuss why, amongst such models, conditional variational inference (VI) is
theoretically most appealing for model-based RL. Subsequently, we compare different
VI models on their ability to learn complex stochasticity on simulated functions, as well
as on a typical RL gridworld with multimodal dynamics. Results show VI successfully
predicts multimodal outcomes, but also robustly ignores these for deterministic parts of
the transition dynamics. In summary, we show a robust method to learn multimodal
transitions using function approximation, which is a key preliminary for model-based
RL in stochastic domains.

5.1 introduction

Dynamics model learning is a crucial step in model-based reinforcement
learning, as extensively discussed in Chapter 4. A particular challenge
of model learning is the ability to deal with stochasticity, which we intro-
duced in (Sec. 4.3.2. In this chapter, we will experimentally investigate
a new approach to this challenge.

Stochasticity is an inherent property of many environments, and in-
creases in real-world settings due to sensor noise. Transition dynamics
usually combine both deterministic aspects (such as the falling trajec-
tory of an object due to gravity) and stochastic elements (such as the
behaviour of another car on the road). Our goal is to learn to jointly
predict these. Note that stochasticity has many forms, both homoscedas-

1 Chapter based on: Moerland TM, Broekens J, Jonker CM. Learning Multimodal Transition
Dynamics for Model-Based Reinforcement Learning. Scaling Up Reinforcement Learning
(SURL) Workshop @ European Conference on Machine Learning (ECML), 2017.

149



150 stochastic dynamics approximation with conditional variational inference

tic versus heteroscedastic, and unimodal versus multimodal. In this
work we specifically focus on multimodal stochasticity, as this should
theoretically pose the largest challenge.

To learn such transition models, we require high-capacity function ap-
proximators that can predict next-state distributions of complex shape.
This problem is not yet accurately solved by currently used methods in
model-based RL, like tabular learning (Brafman and Tennenholtz, 2002)
(which does not scale to high-dimensions), linear function approxima-
tion (Atkeson, Moore, and Schaal, 1997) with Gaussian noise (Li et al.,
2011), random forests (Hester and Stone, 2012b), or deep feed-forward
networks trained on mean-squared error (MSE) (Oh et al., 2015) (See
also Sec. 5.2).

A potential solution to this problem are Deep Generative Models
(DGM) (Goodfellow, 2016), as they are non-linear function approx-
imators that can learn complex outcome distributions and scale to
high-dimensions. In Section 5.2 we compare different DGM’s on their
theoretic appeal for stochastic model learning in the RL setting, and
identify conditional Variational Inference (VI) as the most promising
solution.

The remainder of the chapter then continues as follows. In Section
3, we formally describe conditional variational inference with differ-
ent types of discrete and continuous latent variables. In Section 4 we
empirically compare the different approaches on a simulated function
and on a typical RL tasks. Our results show that VI is accurately able
to discriminate deterministic from stochastic aspects of the transition
dynamics. We also show how the RL agent manages to learn an ac-
curate transition model while solving a task. Finally, Sections 5 and 6

connect our work to related literature and identify opportunities for
future work, respectively. Code to replicate experiments is available
from www.github.com/tmoer/multimodal_varinf.

5.2 challenge of multimodal transitions

We will write x ∈ X for the current state and action, and y ∈ Y for
the next state we want to predict. We are interested in models that can
approximate distributions p(y|x) with multiple local maxima (‘modes’).
A cardinal example of such a distribution is shown in Figure 5.1 (blue
line).

Discriminative function approximators, for example trained at mean-
squared error (MSE) loss, fail at this task. The point prediction of

www.github.com/tmoer/multimodal_varinf


5.2 challenge of multimodal transitions 151

Figure 5.1: Multimodal outcome distribution p(y|x) (blue line) for a simple 1D
observation space. Training on a mean-squared error will determin-
istically predict the conditional mean (dashed line), which implicitly
assumes a uni-modal Gaussian outcome (green line).

the function approximator will be the conditional expectation of the
outcome distribution (Fig. 5.1, dashed line). Obviously, point estimate
predictions will never be a good method to approximate a distribution,
but they have actually been frequently applied in model-based RL work
(Oh et al., 2015).2 Clearly, a unimodal outcome distribution will neither
solve the multimodality problem (Fig. 5.1).

A mixture of Gaussians per outcome dimension would neither solve
the problem. Full covariance matrix Gaussians clearly do not scale to
high-dimensional domains (such as (Mnih et al., 2015)), while diagonal
Gaussians would loose all covariance structure in the predictions. More-
over, mixture models are tedious to train. What we require are models
that 1) flexibly approximate joint distributions of complex (multimodal)
shape and 2) scale to high-dimensions.

We hypothesize the group of deep generative models (DGN) (Good-
fellow, 2016) are a promising candidate, as they fulfill both requirements.
For model-based RL, where we will use the models to sample (a lot
of) traces, we additionally require that the model is 1) easy to sample
from, and 2) ideally allows for planning at an abstract level. Following
the DGN taxonomy by Goodfellow (Goodfellow, 2016) (Figure 5.2), we

2 For example, Oh et al. (2015) shows MSE training does work well in high-dimensional,
deterministic domains. However, for example inspecting their Ms. Pacman (a stochastic
game) predictions at https://youtu.be/cy96rtUdBuE, we see that the predictions for
the stochastic elements (ghosts) fail. The ghosts disappear when they reach a corridor
junction, where they stochastically choose in which direction to continue. The feed-
forward network predicts the conditional mean of these choices, which completely blurs
the ghosts in a few frames.

https://youtu.be/cy96rtUdBuE


152 stochastic dynamics approximation with conditional variational inference

Figure 5.2: Deep generative model taxonomy following (Goodfellow, 2016).

now compare DGN models on their theoretical appeal for transition
function estimation.

Implicit density models, like Generative Adverserial Networks (GAN)
lack a clear probabilistic objective function, which was the focus of this
work. Among the explicit density models, there are two categories.
Change of variable formula models, like Real NVP (Dinh, Sohl-Dickstein,
and Bengio, 2016), have the drawback that the latent space dimension
must equal the observation space. Fully visible belief nets like pixelCNN
(Oord et al., 2016), which factorize the likelihood in an auto-regressive
fashion, hold state-of-the-art likelihood results. However, they have
the drawback that sampling is a sequential operation (e.g. pixel-by-
pixel, which is computationally expensive), and they do not allow
for latent level planning either. Therefore, most suitable for model-
based RL seem approximate density models, most noteworthy the
variational auto-encoder (VAE) (Kingma and Welling, 2014) framework.
These models can estimate stochasticity at a latent level, allow for
latent planning (Watter et al., 2015), are easy to sample from, and
have a clear probabilistic interpretation. In the next section, we will
formally introduce this methodology in the conditional setting, where
the generative process of y is conditioned on other variables x.

5.3 conditional variational inference

We will first introduce the conditional variational auto-encoder (CVAE)
(Sohn, Lee, and Yan, 2015). Our goal is to learn a generative model of a
(possibly multimodal) distribution p(y|x). We assume the generative
process is actually conditioned on latent variables z:

p(y|x) =
∫

p(y|z, x)p(z|x)dz (5.1)

Here p(z|x) is the prior and p(y|z, x) is the generative model or ‘de-
coder’. The stochastic latent variables z provide the flexibility to predict



5.3 conditional variational inference 153

more complex outcome distributions y. The posterior over z, p(z|y, x)
is intractable in most models of interest, for example deep non-linear
neural networks. However, the parameters of this distribution can be ef-
ficiently approximated with Stochastic Gradient Variation Bayes (SGVB)
(Kingma and Welling, 2014), which uses a parametric recognition or
inference model q(z|y, x) to approximate the true posterior p(z|y, x). The
inference model learns a mapping from observations to latent space,
providing generalization and thereby amortizing the cost of inference
(compared to Markov chain Monte Carlo (MCMC) inference methods
that needed computationally expensive iterative procedures to estimate
the latent variables per datapoint).

We can derive a variational lower bound L(y|x) on our data likeli-
hood p(y|x):

log p(y|x) ≥ Ez∼q(z|x,y)

[
log

p(y, z|x)
q(z|y, x)

]
= Ez∼q(z|x,y)[log p(y|z, x)]− DKL[q(z|x, y)‖p(z|x)]
= L(y|x; θ, φ) (5.2)

where θ denotes the parameters in the generative network, φ denotes
the parameters in the inference network and prior, and DKL denotes
the Kullback-Leibler (KL) divergence. We can interpret the left-hand
term of the last equation (log p(y|z, x)) as the negative reconstruction
error, which measures how well we reconstruct y after sampling z. The
right-hand term (KL divergence) ensures q does not diverge too much
from the prior p. This acts as a regularizer, and ensures that we can at
test time (when we do not observe y) sample from p(z|x) instead of
q(z|x, y).

In practice, we slightly modify the objective in Eq. 5.2, where we use
importance sampling (Burda, Grosse, and Salakhutdinov, 2015) to ob-
tain a tighter bound, and minimize a different distance function instead
of the KL-divergence (namely α-divergence with α=0.5 (Depeweg et al.,
2016)). Details are provided in Appendix 5.8.1.

5.3.1 Reparametrization

For this work we focus on variational methods that reparametrize the
distribution of qφ(z|y, x) to allow gradient-based training on a single
computational graph. The trick works when we can write z as a function
z = fφ(ε, y, x), with fφ(·) a deterministic, differentiable function, and
ε ∼ p(ε) a noise distribution with independent marginal.



154 stochastic dynamics approximation with conditional variational inference

Figure 5.3: Conditional Variational Auto-Encoder as a computational process.
Squares are deterministic, circles are probabilistic nodes. Left: Train-
ing procedure. During training, we sample z according to q(·|x, y),
where q is parametrized by φq. The training loss consists of two
terms (indicated by the red dotted boxes): 1) the reconstruction loss
p(y|z, x), and 2) the KL-divergence between q(z|x, y) and p(z|x).
The latter ensures that the posterior q puts probability mass at the
same points as the prior p, effectively acting as a regularizer in latent
space. We compute z with the reparametrization trick, where e can
be any appropriate noise distribution. Right: Test procedure. At
test time, we cut away the inference network q, and instead sample
z according to the prior p(z|x). This allows us to make stochastic
predictions for y.

For a continuous variable z, the cardinal example is a location-scale
transformation of a standard Gaussian distribution. If qφ(z|y, x) =
N (z|µφ(y, x), Σφ(y, x)), then we can write

z = fφ(ε, y, x) = µφ(y, x) + Σφ(y, x) · ε, with ε ∼ N (0, 1) (5.3)

The gain is that we can now backpropagate through expectations of
the random variable z (Kingma and Welling, 2014):

∇φEz∼qφ(z|x,y)[ξ(z)] = Eε∼N (0,1)
[
∇φξ( fφ(ε, y, x))

]
(5.4)

for some function ξ(·) of z. The right-hand term can then be approxi-
mated with a Monte-Carlo estimate. This allows us to backpropagate
through z (see Fig. 5.3, left), giving the vanilla conditional variational
auto-encoder (CVAE) with Gaussian latent variables. The overall train
and test procedure is summarized in Figure 5.3. We now consider two
methods to improve the capacity of the latent z distribution, that both
could improve learning multimodal outcomes.



5.3 conditional variational inference 155

5.3.2 Discrete Latent Variables

As we want to model multimodal outcomes, it seems natural to consider
discrete latent variables. However, for the reparametrization trick to
be applicable we require the function fφ(·) to be differentiable, which
is not possible for a discrete variable. It turns out we can get good
estimates by making a smooth approximation to the discrete loss (Jang,
Gu, and Poole, 2016; Maddison, Mnih, and Teh, 2016).

Let ωi be an ordered set of class probabilities of a discrete variable zi
3

with ni categories. We can draw samples from this distribution through
the Gumbel-Max trick:

zi = one-hot
(

arg max
j∈[1..ni ]

[gj + log ωi,j]

)
(5.5)

with gj i.i.d. draws from a Gumbel(0, 1) distribution4. Since arg max
is not differentiable, we can make a softmax approximation to the above
equation:

zi,j =
exp((log ωi,j + gj)/τ)

∑ni
o=1 exp((log ωi,o + go)/τ)

for j = 1, .., ni (5.6)

which is known as the Gumbell-Softmax (Jang, Gu, and Poole, 2016)
or Concrete (Maddison, Mnih, and Teh, 2016) distribution. The softmax
temperature τ ∈ (0, ∞) regulates the discreteness of the approximation:
for τ → 0, the samples effectively become one-hot, while for τ →
∞, the samples become uniform over the class categories. The above
specification allows us to use the reparametrization trick for discrete
latent variables, as the noise distribution g is now decoupled from the
gradient path δz

δω . Note that Eq. 5.6 is a type of reparametrization fφ(·)
(as introduced in Sec. 5.3.1, with g the noise distribution and ωφ(x, y)
the distribution parameters. In practice, we anneal τ from > 1 to 0 over
the course of training.

3 We use subscripts zi to index the elements of the vector random variable z, and double
subscripts zi,j to index the categories within one discrete random variable.

4 We can sample from a Gumbel(0,1) distribution by sampling u ∼ Uniform(0, 1) and
computing g = − log(− log(u)).



156 stochastic dynamics approximation with conditional variational inference

5.3.3 Transformations of Continuous Variables (Flow)

We already specified the reparametrization trick for spherical Gaussian
latent variables (Eq. 5.3). As spherical Gaussians may be too restricting
for multimodality, we can increase the capacity of the latent layer
by using transformations of distributions for which we can track the
density, an idea originally propose by Rezende and Mohamed (2015).

To obtain more expressive distributions for a continuous random
variable z ∈ RD with known density q(z), we consider bijective smooth
mappings h : RD → RD with inverse h−1. We are interested in the
distribution of the transformed variable z′ = h(z). As long as we are
able to invert h, we can easily compute the density of the transformed
variable z′:

q(z′) = q(z)
∣∣∣∣det(

δh−1(z′)
δz′

)

∣∣∣∣ = q(z)
∣∣∣∣det(

δh(z)
δz

)

∣∣∣∣−1

(5.7)

which is known as the change-of-variable formula. If we can specify our
neural network to learn transformations which are easily invertible, we
can construct more complicated distributions by repeatedly applying
the above transformation (while being able to track the density). If we
repeatedly apply a sequence of transformations zL = hL ◦ ... ◦ h1(z0) for
some random variable z0 ∼ q0(·), then the density of the last variable
zL can be computed as:

log qL(zL) = log q0(z0)−
L

∑
l=1

log
∣∣∣∣det

δzl

δzl−1

∣∣∣∣ (5.8)

The problem with the above transformation is that, especially for high-
dimensional domains, computing the determinant is computationally
very expensive. An elegant solution appears from the observation that
the determinant of a triangular matrix is simply the product of its
diagonal terms (Dinh, Sohl-Dickstein, and Bengio, 2016; Kingma et al.,
2016). Therefore, given a random variable z of length D, we can specify
the transformation z′ = h(z) as:

z′1:d = z1:d

z′d+1:D = t(z1:d) + z′d+1:D � exp(s(z1:d)) (5.9)



5.3 conditional variational inference 157

The Jacobian of the this transformation is:

δz′

δz
=

 Id 0
δz′d+1:D

δz1:d
diag(exp(s(z1:d)))

 (5.10)

The determinant of this matrix is easily computed as exp
[

∑i s(z1:d)i)
]
.

Note that the t(·) (translation) and s(·) (scale) function can be arbitrarily
complex functions, for example deep, non-linear neural networks. In
these transformations, we do not need to compute the determinant of
s(·) or t(·) to track the density of the random variable z′. Moreover, it
is trivial to invert the above transformation:

z1:d = z′1:d

zd+1:D = (zd+1:D − t(z′1:d))� exp(−s(z′1:d)) (5.11)

This allows us to use the change-of-variable formula of the previous
section. We effectively perform an auto-regressive transformation on
the z variables. In practice, we repeatedly modify the order of the z
variables to have a different part of z transformed in each layer. In Fig.
5.3, we would apply these transformations to a sample from q(z|x, y)
before calculating the KL-divergence with p(z|x).

5.3.4 Enforcing Latent Variable Use

One of the challenges of training latent variable models is their ten-
dency to overfit the prior early in training. Initially, the likelihood term
p(y|z, x) is relatively weak. Therefore, the learning signal is dominated
by the KL-divergence, and stochastic optimization gets stuck in the
undesirable equilibrium q(z|y, x) ≈ p(z|x).

To give a simple illustration, imagine y is strictly bimodal given a
fixed x, taking value y1 or y2 with p(y1|x) = 0.3 and p(y2|x) = 0.7.
We fit a latent model with a single binary variable z taking values
z1 or z2. Clearly, we want our prior p(z|x) to learn the distribution
{p(z1|x) = 0.3, p(z2|x) = 0.7} (assuming z1 maps to y1 and z2 to
y2, which can of course be interchanged). However, the inference
network q(z|x, y) has access to additional information, as it knows
which y we need to reconstruct. Therefore, if we present a datapair
(x, y1), then we want our latent distribution more like {q(z1|x, y1) =
0.999, q(z2|x, y1) = 0.001}, as this ensures we make a good draw and



158 stochastic dynamics approximation with conditional variational inference

good reconstruction. However, for this datapoint this would incur a
KL-penalty DKL(q(z|x, y1)‖p(z|x)) ≈ 1.20. This illustrates how a good
fitting VI model will necessarily incur some KL-cost.

A solution is to enforce each (set of) latent variables to encode a
minimum amount of information (Kingma et al., 2016), i.e. force q(z|y, x)
to at least have a KL-divergence of λ from the prior p(z|x). The modified
objective becomes:

L̃(y|x) = E(x,y)∼M

[
Ez∼q(z|y,x)

[
log P(y|z, x)

]]
−

Dz

∑
j=1

max
(

λ, E(x,y)∼M
[
DKL[q(zj|x, y)‖p(zj|x)]

])
(5.12)

where Dz is the dimensionality of the latent space z, andM denotes
a mini-batch. Different solutions have been proposed, like KL anneal-
ing (Sønderby et al., 2016), but we empirically found them to be less
effective.

5.4 results

We now test the different types of conditional variational inference,
introduced in the previous section, on two tasks. Evaluating genera-
tive model performance is not straightforward, as standard metrics
like mean-squared error (MSE) are non-valid for multimodal outcome
distributions. In this work, we evaluate i) the log likelihood of a test
set under the learned generative model (see Appendix 5.8.2), and (if
possible) ii) we draw new data from the learned model and compute KL
divergences or Hellinger distances with respect to the true data gener-
ating distribution. Training details and hyperparameters are described
in Appendix 5.8.3.



5.4 results 159

Figure 5.4: Comparison of samples from the models produced by multi-layer
perceptron (MLP) and variational inference (VI) networks after train-
ing for 30,000 mini-batches. a) Ground truth data. b) MLP (determin-
istic predictions). c) MLP with stochastic inputs. d) VI with spherical
Gaussian. e) VI with spherical Gaussian and 5 layers of flow. f) VI
with discrete latent variables. Numerical results are reported in Table
5.1.

5.4.1 Toy Problem

We generate a one-dimensional multimodal transition function by sam-
pling x ∼ Uniform(−1, 1) and sampling y from a conditional Gaussian
distribution N (·|µ = f (x), σ = 0.1) according to:

p(y|x) =


N (2.5), if x<−0.3

ρ1N (4x) + ρ2N (−4x), if −0.3≤x<0.3

ρ3N (5+ log(x+1)) + ρ4N (−x+0.2) + ρ5N (5x2), if x≥0.3

where ρ1 = 0.2, ρ2 = 0.8, ρ3 = 0.3, ρ4 = 0.5 and ρ5 = 0.2. This
generates the multimodal function shown in Figure 5.4a. We study this
toy problem to visualize how different architectures will fit this simple
data structure with conditional unimodal (left), bimodal (middle) and
trimodal (right) structure (see Figure 5.4a left, middle and right parts).
Figure 5.4b-f show the samples generated by different models after
training on 30,000 mini-batch steps (See Appendix 5.8.3 for details).
Table 5.1 displays the variational lower bound (VLB) and negative
log-likelihood (NLL) on a test set.

A feed-forward network trained on mean squared error determin-
istically predicts the conditional expectation (Figure 5.4b). For fair
comparison, we also train a feed-forward network that does receive



160 stochastic dynamics approximation with conditional variational inference

Table 5.1: Performance on toy domain. All results are averaged over 10 runs.
VLB = Variational Lower Bound, NLL = Negative Log Likelihood
on test dataset, MLP = Multi-Layer Perceptron, VAE = Variational
Auto-Encoder.

Method VLB NLL

MLP (deterministic) NA NA

MLP (with stochastic input) NA 4.49

VAE continuous (n=3, no flow) 0.33 -0.29

VAE continuous (n=3, n f low=5) 0.32 -0.33

VAE discrete (n=3, k=3) 0.47 -0.48

noise variables ε as input but without an inference network (Figure 5.4c).
Theoretically this network could learn the same decoder distribution,
but without the inference network the model does not converge.

Figure 5.4d-f show the samples generated by different variational
methods (spherical Gaussian Sec. 5.3.1), Gaussian with flow (Sec. 5.3.3),
and discrete latent variables (Sec. 5.3.2), respectively. We see how these
models are much better at fitting the true data distribution. Impor-
tantly, notice that the variational approach consistently predicts the
deterministic part correctly (left part of the function). This is important,
as the network is able to ignore the input noise when needed. Table 5.1
indicates the discrete latent variable model fits this problem best.

5.4.2 Stochastic Gridworld

We now study a typical RL gridworld task with multimodal stochastic
dynamics. The world is a 7x7 grid (see Figure 5.5) with some walls.
The agent (green) starts in the bottom-left, can deterministically move
in each cardinal direction, and needs to reach the top-right (r = +10).
There are two ghosts, starting in locations as shown in Fig. 5.6, top-left.
Ghost 1 (red) uniformly chooses one of the available directions. Ghost
2 (blue) has a bias to move to the left or right (40% each), and moves
vertically with small probability (10%). Our interest here is to learn to
predict this stochasticity from observed data. As state-space we use a
vector of length 6 containing the 2D coordinates for the agent and both



5.4 results 161

Figure 5.5: Visual predictions on gridworld. Each sub-picture shows the agent
(green), ghost 1 (red) and ghost 2 (blue) with current location as a
circle, and predicted next location as a shaded box (color intensity
corresponds to predicted probability). Black locations are walls, the
text above each subplot indicates the action chosen by the agent.
Left: Continuous latent variables (n=8, no flow), Middle: continu-
ous latent variable (n=8, n f low =6), Right: discrete latent variables
(n=8,k=4). We observe stochastic predictions for the ghosts and
deterministic predictions for the agent. Numerical comparison is
provided in Table 5.2.

ghosts. Each element in the vector is treated as a categorical variable
with 7 classes (for the 7x7 grid).5

uncorrelated data On of the core challenges of RL is the explo-
ration problem, which can make the data we observe strongly corre-
lated. For example, if the agent never explores the top-left region of
the domain, we can not expect it to learn an accurate model there. To
overcome this problem, we first study an idealized setting in which our
dataset consists of the transitions of state-action combinations randomly
sampled across state-space.

on-policy agent The results on this task are shown in Table 5.2.
Compared to Table 5.1 we do not show MLP results anymore for
this task. We see the discrete latent variables again perform best on

5 Note that, although this is a discrete MDP, it is not a trivial task to model multimodality
here. Indeed, the outcome distribution per state dimension is categorical, but the joint
distribution (generally) does not factorize over the dimensions. Therefore, we would
already need a categorical with 76 = 117649 outcome categories to learn this problem
without conditional variational inference, and this would exponentially aggravate in
larger state-spaces (e.g. images).



162 stochastic dynamics approximation with conditional variational inference

Figure 5.6: On-policy predictions for RL agent (see Fig. 5.5 for color explanation).
The sub-plots progress row-wise along a roll-out in the learned
transition model. Note that this is a true 12-step roll-out, i.e. each
next plot is based on sampling a single prediction from the model
(we do not observe any true next state along the way).

negative log-likelihood (NLL) evaluation. However, when we compare
the learned distribution to the true distribution (which is available
for this problem), we see the continuous latent variables without flow
actually perform best. We see a conflict between both performance
measures (the NLL indicates the discrete model performs best, while
the distances with the true distribution point at the continuous latent
model). In this case, visual comparison (Figure 5.5) does not show
important differences across methods. We therefore conclude that the
differences between methods are small for this problem, while the best
performance measures for generative models remains an open questions
in general (see (Goodfellow, 2016)).

As a next step, we investigate to what extent an RL agent is capable
of learning an accurate transition model on-policy, i.e. while observing
correlated data. Note that the agent is still learning its policy in a model-
free sense here (as a deep Q-network (Mnih et al., 2015)), and we simply
investigate to what extend the learned transition model is accurate after
observing correlated data. Therefore, we evaluate the learned transition
model while the agent is executing the policy.

Figure 5.6 shows the results of a roll-out in the learned model under
a model-free policy. We see the agent first walking along the bottom
corridor, and then moving up in the vertical corridor. Note that the
agent consistently predicts its next state deterministically and correctly.
In frame 6 it makes a wrong action decision, probably because we
execute the behavioural policy with small ε-greedy noise. The ghosts



5.5 related work 163

Table 5.2: Performance on gridworld predictions for different types of variational infer-
ence. For this table, p̂ denotes the predicted distributions by the VAE model,
while p denotes the ground truth (which is known for this scenario). VLB =
Variational Lower Bound, NLL = Negative Log Likelihood.

Method VLB NLL DKL(p‖ p̂) DHel(p‖ p̂) DKL( p̂‖p)

VAE Continuous (n=8, no flow) -2.53 2.52 0.91 0.48 3.12

VAE Continuous (n=8, n f low=6) -2.66 2.70 2.74 0.60 4.29

VAE Discrete (n=8, k=4) -2.17 2.20 1.26 0.61 4.75

have multimodal, stochastic behaviour. The first ghost (red) moves
uniformly in one of the available directions, which is captured by the
red shades around the current ghost location. Note that the model
consistently predicts the ghost to move at each step. The second ghost
(blue) has a bias to primarily step to the left or right. We also note
the difference in the predicted next state between red and blue ghost,
matching their true dynamics. Altogether, the agent has learned to
predict both the deterministic effects of its own actions as well as its
stochastic environment, from on-policy, correlated data.

5.5 related work

Variational inference in the conditional setting was previously studied
by Sohn, Lee, and Yan (2015) and Walker et al. (2016). Compared to
our work, these papers only use spherical Gaussian priors, and do
not focus on reinforcement learning tasks. Our work focussed on VI
with reparametrization gradients. There is a second line of research on
latent variable models that uses score function gradients (Mnih and
Gregor, 2014), which are also known as REINFORCE in the RL context.
A benefit of reparametrization gradients is that they don’t suffer from
the high variance usually encountered with score function gradients (a
problem also known in RL).

The idea to apply flow to the latent layer originates from Rezende
and Mohamed (2015). The transformation in Eq. 5.9 are related to the
affine coupling layers of Dinh, Sohl-Dickstein, and Bengio (2016), but
then applied to the latent layer of a CVAE, while Dinh, Sohl-Dickstein,
and Bengio (2016) use them directly from observation level without
variational inference. Applying flow transformations at latent VI level
was introduced by Kingma et al. (2016), where the authors used fully
autoregressive transformations (which are harder to implement com-



164 stochastic dynamics approximation with conditional variational inference

pared to our transformations, but potentially have more representational
capacity).

To increase the expressivity of the latent approximation, we focussed
on different types of latent variables, as well as (normalizing) flow.
A third way to increase latent capacity is to factorize the distribution
into several layers (Sønderby et al., 2016). However, activating deeper
stochastic layers is not straightforward (Sønderby et al., 2016), requiring
either batch normalization or weight normalization (Kingma et al.,
2016). We defer factorized inference networks to future work, especially
in higher-dimensional tasks.

The different deep generative models discussed in Section 5.2 are
not mutually exclusive. For example, the variational lossy auto-encoder
(LVAE) (Chen et al., 2016) combines variational inference with PixelCNN-
based decoders (Oord et al., 2016). Such architectures force high-level
conceptual information into the latent level, while the decoder should
capture fine-grained details. This could be beneficial to sparsify the
latent layer and as such benefit RL planning as well.

There is relatively little work on Bayesian Neural Networks for RL.
Closest to ours is the work by Depeweg et al. (2016), who study VI
to estimate both transition function stochasticity (as studied in this
work) combined with uncertainty (due to limited data). Compared to
their work, we use a parametric inference network which allows us to
generalize in the inference part, while they perform VI per individual
datapoint. Second, they only considered Gaussian latent variables, while
we investigate discrete latent variables and normalizing flow as well.
The results of Depeweg et al. (2016) also show the ability to learn multi-
modal stochasticity, and additionally show the benefit of planning over
the model. Watter et al. (2015) also used variational auto-encoders in a
control task, but only as a regularizer for learning representations, not
to make stochastic predictions. Gal, McAllister, and Rasmussen (2016)
use Bayesian neural networks, in the form of Bayesian dropout, to track
uncertainty (due to limited data) in transition dynamics estimation.

Finally, there is also a line of RL research that uses the transition
function target to speed-up model-free RL. This idea has been identified
as RL with ‘auxiliary tasks’ (Jaderberg et al., 2016). The gradients of the
transition function predictions are denser compared to the sparse RL
training signal, and used to speed-up training of deeper network layers
shared between policy and transition network. However, this approach
does not learn stochastic transitions (but could benefit from it, as it
improves the learning signal), nor is it used for sample-based planning
as in model-based RL.



5.6 future work 165

5.6 future work

One clear line of future work is to use these transition models to improve
agent performance, by planning over the model with either a given
or learned reward function. Depeweg et al. (2016) already provided a
study in this direction. Compared to their work, it would especially be
interesting to apply more adaptive roll-outs in the model, like Monte
Carlo Tree Search (MCTS). Moreover, it would be important to evaluate
these methods in high-dimensional RL tasks, e.g. with convolutional
neural networks on raw pixel data (Oh et al., 2015). Another extension
is to use these models to improve exploration in stochastic domains (e.g.
(Houthooft et al., 2016; Oh et al., 2015)).

An important second challenge, briefly mentioned in the Introduction
and Section 5.4.2, is planning under uncertainty. RL initially provides
correlated data from a limited part of state-space. When planning over
this model, we should not extrapolate too much, nor trust our model too
early with limited data. Planning under uncertainty was for example
studied by Gal, McAllister, and Rasmussen (2016) and Houthooft et al.
(2016). Note that ‘uncertainty’ (due to limited data) is fundamentally
different from the ‘stochasticity’ (true probabilistic nature of the domain)
discussed in this chapter.

A third challenge for transition dynamics estimation is memory
(partial observability), when the current state does not provide all
available information to make a prediction. Proposed solutions are
recurrent neural networks (RNN) or Neural Turing Machines (NTM),
which have both been studied in the variational inference context (in
(Chung et al., 2015) and (Gemici et al., 2017), respectively).

Combining stochasticity, uncertainty and memory in one function
approximator would be an important integrating step in model-based
RL.

5.7 conclusion

This chapter studied multimodal transition function estimation for RL
agents, with a focus on variational inference with different types of
latent variables. Our experiments show variational inference is a robust
method to discriminate deterministic and stochastic elements of the
transition function using function approximation, clearly improving
over discriminative training. We verified results on a typical RL domain
where tabular learning would be infeasible, showing the ability of these



166 stochastic dynamics approximation with conditional variational inference

models to learn the multimodal transition dynamics online. We did
not observe important distinction in performance between the different
types of latent variables studied. Therefore, for the domain size studied
in this work, it seems safe to use the standard spherical Gaussian
conditional VAE. Our results are generally applicable in model-based
RL, and help solve a fundamental problem of many domains: the
complex stochastic behaviour of its transition dynamics.

5.8 appendix

5.8.1 Variational Auto-Encoder (VAE) Training Objective

We can obtain a tighter bound on Equation 5.2 by using importance
sampling (Burda, Grosse, and Salakhutdinov, 2015). We sample M val-
ues of z per datapoint, and average over them inside the log. Otherwise,
the model strongly penalizes for single samples that explain the objec-
tive poorly. Second, instead of the KL divergence we optimize Renyi
α-divergences (Li and Turner, 2016)). We use α=0.5 according to the
results by Depeweg et al. (2016), which makes the divergence term
become a function of the Hellinger distance (Li and Turner, 2016). The
combined objective, known as the variational Renyi (VR) bound (Li and
Turner, 2016) is:

LVR(y|x) =
1

1− α
log

1
M

M

∑
m=1

[(
p(y, zm|x)
q(zm|y, x)

)1−α]
(5.13)

with zm ∼ q(·|x, y).

5.8.2 Test Set Negative Log-likelihood (NLL) for VAE

We are interested in the likelihood p(y|x) of a set of test data {xi, yi}N
i=1.

We therefore need to marginalize over z:

p(y|x) = Ez∼p(·|x)

[
p(y|z, x)

]
(5.14)

One problem with this estimator is that we may need many empirical
samples from z to get an accurate estimate. As an alternative, we



5.8 appendix 167

estimate the quantity through importance sampling, by sampling from
q(·|xi, yi) instead of p(·|xi):

p(y|x) = Ez∼q(·|x,y)

[
p(y|z, x)

p(z|x)
q(z|x, y)

]
(5.15)

The empirical estimate of the negative log likelihood (NLL), as re-
ported in the results section, then becomes

− log p(y|x) = − 1
N

N

∑
i=1

log
[ 1

M

M

∑
m=1

p(yi|zm
i , xi)

p(zm
i |xi)

q(zm
i |xi, yi)

]
(5.16)

with zm
i ∼ q(·|xi, yi).

5.8.3 Training Details

For all experiments we follow standard train, validation and test set
set-up. For all domains, we train the VAE target on k = 3 importance
samples with Renyi-α divergence for α = 0.5 (see appendix 5.8.1). This
gave us slightly better results compared to the ‘default’ settings of
k = 1 and α = 1.0. All models are trained in Tensorflow using Adam
optimizer.

Toy Domain: We draw a training set of size 2000, and independent
validation and test sets of size 500 and 2000, respectively. The decoder
distribution is Gaussian, where we also learn its standard deviation. We
train for 30000 batches with batch size 64, with a learning rate linearly
annealed from 0.005 to 0.0005 over 90% of training steps. The minimal
KL penalty per dimension λ (Eq. 5.12) is fixed at 0.07.

The generative network has three layers with 50 units per layer and
Relu non-linearities. The inference network has two layers with 30 units
per layer and Relu non-linearities. For the discrete latent variables, we
anneal the temperature from 2.0 to 0.001 over 70% of training steps.

Gridworld: For the first task, we repeatedly draw training data by
sampling a new state-action combination uniformly across state-space,
and sampling a single transition. Optimal model performance is based
on a VAE performance on a validation and test set of size 750 and
1500 respectively. The decoder distribution is discrete taking values in
7 categories. We train on mini-batches of size 32 for 75000 iterations,



168 stochastic dynamics approximation with conditional variational inference

with a learning rate linearly annealed from 0.0005 to 0.0001 over 70%
of training steps. The generative network has three layers with 250

units per layer and Relu non-linearities. The inference network has two
layers with 100 units per layer and Relu non-linearities. The minimal
KL penalty per dimension λ (Eq. 5.12) is fixed at 0.07.

For the on-policy evaluation, the RL policy is trained as a deep Q-
network (Mnih et al., 2015) with target network and no experience
replay. The state-action value network has three layers of 50 units and
Relu activations. Given a mini-batch M of roll-out data under the
current policy, the network is trained on the 1 step Q-learning objective:

LRL(η) = E(s,a,r,s′)∼M

[(
r +γ max

a′
Q(s′, a′; η−)−Q(s, a; η)

)2]
(5.17)

where s, a, r denote state, action and reward, Q(s, a) is the expected
discounted return (discount parameter γ = 0.99) from state s and action
a under the current policy, η are the parameters in the value function
network, and η− the parameters in the target network (which are fixed
in the above loss, and only updated every 500 steps). During learning,
we follow an ε-greedy policy with ε linearly decayed from 1.0 to 0.10

over 60% of training steps.



6A L P H A Z E R O I N C O N T I N U O U S A C T I O N S PA C E 1

abstract

A core novelty of AlphaZero is the interleaving of tree search and deep learning, which
has proven very successful in board games like Chess, Shogi and Go. These games have
a discrete action space. However, many real-world reinforcement learning domains have
continuous action spaces, for example in robotic control, navigation and self-driving
cars. This chapter presents the necessary theoretical extensions of Alpha Zero to deal
with continuous action space. We also provide some preliminary experiments on the
Pendulum swing-up task, empirically showing the feasibility of our approach. Thereby,
this work provides a first step towards the application of iterated search and learning in
domains with a continuous action space.

6.1 introduction

We already introduced the AlphaZero algorithm in Chapters 3 and
4. In particular, it is a successful approach to combine planning and
learning, for example achieving state-of the art performance in Chess,
Shogi (Silver et al., 2017b) and the game of Go (Silver et al., 2016, 2017c).
In this chapter, we will experimentally investigate this combination of
planning and learning, showing how it can be extended to continuous
action spaces.

Compared to traditional RL techniques, the key innovation of Alp-
haZero is the use of a small, nested tree search as a policy improvement
operator. Whereas traditional reinforcement learning treats each en-
vironment step or trace as an individual training target, AlphaZero
aggregates the information of multiple traces in a tree, and eventually
aggregates these tree statistics into targets to train a neural network.
The neural network is then used as a prior to improve new tree searches.
This approach closes the loop between search and function approxima-
tion (Figure 6.1). In section 6.6 we further discuss why this works so
well.

1 Chapter based on: Moerland TM, Broekens J, Plaat A, Jonker CM. A0C: Alpha Zero in
Continuous Action Space. 2018. Planning and Learning (PAL) Workshop @ International
Conference on Machine Learning, 2018.

169



170 alpha zero in continuous action space

Many real-world problems, such as robotics control, navigation and
self-driving cars, have a continuous action space. This chapter therefore
investigates the applicability of the AlphaZero paradigm to problems
with a continuous action space. Compared to the AlphaZero paradigm
for discrete action spaces, we require:

1. A Monte Carlo Tree Search (MCTS) method that works in contin-
uous action space. We built here on earlier results on progressive
widening (Section 6.3.1).

2. Incorporation of a continuous prior to steer a new MCTS iteration.
While AlphaZero uses the discrete density as a prior in a (P)UCT
formula (Kocsis and Szepesvári, 2006; Rosin, 2011), we need to
leverage a continuous density (which is unbounded) to direct the
next MCTS iteration (Section 6.3.2)

3. A training method. AlphaZero transforms the MCTS visitation
counts to a discrete probability distribution. We need to estimate
a continuous density from a set of support points, and specify an
appropriate training loss in continuous policy space (Section 6.4).

The remainder of this chapter is organized as follows. Section 6.2
presents essential preliminaries on MCTS and the concepts of Alp-
haZero. Section 6.3 discusses the required MCTS modifications for a
continuous action space with a continuous prior (Fig. 6.1, upper part of
the loop). In Section 6.4 we cover the generation of training targets from
the tree search and specify an appropriate neural network loss (Fig. 6.1,
lower part of the loop). Sections 6.5, 6.6 and 6.7 present experiments,
discussion and conclusions. Code to replicate experiments is available
from https://github.com/tmoer/a0c.

6.2 preliminaries

Please refer to Chapter 2 for an introduction of the Markov Decision
Process problem, and the relevant notation. We here present a brief
introduction of the well-known MCTS algorithm (Browne et al., 2012;
Coulom, 2006). In particular, we will introduce a variant of the PUCT
algorithm (Rosin, 2011), as also used in AlphaZero (Silver et al., 2017b,c).
Every action node in the tree stores statistics {n(s, a), W(s, a), Q(s, a)},
where n(s, a) is the visitation count, W(s, a) the cumulative return over
all roll-outs through (s, a), and Q(s, a) = W(s, a)/n(s, a) is the mean
action value estimate. PUCT alternates four phases:

https://github.com/tmoer/a0c


6.2 preliminaries 171

Figure 6.1: Iterated tree search and function approximation.

1. Select In the first stage, we descent the tree from the root node
according to:

πtree(a|s) = arg max
a

[
Q(s, a)+ cpuct ·πφ(a|s) ·

√
n(s)

n(s, a) + 1

]
(6.1)

where n(s) = ∑a n(s, a) is the total number of visits to state s
in the tree, cpuct ∈ R+ is a constant that scales the amount the
exploration/optimism, and πφ(a|s) is the probability assigned
to action a by the network.2 The tree policy is followed until we
either reach a terminal state or select an action we have not tried
before.

2. Expand We next expand the tree with a new leaf state sL
3 obtained

from simulating the environment with the new action from the
last state in the current tree.

2 This equation differs from the standard UCT-like formulas in two ways. The πφ(a|s)
term scales the confidence interval based on prior knowledge, as stored in the the policy
network. The + 1 term in the denominator ensures that the policy prior already affects
the decision when there are unvisited actions. Otherwise, every untried action would be
tried at least once, since without the +1 term Eq. 6.3 becomes ∞ for untried actions. This
is undesirable for large action spaces and small trees, where we directly want to prune
the actions that we already know are inferior from prior experience.

3 We use superscript st to index real environment states and actions, subscripts sd to index
states and actions at depth d in the search tree, and double subscripts ad,j to index a
specific child action j at depth d. For example, a0,0 is the first child action at the root s0.
At every timestep t, the tree root s0 := st, i.e. the current environment state becomes the
tree root.



172 alpha zero in continuous action space

3. Roll-out We then require an estimate of the value V(sL) of the
new leaf node, for which MCTS uses the sum of reward of a
(random) roll-out R(sL). In AlphaZero, this gets replaced by the
prediction of a value network R(sL) := Vφ(sL).

4. Back-up Finally, we recursively back-up the results in the tree
nodes. Denote the current forward trace in the tree as {s0, a0, s1,
..sL−1, aL−1, sL}. Then, for each state-action edge (si, ai), L > i ≥
0, we recursively estimate the state-action value as

R(si, ai) = r(si, ai) + γR(si+1, ai+1). (6.2)

where R(sL, aL) := R(sL). We then increment W(si, ai) with the
new estimate R(si, ai), increment the visitation count n(si, ai) with
1, and set the mean estimate to Q(si, ai) = W(si, ai)/n(si, ai). We
repeatedly apply this back-up one step higher in the tree until we
reach the root node s0.

This procedure is repeated until the overall MCTS trace budget Ntrace
is reached. MCTS returns a set of root actions A0 = {a0,0, a0,1, .., a0,m}
with associated counts N0 = {n(s0, a0,0), n(s0, a0,1), .., n(s0, a0,m)}. Here
m denotes the number of child actions, which for AlphaZero is always
fixed to the cardinality of the discrete action space m = |A|. We select
the real action at to play in the environment by sampling from the
probability distribution obtained from normalizing the action counts at
the root s0(= st):

at ∼ π̂(a|s0), where π̂(a|s0) =
n(s0, a)

1
τ

∑b∈A0
n(s0, b

1
τ )

, (6.3)

where τ denotes a temperature parameter that scales the greediness
of the target. Note that the denominator is larger than Ntrace, since we
store the subtree that belongs to the picked action at for the MCTS at
the next timestep.

Finally, in AlphaZero we introduce two neural networks: one to
estimate a parametrized policy πφ(a|s), and one to estimate the state
value Vφ(s). Both networks share the initial layers. The joint set of
parameters of both networks is denoted by φ. These neural networks
interact with the planning cycle, since they are 1) trained on targets
extracted from the tree search, and 2) potentially influence new tree



6.3 tree search in continuous action space 173

search iterations. This scheme is visualized in Fig. 6.1. We will now
discuss how this integration of planning and learning, introduced by
AlphaZero, can be modified for the continuous action space setting.

6.3 tree search in continuous action space

As noted in the introduction, we require two modifications to the MCTS
procedure: 1) a method to deal with continuous action spaces, and 2) a
way to include a continuous policy network into the MCTS search.

6.3.1 Progressive Widening

During MCTS with a discrete action space we evaluate the PUCT
formula for all actions. However, in continuous action space we can
not enumerate all actions, i.e., there are actually infinitely many actions
in a continuous set. A practical solution to this problem is progressive
widening (Chaslot et al., 2008a; Coulom, 2007), where we make the
number of child actions of state s in the tree m(s) a function of the total
number of visits to that state n(s). This implies that actions with good
returns, which will get more visits, will also gradually get more child
actions for consideration. In particular, Couëtoux et al. (2011) use

m(s) = cpw · n(s)κ (6.4)

for constants cpw ∈ R+ and κ ∈ (0, 1), making m(s) a polynomial
(root) function of n(s). The idea of progressive widening was introduced
by Coulom (2007), who made m(s) a logarithmic function of n(s).
Although originally conceived for discrete domains, this technique
turns out to be an effective solution for continuous action space as well
(Couëtoux et al., 2011).

6.3.2 Continuous policy network prior

For now assume we manage to train a policy network πφ(s) from
the results of the MCTS procedure. AlphaZero can enumerate the
probability for all available discrete actions, and uses this probability
as a prior scaling on the upper confidence bound term in the UCT
formula (Eq. 6.1). For the continuous policy space, we could use a
similar equation, where we use πφ(a|s) of the considered a as predicted



174 alpha zero in continuous action space

by the network. However, the continuous πφ(a|s) is unbounded.4 This
gives us the risk of rescaling/stretching the confidence intervals too
much. Another option - which we consider in this work - is to use the
policy network to sample new child actions in the tree search (when
adding a new action based on progressive widening). Thereby, the
policy net steers the actions that we will consider in the tree search.
This has a similar effect as Eq. 6.1 for AlphaZero does, as it effectively
prunes away child actions in subtrees of which we already know that
they perform poorly.

6.4 neural network training in continuous action space

We next want to use the MCTS output to improve our neural networks.
Compared to AlphaZero, the continuous action space forces us to come
up with a different policy network specification, policy target calculation
and training loss. These aspects are covered in Section 6.4.1. Afterwards,
we briefly detail the value network training procedure, including a
slight variant of the value target estimation (Section 6.4.2).

6.4.1 Policy Network

policy network distribution We require a neural network that
outputs a continuous density. However, continuous action spaces usu-
ally have some input bounds. For example, when we learn the torques
or voltages on a robot manipulator, then a too extreme torque/voltage
may break the motor altogether. Therefore, continuous action spaces are
generally symmetrically bounded to some [−cb, cb] interval, for scalar
cb ∈ R+. To ensure that our density predicts in this range, we use a
transformation of a factorized Beta distribution πφ(a|s) = g(u), with
elements ui ∼ Beta(αi(φ), βi(φ)) and deterministic transformation g(·).
Details are provided in Appendix 6.8.1. Note that the remainder of this
section holds for any πφ(a|s) network output distribution from which
we know how to sample and evaluate (log) densities.

training target We want to transform the result of the MCTS
with progressive widening to a continuous target density π̂ (to training
our neural network with). Recall that MCTS returns the sets A0 and

4 For a discrete probability distribution, π(a) ≤ 1 ∀a. However, although the probability
density function (pdf) of continuous random variables integrates to 1, i.e.

∫
π(a|s)da = 1,

this does not bound the value of the pdf π(a) at a particular point a, i.e. π(a) ∈ [0, ∞).



6.4 neural network training in continuous action space 175

N0 of root actions and root counts, respectively. We can not normalize
these counts like AlphaZero does (Eq. 6.3) for the discrete case. The
only assumption, similar to AlphaZero, that we make here is that the
density at a root action a0,i is proportional to the visitation counts, i.e.5

π̂(ai|s) =
n(s, ai)

τ

Z(s, τ)
(6.5)

where τ ∈ R+ specifies some temperature parameter, and Z(s, τ) is a
normalization term (that is assumed to not depend on ai, as the density
at the support points is only proportional to the counts). Note that this
does not define a proper density, as we never specified a density in
between the support points. However, we can ignore this issue, as we
will only consider the loss at the support points.

loss In short, our main idea is to leave the normalization and gener-
alization of the policy over the action space to the network loss. If we
specify a network output distribution that enforces

∫
a πφ(a|s) = 1, i.e.,

making it a proper continuous density, then we may specify a loss with
respect to a target density π̂(a|s), even when the target density is only
known on a relative scale. More extreme counts (relative densities) will
produce stronger gradients, and the restrictions of the network output
density will ensure that we can not pull the density up or down over
the entire support (as it needs to integrate to 1). This way, we make our
network output density mimic the counts on a relative scale.

We will first give a general derivation, acting as if π̂(a|s) is a proper
density, and swap in the empirical density at the end. We minimize a
policy loss Lpolicy(φ) based on the Kullback-Leibler divergence between
the network output πφ(a|s) and the empirical density π̂(a|s) (Eq. 6.5):

Lpolicy(φ) = DKL

(
πφ(a|s)‖π̂(a|s)

)
= Ea∼πφ(a|s)

[
log πφ(a|s)− log π̂(a|s)

]
(6.6)

We may use the REINFORCE6 trick to get an unbiased gradient
estimate of the above loss:

5 The remainder of this section always concerns the root state s0 and root actions a0,i .
Therefore, we omit the depth subscript (of 0) for readability.

6 The REINFORCE trick (Williams, 1992), also known as the likelihood ratio estima-
tor, is an identity regarding the derivative of an expectation, when the expecta-
tion depends on the parameter towards which we differentiate: ∇φEa∼pφ(a)[ f (a)] =
Ea∼pφ(a)[ f (a)∇φ log pφ(a)], for some function f (·) of a.



176 alpha zero in continuous action space

∇φLpolicy(φ) = ∇φEa∼πφ(a|s)

[
log πφ(a|s)− τ log n(a, s)

+ log Z(s, τ)
]

= Ea∼πφ(a|s)

[(
log πφ(a|s)− τ log n(a, s)

+ log Z(s, τ)
)
∇φ log πφ(a|s)

]
We now drop Z(s, τ) since it does not depend on φ (or chose an

appropriate state-dependent baseline, as is common with REINFORCE
estimators). Moreover, we replace the expectation over a ∼ πφ(a|s)
with the empirical support points ai ∼ Ds, where Ds denotes the subset
of the database containing state s. Our final gradient estimator becomes

∇φLpolicy(φ) = Es∼D,ai∼Ds

[(
log πφ(ai|s)− τ log n(s, ai)

)
· ∇φ log πφ(ai|s)

]
(6.7)

entropy regularization Continuous policies have a risk to col-
lapse (Haarnoja et al., 2018). If all sampled actions are close to each
other, then the distribution may narrow too much, loosing any explo-
ration. In the worst case, the distribution may completely collapse,
which will produce NaNs and break the training process. As we empiri-
cally observed this problem, we augment the training objective with an
entropy maximization term.7 This prevents the policy from collapsing,
and additionally ensures a minimum level of exploration. We define
the entropy loss as

LH(φ) = H(πφ(a|s)) = −
∫

πφ(a|s) log πφ(a|s)da. (6.8)

Details on the computation of the entropy for the case where πφ(a|s)
is a transformed Beta distribution are provided in Appendix 6.8.2. The
full policy loss thereby becomes

Lπ(φ) = Lpolicy(φ)− λLH(φ), (6.9)

7 As an alternative solution, we could also consider adding extra noise to the MCTS search.
However, it is harder to tune the proper amount of exploration in the MCTS search.
Entropy regularization is a more straightforward approach to prevent collapse.



6.5 experiments 177

where λ is a hyperparameter that scales the contribution of the
entropy term to the overall loss.

6.4.2 Value Network

Value network training is almost identical to the AlphaZero specification.
The only thing we modify is the estimation of V̂(s), the training target
for the value. AlphaZero uses the eventual return of the full episode
as the training target for every state in the trace. This is an unbiased,
but high-variance signal (in reinforcement learning terminology (Sutton
and Barto, 2018), it uses a full Monte Carlo target). Instead, we use
the MCTS procedure as a value estimator, leveraging the action value
estimates Q(s0, a) at the root s0. We could weigh these according to the
visitation counts at the root. However, we usually built relatively small
trees,8 for which a non-negligible fraction of the traces are exploratory.
Therefore, we propose an off-policy estimate of the value at the root:

V̂(s0) = max
a

Q(s0, a) (6.10)

The value loss LV(φ) is a standard mean-squared error loss:

LV(φ) = Es∼D

[(
Vφ(s)− V̂(s)

)2
]

. (6.11)

6.5 experiments

Figure 6.2 shows the results of our algorithm on the Pendulum-v0

task from the OpenAI Gym (Brockman et al., 2016). The curves show
learning performance for different computational budgets per MCTS
at each timestep. Note that the x-axis displays true environment steps,
which includes the MCTS simulations. For example, if we use 10 traces
per MCTS, then every real environment step counts as 10 on this scale.

First, we observe that our continuous AlphaZero version does indeed
learn on the Pendulum task. Interestingly, we observe different learning
performance for different tree sizes, where the ‘sweet spot’ appears to

8 AlphaGo Zero uses 1600 traces per timestep. We evaluate on smaller domains, and have
less computational resources.



178 alpha zero in continuous action space

Figure 6.2: Learning curves for Pendulum domain. Compared to the OpenAI
Gym implementation we rescale every reward by a factor 1/1000
(which leaves the task and optimal solution unchanged). Results
averaged over 10 repetitions.

be at an intermediate tree size (of 10). For larger trees, we complete
less episodes (a single episode takes longer) and therefore we have less
training targets to train our neural network on. Therefore, although each
individual trace gets more budget, it takes longer before the tree search
starts to profit from improved network estimates (generalization).

We train our neural network after every completed episode. However,
the runs with smaller tree sizes complete much more episodes compared
to the runs with a larger tree size. Moreover, the data generated from
larger tree searches could be deemed ‘more trustworthy’, as we spend
more computational effort in generating them. We try to compensate for
this effect by making the number of training epochs over the database



6.6 discussion 179

after each episode proportional to the size of the nested tree search.
Specifically, after each episode we train for

nepochs =

⌈
Ntraces

ce

⌉
(6.12)

for constant ce ∈ R+ and d·e denoting the ceiling function. In our
experiments we set ce = 20. This may explain why the run with
Ntraces = 25 performs suboptimal compared to the others, as the non-
linearity in Eq. 6.12 (due to the ceiling function) may accidentally turn
out bad for this number of tree traces. Moreover, note that the learning
curve of training with a tree size of 1 is shorter than the other curves.
This happens because we gave each run an equal amount of wall-clock
time. The run with tree size 1 finishes much more episodes, and because
ce > 1 it still trains more frequently than the other runs, which makes
it eventually perform less total steps in the domain.

implementation details We use a three layer neural network
with 128 units in each hidden layer and ELu activation functions. For
the MCTS we set cpuct = 0.05, cpw = 1 and κ = 0.5, and for the policy
loss λ = 0.1 and τ = 0.1. We train the networks in Tensorflow (Abadi
et al., 2016), using RMSProp optimizer on mini-batches of size 32 with
a learning rate of 0.0001. Episodes last at maximum 300 steps.

6.6 discussion

The results in Fig. 6.2 reveal an interesting trade-off in the iterated tree
search and function approximation paradigm. We hypothesize that the
strength of tree search is the in the locality of information. Each edge
stores its own statistics, and this makes it easy to locally separate the
effect of actions. Moreover, the forward search gives a more stable value
estimate, smoothing out local errors in the value network. In contrast,
the strength of the neural network is generalization. Frequently, we
re-encounter the (almost) same state in a different subtree during a next
episode. Supervised learning is a natural way to generalize the already
learned knowledge from a previous episode.

One of the key observations of the present chapter is that we actually
need both. If we only perform tree search, then we eventually fail at
solving the domain because all information is kept locally. In contrast,
if we only build trees of size 1, then we are continuously generalizing



180 alpha zero in continuous action space

without ever locally separating decisions and improving our training
targets. Our results suggest that there is actually a sweet spot halfway,
where we build trees of moderate size, after which we perform a few
epochs of training. We will further explore this topic in the next chapter.

Future work will test the A0C algorithm in more complicated, contin-
uous action space tasks (Brockman et al., 2016; Todorov, Erez, and Tassa,
2012). Moreover, our algorithm could profit from recent improvements
in the MCTS algorithm (Moerland et al., 2018b) and other network
architectures (Szegedy et al., 2015), as also leveraged in AlphaZero.

6.7 conclusion

This chapter introduced AlphaZero for Continuous action space (A0C).
Our method learns a continuous policy network - based on transformed
Beta distributions - by minimizing a KL-divergence between the net-
work distribution and an unnormalized density at the support points
from the MCTS search. Moreover, the policy network also directs new
MCTS searches by proposing new candidate child actions in the search
tree. Preliminary results on the Pendulum task show that our approach
does indeed learn. Future work will further explore the empirical per-
formance of A0C. In short, A0C may be a first step in the application
of iterated search and learning to problems with a continuous action
space, like often encountered in robotics, navigation and self-driving
cars.

6.8 appendix

6.8.1 Enforcing Action Space Bounds with Transformed Beta Distributions

Continuous action spaces are generally bounded, i.e., we want to sample
a ∈ [−cb, cb]

na for some constant cb ∈ R+ and action space dimension-
ality na. There are various probability distributions with support on a
continuous bounded interval. A well-known and flexible option is the
Beta distribution, which has support in [0, 1]. We will therefore make
our network predict the parameters of a factorized Beta distribution
u ∼ q(u), where each element ui ∼ Beta(αi(φ), βi(φ)). Our goal is to
transform the random variable u to a random variable a with support
a ∈ [−cb, cb]

na . A simple transformation g that achieves this goal is

a = g(u) = cb · (2u− 1) (6.13)



6.8 appendix 181

For the loss specification in the chapter, we require the (log)-density
π(a) of the transformed variable. We know from the change of variables
rule that:

π(a) = q(u)
∣∣∣det(

da
du

)
∣∣∣−1

(6.14)

For the transformation a = g(u), the Jacobian da
du = diag(2cb) is a

diagonal matrix. Therefore, we can derive a simple expression for the
(log-)likelihood of a:

π(a) = q(u) · (2cb)
−na , and log π(a) = log q(u).− na · log(2cb).

(6.15)

6.8.2 Entropy of Transformed Beta Distribution

We know the entropy of a linear transformation of some variable from
differential entropy (Michalowicz, Nichols, and Bucholtz, 2013). For a
linear transformation Mu + l, with matrix M and vector l, we have

H(Mu + l) = H(u) + log |det(M)| (6.16)

For our transformation g(u) (Eq. 6.13), the second term of this equa-
tion equals na log(2cb). Since this term does not depend on φ, and
therefore does not contribute any gradients, we will simply ignore it.
The entropy of the Beta distribution q(u) can be computed analytically
(Michalowicz, Nichols, and Bucholtz (2013), p.63).





7T H I N K T O O FA S T N O R T O O S L O W : T H E
C O M P U TAT I O N A L T R A D E - O F F B E T W E E N P L A N N I N G
A N D R E I N F O R C E M E N T L E A R N I N G 1

abstract

Multi-step approximate real-time dynamic programming, a recently successful
algorithm class of which AlphaZero (Silver et al., 2018) is an example, nests planning
within a learning loop. However, the combination of planning and learning introduces
a new question: how should we balance time spend on planning, learning and acting?
The importance of this trade-off has not been explicitly studied before. We show that it
is actually of key importance, with computational results indicating that we should
neither plan too long nor too short. Conceptually, we identify a new spectrum of
planning-learning algorithms which ranges from exhaustive search (long planning) to
model-free RL (no planning), with optimal performance achieved midway.

7.1 introduction

Multi-step approximate real-time dynamic programming (MSA-RTDP),
a class of algorithms in which AlphaZero (Silver et al., 2018) also resides,
was already discussed in Chapter 4. However, the iterated planning and
learning paradigm als introduces a new question: how long should we
plan at a given state? We already touched upon this topic in Sec. 4.4.2
and Sec. 4.6.3. In this chapter, we will further investigate this trade-off.

We hypothesize that trade-off between planning and real data collec-
tion is crucial: when we plan too extensively, we make too little progress
in the domain and have less training targets for learning, while when
we plan too briefly, our local decisions and training targets are likely
to be less optimal. This trade-off was never present in online planning,
where the budget per real step is typically as high as the application
permits (in the order of milliseconds for a video game, or in the order of

1 Chapter based on: Moerland TM, Deichler A, Baldi S, Broekens J, Jonker CM. Think Too
Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement
Learning. 2020. Bridging the Gap Between AI Planning and Reinforcement Learning
(PRL) workshop at the International Conference on Automated Planning and Scheduling
(ICAPS).

183



184 the computational trade-off between planning and rl

seconds to minutes for a game of Chess (Campbell, Hoane Jr, and Hsu,
2002)). It was neither present in model-free reinforcement learning (RL),
since those approaches do not have access to a dynamics model and
therefore can not plan. Model-based RL, where we use observed data
to approximate the dynamics model, has mostly focused on dealing
with enhancing data efficiency and dealing with uncertainty in the
learned models (Chua et al., 2018; Sutton, 1991). Instead, we focus on
the situation with a known, perfect model without uncertainty, to fully
investigate the trade-off between planning and learning once a good
model is available.

We therefore study the AlphaZero algorithm (Silver et al., 2018), a
successful variant of MSA-RTDP, on several known tasks. On each
task, we fix the overall computational budget, but vary the planning
budget per real step. Our results show that, for a fixed overall time
budget, approaches with an intermediate planning budget per time-step
achieve the highest final performance. This is an important empirical
insight for model-based reinforcement learning and MSA-RTDP algo-
rithms. Anthony, Tian, and Barber (2017) have previously connected
planning-learning integrations to dual process theory (Evans, 1984),
now popularized as ‘thinking fast and slow’ (Kahneman, 2011). In this
analogy, planning is ‘thinking slow’, while learned approximations are
‘thinking fast’. Adopting this nomenclature, a short summary of our
results could be: ‘think too fast nor too slow’.

The remainder of this chapter is organized as follows. Section 7.2
introduces the algorithm class of interest, multi-step approximate real-
time dynamic programming. Section 7.3 and 7.4 detail methodology
and results, respectively. The final sections cover Related work (Sec. 7.5),
Discussion (Sec. 7.6) and Conclusion (Sec. 7.7). Code to replicate experi-
ments is available from https://github.com/ratponto/tree-rl-adaptive.

7.2 multi-step approximate real-time dynamic program-
ming

We refer the reader back to Chapter 2 for an introduction of the Markov
Decision process. One of the cardinal algorithms to solve a Markov
Decision process is Dynamic Programming (DP) (Bellman, 1966). For
example, in Q-value iteration we sweep through a state-action value
table, where at each location we update Q(s, a) according to:

Q(s, a)← Es′∼T (·|s,a)

[
R(s, a, s′) + γ max

a∈A
Q(s, a)

]
(7.1)

https://github.com/ratponto/tree-rl-adaptive


7.2 multi-step approximate real-time dynamic programming 185

Dynamic programming is guaranteed to converge to the optimal
policy. However, due to the curse of dimensionality, it can not be applied
in high-dimensional problems.

We therefore introduce an extension of DP, multi-step approximate
real-time dynamic programming (Efroni, Ghavamzadeh, and Mannor,
2019), which has recently shown impressive empirical results, for exam-
ple beating humans and achieving state-of-the-art performance in the
game of Go (Silver et al., 2017c), Chess and Shogi (Silver et al., 2018).
MSA-RTDP is based on Dynamic Programming concepts, but adds
three additional concepts:

• ‘Real time’ (Barto, Bradtke, and Singh, 1995) implies that we act on
traces through the environment that start from some initial state
s0 ∼ p(s0). This property is assumed by most RL and planning
algorithms. Compared to the DP sweeps, it avoids work on states
that we will never reach.

• ‘Approximate’ implies that we will use function approximation
to store a global parametrized solution, in the form of a value
Vθ(s)/Qθ(s, a) and/or policy function πθ(a|s), where θ ∈ Θ de-
note the parameters of the approximation. Compared to a tabular
representation, approximate representations can deal with high-
dimensional state spaces and benefit from generalization between
similar states, although they do make approximation errors. Ap-
proximate solutions are especially popular in RL literature.

• ‘Multi step’ implies that for every Dynamic Programming back-
up, we are allowed to make a multi-step lookahead, i.e., we can
plan.

The resulting multi-step approximate RTDP algorithm class has three
key components, which are visualized in Figure 7.1:

1. Plan: At every state st in the trace, we get to expand some compu-
tational budget B of forward planning, which could for example be
a depth-d full-breadth search (Russell and Norvig, 2016), or a more
complicated planning procedure like Monte Carlo Tree Search
(Browne et al., 2012). The planning procedure can use learned
value/policy functions to aid planning, for example through boot-
strapping (Sutton and Barto, 2018).

2. Learn: After planning, we use the output of planning (our im-
proved knowledge about the optimal value and policy at st) to
train our global value/policy approximation.



186 the computational trade-off between planning and rl

Figure 7.1: Multi-step Real-time Dynamic Programming. The three key proce-
dures are 1) Planning, 2) Learning, and 3) Real steps (acting).

3. Real step: We finally use the planning output to decide which
action at we will commit to, and make a ‘real step’, transitioning
to a sampled next state st+1 ∼ T (·|st, at). The next iteration of
planning continues from st+1.

MSA-RTDP has two special cases that depend on the computation
planning budget B per real step. On the one extreme, B→ ∞, we com-
pletely enumerate all possible future traces, better known as exhaustive
search (Russell and Norvig, 2016). On the other extreme, B = 0, we
do not plan at all, but directly make a real step based on the global
approximations, better known as model-free reinforcement learning (Sutton
and Barto, 2018).

Anthony, Tian, and Barber (2017) already related this approach to
cognitive psychology research, in particular dual process theory (Evans,
1984; Kahneman, 2011). The global value/policy approximation, which
makes fast predictions about the value of actions, can be considered a
System 1 (‘Thinking fast’), while explicit forward planning to improve
over these fast approximations seems related to System 2 (‘Thinking
slow’).

7.3 methods

For this chapter, we will follow the AlphaGo Zero (Silver et al., 2017c)
variant of MSA-RTDP. AlphaGo Zero uses a variant of MCTS (Browne
et al., 2012) for planning, and deep neural networks for leaning of a
policy πθ(a|s) and value Vθ(s) approximation. A key aspect of iterated
planning-learning is their mutual influence, where planning improves
the learned function, and the learned function directs new planning



7.3 methods 187

iterations. We will detail both these integrations, starting with training
target construction based on planning output.

To train the policy network, we normalize the action visitation counts
n(s, a) at the tree root state s to a probability distribution, and train on
a cross-entropy loss:

Lπ(θ) = ∑
a

n(s, a)
1
τ

∑b n(s, b)
1
τ

log πθ(a|s), (7.2)

where τ denotes a temperature parameter. For value network training,
we use a target based on the reweighted value estimates at the root of
the MCTS,

V̂(s) = ∑
a

n(s, a)
n(s)

Q̄(s, a), (7.3)

where Q̄(s, a) denotes the mean pay-off of all traces through (s, a),
and train on a squared error loss,

LV(θ) =
(
Vθ(s)− V̂(s)

)2. (7.4)

This is a slight variation of the original AlphaZero implementation,
based on recent results of Efroni et al. (2018). The above equations
define the planning to learning connection in Fig. 7.1.

For the reverse connection, influencing planning based on the learned
functions, we i) replace the MCTS rollout by a bootstrap estimate from
the value network, and ii) modify the MCTS selects step to

arg max
a

[
Q̄(s, a) + c · πθ(a|s) ·

√
n(s, a)

1 + n(s)

]
, (7.5)

where c ∈ R is a constant that scales exploration pressure. We did
not include the Dirichlet noise used in AlphaZero.

We vary the planning budget per timestep through adjustment of
the number of traces per MCTS iteration, denoted by nMCTS, while
keeping the overall computational budget (in the form of wall clock
time) fixed. We experiment with two well-known control tasks, CartPole
(branching factor 2) and MountainCar (branching factor 3), available
from the OpenAI Gym (Brockman et al., 2016), and with the RaceCar



188 the computational trade-off between planning and rl

Figure 7.2: Image stills from the studied tasks. Left: CartPole, where we attempt
to balance the pole. Middle: MountainCar, where we attempt to
reach the top-left flag by swinging back and forth. Right: RaceCar,
where we need to control a car to reach a goal, indicated by a ball.

task (branching factor 9), available in the PyBullet package (Coumans
and Bai, 2016). For MountainCar, we use a reward function variant with
r = −0.005 on every step, and r = +1 when the Car reaches the top of
the hill. Visualizations of the tasks are shown in Figure 7.2.

The total computational budget (planning, training and acting) was
fixed in advance on every environment: 500 seconds for CartPole, 150

minutes for MountainCar, and 270 minutes for RaceCar. These budgets
were predetermined to allow for convergence on each domain. There-
fore, long planning per timestep (higher nMCTS) also implies less real
steps and less new training targets over the entire training period.

hyperparameters The effect of search budget may also interact
with the setting of other hyperparameters. We chose the following
approach. We quickly search for a general hyperparameter configuration
that shows increasing learning curves on all domains. Crucially, the
search budget was varied in this quick search, but we were unaware of
its actual values, to not bias the other hyperparameter settings towards
good performance on a particular search budget. We will touch upon
alternative approaches in the Discussion.

We here report the fixed values for the other hyperparameters. For
neural network training, we used batches of size 16 with a replay buffer
of size 5e3 and learning rate of 1e-3 on all domains, optimized with
ADAM optimizer (Kingma and Ba, 2014). Policy and value network
shared their hidden layers, with 256 hidden nodes per layer. Since the
reward scales between the task varied greatly, the c parameter (Eq. 7.5)
did require adjustment per domain: for CartPole we decayed it from 0.8
to 0.05 in 500 steps, for MountainCar from 5 to 0.5 in 5000 steps, and
for RaceCar from 1.0 to 0.05 in 1500 steps. All results are averaged over
3 repetitions.



7.4 results 189

Figure 7.3: Learning curves on CartPole, MountainCar and RaceCar environ-
ments. The colour legend per plot displays the MCTS trace budget
before every real step (nMCTS). We see that AlphaGo Zero learns
on all tasks, with best performance on CartPole, MountainCar and
RaceCar achieved for budgets of, respectively, 8, 32 and 32 traces per
timestep. The error bars plots plus and minus 1 standard deviation
over repetitions.

7.4 results

Figure 7.3 shows learning curves for the three environments. We see
that the AlphaZero algorithm manages to learn all three tasks. The
largest variation in performance is seen on the CartPole task. Clearly,
the most stable performance for CartPole uses nMCTS = 8. A possible
confounder is that at low MCTS budgets, the training targets derived
from visit counts are highly unstable (Hamrick et al., 2020). This could
partially explain why the low MCTS budgets show poor performance
in CartPole.

Compared to CartPole, MountainCar has a sparser reward. We there-
fore require longer total budget and more traces per timestep to achieve
best performance, which is attained with nMCTS = 32. Finally, RaceCar
has a larger action space than both other domains, wich requires longer
training, and generally more traces per timestep. The best performance
is achieved for nMCTS = 32 traces.

The learning curves indicate that optimal performance is achieved
for an intermediate search budget. To better illustrate this observation,
we aggregate the average pay-offs from the last 15% of total time for
every planning budget in each environment. These results are visu-
alized in Figure 7.4. The horizontal axis now displays search budget,
while the vertical axis displays mean pay-off at the end of training. For
all three environments, we observe clear optimal performance for an
intermediate search budget per real step.



190 the computational trade-off between planning and rl

Figure 7.4: Trade-off between planning and learning. The horizontal axis shows
the computational budget per MCTS search in the form of the total
number of traces. The vertical axis shows the cumulative reward
achieved by the specific set-up. Data based on last 15% of the learn-
ing curves in Fig. 7.3. Note that the total computation time for every
repetition was fixed, i.e., higher planning budget per timestep will
yield less real steps and less targets for training the neural networks.
We observe a clear trade-off on all domains, with optimal results
achieved for intermediate search budgets. Error bars show the stan-
dard deviation of the mean estimate (which scales as 1/sqrt(n) for
n seeds, and are therefore smaller than those in Figure 7.3).

To further investigate what happens during training, we visualize the
output of the policy network on RaceCar for different search budgets in
Figure 7.5. The right, middle and left progression refer to nMCTS settings
of 16, 32 and 128, respectively. Each subplot shows the two-dimensional
RaceCar state space, which describes the (x,y)-location of the ball in
first person view. Each state in this state space is coloured according to
the entropy of the policy network. Red colour implies high entropy and
therefore an uncertain policy, while blue colour implies low entropy
and a near converged policy. The number above each subplots indicates
the episode number.

First of all, we may note that the entropy of the policy is high in the
entire state space at the beginning of all three search budgets, which
is to be expected. Second, we can clearly observe a difference in the
number of completed episodes. Looking at the bottom-right subplot
of the left (nMCTS = 16), middle (nMCTS = 32) and right (nMCTS = 128)
plot, we observe that we completed 750, 332 and 93 full episodes for the
search budgets of 16, 32 and 128 traces per real step, respectively. Of
course, a higher search budget implies that we complete less episodes.

We also attempt to qualitatively compare the convergence of the
policy networks in all three scenarios. When we compare the high
search budget (right) with the intermediate one (middle), we see that



7.4 results 191

Figure 7.5: Training progression of policy network on RaceCar, for a) n =
16 trace budget per MCTS iteration, b) n = 32 trace budget, and
c) n = 128 trace budget. Each plot (a-c) visualizes a progression
over training, where the number above the subplot indicates the
episode number. A subplot within each plot visualizes the two-
dimensional state space (x-y location of the ball in first person
view), where each state is colour coded according to the entropy of
the policy network at that state. High entropy (red colour) implies
an uncertain policy, while low entropy (blue) implies a converged
policy network. We see that the right progression (nMCTS = 128)
qualitatively seems to slow, as there are too little training targets.
The left progression (nMCTS = 16) seems to converge fast, but Fig.
7.4 shows that convergence is premature, as the achieved return is
worse than the middle progression (nMCTS = 128).

the high search budget shows a similar progression, but it progresses
slower. For example, the policy network at episode 93 for nMCTS = 128
shows similarity with the situation after episode 170 for nMCTS = 32,
with near convergence (blue) at the border of the state space, and
demarcation of early convergence areas (white) in the center of state
space. Although we did require less episodes to reach that situation
for nMCTS = 128, it did take more computation due to the relatively
high planning effort per real step. Therefore, the high planning budget
cannot benefit enough from generalization of information. The reverse
situation is visible when we compare the left plot (nMCTS = 16) with
the middle plot (nMCTS = 32). In the left plot, the policy network seems
to converge faster, with a very certain policy (blue) in most of the state
space at the end of the total time budget. However, if we look at the
performance in Fig. 7.4, the convergence was probably premature, as
we probably trained on planning targets that were too unstable. Of
course, such a qualitative analysis has a subjective aspects as well. We
will further interpret these observations in the discussion.



192 the computational trade-off between planning and rl

7.5 related work

AlphaGo Zero (Silver et al., 2017c) and Alpha Zero (Silver et al., 2018),
as used in this work as well, are examples of multi-step approximate
real-time dynamic programming. AlphaGo Zero treats the trade-off
between planning and learning as a fixed hyperparameter, where they
use 1600 MCTS traces per real step in the game of Go, and 800 MCTS
traces per real step for both Chess and Shogi. A very similar algorithm is
Expert Iteration (ExIt) (Anthony, Tian, and Barber, 2017), which shows
state-of-the-art performance in the game Hex. The authors do not report
the MCTS budget per search used during training.

The earliest idea of iterated search and learning seems to date back
to Samuel’s checkers programme (Samuel, 1967). In later work, Carmel
and Markovitch (1999) explicitly studies lookahead-based exploration. The
authors do mention that ‘it is rational for the agent to invest in compu-
tation in order to save interaction’, but do not further investigate this
trade-off. Chang et al. (2015) made a step towards multi-step approxi-
mate real-time dynamic programming with Locally Optimal Learning
to Search (LOLS). LOLS iterates i) Monte Carlo search, which leverages
the policy, and ii) policy training, which is based on the estimated
values during planning. Other algorithms that update a global value
approximation based on nested search are Sheppard (2002) and Veness
et al. (2009).

For model-based RL with a learned model, Dyna (Sutton, 1990) al-
ready showed that planning may reduce the required number of envi-
ronment steps. Moreover, Jiang et al. (2015) show that with a learned
model, we should neither plan too long nor too short, since model
errors will compound over long horizons. Our work extends this idea
even further, by showing that the same principle already applies for
perfect environment models, i.e., the trade-off is fundamental and does
not (only) depend on the presence of a learned, uncertain model.

A theoretically study of multi-step greedy real-time dynamic pro-
gramming with a known model was recently provided by Efroni,
Ghavamzadeh, and Mannor (2019). One of their results shows that
the sample complexity of multi-step greedy RTDP scales as Ω(1/d),
where d denotes the depth of the lookahead, while the computational
complexity scales as Ω(d). We directly see the trade-off appearing here,
as deeper planning decreases the required number of real steps at the
expense of increased computation. Our work provides an empirical
investigation of this effect, indicating that the optimal, intermediate



7.6 discussion 193

planning budget also correlates with the dimensionality of the problem,
where more complex problems require a higher budget.

Our empirical results are also partly visible in the concurrent work
of Wang et al. (2019). These authors benchmark several model-based
RL algorithms. They do not focus on iterated search and RL algorithms,
like multi-step approximate real-time dynamic programming, but do
include results of standard RL methods that train on learned dynamics
models. Their results show a similar trade-off. However, their results
could also be caused by the uncertainty in a learned model, which
makes planning far ahead less reliable. In contrast, our work shows a
more fundamental trade-off exist, even in the case of a converged/per-
fect model.

7.6 discussion

The computational experiments in this work clearly show a trade-off
between planning, learning and acting. We identify planning budget
per timestep as the major factor of importance: with a higher budget
per timestep, we generate fewer training targets (and therefore spend
less time on training) and make fewer real steps (complete less full
episodes).

Figure 7.6 conceptually illustrates the observations from this chapter.
On the left side of this plot, we find model-free RL, where the planning
budget per timestep B = 0, and we only make real steps. Although
model-free RL has shown impressive results (Mnih et al., 2015), it
is known to be notoriously unstable, especially in combination with
function approximation (Sutton and Barto, 2018). On the right side of
this plot we find exhaustive search, where the computational budget
per timestep B → ∞, and we try to completely enumerate all futures
from the root before choosing an action. Exhaustive search has high
computational complexity that scales exponentially in the depth of the
problem, and is therefore generally not a feasible approach. The problem
is that it never generalizes information between states it encounters (no
learning), and therefore repeats much work.

Given the above observations, the shape of Figure 7.6 may come as
no surprise, as it appears to keep the best of both worlds. On the one
hand, we use local planning to i) create better training targets for our
global value/policy approximation, and ii) correct for local errors in
these approximations by looking ahead to more clearly discriminable
states. On the other hand, learning adds to pure planning the ability to



194 the computational trade-off between planning and rl

Figure 7.6: Conceptual illustration of the trade-off between planning and learn-
ing. The horizontal axis shows the computational budget of planning
before every real step. On the left extreme we find model-free RL,
which samples only a single transition before every step. On the
far right, we find exhaustive search, which completely enumerates
the search tree before executing a step. The curve illustrates the
experimental results, which show a trade-off.

generalize and store global solutions in memory, which avoids repeating
much work, as for example present in exhaustive search.

As mentioned in Sec. 7.3, the effect of planning budget per timestep
may interact with the value of other hyperparameters. For this work
we chose to quickly search for a general hyperparameter setting on
all domains, while being agnostic to the search budget in that phase.
There could be two alternative approaches. First, we could separately
optimize all other hyperparameters for every search budget on every
domain. This would squeeze out the optimal performance, but is very
computationally demanding. Second, we could specify an interval for
every hyperparameter with reasonable values, and test on a set of
random samples from these ranges, which would test robustness to
hyperparameter variation. These could be interesting extensions with
slightly different messages. Nevertheless, our approach is also unbiased,
shows consistent results over tasks, and complies with empirical search
budget decisions in other papers, for example in AlphaGo Zero (Silver
et al., 2017c) (which used 1600 MCTS traces per real step, not 1 or 10

million).
A clear direction of future work would be to adaptively adjust the

planning budget per timestep in a data-driven way. Cognitive science
has for long investigated how humans decide on planning duration,
for example halting when a solution is ‘satisficing’ (a portmanteau



7.7 conclusion 195

of satisfy and suffice) (Schwartz et al., 2002). Computational models
of such data-dependent trade-offs, possibly based on the remaining
uncertainty in the plan, may further improve performance of planning-
learning integrations.

7.7 conclusion

This chapter investigated the computational trade-off between planning
and learning. Our results indicate that, in a model-based RL setting,
high performance requires that the planning budget per real time-step
should neither be too high nor too low. This is an important insight
for the empirical application of model-based RL algorithms, as we
already identified in Chapter 4. Moreover, it opens up towards future
research on this trade-off, for example identifying whether the budget
per time-step should be a context-dependent function of the observed
data.





8I M P R O V E D M O N T E C A R L O T R E E S E A R C H T H R O U G H
S U B T R E E D E P T H E S T I M AT I O N 1

abstract

Monte Carlo Tree Search (MCTS) efficiently balances exploration and exploitation in
tree search based on count-derived uncertainty. However, these local visit counts ignore
a second type of uncertainty induced by the size of the subtree below an action. We first
show how, due to the lack of this second uncertainty type, MCTS may completely fail
in well-known sparse exploration problems, known from the reinforcement learning
community. We then introduce a new algorithm, which estimates the size of the subtree
below an action, and leverages this information in the UCB formula to better direct
exploration. Subsequently, we generalize these ideas by showing that loops, i.e., the
repeated occurrence of (approximately) the same state in the same trace, are actually a
special case of subtree depth variation. Testing on a variety of tasks shows that our
algorithms increase sample efficiency, especially when the planning budget per timestep
is small.

8.1 introduction

Monte Carlo Tree Search (MCTS) (Coulom, 2006), already used in
Chapters 6 and 7, is a state-of-the-art planning algorithm (Browne
et al., 2012; Chaslot et al., 2008b). As already discussed in Chapter
3, MCTS shares its algorithmic space with all reinforcement learning
algorithms. In this chapter, we will experimentally investigate this
connection. In particular, we show how MCTS may fail at a well-known
RL toy task, and identify the underlying problem. Then, we propose an
improvement to MCTS based on known solutions from RL literature,
which experimentally illustrates the connection between the planning
and learning fields.

The strength of MCTS is the use of statistical uncertainty to balance
exploration versus exploitation (Munos et al., 2014). A popular MCTS

1 Chapter based on: Moerland TM, Broekens J, Plaat A, Jonker CM. Monte Carlo Tree
Search for Asymmetric Trees. 2018. Planning and Learning (PAL) Workshop @ ICML
2018.

197



198 improved monte carlo tree search through subtree depth estimation

selection rule is Upper Confidence Bounds for Trees (UCT) (Cazenave
and Jouandeau, 2007; Kocsis and Szepesvári, 2006), which explores
based on the Upper Confidence Bound (UCB) (Auer, Cesa-Bianchi, and
Fischer, 2002) of the mean action value estimate. More recently, MCTS
was also popularized in an iterated planning and learning scheme,
where a low-budget planning iteration is nested in a learning loop. This
approach achieved super-human performance in the games Go, Chess
and Shogi (Silver et al., 2016, 2017c).

However, the UCB selection rule only uses a local statistical uncer-
tainty estimate derived from the number of visits to an action node.
Thereby, it does not take into account how many reachable states there
are from a particular action, or, in other words, how large the remaining
subtree below that action is in the ground-truth MDP tree. Note that, in
this chapter, we will use the term ‘remaining subtree’ to refer to all
nodes below an action in the true MDP tree, not those in the current
MCTS tree (the MCTS tree is our partial reconstruction of the true
MDP tree). When we sample a single trace from a very large remaining
MDP subtree, we have much more remaining uncertainty than when
we sample a trace from a very shallow MDP subtree. However, standard
MCTS cannot discriminate these settings, since it does not attempt to
estimate the size of remaining MDP subtree from which it is sampling.
It turns out that MCTS can perform arbitrarily bad when the variation
in subtree size between arms is large.

The identification of this problem originates from work in reinforce-
ment learning on sparse exploration (Moerland, Broekens, and Jonker,
2017a; Osband et al., 2016). We empirically observed that Monte Carlo
Tree Search performs really bad on common toy tasks in this field, like
‘the Chain’ (also used in this chapter). In this chapter, we show that a
solution from the RL literature can actually be transferred to MCTS,
illustrating that both fields indeed share the same algorithmic space (as
extensively discussed in Chapter 3.

We propose a solution to the introduced problem through an extra
back-up of an estimate of the size of the subtree below an action. This infor-
mation is then integrated in an adapted UCB formula to better inform
the exploration decision. Next, we show that loops, where the same state
re-appears in a trace, can be seen as a special case of our framework.
Our final algorithm, MCTS-T+, vastly increases performance in envi-
ronments with variation in subtree depth and/or many loops, while
performing at least on par to standard MCTS on environments that
have less of these characteristics. Our experiments indicate that the
benefits are mostly present 1) for single-player RL tasks with more



8.2 variation in subtree size 199

early termination and loops, and 2) for lower computational budgets,
which is especially relevant in real-time search with time limitations
(e.g., robotics) and in iterated search and learning paradigms with small
nested searches (e.g., in AlphaGo Zero (Silver et al., 2017c)).

The remainder of this chapter is organized as follows. Section 8.2
illustrates MCTS, the problems caused by variation in subtree depth,
and introduces a solution based on subtree depth estimation. Section
8.3 identifies the problem of loops, and extends the algorithm of the
previous section to MCTS-T+, which naturally deals with loops. The re-
maining sections 8.4, 8.5, 8.6 and 8.7 present experiments, related work,
discussion and conclusion, respectively. Code to replicate experiments
is available from https://github.com/tmoer/mcts-t.git.

8.2 variation in subtree size

Please refer to Chapter 2 for an introduction of the Markov Decision
Process problem and Section 6.2 for an introduction of PUCT (Rosin,
2011), a variant of the UCT algorithm (Browne et al., 2012; Kocsis and
Szepesvári, 2006) used in AlphaGo Zero (Silver et al., 2017c) as well. In
this chapter, we will modify the prior term of PUCT, which allows us
to estimate the size of the true MDP tree below an action.

We now focus on a specific aspect that the MCTS formulation does
not account for: variation in the size of the subtree below actions (in
the select step). Imagine we have two available actions in a certain state.
The first action directly leads to a terminal state, and sampling it once
therefore provides much information. In contrast, the second action has
a large true MDP subtree below it, and sampling it once only explores
a single realization of all possible traces, with much more remaining
uncertainty about the true optimal value. Now the key issue is: standard
MCTS does not discriminate both cases, since it only tracks how often
a node is visited, but completely ignores the size of the subtree below
that action.

Variation in subtree size is widespread in many single-player RL
tasks. Examples include grid worlds (Sutton and Barto, 2018), explo-
ration/adventure games (e.g. Montezuma’s Revenge (Bellemare et al.,
2013)), shooting games (where in some arms we die quickly) (Kempka
et al., 2016), and robotics tasks (where the robot breaks or environment
terminates if we exceed certain physical limitations) (Brockman et al.,
2016). In the experimental section we test on different versions of such
problems.

https://github.com/tmoer/mcts-t.git


200 improved monte carlo tree search through subtree depth estimation

Figure 8.1: Left: Chain domain. At each state we have two available actions: one
action terminates the episode with reward 0, the other moves one
step ahead in the chain with reward 0. Only the final state terminates
the episode with reward 1. Right: Search tree of the Chain domain.

When the subtree size below actions varies, then we can vastly gain
efficiency by incorporating information about their size. For conceptual
illustration, we will first focus on the Chain domain (Figure 8.1, left)
(Osband, Van Roy, and Wen, 2016), a well-known task from RL explo-
ration research. The Chain is a long, narrow path with sparse reward
at the end, which gives a very asymmetric tree structure that extends
much deeper in one direction (Figure 8.1, right).

The total number of terminating traces in this domain is N + 1 for
a Chain of length N. Exhaustive search therefore solves the task with
O(N) time complexity. Surprisingly, MCTS actually has exponential time
complexity, O(2N), on this task. The problem is that MCTS receives
returns of 0 for both actions at the root (since the chance of sampling the
full correct trace is very small, ∼ 1

2N . Therefore, MCTS keeps spreading
its traces at the root, and recursively the same spreading happens
at deeper nodes, leading to the exponential complexity. What MCTS
lacks is information about the depth of the subtree below an arm. We
empirically illustrate this behaviour in Sec. 8.2.2.

8.2.1 MCTS with Tree Uncertainty Back-up (MCTS-T)

We now extend the MCTS algorithm to make a soft estimate of the size
of the subtree below an action, which we represent as the remaining
uncertainty στ(s) ∈ [0, 1]. For each state in the tree, we will estimate
and recursively back-up στ , where στ(s) = 1 indicates a completely un-
explored subtree below s, while στ(s) = 0 indicates a fully enumerated
subtree.



8.2 variation in subtree size 201

Figure 8.2: Process of στ back-ups. Graphs a-e display subsequent estimates
and back-ups of στ . In a) and b) we arrive at a non-terminal leaf
node, of which the στ automatically becomes 1. In the next subtree
visit (c), we encounter a terminal leaf, and the uncertainty about the
subtree at the subtree root decreases to 1

2 . In d) we encounter another
terminal leaf. Because the back-ups are on-policy, we now estimate

the root uncertainty as στ =
(2· 12 )+(1·0)

2+1 = 1
3 (Eq. 8.4). Finally, at e)

we enumerated the entire sub-tree, and the tree structure uncertainty
at the subtree root is reduced to 0.

We first define the στ(sL) of a new leaf state sL as:

στ(sL) =

0 , if sL is terminal

1 , otherwise.
(8.1)

We then recursively back-up στ to previous states in the search tree,
i.e., we update στ(si) from the uncertainties of its successors στ(si+1).
We could use a uniform policy for this back-up, but one of the strengths
of MCTS is that it gradually starts to prefer (i.e., more strongly weigh)
the outcomes of good arms. We therefore weigh the στ back-ups by the
empirical MCTS counts. Moreover, if an action has not been tried yet
(and we therefore lack an estimate of στ), then we initialize the action
as if tried once and with maximum uncertainty (the most conservative
estimate). Defining

m(s, a) =

n(s, a) , if n(s, a) ≥ 1

1 , otherwise,
(8.2)

σ?
τ (s
′) =

στ(s′) , if n(s, a) ≥ 1

1 , otherwise,
(8.3)



202 improved monte carlo tree search through subtree depth estimation

then the weighted στ backup is

στ(s) =
∑a m(s, a) · σ?

τ (s′)
∑a m(s, a)

(8.4)

for s′ = T (s, a) given by the deterministic environment dynamics.
This back-up process is illustrated in Figure 8.2.

modified select step Small στ reduces our need to visit that
subtree again for exploration, as we already (largely) know what will
happen there. We therefore modify our tree policy at node s to:

πtree(s) = arg max
a

[
Q(s, a) + c · στ(s′) ·

√
n(s)

n(s, a)

]
(8.5)

for s′ = T (s, a) the successor state of action a in s. The introduction of
στ acts as a prior on the upper confidence bound, reducing exploration
pressure on those arms of which we have (largely) enumerated the
subtree. Note that the prior term makes this a variant of the PUCT
algorithm (Rosin, 2011).

value back-up The normal MCTS back-up averages the returns
of all traces that passed through a node. However, the στ mechanism,
introduced above, puts extra exploration pressure on actions with a
larger subtree below. Now imagine such a deep subtree has poor return.
Then, due to στ , we will still visit the action often, and this will make
the state above the action look too poor. When we are overly optimistic
on the forward pass, we do not want to commit to always backing up
the value estimate of the explored action.

To overcome this issue, we specify a different back-up mechanism,
that essentially recovers the standard MCTS back-up. On the forward
pass, we track a second set of counts, ñ(s, a), which are incremented as
if we acted according to the standard MCTS formula (without στ):

ñ(s, a)← ñ(s, a) + I
[
a = arg max

b
Q(s, b) + c ·

√
n(s)

n(s, b)
]
, (8.6)

where I[·] denotes the indicator function. We act according to Eq. 8.5,
but on the backward pass use the ñ(s, a) counts for the value back-up:

Q(s, a) = ∑a′ ñ(s′, a′) ·Q(s′, a′)
ñ(s′)

, (8.7)



8.3 loops 203

Figure 8.3: Comparison of vanilla MCTS (red) versus MCTS-T (blue) on the
Chain domain of various lengths (progressing horizontally over the
plots). Each plot displays computational budget per timestep (x-axis)
versus average return per episode (y-axis). Results averaged over 25

episodes. We observe that MCTS-T achieves much higher returns in
these domains with asymmetric termination and therefore variation
in subtree depth.

for s′ = T (s, a). This reweighs the means of all child actions according
to the visit count they would have received in standard MCTS, which is
the same as the standard MCTS back-up.

Finally, we do no longer want to recommend an action at the root
based on the counts, so we instead recommend the action with the
highest mean value at the root.

8.2.2 Results on Chain

Figure 8.3 shows the performance of MCTS versus MCTS-T on the
Chain (Fig. 8.1). Plots progress horizontally for longer lengths of the
Chain, i.e., stronger asymmetry and therefore a stronger exploration
challenge. In the short Chain of length 10 (Fig. 8.3, left), we see that
both algorithms do learn, although MCTS-T is already more efficient.
For the deeper chains of length 25, 50 and 100 (next three plots), we see
that MCTS does not learn at all any more (flat red dotted lines), even
for higher budgets. This illustrates the exponential sample complexity
(in the length of the Chain) that MCTS starts to suffer from. In contrast,
MCTS-T does consistently learn in the longer chains as well.

8.3 loops

We will next generalize the ideas about tree asymmetry to the presence
of loops in the domain. A loop occurs when the same state appears twice



204 improved monte carlo tree search through subtree depth estimation

in the same trace within a single search. In such cases, it never makes
sense to further expand the tree below the second appearance. As an
example, imagine we need to navigate three steps to the left. If we first
plan one step right, then one step back left (a loop), then it does not
make sense to continue planning to the left from that point. We could
better plan to the left directly from the root itself.

There is an important conceptual difference between a loop and a
transposition (Plaat et al., 1996). Transpositions are ways of sharing
information between states that were visited in other traces. In contrast,
a loop is a property within a single search, where two nodes appear
in the same trace (above eachother). A transposition table would share
information from the first occurrence to the second, but it does not pre-
vent us from expanding the tree in the direction of the loop. First of all,
this wastes resources within the search. Potentially more problematic,
the first action in the direction of the loop may at the end of the MCTS
seem optimal (if all rewards in the loop are 0). Since we only execute
the first action after the MCTS search, we may actually move in the
wrong direction. In the earlier example, we may in the end step right,
because our deeper transposition table told us that we will eventually
move left again. This is of course problematic, and we would prefer to
eliminate these loops from the search.

Loops are especially frequent in single-player RL tasks, for example
navigation tasks where we may step back and forth between two states.
Note that the detection of loops does require full observability (since
otherwise we do not know whether we truly observe a repeated state,
or something relevant changed in the background). We will illustrate
the problem of loops with a variant of the Chain where the ‘wrong’
action at each timestep returns the agent to state s1 without episode
termination (Figure 8.4, left). When we now unfold the search tree
(Figure 8.4, right), we see that the tree is no longer asymmetric, but
does have a lot of repeated appearances of state s1. Standard MCTS
cannot detect this problem, and will therefore repeatedly expand the
tree in all directions.

8.3.1 MCTS-T+: blocking loops.

When we remove all the repeated visits of s1, then we actually get the
same tree as for the normal Chain again. This suggests that our στ

mechanism has a close relation to the appearance of loops as well. A
natural solution is to detect duplicate states s◦ in a trace, and then set



8.3 loops 205

Figure 8.4: Left: Chain domain with loops/cycles. Right: Search tree of the
cyclic Chain domain. Red nodes indicate a loop, i.e., the repetition
of a state which already occurred in the trace above it.

στ(s◦) = 0. Thereby, we completely remove the exploration pressure
from this arm, i.e., treat the looped state as if it has an empty subtree.

The value/roll-out estimate of the duplicate state R(s◦) depends on
the sum of reward in the loop S◦ = ∑s,a∈g r(s, a), where g = {s◦, .., s◦}
specifies the subset of the trace containing the loop. For infinite time-
horizon problems with γ = 1 (whose return is not guaranteed to
be finite itself), we could theoretically repeat the loop forever, and
therefore:

R(s◦) =


∞ , if S◦ ≥ 0

−∞ , if S◦ ≤ 0

0 , if S◦ = 0

(8.8)

R(s◦) is the return estimate that we will actually back-up from state ◦.
For finite horizon problems, or problems with γ < 1, we may approxi-
mate the value of the loop based on the number of remaining steps and
the discount parameter. However, note that most frequently loops with
a net positive or negative return are a domain artifact, as the solution
of a (real-world) sequential decision making task is seldom to repeat
the same action loop forever.

In larger state spaces, exact loops are rare. We therefore check for
approximate loops, where the looped state is very similar to a state
above. We mark a new leaf state sL as looped when for any state si
above it, L > i ≥ 0, the L2-norm with the new expanded state is below
a tunable threshold η ∈ R:

‖sL − si‖2 < η. (8.9)



206 improved monte carlo tree search through subtree depth estimation

Figure 8.5: Comparison of MCTS (red) versus MCTS-T+ (green). MCTS-T+
uses tree uncertainty and loop blocking. Chain length progresses
horizontally over the plots. Results averaged over 25 episodes. We
observe that MCTS-T+ strongly outperform MCTS, which hardly
incurs any reward on longer chains.

Once a loop is detected, we set στ = 0, and apply all methodology
from the previous section.

Note that a simpler solution to blocking loops could be to completely
remove the parent action of a looped state from the tree. We present the
above introduction to i) be robust against situations where the loop is
relevant, and ii) to conceptually show what a loop implies: a state with
an empty subtree below it (στ = 0).

8.3.2 Results on Chain with loops

We illustrate the performance of MCTS-T+ on the Chain with loops
(Figure 8.4). The results are shown in Figure 8.5. We observe a similar
pattern as in the previous section, where MCTS only (partially) solves
the shorter chains, but does not solve the longer chains at all. In contrast,
MCTS-T+ does efficiently solve the longer chains as well. Note that
MCTS-T (without loop detection) does not solve this problem either
(curves not shown), as the loops prevent any termination, and therefore
all στ estimates stay at 1.

8.4 experiments

The previous experiments, on the Chain and Chain with loops, present
extreme cases of variation in subtree depth and the presence of loops.
They are example cases to show the worst-case performance of MCTS
in such scenarios, but are not very representative of most problems in
the RL community. We therefore compare our algorithm to standard



8.5 related work 207

Figure 8.6: Learning curves on CartPole, FrozenLake, Pong and AirRaid. Cart-
Pole rewards are 0.005 for every timestep that the pole does not fall
over, and -1 when the pole falls (episode terminates). We use the
non-stochastic version of FrozenLake. The two Atari games, Pong
and AirRaid, clip rewards to [−1, 1]. All episodes last 400 steps,
with a frameskip of 3 on the Atari games. Results averaged over 25

repetitions.

MCTS on several reinforcement learning tasks from the OpenAI Gym
repository (Brockman et al., 2016): CartPole, FrozenLake and the Atari
games Pong and AirRaid.

These results are visualized in Figure 8.6. We see that MCTS-T and
MCTS-T+ consistently perform equal to or better than MCTS. This dif-
ference seems more pronounced for smaller MCTS search budgets. This
seems to make sense, since the στ machinery is especially applicable
when we want to squeeze as much information out of our traces as
possible.

Note that the search budgets are relatively small compared to most
tree search implementations. We will return to this point in the dis-
cussion. The computational overhead of MCTS-T itself is negligible
(compared to the environment simulations). For MCTS-T+, loop detec-
tion does incur some cost in larger state spaces. In the worst case, on
Atari, MCTS-T+ has ∼10% increase in computation time.

8.5 related work

The closest related work is probably MCTS-Solver (Winands, Björns-
son, and Saito, 2008), designed for two-player, zero-sum games. In
MCTS-Solver, once a subtree is enumerated, the action link above it
is associated with its game-theoretical value +∞ (forced win) or −∞
(forced loss). It then uses specific back-up mechanisms (e.g., if one child
action is a win, then the parent node is a win, and if all child actions
are a loss, then the parent node is a loss). Compared to MCTS-Solver,



208 improved monte carlo tree search through subtree depth estimation

our approach can be seen as a soft variant, where we gradually squeeze
arms based on their estimated subtree size, instead of only squeezing
completely once we fully enumerated the arm. Moreover, our approach
is more generally applicable: it does not have any constraints on the
reward functions (like win/loss), nor does it use back-up rules that are
specific to two-player, zero-sum games. As such, MCTS-Solver would
not be applicable to the problems studied in this chapter.

Other related work has focused on maintaining confidence bounds
on the value of internal nodes, first introduced in B? (Berliner, 1981).
For example, score-bounded MCTS (Cazenave and Saffidine, 2010)
propagates explicit upper and lower bounds through the tree, and then
prunes the tree based on alpha-beta style cuts (Knuth and Moore, 1975).
This approach is only applicable to two-player games with minimax
structure, while our approach is more general. Tesauro, Rajan, and Segal
(2012) present a MCTS variant that propagates Bayesian uncertainty
bounds. This approach is robust against variation in subtree size (not
against loops), but requires priors on the confidence bounds, and will
generally be quite conservative. One of the benefits of MCTS is that it
gradually starts to ignore certain subtrees, without ever enumerating
them, a property that is preserved in our approach.

While MCTS is a regret minimizing algorithm, a competing formu-
lation, known as best-arm identification (Audibert and Bubeck, 2010;
Kaufmann and Koolen, 2017), only cares about the final recommenda-
tion. Our approach also departs from the regret minimization objective,
by putting additional exploration pressure on arms that have more re-
maining uncertainty. Finally, our solution also bears connections to RL
exploration research papers that use the return distribution to enhance
exploration (Moerland, Broekens, and Jonker, 2018b; Tang and Agrawal,
2018), which implicitly may perform a similar mechanism as described
in this chapter.

8.6 discussion

This chapter introduced MCTS-T+, an MCTS extension that is robust
against variation in subtree size and loops. We will briefly cover some
potential criticism and future extensions of our approach.

From a games perspective, one could argue that our method is only
useful in the endgame, when the search is relatively simple anyway
(compared to the midgame). While this is true in two-player games,
such as Go and Chess, many single-player reinforcement learning tasks,



8.6 discussion 209

as studied in this chapter, tend to have terminating arms right from the
start (like dying in a shooting game), or many loops (like navigation
tasks where we step back and forth). Our results are especially useful
for the latter scenarios.

Our methods seems predominantly beneficial with relatively small
search budgets per timestep, compared to the budgets typically ex-
pended for search on two-player games. We do see three important
ways in which our approach is relevant. First, real-time search with a
limited time budget, as for example present in robotics applications,
will benefit from maximum data efficiency. Second, we have recently
seen a surge of success in iterated search and learning paradigms, like
AlphaGo Zero (Silver et al., 2017c), which nest a small search within
a learning loop. Such approaches definitely require an effective small
search. Finally, we also believe that our work is conceptually relevant in
itself. It identifies a second type of uncertainty not frequently identified
in MCTS, nor individually studied.

A limitation of our algorithm may occur when a sparse reward is
hiding within an otherwise poorly returning subtree. In such scenarios,
we risk squeezing out much exploration pressure based on initial traces
that do not hit the sparse reward. However, MCTS itself suffers from
the same problem, as its success also builds on the idea that the pay-
offs of leafs in a subtree show correlation. Although MCTS does have
asymptotic guarantees (Kocsis and Szepesvári, 2006), it will generally
also take very long on such sparse reward problems. This is due to the
nature of such problems, which have such little structure in them, that
they technically require exhaustive search.

Note that in a large domain without early termination (like the game
of Go), MCTS-T will behave exactly like MCTS for a long time. As long
as there is no expand step that reaches a terminal node, all στ estimates
remain at 1, and MCTS-T exactly reduces to MCTS. This gives the
algorithm a sense of robustness: it exploits variation in subtree depth
when possible, but otherwise automatically reduces to standard MCTS.

There are several directions for future work. First, the approach
could be generalized to deal with stochastic and partially observable
environments. Another direction would be to generalize information
about στ , for example by training a neural network that predicts this
quantity. This would allow us to plug-in more informed estimates of
στ obtained from previous episodes. Finally, the στ mechanism may
also suggest when a search can be stopped (e.g., all στ → 0 at the root).
Time management for MCTS has been studied before, for example by
Huang, Coulom, and Lin (2010).



210 improved monte carlo tree search through subtree depth estimation

8.7 conclusion

This chapter introduced MCTS-T+, an extension to vanilla MCTS that
estimates the depth of subtrees below actions, uses these to better target
exploration, and uses the same mechanism to deal with loops in the
search. Empirical results indicate that MCTS-T+ performs on par or
better than standard MCTS on several illustratory tasks and OpenAI
Gym experiments, especially for smaller planning budgets. The method
is simple to implement, has negligible computational overhead, and,
in the absence of termination, stays equal to standard MCTS. It can be
useful in single-player RL tasks with frequent termination and loops,
real-time planning with limited time budgets, and iterated search and
learning paradigms with small nested searches. Together, the chapter
also provides a conceptual introduction of a type of uncertainty that
standard MCTS does not account for.



Part IV

I N T E G R AT I O N





9D I S C U S S I O N

This chapter will provide a broader perspective on the material pre-
sented in this thesis. We will first summarize our findings on the two
main research questions, as posed in the Introduction. Afterwards, we
will zoom out and take a broader perspective on the research field and
PhD project as a whole. We will also shortly comment on two specific
topics: the computational demands in AI research, and the relation be-
tween AI and psychology research. At last, we also present a discussion
of potential future work in the planning-learning field.

9.1 answers to research questions

We will separately summarize the answer to each research question:

research question 1 : how are planning and learning re-
lated? The framework for planning and learning (FRAP), as pre-
sented in Chapter 3, shows that planning and learning actually share
the same algorithmic space, and are therefore fundamentally related.
Previous work always presented planning and learning as separate
fields, which may be complementary, but never identified that they
actually do exactly the same thing. FRAP disentangles any planning or
learning algorithm into six key dimensions:

1. Computational effort: which set of states do we intend to learn a
solution?

2. Trial selection: how do we select the state-action pair for the next
trial? (which includes exploration-exploitation balancing)

3. Cumulative reward estimation: how do we estimate the cumulative
reward for the subtree that remains after the trial?

4. Back-ups: how do we back-up the information about the trail and
the cumulative reward to the start state of the trial?

5. Representation: how do we store the solution of the MDP?

213



214 discussion

6. Update: how do we use the back-up estimate to update the solu-
tion?

Each dimension has a variety of subdimensions, as summarized in
Chapter 3. The key message of the framework was displayed in Table 3.3,
which displayed a variety of well-known planning, model-free RL and
model-based RL algorithms along the dimensions of our framework.
The main observation of the table is that it reads like a patchwork. On
most of the dimensions, the choices vary within and over the planning,
model-free and model-based RL categories. This illustrates that both
approaches share the same decisions and methods, and are really two
sides of the same (algorithmic) coin.

On one of the dimensions of the framework we do observe a more
consistent difference between both fields. Learning approaches tend to
use permanent, global solution representations, typically stored with
function approximation. Planning methods have put greater emphasis
on local, transient representations, typically stored in tabular/atomic
form. This difference in focus may be explained by the different type of
access to the environment in both fields. Since RL methods never know
when they will be able to return to a state, they are almost forced to store
a global solution. Global solutions also require function approximation
in larger problems. In contrast, planning methods typically replan from
the same state multiple times, for which tabular methods allow for
good separation between the available actions.

It may seem surprising that planning and learning have such similar
dimensions, since they do have a different assumption about the type
of access to the environment. RL methods do need to move forward,
which is a limitation in the order in which they can make trials. However,
it is important to realize that over multiple episodes RL algorithms
will eventually get back to similar states, and then face exactly the
same problem as planning methods: which trial should I select next,
given information obtained from previous back-ups in (approximately)
similar states. In this perspective, running 100 episodes of model-free
RL is actually very similar to running a MCTS search from the root with
100 traces. We only make different decisions on how to select, back-up
and store the solution.

The framework identifies the shared algorithmic dimensions, but
intentionally does not argue which choices on each dimension are best.
Although there are definitely general recommendations, the choice of
method is mostly problem dependent. For example, some successful
algorithms, like A? (Hart, Nilsson, and Raphael, 1968), Q-learning



9.1 answers to research questions 215

(Watkins and Dayan, 1992) and DQN (Mnih et al., 2015), make max
back-ups over the actions (off-policy), while other successful algorithms,
like MCTS (Browne et al., 2012), use averaging back-ups (on-policy).
Many approaches use step-wise, value-based exploration, like UCB-
variants (Auer, 2002), while other problems, like sparse reward domains,
do seem to require different approaches like frontier exploration and
intrinsic motivation (Ecoffet et al., 2019). While function approximation
representation has been crucial for scaling RL to more complex, high-
dimensional problems (Mnih et al., 2015), it was actually a combination
of function approximation and local tabular representation that recently
set state-of-the-art results in Go, Chess and Shogi (Silver et al., 2018,
2017c). We will further discuss which methods we believe are important
for further advancement of intelligent sequential decision-making in
the future work section.

The framework of Chapter 3 also has its standalone value in the
individual research fields of planning and reinforcement learning. In
other words, we could just as well use it as a framework for reinforce-
ment learning (FR) or a framework for planning (FP). Especially in
the reinforcement learning literature, there lacks a systematic view on
the way to categorize algorithms. On a high-level, researchers usually
indicated whether they use a value-based, policy search or actor-critic
method, but this really only specifies the type of representation that is
used to store the solution. The framework illustrates the broad set of
choices that any RL or planning algorithm has to make, and that all
contribute to its final performance.

Finally, Chapter 8 illustrated the commonalities between both fields,
by designing a new method in one field (planning) by taking inspiration
from the other field (reinforcement learning). Indeed, some ideas have
received more interest in one community, while being mostly ignored in
the other. For example, RL exploration research has frequently focused
on tasks with sparse rewards. We showed that a popular planning
algorithm, MCTS, can actually be highly inefficient in such problems.
Our extension of MCTS, called MCTS-T+, overcomes this problem by
tracking an additional form of uncertainty, derived from the depth of a
subtree below an action. This is an example of cross-breeding on dimen-
sion 2 (trial selection) of our framework, and served as an empirical
illustration of the commonalities between planning and learning.

research question 2 : how can planning and learning be

combined? We conceptually discussed the combination of planning
and learning in Chapter 4. It discussed: i) methods for model learning,



216 discussion

ii) methods to combine planning and learning, and iii) benefits of such
combinations. We shortly summarize our main findings on each of these
aspects below, and also mention which empirical chapter illustrated
these ideas.

While model learning is technically a supervised learning problem,
MDP transition dynamics do pose their own specific approximation
challenges. In particular, we discussed stochasticity, uncertainty, partial
observability, non-stationarity, multi-step prediction, state abstraction
and temporal abstraction as seven key challenges, which are all more or
less crucial to learn a model that is useful for planning. We experimen-
tally studied one of these challenges in Chapter 5, where we presented
a new neural network training method based on variational inference
to deal with stochastic environments.

The second part of Chapter 4 systematically structured the ways to
combine planning and learning. We identify four main dimensions,
each with several subquestions, that together specify how a planning
cycle can be integrated in a larger learning loop. These four questions
are:

1. At which state do we start planning?

2. How much planning budget do we allocate for planning and real
data collection?

3. How do we plan?

4. How do we integrate planning in the learning and acting loop?

Again, we compared a variety of model-based RL papers along
these dimensions of planning-learning integration, in Table 4.3. This
systematically structures the way to think about planning-learning
integration, and also helps identify novel combinations of both fields.
As an empirical illustration of this idea, Chapter 6 studied a new
planning-learning combination, extending the well-known AlphaGo
Zero algorithm (Silver et al., 2017c) to deal with continuous action
spaces. This is a novel form of question 4 from above.

Finally, Chapter 4 also structurally discussed the potential benefits
of model-based RL. These benefits include enhanced data efficiency,
targeted exploration, improved training stability, ability to transfer to
different tasks, explainability and safety. In the empirical work section,
we specifically zoom in on the third benefit (improved training stabil-
ity), which has only recently surfaced. We hypothesize that planning



9.2 bigger picture 217

and learning actually provide mutual benefit, since local tabular rep-
resentations (planning) may locally correct errors in global function
approximation representation (learning) of the solution. We thereby
identify a key trade-off: for how long should we plan in between every
real action? Chapter 7 studies this trade-off, showing that optimal per-
formance requires us to neither plan too short, nor too long. There are
clear possibilities for future work here, which we will discuss in a later
section of this chapter.

In short, this thesis covered various aspects of the possible integra-
tions of planning and learning, as first shown in Fig. 1.1 in the Intro-
duction. We reproduce this scheme in Fig. 9.1, but this time indicating
the specific connections that were treated in each chapter. Chapter 3

started of by comparing the planning, model-free RL and model-based
RL cycles, showing that inside they face the same algorithmic space.
Next, Chapter 4 (which was actually the basis for the scheme) zoomed
out and surveyed all possible connections in the scheme. In the second
half of the thesis, we experimentally investigated specific elements of
planning learning integration. Chapter 5 discussed a new method for
model learning (arrow g), Chapter 6 discussed a novel form of iterated
planning and learning in continuous action spaces (arrows b and c),
Chapter 7 studied the trade-off between planning and acting (arrows a
and d), and Chapter 8 investigated a novel planning method (arrow a)
inspired by work from the reinforcement learning community.

Altogether, we have seen — on a conceptual level — how planning
and learning are fundamentally related through the same underlying
algorithmic space, and how they may be combined through a variety of
model learning and planning-learning integration decisions. Moreover,
the experimental part showed how their close relation may lead to 1)
new algorithms in each field based on inspiration from the other, and
2) new combinations of planning and learning.

9.2 bigger picture

The previous section discussed the technical answers to our research
questions. We will also attempt to put our work in a broader perspective,
zooming out over the entire research field, and over the PhD project.

• What is the impact of our work on the planning-learning field?:
The combination of planning and learning promises to be an
important research field in AI, both because of the strong em-
pirical successes in AI (Deisenroth and Rasmussen, 2011; Levine



218 discussion

Figure 9.1: Schematic overview of the topic of each thesis chapter. The scheme
(in black) shows the possible algorithmic connections between plan-
ning and learning, as already presented in Fig. 1.1 in the Introduction
of this thesis. The content chapters of this thesis are shown in red,
each pointing to the specific connection(s) in this scheme which are
the focus of that chapter (red dashed lines).



9.2 bigger picture 219

and Koltun, 2013; Silver et al., 2017c), and because planning and
learning are both integral parts of decision-making in humans
(Hamrick, 2019). Like the entire machine learning community, the
field is gradually attracting more researchers.

We believe the most important contribution of this book for the
field is the conceptual structuring of Chapters 3 and 4. Despite
the high research interest in both fields, we still lacked an inte-
grated view on both fields. Chapter 3 should make clear that
both really share the same algorithmic space. This may help to
better understand each other’s approaches and focus, increase
communication between both fields, and as such allow for more
crossbreeding. It also provides a more holistic view on sequential
decision making, which is a key setting for artificial intelligence.
This may benefit students that enter the field, but researchers as
well. We hope that, in the future, researchers will not mention they
"use a policy gradient algorithm", but realize that, according to
the FRAP dimensions, there were many more relevant decisions
involved.

Second, there was no systematic view on the way in which plan-
ning and learning can be combined. Therefore, Chapter 4 did
systematically structure the possible combinations of planning
and learning. This should be of value to the community, to better
understand known algorithm, and to help design new combi-
nations of both fields. For the latter, one may simply follow the
integration dimensions and their possible choices to come up with
new combinations.

The empirical work in this thesis will likely have a smaller impact
on the field. The work on the trade-off between planning and
learning (Chapter 7) does have several important follow-up ques-
tions, like how to determine the planning budget per timestep in
a data-dependent way. We believe that the spectrum we identify
in Chapter 7, ranging from model-free RL (no planning budget
per timestep) to exhaustive search (infinite planning budget per
timestep) should receive more attention in forthcoming years. The
other empirical chapters have their isolated value in the specific
subfield, but are of less importance to the field as a whole.

• What could have been done differently in the entire PhD project?

The topic of this PhD project was not fixed from the start. We
first made two detours, one towards the modeling of emotion in



220 discussion

reinforcement learning agents (Moerland, Broekens, and Jonker,
2016, 2018a), and one towards exploration methods in reinforce-
ment learning (Moerland, Broekens, and Jonker, 2017a, 2018b).
Although these topics did not end up in the final thesis, we do
not regret these detours. In both these other research directions,
we found out that model-based learning was a key underlying
technique. It shows us that model-based learning is crucial to all
sequential decision making, and one of the topics that deserves
most attention in this field.

If we had known the eventual PhD topic from the start, then we
would have likely first written the framework and survey papers.
However, we doubt whether such an initial effort at the beginning
of the PhD project would have succeeded. These research fields
are large, literature is extensive, and terminology differs between
the fields. Thereby, it is hard to obtain an integrated view on
these fields while reading up. We believe we first needed the
experimental work to write the conceptual sections.

We could have saved much time on the experimental work. During
the years in which this PhD research was conducted, the reinforce-
ment learning field dramatically changed. Deep reinforcement
learning was invented roughly around 2015 (Mnih et al., 2015), a
year before the start of this PhD project. With this development,
and the large increase of company-based publications in the field,
the requirements for submissions also changed. Suddenly, pa-
pers were required to contain experimental work sections with
high-dimensional applications like Atari 2600 games. We proba-
bly spend too much time running many experiments in a range
of high-dimensional problems, which is not really feasible with
university resources. We will further discuss this topic in the next
section, but would advise any future PhD student to always first
test their ideas in a small problem. Only when your idea works
in a toy environment, you want to advance to a more complex
environment.

9.3 computational demands in ai research

A general critique on the experimental work in this thesis could regard
the dimensionality of the considered problems. Mostly, we focused on
relatively smaller problems, with state spaces that do not exceed 10-20

state variables, and action spaces up to 20 discrete actions, or a few



9.3 computational demands in ai research 221

continuous dimensions. Up to a few years ago, nearly all reinforcement
learning dissertations studied problems of this dimensionality, but
the growth of deep reinforcement learning (Arulkumaran et al., 2017)
has strongly changed the requirements and expectations in machine
learning.

There are two reasons why we studied relatively small problems. First
of all, the results of small scale experiments are usually easier to design,
visualize and interpret. We believe that small scale experiments have
gotten somewhat undervalued in the RL community in recent years,
although opinions now start to shift back. As already shortly mentioned
in Chapter 4: state and action space dimensionality are only one factor
of problem difficulty. A good example is the Chain domain, introduced
in Chapter 8, which is small in dimensionality, but very challenging for
exploration (due to the sparse reward). Another good illustration is the
Atari 2600 benchmark, on which the recent state-of-the-art (Schrittwieser
et al., 2019) reports, compared to human performance, a mean and
median score of 4999.2% and 2041.1%, respectively. However, inspection
of the individual game scores reveals a huge variation, with some games
scoring over 25000% of human performance, while on other games, like
Montezuma’s Revenge and Venture, the agent does not achieve any
reward at all, and is far from human performance. While all these
games have the same dimensionality, they clearly differ in other factors
of problem difficulty. As a final illustration, it is noteworthy that DQN
(Mnih et al., 2015), a high impact deep RL approach, usually fails at
the low-dimensional MountainCar problem (Tang and Agrawal, 2018),
which was also used in Chapter 6.

The key message of the above observations is that real problems have
more factors of difficulty than dimensionality only, and those other
factors of difficulty may well be studied in lower-dimensional examples.
The benefit of lower dimensional test environments is that they allow for
fast testing loops, better interpretable results, and keep the field open
to a wider range of researchers with different computational resources.
We are not the only ones to note this issue. Recently, Osband et al.
(2019) released b-suite, a benchmarking suite for RL which contains a
range of low dimensional tasks that each measure the robustness of an
algorithm against a certain factor of difficulty, like sparse exploration,
partial observability, dimensionality, stochasticity, etc. We believe that
proper identification of the factors of problem difficulty is an important
aspect to better compare RL algorithms in the future.

The second reason we use relatively lower-dimensional problems
are of course computational limitations, since university resources can-



222 discussion

not match company ones. While model-free RL experiments can al-
ready be computationally expensive, model-based RL work is usually
even worse. For example, we extensively experimented with iterated
planning-learning ideas in the research line of AlphaGo Zero (Silver
et al., 2017c). AlphaGo Zero itself trained on 4.9 million games of ∼400

real steps, where each real step is preceded by a MCTS search with 1600

traces. In total, this equals roughly 4.9e6 · 106 · 1600 · 400 = 3.1 · 1012,
or 3.1 trillion, environment calls. One could of course consider Go an
outlier in problem difficulty, but — on the other hand — many real-
world problems that we have not solved yet may be even more difficult
than Go. In any case, model-based RL experiments are in general very
computationally demanding.

The required number of samples is however not the only aspect that
determines the run time of our algorithm. Before every sample, we need
to make a network pass to predict a policy distribution and a value for
bootstrapping. Although these passes can be aggregated into batches to
increase performance, they still vastly increase training time. Moreover,
we need to perform MCTS operations and eventually train our net-
works, which is computationally demanding itself. Compared to deep
learning in the supervised setting, the computational requirements of re-
inforcement learning, and especially of planning-reinforcement learning
integrations, are much higher. Finally, planning-learning integrations
have all the network hyperparameters involved in supervised learning,
plus a range of hyperparameters specific for RL, like exploration con-
stants, plus a range of hyperparameters specific to model-based RL, like
the planning budget per timestep. Due to the many hyperparameters,
we usually require many runs before we obtain a stable result, and
this easily, depending on the problem type, scales the computational
requirements by a factor ∼100x or more. In short, both the data re-
quirement for a single run, as well as the sensitivity to hyperparameter
settings (repeating the single runs) of model-based RL are worrying.
At the least, both are limiting the access of many (university-based)
researchers to study more complex problems.

To conclude, note that we do not argue to only study grid worlds, nor
to rebuild a new environment for every paper, from both of which RL
has suffered for long. Benchmarking and testing on the same environ-
ment is important. Moreover, the eventual application of these methods
in the real world will require heavy machinery and large amounts of
data. But, for the reasons discussed above, conceptual development
and testing is equally valid (and probably better interpretable) on small



9.4 relation to psychology research 223

scale problems. This notion also seems to resurface in the broader RL
community now (Osband et al., 2019).

9.4 relation to psychology research

While related work from the planning and reinforcement learning
communities were already extensively covered in Chapter 4, we do
want do draw some further connections to research from psychology.
Psychologist have for long investigated human decision making (Morris
and Ward, 2004; Simon, 1944). Early models of human decision making
mostly focused on rational choice theory (Edwards, 1954), of which utility
theory (Stigler, 1950) is a prime example. These theories assume humans
have the computational skill to evaluate all possible courses of action
and select the one which is best according to some preference scale.

Simon (1957) provided major criticism on these theories, arguing that
humans are in practice fundamentally limited in both their access to
information and their computational capacities. They instead argue
that humans use a form of bounded rationality, where they search for a
solution that is satisficing (a portmanteau of satisfy and suffice) (Newell,
Simon, et al., 1972). In other words, they search for a solution until
some acceptance threshold is reached. Later work found that humans
differ in the way they determine this threshold. For example, Schwartz
et al. (2002) separates ‘maximizers’ and ‘satisficers’, where maximizers
tend to search more exhaustively for a solution, while satisficers more
quickly accept a reasonable solution.

Cognitive scientists have theorized about dual competing processes
in human decision making as well (Evans, 1984). These ideas have been
popularized by Kahneman (2011) as ‘thinking fast and slow’. These
ideas exhibit qualitative similarity to the trade-off between model-free
and model-based reasoning in AlphaZero, which we studied in Chapter
7. It would be interesting to further explore these connections in future
work.

We also want to argue for the importance of the reverse relation,
i.e., the use of computational studies to better understand human
psychology. Note that we are far from the first to come up with this
idea, see, e.g., Boden (1988), Sun (2008) and Hamrick (2019). In the
context of reinforcement learning, most work has focused on replication
of results in animal learning (Holroyd and Coles, 2002; Niv, 2009). In
some sense, the entire RL field is a computational study of the theory
on instrumental conditioning, where the computational study outgrew



224 discussion

the original field in some directions. We believe that the requirement
to implement a theory is the best way to identify its gaps and loose
ends. As the expression says: ‘the proof of the pudding is in the eating’.
An initiative like Psychlab (Leibo et al., 2018), a RL test environment
specifically designed to replicate a variety of psychological experiments,
is an interesting effort in this direction from the machine learning
community.

Finally, sequential decision-making research may help unveil the
fundamental roots of intelligence in optimization. A frequently heard
critique on deep (reinforcement) learning is that it does not help us
understand anything about intelligence because we cannot interpret
the millions of parameters. However, the human brain has approxi-
mately 86 billion neurons, an neither psychology, nor neuroscience,
nor computational science, will ever comprehensively explain those
interactions at a neuronal level. The required system for our intelligent
behaviour simply seems too large. Instead, computational science shows
how a combination of useful model specification and optimization can
produce intelligent behaviour, where optimization of course has firm
biological roots in Darwinian evolution (Darwin, 1859). The ability to
show from which concepts AI can develop may well be our best bet at
‘understanding’ how we ended up with our current cognitive abilities.

9.5 future work in planning and learning

The research chapters in this book already included their own future
work sections. Here, we will zoom out and identify promising directions
for the planning-learning fields as a whole. These topics are summarized
in Table 9.1.

novel integrations of planning and learning First of
all, there is much remaining work on novel integrations of planning
and learning, of which we have shown one example in Chapter 6. In
particular, we believe that multi-step approximate real-time dynamic
programming (MSA-RTDP) (Efroni, Ghavamzadeh, and Mannor, 2019),
as studied in Chapters 6 and 7 as well, deserves more attention. In MSA-
RTDP we use a multi-step lookahead to estimate new targets for a value
(or policy) approximation, and subsequently use these approximations
to influence new planning iterations. The key question is: how should
we specify both of these connections?



9.5 future work in planning and learning 225

Ta
bl

e
9

.1
:D

ir
ec

ti
on

s
of

fu
tu

re
w

or
k

in
th

e
pl

an
ni

ng
-l

ea
rn

in
g

fie
ld

(a
s

d
is

cu
ss

ed
th

ro
ug

ho
ut

Se
ct

io
n

9
.5

).
M

SA
-R

T
D

P
=

m
ul

ti
-s

te
p

ap
pr

ox
im

at
e

re
al

-t
im

e
dy

na
m

ic
pr

og
ra

m
m

in
g,

M
BR

L
=

m
od

el
-b

as
ed

re
in

fo
rc

em
en

t
le

ar
ni

ng
,I

M
=

in
tr

in
si

c
m

ot
iv

at
io

n.

To
pi

c
M

ai
n

qu
es

ti
on

s

1
.P

la
nn

in
g-

le
ar

ni
ng

co
m

bi
na

ti
on

s
-

In
w

ha
t

w
ay

s
ca

n
pl

an
ni

ng
ou

tp
ut

in
flu

en
ce

le
ar

ni
ng

,a
nd

vi
ce

ve
rs

a?
-

In
pa

rt
ic

ul
ar

:i
n

th
e

co
nt

ex
t

of
M

SA
-R

T
D

P

2
.T

ra
de

-o
ff

(p
la

n-
le

ar
n-

ac
t)

-
W

he
n

an
d

fo
r

ho
w

lo
ng

sh
ou

ld
w

e
pl

an
(d

at
a

de
pe

nd
en

t)
?

-
Fo

r
ho

w
lo

ng
sh

ou
ld

w
e

tr
ai

n
(u

nt
il

co
nv

er
ge

nc
e,

w
it

h
un

ce
rt

ai
nt

y)
?

3
.A

sy
m

pt
ot

ic
pe

rf
or

m
an

ce
-

H
ow

m
ay

w
e

ob
ta

in
be

tt
er

un
ce

rt
ai

nt
y

es
ti

m
at

es
on

th
e

m
od

el
?

-
C

an
M

BR
L

w
it

h
le

ar
ne

d
m

od
el

m
at

ch
as

ym
pt

ot
ic

m
od

el
-f

re
e

R
L

pe
rf

or
m

an
ce

?

4
.I

m
pl

ic
it

m
od

el
-b

as
ed

R
L

-W
ill

en
d-

to
-e

nd
op

tim
iz

at
io

n
of

(p
ar

ts
of

)t
he

m
od

el
-b

as
ed

R
L

cy
cl

e,
lik

e
va

lu
e

eq
ui

va
le

nt
m

od
el

s
or

le
ar

ni
ng

to
pl

an
,o

ut
pe

rf
or

m
ex

pl
ic

it
m

od
el

-b
as

ed
R

L
ap

pr
oa

ch
es

?

5
.H

ie
ra

rc
hi

ca
lR

L
-

W
ha

t
ar

e
go

od
en

dp
oi

nt
s

(r
ew

ar
d

re
le

va
nc

y,
co

ve
ra

ge
,b

ot
tl

en
ec

ks
,e

tc
.)?

-
H

ow
ca

n
w

e
us

e
te

m
po

ra
la

bs
tr

ac
ti

on
to

ar
ri

ve
at

go
od

po
lic

ie
s?

6
.T

ra
ns

fe
r

-
To

w
ha

t
ex

te
nd

ca
n

m
od

el
tr

an
sf

er
(w

it
h

st
at

e
an

d
/

or
te

m
p

or
al

ab
st

ra
ct

io
n)

re
d

u
ce

sa
m

pl
e

co
m

pl
ex

it
y

in
ne

w
ta

sk
s?

Sh
ou

ld
A

I
m

ov
e

m
or

e
in

th
is

di
re

ct
io

n?

7
.P

ri
or

it
iz

ed
sw

ee
pi

ng
-

Is
ba

ck
w

ar
d

pl
an

ni
ng

eq
ua

lly
im

po
rt

an
t

as
fo

rw
ar

d
pl

an
ni

ng
?

-
H

ow
fe

as
ib

le
is

ba
ck

w
ar

d
pl

an
ni

ng
in

hi
gh

-d
im

en
si

on
al

pr
ob

le
m

s?

8
.C

om
pe

te
nc

e-
ba

se
d

IM
-

H
ow

ca
n

w
e

le
ar

n
go

od
go

al
sp

ac
es

?
-

H
ow

do
w

e
se

le
ct

th
e

ne
xt

go
al

fr
om

th
e

go
al

sp
ac

e?
-

H
ow

do
w

e
pl

an
ba

ck
to

a
pr

ev
io

us
ly

vi
si

te
d

go
al

?

9
.S

af
et

y
-

H
ow

m
ay

w
e

en
su

re
sa

fe
ex

pl
or

at
io

n
by

us
in

g
a

m
od

el
?



226 discussion

The current solutions to this problem are quite heuristically motivated.
For example, the policy network of AlphaGo Zero is now trained on
the counts at the root of the MCTS search (Silver et al., 2017c). This is a
heuristic decision, since the counts do summarize some notion of action
preference, but their actual value is highly dependent on the choice
of other MCTS hyperparameters. We could hypothesize methods that
map value estimates from a planning procedure to a policy function
in different ways, or methods that only learn value functions. The
latter was recently also proposed by Hamrick et al. (2020). While these
methods only generalize value or policy information now, we could
also attempt to generalize the uncertainty in these estimates. We could
also study integration with other planning methods than MCTS, as for
example done in Guided Policy Search (Levine and Abbeel, 2014). In
short, we have only seen the tip of the iceberg of planning-learning
integrations.

trade-off between planning , learning and acting Chap-
ter 7 identified the trade-off between planning and acting as an im-
portant new research topic. It showed that, when we fix the planning
budget per timestep, optimal performance requires a moderate plan-
ning budget per real environment step. However, humans seem to be
more adaptive about when they start planning, and for how long they
plan. Future research should investigate how similar principles may
translate to RL. For example, the planning budget per timestep can
be determined in a data-dependent way, instead of being treated as a
fixed hyperparameter. We hypothesize that the planning budget should
be relatively low at the start and end of learning. In the beginning,
both the model and value/policy functions are highly uncertain, and
therefore planning may not bring much benefit. Near convergence, the
local value/policy estimates are close to convergence, and we likely
only need some local planning when the value approximation is unsure.
We expect planning is mostly beneficial halfway, when we have some
idea about the dynamics, but the value and policy functions are not
optimal yet.

Apart from the trade-off between planning and acting, we also need
to determine how much budget to spend on learning (i.e., training
of model and value approximation). Therefore, we actually need to
trade-off three quantities: planning, acting and learning. Learning may
involve model approximation and value/policy approximation. We
will focus on the former, but similar principles apply to the latter.
Ideally, we require model learning to: 1) scale computationally well



9.5 future work in planning and learning 227

(i.e., we can train incrementally on small batches of new data), 2) assess
convergence (i.e., verify when the predictions around observed data
points are accurate), 3) provide reliable uncertainty estimates (i.e., assess
when predictions are away from the observed data), and 4) not saturate
(e.g., neural network training with ReLu non-linearities saturates, where
certain network parts cannot be recovered once eliminated).

It is hard to obtain all the above criteria. We may iteratively fit Gaus-
sian Process (GP) dynamics models, as for example used in PILCO
(Deisenroth and Rasmussen, 2011). This satisfies requirements 2, 3 and
4, but does not scale well computationally. Neural network models do
scale computationally well, but, especially when trained incrementally,
it is hard to assess convergence, extract stable uncertainty estimates,
and prevent saturation. In practice, the learning budget is typically
fixed as a hyperparameter, which we want neither too low (then no
learning takes place at all) nor too high (saturation and extrapolation
errors on preliminary data).

However, what we really require are incremental neural network
training methods with convergence checks, uncertainty estimates and
prevention of saturation. These aspects are less of an issue in the su-
pervised learning community, where we train the model once on a
fixed dataset, and our new data is not dependent on our previous
approximations. In contrast, RL is more unstable, since we use interme-
diate solutions to gather new data. When humans acquire new data,
they appear to be able to quickly adjust their models, better known
as one- or few-shot learning (Vinyals et al., 2016). The general idea of
these approaches is usually to fix the initial representation layers, and
perform the fast model adaptation and uncertainty inference in a high-
level, small feature space. Thereby, these methods partially reintroduce
tabular methods, which avoids the slow optimization to store new
information in the entire network approximation. Similar ideas may
also benefit (model-based) RL, and help adaptively tune the trade-off
between planning, acting and learning.

asymptotic performance of model-based rl with a learned

model While model-based RL with a known model has shown
asymptotic performance that equals or outperforms model-free RL
(Levine and Koltun, 2013; Silver et al., 2017c), model-based RL with a
learned model generally falls behind in long run performance1 (Wang
et al., 2019). Since model-based RL with a known model does equal

1 Although MuZero (Schrittwieser et al., 2019) recently provided a counter example.



228 discussion

model-free in performance, the main challenge of model-based RL with
a learned model seems to be caused by the inaccuracy of the learned
model. This could 1) be due to inaccurate predictions of the model
(e.g., no properly estimating stochasticity, or incorporating partial ob-
servability and long-term dependencies), or 2) due to the inability to
account for uncertainty. The latter explanation will probably play a big
role, since 1) during planning we run the risk of moving to regions
where we have not even observed data, and 2) uncertainty estimation in
high-dimensional models is challenging, even in the supervised learn-
ing community (Kendall and Gal, 2017). Chua et al. (2018) made an
important step in this direction, by showing that a bootstrap ensem-
ble of neural networks can account for model uncertainty, up to the
point where asymptotic performance matches model-free performance.
Since uncertainty estimation in high-dimensional models is an impor-
tant topic in the supervised learning community, research progress in
those communities will likely have a big impact on model-based RL
performance as well.

implicit model-based rl An interesting research direction, which
has surfaced in the planning-learning field in the last five years, is im-
plicit model-based RL. This group of approaches, covered in Chapter 4,
wrap (parts of) the model-based RL process in an end-to-end optimiza-
tion, training it on the ability to predict an (optimal) action or value. For
example, value equivalent models (Grimm et al., 2020; Schrittwieser et
al., 2019) train a dynamics model on the ability to predict a future value,
which is an implicit form of model learning.2 As a second direction, we
may also optimize entire planning algorithms for their ability to output
the correct optimal action or value, which we call ‘learning to plan’
(Guez et al., 2018; Pascanu et al., 2017). Finally, both ideas may also
be combined in one optimization, i.e., jointly optimize the dynamics
model and the planning procedure on the ability to output an optimal
value or policy (Farquhar et al., 2018; Guez et al., 2019).

There is a clear potential benefit of this approach. As we have seen
in other fields of machine learning, like computer vision, human en-
gineered features were eventually outperformed by features learned
through optimization. While this is now commonly accepted for feature
learning, it is not yet the common approach for algorithm design. Algo-
rithms are usually designed explicitly, and so were the model-based RL

2 Note that the value equivalent loss can also be combined with a standard next state
prediction loss, which would make it a hybrid of explicit and implicit model-based RL



9.5 future work in planning and learning 229

algorithms in this dissertation. The implicit model-based RL approach
follows the intuition that good algorithms may also be derived from
optimization, i.e., we may actually optimize them against their ability to
achieve what we want. The history of other research fields may predict
that optimization will eventually beat human intuition and design. On
the other hand, good priors will always reduce the computational com-
plexity, and our computational budgets are of course not infinite. It is
an interesting question where the sweet spot between prior knowledge
and optimization will lie, both for model-based reinforcement learning
in particular, as well as for artificial intelligence in general.

temporal abstraction and hierarchical rl Temporal ab-
straction, i.e., hierarchical reinforcement learning (Barto and Mahade-
van, 2003; Dayan and Hinton, 1993; Sutton, Precup, and Singh, 1999),
will be crucial to advance sequential decision-making research. This
book discussed methods to integrate planning and learning in a given
MDP. Instead, in hierarchical RL we try to redefine the MDP itself, by
compressing it in the temporal dimension. With good temporal abstrac-
tion, the planning depth (and depth of the credit assignment problem)
will be reduced, which should make it easier to find a solution. As
mentioned in Chapter 4, temporal abstraction is really a form of model
learning with a higher-level action space that extends over multiple
timesteps.

The main challenge in hierarchical RL is the identification of useful
sub-routines, already covered in Chapter 4. We need to discover relevant
end-points for the high-level actions. We cannot afford to learn a sub-
routine towards every possible state of the MDP, since this set (and
thereby the high-level action space) becomes prohibitively large. Ideally,
we want a compressed set of endpoints, in which the endpoints 1) are
reward relevant and/or 2) have some crucial position in the MDP (like
a bottleneck between densely connected subregions (McGovern and
Barto, 2001) and/or 3) provide good coverage of the entire state space.
Some researchers have argued that we can retrieve subroutines through
end-to-end optimization (Bacon, Harb, and Precup, 2017), while others
explicitly construct end-points from state space compression, MDP
graph characteristics, or overlap in successful traces. The solution may
well hide in a combination of these ideas. In any case, more research
on temporal abstraction is definitely needed, since this approach could
vastly scale the range of applications of (model-based) RL.



230 discussion

transfer learning Another clear direction of future work for
planning-learning integrations is transfer learning (Taylor and Stone,
2009). We do not even need to come up with specific transfer methods,
as we can directly transfer transition and reward functions, as well as
learned state and temporal abstraction, to new tasks, as long as the
input space still has the same dimensionality. Of course, in humans
the sensory observation space is always the same (vision, auditory
information, etc.). However, in most RL tasks we always learn from
scratch. This is a computationally heavy and difficult task, incomparable
to the prior representations and models humans already have when
they face a new task. Therefore, it makes sense that RL algorithms
are typically data hungry, even on small tasks, and have trouble with
one-shot learning.

In RL, we should therefore aim to make the observation space over
tasks more uniform, for example based on generic visual and auditory
input. This way, we can re-use more information over tasks. Current
RL research spends (too) much time on learning useful representations
in each new task. In the computer vision community, there are many
model libraries that allow one to re-use parts of networks trained in
previous research (Kornblith, Shlens, and Le, 2019). Although this idea
has already appeared in RL as well (Such et al., 2018), it is not a common
approach yet. We believe that the transfer setting may reveal the true
potential of model-based RL. On a single task, model-based RL tries
to squeeze all information out of a small amount of data, which is
by definition challenging. In contrast, the transfer setting allows us
to re-use a learned model, possibly with good state and/or temporal
abstraction, which may strongly reduce the sample requirements and
training time in new tasks.

prioritized sweeping with function approximation As
mentioned in Chapters 3 and 4, prioritized sweeping (Moore and Atke-
son, 1993) is an example of a powerful idea from early RL literature.
The key idea is to propagate relevant new information towards all pos-
sible precursors of a state. This idea is intuitive in everyday life. If you
burn your hand on the thee kettle as a child, you will directly realize
that this negative state can also be reached by approaching the kettle
from a different direction. Backward planning has also been extensively
studied in psychological literature (Holmberg and Robèrt, 2000; Rollier
and Turner, 1994; Wiese, Buehler, and Griffin, 2016).

While a tabular dynamics model is trivial to revert, prioritized sweep-
ing in high-dimensional problems requires explicit estimation of a



9.5 future work in planning and learning 231

backwards model. Agostinelli et al. (2019), Edwards, Downs, and David-
son (2018), and Corneil, Gerstner, and Brea (2018) provide example
approaches with neural network approximation. Ideally, we would de-
sign function approximation models that learn the correlations structure
between current state s, action a and next state s′, and which can be
queried for any third variable conditioned on two others. In any case,
backward planning might be just as important as forward planning,
and it should be a promising direction for future RL research.

competence-based intrinsic motivation Exploration has al-
ways been a central topic in sequential decision making. We believe
competence-based intrinsic motivation (Oudeyer, Kaplan, and Hafner,
2007; Oudeyer, Kaplan, et al., 2008), already discussed in Chapter 4, is
the most promising direction in exploration research. Most exploration
research has focused on step-wise methods, which locally perturb the
chosen action based on random noise or value uncertainty. However, hu-
mans incorporate a different exploration mechanism as well (Oudeyer
and Kaplan, 2009), where they first fix a new goal that is close to their
current abilities, exploit previous information to get close to the specific
goal, and only then explore to reach it. In this approach, we do not
explore at every step in the trace, but only at the end (when we reach
the target state for exploration).

Compared to standard RL approaches, these methods have a ‘goal
space’ which consists of their current competences, i.e., the states they
already managed to reach. Ideas about competence acquisition have
been long known in psychology, dating at least back to White (1959).
It nevertheless remains a relatively little studied topic in RL research,
likely because there are many challenges. First, we need to be able to
learn a compressed goal space, since the entire state space is too large.
Second, we need to design a criterion to sample a next goal from this
space, for example based on learning progress. And third, we need to
be able to return to a previous goal, re-using the knowledge from how
we previously got there. Since we cannot afford to store all individual
traces, this will also involve some type of function approximation. In
short, there are many remaining challenges (Péré et al., 2018), but the
principle has a strong motivation in human psychology, and holds the
promise of strong improvement over step-based perturbation methods,
especially in tasks with sparse rewards (Ecoffet et al., 2019).

safety Finally, we believe that research on model-based reinforce-
ment learning will also benefit research on safety. Safe exploration is an



232 discussion

important topic for real-world applications, and has especially received
attention in the robotics RL community (Garcia and Fernández, 2015).
There are two main ideas. First, we want to be able to explore while
also retaining reasonable confidence that we will be able to return to
a safe state (Berkenkamp et al., 2017). This is clearly a model-based
endeavor, where we plan an exploratory step, but also an expected way
to get back. Thereby, model-based RL can also contribute to safety and
real-world deployment of AI.

In short, the combination of planning and learning (model-based re-
inforcement learning) is related to many crucial topics in sequential
decision-making research, like data efficiency, transfer, hierarchy and ex-
ploration. A variety of research topics, each worth several PhD projects,
lie ahead. We summarized some important directions above.



10C O N C L U S I O N

Pooh floated gracefully up into the sky, and stayed there – level with the top of
the tree and about twenty feet away from it.
“Hooray!” Christopher Robin shouted.
“Isn’t that fine?” shouted Winnie-the-Pooh down to Christopher Robin. “What
do I look like?”
“You look like a bear holding on to a balloon,” Christopher Robin said.
“Not . . .” said Pooh anxiously, “not like a small black cloud in the blue sky?”
“Not very much?”
“Ah, well, perhaps from up here it looks different. And, as I say, you never can
tell with bees.”

A.A. Milne, Winnie-the-Pooh and Some Bees (1926)

This book studied the integration of planning and learning. Backed-
up by concurrent research results in recent years (Levine and Abbeel,
2014; Schrittwieser et al., 2019; Silver et al., 2017c), it identifies planning-
learning integrations as a vital research area in artificial intelligence.
Both fields are closely intertwined, have the same underlying dimen-
sions, but use different approaches and conventions for their challenges.
Integration of both approaches can take place in a variety of ways, which
are extensively covered throughout the book. There are many new ways
in which both fields can be integrated. We illustrated potential new
combinations by showing a novel learning method to deal with stochas-
tic dynamics models, an extension of a well-known planning-learning
paradigm to continuous action spaces, a study of the computational
trade-off present in planning-learning integrations, and a novel tree
search method based on concepts from the learning community. There
are numerous remaining directions for future research, like hierarchical
RL, transfer learning, and implicit model-based RL. Altogether, the book
provides both a theoretical and empirical view on planning-learning
integrations. It can serve as an introduction to either or both fields,
illustrates the vast remaining potential of the integration of planning
and learning, and open up towards future research.

To conclude, the epigraph above this chapter shows the outcome
of the planning process started by Winnieh-the-Pooh in the epigraph

233



234 conclusion

of the introduction. Eventually, Pooh decides to take the blue balloon,
hoping that the bees will take him for a dark cloud. Clearly, Pooh stops
planning after a while and decides on a real action, in this work referred
to as a real step. Humans, and fictional bears, are fundamentally limited
in their computational budgets: the full planning problems we face are
simply too big to every fully enumerate. Our work shows intelligent
decision making does requires some planning like Pooh does, but also
requires us to stop and move forward at some point as well. It will
bring new experience, which can improve the learned models of the
world, and, with additional planning, improve the learned value of
different actions. Planning and learning are above all complementary
phenomena.



B I B L I O G R A P H Y

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. (2016). “TensorFlow: A System for Large-Scale
Machine Learning.” In: OSDI. Vol. 16, pp. 265–283.

Abbeel, Pieter and Andrew Y Ng (2004). “Apprenticeship learning
via inverse reinforcement learning.” In: Proceedings of the twenty-first
international conference on Machine learning. ACM, p. 1.

– (2005). “Learning first-order Markov models for control.” In: Advances
in neural information processing systems, pp. 1–8.

Achiam, Joshua, Harrison Edwards, Dario Amodei, and Pieter Abbeel
(2018). “Variational option discovery algorithms.” In: arXiv preprint
arXiv:1807.10299.

Achiam, Joshua and Shankar Sastry (2017). “Surprise-based intrin-
sic motivation for deep reinforcement learning.” In: arXiv preprint
arXiv:1703.01732.

Agostinelli, Forest, Stephen McAleer, Alexander Shmakov, and Pierre
Baldi (2019). “Solving the Rubik’s cube with deep reinforcement
learning and search.” In: Nature Machine Intelligence 1.8, pp. 356–363.

Agrawal, Pulkit, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and
Sergey Levine (2016). “Learning to poke by poking: Experiential
learning of intuitive physics.” In: Advances in Neural Information Pro-
cessing Systems, pp. 5074–5082.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John
Schulman, and Dan Mané (2016). “Concrete problems in AI safety.”
In: arXiv preprint arXiv:1606.06565.

Anand, Ankesh, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre
Côté, and R Devon Hjelm (2019). “Unsupervised state representation
learning in atari.” In: Advances in Neural Information Processing Systems,
pp. 8766–8779.

Anderson, Brian DO and John B Moore (2007). Optimal control: linear
quadratic methods. Courier Corporation.

Anthony, Thomas, Robert Nishihara, Philipp Moritz, Tim Salimans,
and John Schulman (2019). “Policy Gradient Search: Online Plan-
ning and Expert Iteration without Search Trees.” In: arXiv preprint
arXiv:1904.03646.

235



236 bibliography

Anthony, Thomas, Zheng Tian, and David Barber (2017). “Thinking fast
and slow with deep learning and tree search.” In: Advances in Neural
Information Processing Systems, pp. 5360–5370.

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil
Anthony Bharath (2017). “Deep reinforcement learning: A brief sur-
vey.” In: IEEE Signal Processing Magazine 34.6, pp. 26–38.

Asadi, Kavosh, Evan Cater, Dipendra Misra, and Michael L Littman
(2018). “Towards a Simple Approach to Multi-step Model-based Rein-
forcement Learning.” In: arXiv preprint arXiv:1811.00128.

Asmuth, John, Lihong Li, Michael L Littman, Ali Nouri, and David
Wingate (2009). “A Bayesian sampling approach to exploration in
reinforcement learning.” In: Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence. AUAI Press, pp. 19–26.

Åström, Karl Johan and Peter Eykhoff (1971). “System identification—a
survey.” In: Automatica 7.2, pp. 123–162.

Aswani, Anil, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin
(2013). “Provably safe and robust learning-based model predictive
control.” In: Automatica 49.5, pp. 1216–1226.

Atiya, Amir F, Alexander G Parlos, and Lester Ingber (2003). “A rein-
forcement learning method based on adaptive simulated annealing.”
In: 2003 46th Midwest Symposium on Circuits and Systems. Vol. 1. IEEE,
pp. 121–124.

Atkeson, Christopher G, Andrew W Moore, and Stefan Schaal (1997).
“Locally weighted learning for control.” In: Lazy learning. Springer,
pp. 75–113.

Atkeson, Christopher G and Juan Carlos Santamaria (1997). “A compar-
ison of direct and model-based reinforcement learning.” In: Proceed-
ings of International Conference on Robotics and Automation. Vol. 4. IEEE,
pp. 3557–3564.

Audibert, Jean-Yves and Sébastien Bubeck (2010). “Best arm identifica-
tion in multi-armed bandits.” In:

Auer, Peter (2002). “Using confidence bounds for exploitation-exploration
trade-offs.” In: Journal of Machine Learning Research 3.Nov, pp. 397–422.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002). “Finite-time
analysis of the multiarmed bandit problem.” In: Machine learning
47.2-3, pp. 235–256.

Avila Belbute-Peres, Filipe de, Kevin Smith, Kelsey Allen, Josh Tenen-
baum, and J Zico Kolter (2018). “End-to-end differentiable physics
for learning and control.” In: Advances in Neural Information Processing
Systems, pp. 7178–7189.



bibliography 237

Babaeizadeh, Mohammad, Chelsea Finn, Dumitru Erhan, Roy H Camp-
bell, and Sergey Levine (2017). “Stochastic variational video predic-
tion.” In: arXiv preprint arXiv:1710.11252.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (2017). “The option-
critic architecture.” In: Thirty-First AAAI Conference on Artificial Intelli-
gence.

Bagnell, J Andrew and Jeff G Schneider (2001). “Autonomous helicopter
control using reinforcement learning policy search methods.” In:
Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No. 01CH37164). Vol. 2. IEEE, pp. 1615–1620.

Baranes, Adrien and Pierre-Yves Oudeyer (2009). “R-iac: Robust intrinsi-
cally motivated exploration and active learning.” In: IEEE Transactions
on Autonomous Mental Development 1.3, pp. 155–169.

– (2013). “Active learning of inverse models with intrinsically motivated
goal exploration in robots.” In: Robotics and Autonomous Systems 61.1,
pp. 49–73.

Barreto, André, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul,
Hado P van Hasselt, and David Silver (2017). “Successor features for
transfer in reinforcement learning.” In: Advances in neural information
processing systems, pp. 4055–4065.

Barto, Andrew G, Steven J Bradtke, and Satinder P Singh (1995). “Learn-
ing to act using real-time dynamic programming.” In: Artificial intelli-
gence 72.1-2, pp. 81–138.

Barto, Andrew G and Sridhar Mahadevan (2003). “Recent advances in
hierarchical reinforcement learning.” In: Discrete event dynamic systems
13.1-2, pp. 41–77.

Barto, Andrew G, Richard S Sutton, and Charles W Anderson (1983).
“Neuronlike adaptive elements that can solve difficult learning control
problems.” In: IEEE transactions on systems, man, and cybernetics 5,
pp. 834–846.

Battaglia, Peter W, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. (2018). “Rela-
tional inductive biases, deep learning, and graph networks.” In: arXiv
preprint arXiv:1806.01261.

Battaglia, Peter, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende,
et al. (2016). “Interaction networks for learning about objects, relations
and physics.” In: Advances in neural information processing systems,
pp. 4502–4510.



238 bibliography

Baxter, Jonathan, Andrew Tridgell, and Lex Weaver (1999). “TDLeaf
(lambda): Combining temporal difference learning with game-tree
search.” In: arXiv preprint cs/9901001.

Beck, Jacob, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng
Zhang, and Katja Hofmann (2020). “Amrl: Aggregated memory for
reinforcement learning.” In:

Bellemare, Marc G, Yavar Naddaf, Joel Veness, and Michael Bowling
(2013). “The arcade learning environment: An evaluation platform
for general agents.” In: Journal of Artificial Intelligence Research 47,
pp. 253–279.

Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul,
David Saxton, and Remi Munos (2016). “Unifying count-based explo-
ration and intrinsic motivation.” In: Advances in Neural Information
Processing Systems, pp. 1471–1479.

Bellman, Richard (1966). “Dynamic programming.” In: Science 153.3731,
pp. 34–37.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason We-
ston (2009). “Curriculum learning.” In: Proceedings of the 26th annual
international conference on machine learning. ACM, pp. 41–48.

Berkenkamp, Felix, Matteo Turchetta, Angela Schoellig, and Andreas
Krause (2017). “Safe model-based reinforcement learning with stabil-
ity guarantees.” In: Advances in neural information processing systems,
pp. 908–918.

Berliner, Hans (1981). “The B* tree search algorithm: A best-first proof
procedure.” In: Readings in Artificial Intelligence. Elsevier, pp. 79–87.

Bertsekas, Dimitri P (1995). Dynamic programming and optimal control.
Vol. 1. 2.

Bertsekas, Dimitri P and John N Tsitsiklis (1991). “An analysis of stochas-
tic shortest path problems.” In: Mathematics of Operations Research 16.3,
pp. 580–595.

Bishop, Christopher M (2006). Pattern recognition and machine learning.
springer.

Bock, Hans Georg and Karl-Josef Plitt (1984). “A multiple shooting
algorithm for direct solution of optimal control problems.” In: IFAC
Proceedings Volumes 17.2, pp. 1603–1608.

Boden, Margaret A (1988). Computer models of mind: Computational ap-
proaches in theoretical psychology. Cambridge University Press.

Boone, Gary (1997). “Efficient reinforcement learning: Model-based
acrobot control.” In: Proceedings of International Conference on Robotics
and Automation. Vol. 1. IEEE, pp. 229–234.



bibliography 239

Botvinick, Matthew and Marc Toussaint (2012). “Planning as inference.”
In: Trends in cognitive sciences 16.10, pp. 485–488.

Bradtke, Steven J and Andrew G Barto (1996). “Linear least-squares
algorithms for temporal difference learning.” In: Machine learning
22.1-3, pp. 33–57.

Brafman, Ronen I and Moshe Tennenholtz (2002). “R-max-a general
polynomial time algorithm for near-optimal reinforcement learning.”
In: Journal of Machine Learning Research 3.Oct, pp. 213–231.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba (2016). “OpenAI
Gym.” In: arXiv preprint arXiv:1606.01540.

Browne, Cameron B, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton (2012). “A survey of
monte carlo tree search methods.” In: IEEE Transactions on Computa-
tional Intelligence and AI in games 4.1, pp. 1–43.

Brunskill, Emma and Lihong Li (2014). “Pac-inspired option discovery
in lifelong reinforcement learning.” In: International conference on
machine learning, pp. 316–324.

Buckman, Jacob, Danijar Hafner, George Tucker, Eugene Brevdo, and
Honglak Lee (2018). “Sample-efficient reinforcement learning with
stochastic ensemble value expansion.” In: Advances in Neural Informa-
tion Processing Systems, pp. 8224–8234.

Buesing, Lars, Theophane Weber, Sebastien Racaniere, SM Eslami,
Danilo Rezende, David P Reichert, Fabio Viola, Frederic Besse, Karol
Gregor, Demis Hassabis, et al. (2018). “Learning and querying fast
generative models for reinforcement learning.” In: arXiv preprint
arXiv:1802.03006.

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). “Impor-
tance weighted autoencoders.” In: arXiv preprint arXiv:1509.00519.

Busoniu, L, R Babuska, and B De Schutter (2008). “A Comprehensive
Survey of Multiagent Reinforcement Learning.” In: IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2.38,
pp. 156–172.

Campbell, Murray, A Joseph Hoane Jr, and Feng-hsiung Hsu (2002).
“Deep blue.” In: Artificial intelligence 134.1-2, pp. 57–83.

Carmel, David and Shaul Markovitch (1999). “Exploration strategies for
model-based learning in multi-agent systems: Exploration strategies.”
In: Autonomous Agents and Multi-agent systems 2.2, pp. 141–172.

Caruana, Rich (1997). “Multitask learning.” In: Machine learning 28.1,
pp. 41–75.



240 bibliography

Castro, Pablo Samuel and Doina Precup (2007). “Using Linear Program-
ming for Bayesian Exploration in Markov Decision Processes.” In:
IJCAI. Vol. 24372442.

Cazenave, Tristan and Nicolas Jouandeau (2007). “On the parallelization
of UCT.” In: proceedings of the Computer Games Workshop. Citeseer,
pp. 93–101.

Cazenave, Tristan and Abdallah Saffidine (2010). “Score bounded Monte-
Carlo tree search.” In: International Conference on Computers and Games.
Springer, pp. 93–104.

Chang, Kai-Wei, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume,
and John Langford (2015). “Learning to Search Better than Your
Teacher.” In: International Conference on Machine Learning, pp. 2058–
2066.

Chang, Michael B, Tomer Ullman, Antonio Torralba, and Joshua B
Tenenbaum (2016). “A compositional object-based approach to learn-
ing physical dynamics.” In: arXiv preprint arXiv:1612.00341.

Chaslot, Guillaume M JB, Mark HM Winands, H Jaap Van Den Herik,
Jos WHM Uiterwijk, Bruno Bouzy, et al. (2008a). “Progressive Strate-
gies For Monte-Carlo Tree Search.” In: New Mathematics and Natural
Computation (NMNC) 4.03, pp. 343–357.

Chaslot, Guillaume, Sander Bakkes, Istvan Szita, and Pieter Spronck
(2008b). “Monte-Carlo Tree Search: A New Framework for Game AI.”
In: AIIDE.

Chen, Xi, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhari-
wal, John Schulman, Ilya Sutskever, and Pieter Abbeel (2016). “Varia-
tional Lossy Autoencoder.” In: arXiv preprint arXiv:1611.02731.

Chentanez, Nuttapong, Andrew G Barto, and Satinder P Singh (2005).
“Intrinsically motivated reinforcement learning.” In: Advances in neural
information processing systems, pp. 1281–1288.

Chiappa, Silvia, Sébastien Racaniere, Daan Wierstra, and Shakir Mo-
hamed (2017). “Recurrent environment simulators.” In: arXiv preprint
arXiv:1704.02254.

Choi, Jongwook, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu,
Mohammad Norouzi, and Honglak Lee (2018). “Contingency-aware
exploration in reinforcement learning.” In: arXiv preprint arXiv:1811.01483.

Chrisman, Lonnie (1992). “Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach.” In: AAAI. Vol. 1992.
Citeseer, pp. 183–188.

Christiano, Paul, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor
Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba (2016).



bibliography 241

“Transfer from simulation to real world through learning deep inverse
dynamics model.” In: arXiv preprint arXiv:1610.03518.

Chua, Kurtland, Roberto Calandra, Rowan McAllister, and Sergey
Levine (2018). “Deep reinforcement learning in a handful of trials us-
ing probabilistic dynamics models.” In: Advances in Neural Information
Processing Systems, pp. 4754–4765.

Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C
Courville, and Yoshua Bengio (2015). “A recurrent latent variable
model for sequential data.” In: Advances in neural information processing
systems, pp. 2980–2988.

Clavera, Ignasi, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim
Asfour, and Pieter Abbeel (2018). “Model-Based Reinforcement Learn-
ing via Meta-Policy Optimization.” In: Conference on Robot Learning,
pp. 617–629.

Corneil, Dane, Wulfram Gerstner, and Johanni Brea (2018). “Efficient
model-based deep reinforcement learning with variational state tabu-
lation.” In: arXiv preprint arXiv:1802.04325.

Couëtoux, Adrien, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier
Teytaud, and Nicolas Bonnard (2011). “Continuous upper confidence
trees.” In: International Conference on Learning and Intelligent Optimiza-
tion. Springer, pp. 433–445.

Coulom, Rémi (2006). “Efficient selectivity and backup operators in
Monte-Carlo tree search.” In: International conference on computers and
games. Springer, pp. 72–83.

– (2007). “Computing elo ratings of move patterns in the game of go.”
In: Computer games workshop.

Coumans, Erwin and Yunfei Bai (2016). “Pybullet, a python module
for physics simulation for games, robotics and machine learning.” In:
GitHub repository.

Craik, Kenneth James Williams (1943). “The Nature of Explanation.” In:
Da Silva, Bruno C, Eduardo W Basso, Ana LC Bazzan, and Paulo

M Engel (2006). “Dealing with non-stationary environments using
context detection.” In: Proceedings of the 23rd international conference on
Machine learning. ACM, pp. 217–224.

Daniel, Christian, Herke Van Hoof, Jan Peters, and Gerhard Neumann
(2016). “Probabilistic inference for determining options in reinforce-
ment learning.” In: Machine Learning 104.2-3, pp. 337–357.

Darwin, Charles (1859). “On the Origin of Species.” In:
Dayan, Peter (1993). “Improving generalization for temporal difference

learning: The successor representation.” In: Neural Computation 5.4,
pp. 613–624.



242 bibliography

Dayan, Peter and Geoffrey E Hinton (1993). “Feudal reinforcement
learning.” In: Advances in neural information processing systems, pp. 271–
278.

Dearden, Richard, Nir Friedman, and David Andre (1999). “Model
based Bayesian exploration.” In: Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., pp. 150–159.

Dearden, Richard, Nir Friedman, and Stuart Russell (1998). “Bayesian
Q-learning.” In: AAAI/IAAI, pp. 761–768.

Degrave, Jonas, Michiel Hermans, Joni Dambre, et al. (2019). “A differ-
entiable physics engine for deep learning in robotics.” In: Frontiers in
neurorobotics 13.

Deisenroth, Marc and Carl E Rasmussen (2011). “PILCO: A model-based
and data-efficient approach to policy search.” In: Proceedings of the
28th International Conference on machine learning (ICML-11), pp. 465–
472.

Depeweg, Stefan, José Miguel Hernández-Lobato, Finale Doshi-Velez,
and Steffen Udluft (2016). “Learning and policy search in stochastic
dynamical systems with bayesian neural networks.” In: arXiv preprint
arXiv:1605.07127.

Der Kiureghian, Armen and Ove Ditlevsen (2009). “Aleatory or epis-
temic? Does it matter?” In: Structural Safety 31.2, pp. 105–112.

Dijkstra, Edsger W (1959). “A note on two problems in connexion with
graphs.” In: Numerische mathematik 1.1, pp. 269–271.

Dilokthanakul, Nat, Christos Kaplanis, Nick Pawlowski, and Murray
Shanahan (2019). “Feature control as intrinsic motivation for hierar-
chical reinforcement learning.” In: IEEE transactions on neural networks
and learning systems.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2016). “Density
estimation using Real NVP.” In: arXiv preprint arXiv:1605.08803.

Diuk, Carlos, Andre Cohen, and Michael L Littman (2008). “An object-
oriented representation for efficient reinforcement learning.” In: Pro-
ceedings of the 25th international conference on Machine learning. ACM,
pp. 240–247.

Doll, Bradley B, Dylan A Simon, and Nathaniel D Daw (2012). “The
ubiquity of model-based reinforcement learning.” In: Current opinion
in neurobiology 22.6, pp. 1075–1081.

Doya, Kenji, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato
(2002). “Multiple model-based reinforcement learning.” In: Neural
computation 14.6, pp. 1347–1369.



bibliography 243

Duff, Michael O’Gordon and Andrew Barto (2002). “Optimal Learn-
ing: Computational procedures for Bayes-adaptive Markov decision
processes.” PhD thesis. University of Massachusetts at Amherst.

Ecoffet, Adrien, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and
Jeff Clune (2019). “Go-explore: a new approach for hard-exploration
problems.” In: arXiv preprint arXiv:1901.10995.

Edwards, Ashley D, Laura Downs, and James C Davidson (2018).
“Forward-backward reinforcement learning.” In: arXiv preprint arXiv:1803.10227.

Edwards, Daniel James and TP Hart (1961). “The alpha-beta heuristic.”
In:

Edwards, Ward (1954). “The theory of decision making.” In: Psychological
bulletin 51.4, p. 380.

Efroni, Yonathan, Gal Dalal, Bruno Scherrer, and Shie Mannor (2018).
“Beyond the One-Step Greedy Approach in Reinforcement Learning.”
In: International Conference on Machine Learning, pp. 1386–1395.

– (2019). “How to combine tree-search methods in reinforcement learn-
ing.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33, pp. 3494–3501.

Efroni, Yonathan, Mohammad Ghavamzadeh, and Shie Mannor (2019).
“Multi-Step Greedy and Approximate Real Time Dynamic Program-
ming.” In: arXiv preprint arXiv:1909.04236.

El Hihi, Salah and Yoshua Bengio (1996). “Hierarchical recurrent neu-
ral networks for long-term dependencies.” In: Advances in neural
information processing systems, pp. 493–499.

Evans, Jonathan St BT (1984). “Heuristic and analytic processes in
reasoning.” In: British Journal of Psychology 75.4, pp. 451–468.

Eysenbach, Benjamin, Abhishek Gupta, Julian Ibarz, and Sergey Levine
(2019). “Diversity is All You Need: Learning Skills without a Reward
Function.” In: International Conference on Learning Representations.

Fairbank, Michael and Eduardo Alonso (2012). “Value-gradient learn-
ing.” In: The 2012 International Joint Conference on Neural Networks
(IJCNN). IEEE, pp. 1–8.

Farquhar, Gregory, Tim Rocktäschel, Maximilian Igl, and SA Whiteson
(2018). “Treeqn and atreec: Differentiable tree planning for deep
reinforcement learning.” In: International Conference on Learning
Representations.

Finn, Chelsea, Ian Goodfellow, and Sergey Levine (2016). “Unsuper-
vised learning for physical interaction through video prediction.” In:
Advances in neural information processing systems, pp. 64–72.



244 bibliography

Florensa, Carlos, Yan Duan, and Pieter Abbeel (2017). “Stochastic neural
networks for hierarchical reinforcement learning.” In: arXiv preprint
arXiv:1704.03012.

Florensa, Carlos, David Held, Xinyang Geng, and Pieter Abbeel (2018).
“Automatic Goal Generation for Reinforcement Learning Agents.” In:
International Conference on Machine Learning, pp. 1514–1523.

Fox, Roy, Sanjay Krishnan, Ion Stoica, and Ken Goldberg (2017). “Multi-
level discovery of deep options.” In: arXiv preprint arXiv:1703.08294.

Fox, Roy, Michal Moshkovitz, and Naftali Tishby (2016). “Principled
option learning in Markov decision processes.” In: arXiv preprint
arXiv:1609.05524.

Fraccaro, Marco, Simon Kamronn, Ulrich Paquet, and Ole Winther
(2017). “A disentangled recognition and nonlinear dynamics model
for unsupervised learning.” In: Advances in Neural Information Process-
ing Systems, pp. 3601–3610.

Fragkiadaki, Katerina, Pulkit Agrawal, Sergey Levine, and Jitendra Ma-
lik (2015). “Learning visual predictive models of physics for playing
billiards.” In: arXiv preprint arXiv:1511.07404.

François-Lavet, Vincent, Yoshua Bengio, Doina Precup, and Joelle Pineau
(2019). “Combined reinforcement learning via abstract representa-
tions.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33, pp. 3582–3589.

François-Lavet, Vincent, Peter Henderson, Riashat Islam, Marc G Belle-
mare, Joelle Pineau, et al. (2018). “An introduction to deep reinforce-
ment learning.” In: Foundations and Trends® in Machine Learning 11.3-4,
pp. 219–354.

Frans, Kevin, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman
(2018). “Meta learning shared hierarchies.” In: International Conference
on Learning Representations.

Fröhlich, Fabian, Fabian J Theis, and Jan Hasenauer (2014). “Uncertainty
analysis for non-identifiable dynamical systems: Profile likelihoods,
bootstrapping and more.” In: International Conference on Computational
Methods in Systems Biology. Springer, pp. 61–72.

Fu, Justin, Sergey Levine, and Pieter Abbeel (2016). “One-shot learning
of manipulation skills with online dynamics adaptation and neural
network priors.” In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, pp. 4019–4026.

Gal, Yarin, Rowan McAllister, and Carl Edward Rasmussen (2016).
“Improving PILCO with Bayesian neural network dynamics models.”
In: Data-Efficient Machine Learning workshop, ICML. Vol. 4.



bibliography 245

Garcia, Javier and Fernando Fernández (2015). “A comprehensive sur-
vey on safe reinforcement learning.” In: Journal of Machine Learning
Research 16.1, pp. 1437–1480.

Garnelo, Marta, Kai Arulkumaran, and Murray Shanahan (2016). “To-
wards deep symbolic reinforcement learning.” In: arXiv preprint
arXiv:1609.05518.

Geffner, Hector and Blai Bonet (2013). “A concise introduction to mod-
els and methods for automated planning.” In: Synthesis Lectures on
Artificial Intelligence and Machine Learning 8.1, pp. 1–141.

Gelly, Sylvain and Yizao Wang (2006). “Exploration exploitation in
go: UCT for Monte-Carlo go.” In: NIPS: Neural Information Process-
ing Systems Conference On-line trading of Exploration and Exploitation
Workshop.

Gemici, Mevlana, Chia-Chun Hung, Adam Santoro, Greg Wayne, Shakir
Mohamed, Danilo J Rezende, David Amos, and Timothy Lillicrap
(2017). “Generative temporal models with memory.” In: arXiv preprint
arXiv:1702.04649.

Ghahramani, Zoubin and Geoffrey E Hinton (1996). Parameter estimation
for linear dynamical systems. Tech. rep. Technical Report CRG-TR-96-2,
University of Totronto, Dept. of Computer Science.

Ghahramani, Zoubin and Sam T Roweis (1999). “Learning nonlinear
dynamical systems using an EM algorithm.” In: Advances in neural
information processing systems, pp. 431–437.

Ghallab, Malik, Adele Howe, Craig Knoblock, Drew McDermott, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins (1998).
“PDDL—the planning domain definition language.” In: AIPS-98 plan-
ning committee 3, p. 14.

Ghavamzadeh, Mohammad, Shie Mannor, Joelle Pineau, Aviv Tamar,
et al. (2015). “Bayesian reinforcement learning: A survey.” In: Founda-
tions and Trends® in Machine Learning 8.5-6, pp. 359–483.

Ghosh, Dibya, Abhishek Gupta, and Sergey Levine (2018). “Learning
Actionable Representations with Goal-Conditioned Policies.” In: arXiv
preprint arXiv:1811.07819.

Goel, Sandeep and Manfred Huber (2003). “Subgoal discovery for hier-
archical reinforcement learning using learned policies.” In: FLAIRS
conference, pp. 346–350.

Goodfellow, Ian (2016). “NIPS 2016 Tutorial: Generative Adversarial
Networks.” In: arXiv preprint arXiv:1701.00160.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep
learning. MIT press.



246 bibliography

Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). “Neural turing
machines.” In: arXiv preprint arXiv:1410.5401.

Gregor, Karol, Danilo Jimenez Rezende, and Daan Wierstra (2016).
“Variational intrinsic control.” In: arXiv preprint arXiv:1611.07507.

Grimm, Christopher, André Barreto, Satinder Singh, and David Silver
(2020). “The Value Equivalence Principle for Model-Based Reinforce-
ment Learning.” In: Advances in Neural Information Processing Systems.

Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine
(2016). “Continuous deep q-learning with model-based acceleration.”
In: International Conference on Machine Learning, pp. 2829–2838.

Guestrin, Carlos, Daphne Koller, Chris Gearhart, and Neal Kanodia
(2003). “Generalizing plans to new environments in relational MDPs.”
In: Proceedings of the 18th international joint conference on Artificial
intelligence. Morgan Kaufmann Publishers Inc., pp. 1003–1010.

Guez, Arthur, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien
Racaniere, Theophane Weber, David Raposo, Adam Santoro, Laurent
Orseau, Tom Eccles, et al. (2019). “An Investigation of Model-Free
Planning.” In: International Conference on Machine Learning, pp. 2464–
2473.

Guez, Arthur, David Silver, and Peter Dayan (2012). “Efficient Bayes-
adaptive reinforcement learning using sample-based search.” In: Ad-
vances in neural information processing systems, pp. 1025–1033.

Guez, Arthur, Théophane Weber, Ioannis Antonoglou, Karen Simonyan,
Oriol Vinyals, Daan Wierstra, Rémi Munos, and David Silver (2018).
“Learning to search with MCTSnets.” In: arXiv preprint arXiv:1802.04697.

Guo, Xiaoxiao, Satinder Singh, Honglak Lee, Richard L Lewis, and
Xiaoshi Wang (2014). “Deep learning for real-time Atari game play
using offline Monte-Carlo tree search planning.” In: Advances in neural
information processing systems, pp. 3338–3346.

Ha, David and Jürgen Schmidhuber (2018). “Recurrent world models fa-
cilitate policy evolution.” In: Advances in Neural Information Processing
Systems, pp. 2450–2462.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine
(2018). “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor.” In: arXiv preprint
arXiv:1801.01290.

Hafner, Danijar, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi
(2019a). “Dream to Control: Learning Behaviors by Latent Imagina-
tion.” In: International Conference on Learning Representations.

Hafner, Danijar, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David
Ha, Honglak Lee, and James Davidson (2019b). “Learning latent



bibliography 247

dynamics for planning from pixels.” In: International Conference on
Machine Learning. PMLR, pp. 2555–2565.

Hamidi, Mandana, Prasad Tadepalli, Robby Goetschalckx, and Alan
Fern (2015). “Active imitation learning of hierarchical policies.” In:
Twenty-Fourth International Joint Conference on Artificial Intelligence.

Hamrick, Jessica B (2019). “Analogues of mental simulation and imagi-
nation in deep learning.” In: Current Opinion in Behavioral Sciences 29,
pp. 8–16.

Hamrick, Jessica B, Andrew J Ballard, Razvan Pascanu, Oriol Vinyals,
Nicolas Heess, and Peter W Battaglia (2017). “Metacontrol for adap-
tive imagination-based optimization.” In: arXiv preprint arXiv:1705.02670.

Hamrick, Jessica B, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias
Pfaff, Theophane Weber, Lars Buesing, and Peter W Battaglia (2020).
“Combining q-learning and search with amortized value estimates.”
In: International Conference on Learning Representations (ICLR).

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal
basis for the heuristic determination of minimum cost paths.” In:
IEEE transactions on Systems Science and Cybernetics 4.2, pp. 100–107.

Hasselt, Hado P van, Matteo Hessel, and John Aslanides (2019). “When
to use parametric models in reinforcement learning?” In: Advances in
Neural Information Processing Systems, pp. 14322–14333.

Haugeland, John (1989). Artificial intelligence: The very idea. MIT press.
Hausman, Karol, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess,

and Martin Riedmiller (2018). “Learning an Embedding Space for
Transferable Robot Skills.” In: International Conference on Learning
Representations.

Heess, Nicolas, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin
Riedmiller, and David Silver (2016). “Learning and transfer of modu-
lated locomotor controllers.” In: arXiv preprint arXiv:1610.05182.

Heess, Nicolas, Gregory Wayne, David Silver, Timothy Lillicrap, Tom
Erez, and Yuval Tassa (2015). “Learning continuous control policies
by stochastic value gradients.” In: Advances in Neural Information
Processing Systems, pp. 2944–2952.

Henderson, Peter, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger (2018). “Deep reinforcement learning that
matters.” In: Thirty-Second AAAI Conference on Artificial Intelligence.

Hengst, Bernhard (2017). “Hierarchical reinforcement learning.” In:
Encyclopedia of Machine Learning and Data Mining, pp. 611–619.

Hess, Eckhard H (1959). “Imprinting.” In: Science 130.3368, pp. 133–141.
Hester, Todd and Peter Stone (2012a). “Intrinsically motivated model

learning for a developing curious agent.” In: 2012 IEEE international



248 bibliography

conference on development and learning and epigenetic robotics (ICDL).
IEEE, pp. 1–6.

Hester, Todd and Peter Stone (2012b). “Learning and using models.” In:
Reinforcement learning. Springer, pp. 111–141.

– (2013). “TEXPLORE: real-time sample-efficient reinforcement learning
for robots.” In: Machine learning 90.3, pp. 385–429.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term
memory.” In: Neural computation 9.8, pp. 1735–1780.

Holland, G Zacharias, Erin J Talvitie, and Michael Bowling (2018). “The
effect of planning shape on dyna-style planning in high-dimensional
state spaces.” In: arXiv preprint arXiv:1806.01825.

Holmberg, John and K-H Robèrt (2000). “Backcasting—A framework for
strategic planning.” In: International Journal of Sustainable Development
& World Ecology 7.4, pp. 291–308.

Holroyd, Clay B and Michael GH Coles (2002). “The neural basis of
human error processing: reinforcement learning, dopamine, and the
error-related negativity.” In: Psychological review 109.4, p. 679.

Houthooft, Rein, Xi Chen, Yan Duan, John Schulman, Filip De Turck,
and Pieter Abbeel (2016). “Vime: Variational information maximizing
exploration.” In: Advances in Neural Information Processing Systems,
pp. 1109–1117.

Howard, Ronald A (1960). “Dynamic programming and markov pro-
cesses.” In:

Huang, Shih-Chieh, Remi Coulom, and Shun-Shii Lin (2010). “Time
management for Monte-Carlo tree search applied to the game of
Go.” In: 2010 International Conference on Technologies and Applications of
Artificial Intelligence. IEEE, pp. 462–466.

Jaakkola, Tommi and David Haussler (1999). “Exploiting generative
models in discriminative classifiers.” In: Advances in neural information
processing systems, pp. 487–493.

Jaderberg, Max, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy
Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz,
Ari S Morcos, Avraham Ruderman, et al. (2019). “Human-level perfor-
mance in 3D multiplayer games with population-based reinforcement
learning.” In: Science 364.6443, pp. 859–865.

Jaderberg, Max, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu (2016).
“Reinforcement learning with unsupervised auxiliary tasks.” In: arXiv
preprint arXiv:1611.05397.

Jang, Eric, Shixiang Gu, and Ben Poole (2016). “Categorical Reparame-
terization with Gumbel-Softmax.” In: arXiv preprint arXiv:1611.01144.



bibliography 249

Janner, Michael, Justin Fu, Marvin Zhang, and Sergey Levine (2019).
“When to trust your model: Model-based policy optimization.” In:
Advances in Neural Information Processing Systems, pp. 12519–12530.

Jaulmes, Robin, Joelle Pineau, and Doina Precup (2005). “Learning in
non-stationary partially observable Markov decision processes.” In:
ECML Workshop on Reinforcement Learning in non-stationary environ-
ments. Vol. 25, pp. 26–32.

Jayaraman, Dinesh, Frederik Ebert, Alexei A Efros, and Sergey Levine
(2018). “Time-agnostic prediction: Predicting predictable video frames.”
In: arXiv preprint arXiv:1808.07784.

Jiang, Daniel, Emmanuel Ekwedike, and Han Liu (2018). “Feedback-
Based Tree Search for Reinforcement Learning.” In: International Con-
ference on Machine Learning, pp. 2289–2298.

Jiang, Nan, Alex Kulesza, Satinder Singh, and Richard Lewis (2015).
“The dependence of effective planning horizon on model accuracy.”
In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems. Citeseer, pp. 1181–1189.

Jong, Nicholas K and Peter Stone (2007). “Model-based function ap-
proximation in reinforcement learning.” In: Proceedings of the 6th inter-
national joint conference on Autonomous agents and multiagent systems.
ACM, p. 95.

Jonschkowski, Rico and Oliver Brock (2015). “Learning state representa-
tions with robotic priors.” In: Autonomous Robots 39.3, pp. 407–428.

Jordan, Michael I and David E Rumelhart (1992). “Forward models:
Supervised learning with a distal teacher.” In: Cognitive science 16.3,
pp. 307–354.

Kaelbling, Leslie Pack (1993). Learning in embedded systems. MIT press.
Kahneman, Daniel (2011). Thinking, fast and slow. Macmillan.
Kakade, Sham Machandranath et al. (2003). “On the sample complexity

of reinforcement learning.” PhD thesis. University of London London,
England.

Kalchbrenner, Nal, Aäron van den Oord, Karen Simonyan, Ivo Dani-
helka, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu (2017).
“Video pixel networks.” In: Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70. JMLR. org, pp. 1771–1779.

Kalman, Rudolph Emil (1960). “Contributions to the Theory of Optimal
Control.” In: Bol. Soc. Mat. Mex. 5, pp. 102–199.

Kalweit, Gabriel and Joschka Boedecker (2017). “Uncertainty-driven
imagination for continuous deep reinforcement learning.” In: Confer-
ence on Robot Learning, pp. 195–206.



250 bibliography

Kamthe, Sanket and Marc Peter Deisenroth (2017). “Data-efficient rein-
forcement learning with probabilistic model predictive control.” In:
arXiv preprint arXiv:1706.06491.

Kansky, Ken, Tom Silver, David A Mély, Mohamed Eldawy, Miguel
Lázaro-Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott
Phoenix, and Dileep George (2017). “Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics.” In:
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, pp. 1809–1818.

Kappen, Hilbert J, Vicenç Gómez, and Manfred Opper (2012). “Optimal
control as a graphical model inference problem.” In: Machine learning
87.2, pp. 159–182.

Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van
der Smagt (2016). “Deep variational bayes filters: Unsupervised
learning of state space models from raw data.” In: arXiv preprint
arXiv:1605.06432.

Kaufmann, Emilie and Wouter M Koolen (2017). “Monte-carlo tree
search by best arm identification.” In: Advances in Neural Information
Processing Systems, pp. 4897–4906.

Ke, Nan Rosemary, Amanpreet Singh, Ahmed Touati, Anirudh Goyal,
Yoshua Bengio, Devi Parikh, and Dhruv Batra (2019). “Learning
Dynamics Model in Reinforcement Learning by Incorporating the
Long Term Future.” In: arXiv preprint arXiv:1903.01599.

Keller, Thomas (2015). “Anytime optimal MDP planning with trial-
based heuristic tree search.” PhD thesis. University of Freiburg,
Freiburg im Breisgau, Germany.

Keller, Thomas and Malte Helmert (2013). “Trial-based heuristic tree
search for finite horizon MDPs.” In: Twenty-Third International Confer-
ence on Automated Planning and Scheduling.

Kempka, Michał, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski (2016). “Vizdoom: A doom-based ai research
platform for visual reinforcement learning.” In: 2016 IEEE Conference
on Computational Intelligence and Games (CIG). IEEE, pp. 1–8.

Kendall, Alex and Yarin Gal (2017). “What uncertainties do we need in
bayesian deep learning for computer vision?” In: Advances in neural
information processing systems, pp. 5574–5584.

Keramati, Mehdi, Amir Dezfouli, and Payam Piray (2011). “Speed/accu-
racy trade-off between the habitual and the goal-directed processes.”
In: PLoS computational biology 7.5.



bibliography 251

Khansari-Zadeh, S Mohammad and Aude Billard (2011). “Learning
stable nonlinear dynamical systems with gaussian mixture models.”
In: IEEE Transactions on Robotics 27.5, pp. 943–957.

Kingma, Diederik P, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya
Sutskever, and Max Welling (2016). “Improved Variational Inference
with Inverse Autoregressive Flow.” In: Advances in Neural Information
Processing Systems, pp. 4743–4751.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Varia-
tional Bayes.” In: 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings.

Kingma, Diederik and Jimmy Ba (Dec. 2014). “Adam: A Method for
Stochastic Optimization.” In: International Conference on Learning Rep-
resentations.

Kipf, Thomas, Elise van der Pol, and Max Welling (2020). “Contrastive
Learning of Structured World Models.” In: International Conference on
Learning Representations.

Knuth, Donald E and Ronald W Moore (1975). “An analysis of alpha-
beta pruning.” In: Artificial intelligence 6.4, pp. 293–326.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement
learning in robotics: A survey.” In: The International Journal of Robotics
Research 32.11, pp. 1238–1274.

Kocsis, Levente and Csaba Szepesvári (2006). “Bandit based monte-carlo
planning.” In: ECML. Vol. 6. Springer, pp. 282–293.

Kolobov, Andrey (2012). “Planning with Markov decision processes:
An AI perspective.” In: Synthesis Lectures on Artificial Intelligence and
Machine Learning 1, pp. 1–210.

Kolter, J Zico and Andrew Y Ng (2009). “Near-Bayesian exploration
in polynomial time.” In: Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, pp. 513–520.

Konidaris, George D (2006). “A framework for transfer in reinforcement
learning.” In: ICML-06 Workshop on Structural Knowledge Transfer for
Machine Learning.

Konidaris, George and Andrew G Barto (2007). “Building Portable
Options: Skill Transfer in Reinforcement Learning.” In: IJCAI. Vol. 7,
pp. 895–900.

Konidaris, George, Scott Kuindersma, Roderic Grupen, and Andrew
Barto (2012). “Robot learning from demonstration by constructing
skill trees.” In: The International Journal of Robotics Research 31.3, pp. 360–
375.



252 bibliography

Korf, Richard E (1990). “Real-time heuristic search.” In: Artificial intelli-
gence 42.2-3, pp. 189–211.

Kornblith, Simon, Jonathon Shlens, and Quoc V Le (2019). “Do better
imagenet models transfer better?” In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2661–2671.

Korte, Bernhard, Jens Vygen, B Korte, and J Vygen (2012). Combinatorial
optimization. Vol. 2. Springer.

Krishnan, Rahul G., Uri Shalit, and David A Sontag (2015). “Deep
Kalman Filters.” In: ArXiv abs/1511.05121.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Im-
agenet classification with deep convolutional neural networks.” In:
Advances in neural information processing systems, pp. 1097–1105.

Kulkarni, Tejas D, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-
baum (2016). “Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation.” In: Advances in neural
information processing systems, pp. 3675–3683.

Kurniawati, Hanna, David Hsu, and Wee Sun Lee (2008). “Sarsop:
Efficient point-based pomdp planning by approximating optimally
reachable belief spaces.” In: Robotics: Science and systems. Vol. 2008.
Zurich, Switzerland.

Kurutach, Thanard, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter
Abbeel (2018). “Learning plannable representations with causal info-
gan.” In: Advances in Neural Information Processing Systems, pp. 8733–
8744.

LaValle, Steven M (1998). “Rapidly-exploring random trees: A new tool
for path planning.” In:

Lai, Matthew (2015). “Giraffe: Using deep reinforcement learning to
play chess.” In: arXiv preprint arXiv:1509.01549.

Lakshminarayanan, Aravind S, Ramnandan Krishnamurthy, Peeyush
Kumar, and Balaraman Ravindran (2016). “Option discovery in hier-
archical reinforcement learning using spatio-temporal clustering.” In:
arXiv preprint arXiv:1605.05359.

Lange, Sascha, Thomas Gabel, and Martin Riedmiller (2012). “Batch
reinforcement learning.” In: Reinforcement learning. Springer, pp. 45–
73.

Laversanne-Finot, Adrien, Alexandre Pere, and Pierre-Yves Oudeyer
(2018). “Curiosity Driven Exploration of Learned Disentangled Goal
Spaces.” In: Conference on Robot Learning, pp. 487–504.

Lazaric, Alessandro (2012). “Transfer in reinforcement learning: a frame-
work and a survey.” In: Reinforcement Learning. Springer, pp. 143–
173.



bibliography 253

Leibo, Joel Z, Cyprien de Masson d’Autume, Daniel Zoran, David Amos,
Charles Beattie, Keith Anderson, Antonio García Castañeda, Manuel
Sanchez, Simon Green, Audrunas Gruslys, et al. (2018). “Psychlab: a
psychology laboratory for deep reinforcement learning agents.” In:
arXiv preprint arXiv:1801.08116.

Lesort, Timothée, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and
David Filliat (2018). “State representation learning for control: An
overview.” In: Neural Networks 108, pp. 379–392.

Levine, Sergey and Pieter Abbeel (2014). “Learning neural network
policies with guided policy search under unknown dynamics.” In:
Advances in Neural Information Processing Systems, pp. 1071–1079.

Levine, Sergey and Vladlen Koltun (2013). “Guided policy search.” In:
International Conference on Machine Learning, pp. 1–9.

Levy, Andrew, Robert Platt, and Kate Saenko (2019). “Hierarchical
Reinforcement Learning with Hindsight.” In: International Conference
on Learning Representations.

Li, Lihong, Michael L Littman, Thomas J Walsh, and Alexander L Strehl
(2011). “Knows what it knows: a framework for self-aware learning.”
In: Machine learning 82.3, pp. 399–443.

Li, Yingzhen and Richard E Turner (2016). “Rényi divergence varia-
tional inference.” In: Advances in Neural Information Processing Systems,
pp. 1073–1081.

Li, Zhenguo, Fengwei Zhou, Fei Chen, and Hang Li (2017). “Meta-SGD:
Learning to learn quickly for few-shot learning.” In: arXiv preprint
arXiv:1707.09835.

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra (2015). “Con-
tinuous control with deep reinforcement learning.” In: arXiv preprint
arXiv:1509.02971.

Lin, Long-Ji (1992). “Self-improving reactive agents based on reinforce-
ment learning, planning and teaching.” In: Machine learning 8.3-4,
pp. 293–321.

– (1993). Reinforcement learning for robots using neural networks. Tech. rep.
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science.

Lin, Long-Ji and Tom M Mitchell (1992). Memory approaches to reinforce-
ment learning in non-Markovian domains. Citeseer.

Ljung, Lennart (2001). “System identification.” In: Wiley Encyclopedia of
Electrical and Electronics Engineering.

Lopes, Manuel, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer
(2012). “Exploration in model-based reinforcement learning by empir-



254 bibliography

ically estimating learning progress.” In: Advances in neural information
processing systems, pp. 206–214.

Lowrey, Kendall, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov,
and Igor Mordatch (2018). “Plan online, learn offline: Efficient learn-
ing and exploration via model-based control.” In: arXiv preprint
arXiv:1811.01848.

Lu, Kevin, Igor Mordatch, and Pieter Abbeel (2019). “Adaptive On-
line Planning for Continual Lifelong Learning.” In: arXiv preprint
arXiv:1912.01188.

Machado, Marios C, Marc G Bellemare, and Michael Bowling (2017). “A
laplacian framework for option discovery in reinforcement learning.”
In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, pp. 2295–2304.

Machado, Marlos C, Marc G Bellemare, Erik Talvitie, Joel Veness,
Matthew Hausknecht, and Michael Bowling (2018). “Revisiting the
arcade learning environment: Evaluation protocols and open prob-
lems for general agents.” In: Journal of Artificial Intelligence Research
61, pp. 523–562.

Mackintosh, Nicholas John (1983). Conditioning and associative learning.
Clarendon Press Oxford.

Maddison, Chris J, Andriy Mnih, and Yee Whye Teh (2016). “The Con-
crete Distribution: A Continuous Relaxation of Discrete Random
Variables.” In: arXiv preprint arXiv:1611.00712.

Mahadevan, Sridhar (2009). “Learning Representation and Control
in Markov Decision Processes: New Frontiers.” In: Foundations and
Trends® in Machine Learning 1.4, pp. 403–565. issn: 1935-8237. doi:
10.1561/2200000003.

Mann, Timothy and Shie Mannor (2014). “Scaling up approximate
value iteration with options: Better policies with fewer iterations.” In:
International conference on machine learning, pp. 127–135.

Mannor, Shie, Ishai Menache, Amit Hoze, and Uri Klein (2004). “Dy-
namic abstraction in reinforcement learning via clustering.” In: Pro-
ceedings of the twenty-first international conference on Machine learning.
ACM, p. 71.

Mannor, Shie, Reuven Y Rubinstein, and Yohai Gat (2003). “The cross
entropy method for fast policy search.” In: Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pp. 512–519.

Matiisen, Tambet, Avital Oliver, Taco Cohen, and John Schulman (2017).
“Teacher-student curriculum learning.” In: arXiv preprint arXiv:1707.00183.

https://doi.org/10.1561/2200000003


bibliography 255

Mayne, David Q and Hannah Michalska (1990). “Receding horizon
control of nonlinear systems.” In: IEEE Transactions on automatic control
35.7, pp. 814–824.

McCallum, R (1997). “Reinforcement learning with selective perception
and hidden state.” In:

McGovern, Amy and Andrew G Barto (2001). “Automatic discovery of
subgoals in reinforcement learning using diverse density.” In:

Menache, Ishai, Shie Mannor, and Nahum Shimkin (2002). “Q-cut—
dynamic discovery of sub-goals in reinforcement learning.” In: Euro-
pean Conference on Machine Learning. Springer, pp. 295–306.

Michalowicz, Joseph Victor, Jonathan M Nichols, and Frank Bucholtz
(2013). Handbook of differential entropy. Crc Press.

Miller, Neal Elgar and John Dollard (1941). “Social learning and imita-
tion.” In:

Mishra, Nikhil, Pieter Abbeel, and Igor Mordatch (2017). “Prediction
and control with temporal segment models.” In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org,
pp. 2459–2468.

Mnih, Andriy and Karol Gregor (2014). “Neural variational inference
and learning in belief networks.” In: arXiv preprint arXiv:1402.0030.

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu (2016). “Asynchronous methods for deep reinforcement
learning.” In: International conference on machine learning, pp. 1928–
1937.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. (2015). “Human-level con-
trol through deep reinforcement learning.” In: Nature 518.7540, p. 529.

Moerland, Thomas M, Joost Broekens, and Catholijn M Jonker (2016).
“Fear and Hope Emerge from Anticipation in Model-Based Reinforce-
ment Learning.” In: IJCAI, pp. 848–854.

Moerland, Thomas M, Joost Broekens, and Catholijn M Jonker (2017a).
“Efficient exploration with Double Uncertain Value Networks.” In:
Deep Reinforcement Learning Symposium @ NIPS 2017. arXiv preprint
arXiv:1711.10789.

– (2017b). “Learning Multimodal Transition Dynamics for Model-Based
Reinforcement Learning.” In: arXiv preprint arXiv:1705.00470.

Moerland, Thomas M, Joost Broekens, and Catholijn M Jonker (2018a).
“Emotion in reinforcement learning agents and robots: a survey.” In:
Machine Learning 107.2, pp. 443–480.



256 bibliography

Moerland, Thomas M, Joost Broekens, and Catholijn M Jonker (2018b).
“The Potential of the Return Distribution for Exploration in RL.” In:
arXiv preprint arXiv:1806.04242.

Moerland, Thomas M., Joost Broekens, and Catholijn M. Jonker (2020a).
“A Framework for Reinforcement Learning and Planning.” In: arXiv
preprint arXiv:2006.15009.

Moerland, Thomas M, Joost Broekens, and Catholijn M Jonker (2020b).
“Model-based Reinforcement Learning: A Survey.” In: arXiv preprint
arXiv:2006.16712.

Moerland, Thomas M, Joost Broekens, Aske Plaat, and Catholijn M
Jonker (2018a). “A0C: Alpha zero in continuous action space.” In:
arXiv preprint arXiv:1805.09613.

– (2018b). “Monte Carlo Tree Search for Asymmetric Trees.” In: arXiv
preprint arXiv:1805.09218.

Moerland, Thomas M, Anna Deichler, Simone Baldi, Joost Broekens, and
Catholijn M Jonker (2020). “Think Too Fast Nor Too Slow: The Compu-
tational Trade-off Between Planning And Reinforcement Learning.”
In: arXiv preprint arXiv:2005.07404.

Mohamed, Shakir and Danilo Jimenez Rezende (2015). “Variational
information maximisation for intrinsically motivated reinforcement
learning.” In: Advances in neural information processing systems, pp. 2125–
2133.

Momennejad, Ida, Evan M Russek, Jin H Cheong, Matthew M Botvinick,
Nathaniel Douglass Daw, and Samuel J Gershman (2017). “The suc-
cessor representation in human reinforcement learning.” In: Nature
Human Behaviour 1.9, p. 680.

Moore, Andrew W and Christopher G Atkeson (1993). “Prioritized
sweeping: Reinforcement learning with less data and less time.” In:
Machine learning 13.1, pp. 103–130.

Moore, Edward F (1959). “The shortest path through a maze.” In: Proc.
Int. Symp. Switching Theory, 1959, pp. 285–292.

Morari, Manfred and Jay H Lee (1999). “Model predictive control: past,
present and future.” In: Computers & Chemical Engineering 23.4-5,
pp. 667–682.

Moriarty, David E, Alan C Schultz, and John J Grefenstette (1999).
“Evolutionary algorithms for reinforcement learning.” In: Journal of
Artificial Intelligence Research 11, pp. 241–276.

Morris, Robin and Geoff Ward (2004). The cognitive psychology of planning.
Psychology Press.

Müller, K-R, Alexander J Smola, Gunnar Rätsch, Bernhard Schölkopf,
Jens Kohlmorgen, and Vladimir Vapnik (1997). “Predicting time series



bibliography 257

with support vector machines.” In: International Conference on Artificial
Neural Networks. Springer, pp. 999–1004.

Munos, Rémi, Tom Stepleton, Anna Harutyunyan, and Marc Belle-
mare (2016). “Safe and efficient off-policy reinforcement learning.”
In: Advances in Neural Information Processing Systems, pp. 1054–1062.

Munos, Rémi et al. (2014). “From bandits to Monte-Carlo Tree Search:
The optimistic principle applied to optimization and planning.” In:
Foundations and Trends® in Machine Learning 7.1, pp. 1–129.

Nachum, Ofir, Shixiang Shane Gu, Honglak Lee, and Sergey Levine
(2018). “Data-efficient hierarchical reinforcement learning.” In: Ad-
vances in Neural Information Processing Systems, pp. 3303–3313.

Nagabandi, Anusha, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter
Abbeel, Sergey Levine, and Chelsea Finn (2018a). “Learning to Adapt
in Dynamic, Real-World Environments through Meta-Reinforcement
Learning.” In: International Conference on Learning Representations.

Nagabandi, Anusha, Chelsea Finn, and Sergey Levine (2018). “Deep
online learning via meta-learning: Continual adaptation for model-
based RL.” In: arXiv preprint arXiv:1812.07671.

Nagabandi, Anusha, Gregory Kahn, Ronald S Fearing, and Sergey
Levine (2018b). “Neural network dynamics for model-based deep re-
inforcement learning with model-free fine-tuning.” In: 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, pp. 7559–
7566.

Narendra, Kumpati S and Kannan Parthasarathy (1990). “Identification
and control of dynamical systems using neural networks.” In: IEEE
Transactions on neural networks 1.1, pp. 4–27.

Neitz, Alexander, Giambattista Parascandolo, Stefan Bauer, and Bern-
hard Schölkopf (2018). “Adaptive skip intervals: Temporal abstraction
for recurrent dynamical models.” In: Advances in Neural Information
Processing Systems, pp. 9816–9826.

Newell, Allen, Herbert Alexander Simon, et al. (1972). Human problem
solving. Vol. 104. 9.

Ng, Andrew Y, Daishi Harada, and Stuart Russell (1999). “Policy in-
variance under reward transformations: Theory and application to
reward shaping.” In: ICML. Vol. 99, pp. 278–287.

Nguyen-Tuong, Duy and Jan Peters (2011). “Model learning for robot
control: a survey.” In: Cognitive processing 12.4, pp. 319–340.

Niv, Yael (2009). “Reinforcement learning in the brain.” In: Journal of
Mathematical Psychology 53.3, pp. 139–154.



258 bibliography

Nouri, Ali and Michael L Littman (2010). “Dimension reduction and
its application to model-based exploration in continuous spaces.” In:
Machine Learning 81.1, pp. 85–98.

Oh, Junhyuk, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satin-
der Singh (2015). “Action-conditional video prediction using deep
networks in atari games.” In: Advances in neural information processing
systems, pp. 2863–2871.

Oh, Junhyuk, Satinder Singh, and Honglak Lee (2017). “Value predic-
tion network.” In: Advances in Neural Information Processing Systems,
pp. 6118–6128.

Oord, Aaron van den, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt,
Alex Graves, and Koray Kavukcuoglu (2016). “Conditional image gen-
eration with PixelCNN decoders.” In: arXiv preprint arXiv:1606.05328.

Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van
Roy (2016). “Deep exploration via bootstrapped DQN.” In: Advances
in Neural Information Processing Systems, pp. 4026–4034.

Osband, Ian, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener,
Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepezvari,
Satinder Singh, et al. (2019). “Behaviour Suite for Reinforcement
Learning.” In: arXiv preprint arXiv:1908.03568.

Osband, Ian, Benjamin Van Roy, and Zheng Wen (2016). “Generalization
and Exploration via Randomized Value Functions.” In: International
Conference on Machine Learning, pp. 2377–2386.

Ostafew, Chris J, Angela P Schoellig, and Timothy D Barfoot (2016).
“Robust constrained learning-based NMPC enabling reliable mobile
robot path tracking.” In: The International Journal of Robotics Research
35.13, pp. 1547–1563.

Ostrovski, Georg, Marc G Bellemare, Aäron van den Oord, and Rémi
Munos (2017). “Count-based exploration with neural density mod-
els.” In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, pp. 2721–2730.

Oudeyer, Pierre-Yves, Frdric Kaplan, and Verena V Hafner (2007). “In-
trinsic motivation systems for autonomous mental development.” In:
IEEE transactions on evolutionary computation 11.2, pp. 265–286.

Oudeyer, Pierre-Yves and Frederic Kaplan (2009). “What is intrinsic
motivation? A typology of computational approaches.” In: Frontiers
in neurorobotics 1, p. 6.

Oudeyer, Pierre-Yves, Frederic Kaplan, et al. (2008). “How can we define
intrinsic motivation.” In: Proc. of the 8th Conf. on Epigenetic Robotics.
Vol. 5, pp. 29–31.



bibliography 259

Parlos, Alexander G, Kil To Chong, and Amir F Atiya (1994). “Ap-
plication of the recurrent multilayer perceptron in modeling com-
plex process dynamics.” In: IEEE Transactions on Neural Networks 5.2,
pp. 255–266.

Parr, Ronald, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield,
and Michael L Littman (2008). “An analysis of linear models, linear
value-function approximation, and feature selection for reinforcement
learning.” In: Proceedings of the 25th international conference on Machine
learning. ACM, pp. 752–759.

Pascanu, Razvan, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing,
Sebastien Racanière, David Reichert, Théophane Weber, Daan Wier-
stra, and Peter Battaglia (2017). “Learning model-based planning
from scratch.” In: arXiv preprint arXiv:1707.06170.

Pathak, Deepak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell
(2017). “Curiosity-driven exploration by self-supervised prediction.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 16–17.

Pavlov, Ivan Petrovitch and William Gantt (1928). “Lectures on condi-
tioned reflexes: Twenty-five years of objective study of the higher
nervous activity (behaviour) of animals.” In:

Pearl, Judea (1984). “Heuristics: intelligent search strategies for com-
puter problem solving.” In:

Peeke, Harman (2012). Habituation, sensitization, and behavior. Elsevier.
Péré, Alexandre, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves

Oudeyer (2018). “Unsupervised learning of goal spaces for intrinsi-
cally motivated goal exploration.” In: arXiv preprint arXiv:1803.00781.

Peshkin, Leonid, Nicolas Meuleau, and Leslie Pack Kaelbling (1999).
“Learning Policies with External Memory.” In: Proceedings of the Six-
teenth International Conference on Machine Learning. Morgan Kaufmann
Publishers Inc., pp. 307–314.

Peters, Jan, Katharina Mulling, and Yasemin Altun (2010). “Relative
entropy policy search.” In: Twenty-Fourth AAAI Conference on Artificial
Intelligence.

Plaat, Aske, Walter Kosters, and Mike Preuss (2020). “Model-Based
Deep Reinforcement Learning for High-Dimensional Problems, a
Survey.” In: arXiv preprint arXiv:2008.05598.

Plaat, Aske, Jonathan Schaeffer, Wim Pijls, and Arie De Bruin (1996).
“Exploiting graph properties of game trees.” In: AAAI/IAAI, Vol. 1,
pp. 234–239.

Plappert, Matthias, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,
Richard Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin



260 bibliography

Andrychowicz (2017). “Parameter space noise for exploration.” In:
arXiv preprint arXiv:1706.01905.

Pohl, Ira (1969). Bidirectional and heuristic search in path problems. Tech.
rep.

Polydoros, Athanasios S and Lazaros Nalpantidis (2017). “Survey of
model-based reinforcement learning: Applications on robotics.” In:
Journal of Intelligent & Robotic Systems 86.2, pp. 153–173.

Pong, V, S Gu, M Dalal, and S Levine (2018). “Temporal Difference
Models: Model-Free Deep RL for Model-Based Control.” In: Interna-
tional Conference on Learning Representations (ICLR 2018). OpenReview.
net.

Ponsen, Marc, Matthew E Taylor, and Karl Tuyls (2009). “Abstraction
and generalization in reinforcement learning: A summary and frame-
work.” In: International Workshop on Adaptive and Learning Agents.
Springer, pp. 1–32.

Precup, Doina (2000). “Eligibility traces for off-policy policy evaluation.”
In: Computer Science Department Faculty Publication Series, p. 80.

Pritzel, Alexander, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech
Badia, Oriol Vinyals, Demis Hassabis, Daan Wierstra, and Charles
Blundell (2017). “Neural Episodic Control.” In: International Conference
on Machine Learning, pp. 2827–2836.

Puterman, Martin L (2014). Markov Decision Processes.: Discrete Stochastic
Dynamic Programming. John Wiley & Sons.

Racanière, Sébastien, Théophane Weber, David Reichert, Lars Buesing,
Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia,
Oriol Vinyals, Nicolas Heess, Yujia Li, et al. (2017). “Imagination-
augmented agents for deep reinforcement learning.” In: Advances in
neural information processing systems, pp. 5690–5701.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational
inference with normalizing flows.” In: arXiv preprint arXiv:1505.05770.

Richalet, Jacques, André Rault, JL Testud, and J Papon (1978). “Model
predictive heuristic control.” In: Automatica (Journal of IFAC) 14.5,
pp. 413–428.

Riemer, Matthew, Miao Liu, and Gerald Tesauro (2018). “Learning
abstract options.” In: Advances in Neural Information Processing Systems,
pp. 10424–10434.

Roijers, Diederik M, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley (2013). “A survey of multi-objective sequential decision-
making.” In: Journal of Artificial Intelligence Research 48, pp. 67–113.



bibliography 261

Roijers, Diederik M and Shimon Whiteson (2017). “Multi-objective
decision making.” In: Synthesis Lectures on Artificial Intelligence and
Machine Learning 11.1, pp. 1–129.

Rollier, Bruce and Jon A Turner (1994). “Planning forward by looking
backward: Retrospective thinking in strategic decision making.” In:
Decision Sciences 25.2, pp. 169–188.

Rosin, Christopher D (2011). “Multi-armed bandits with episode con-
text.” In: Annals of Mathematics and Artificial Intelligence 61.3, pp. 203–
230.

Rubinstein, Reuven Y and Dirk P Kroese (2013). The cross-entropy method:
a unified approach to combinatorial optimization, Monte-Carlo simulation
and machine learning. Springer Science & Business Media.

Rummery, Gavin A and Mahesan Niranjan (1994). On-line Q-learning
using connectionist systems. Vol. 37. University of Cambridge, Depart-
ment of Engineering Cambridge, England.

Russell, Stuart J and Peter Norvig (2016). Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited.

Saffiotti, Alessandro, Kurt Konolige, and Enrique H Ruspini (1995). “A
multivalued logic approach to integrating planning and control.” In:
Artificial intelligence 76.1-2, pp. 481–526.

Salimans, Tim, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever
(2017). “Evolution strategies as a scalable alternative to reinforcement
learning.” In: arXiv preprint arXiv:1703.03864.

Samuel, Arthur L (1967). “Some studies in machine learning using the
game of checkers. II - Recent progress.” In: IBM Journal of research and
development 11.6, pp. 601–617.

Sawada, Yoshihide (2018). “Disentangling Controllable and Uncontrol-
lable Factors of Variation by Interacting with the World.” In: arXiv
preprint arXiv:1804.06955.

Schaul, Tom, Daniel Horgan, Karol Gregor, and David Silver (2015).
“Universal value function approximators.” In: International Conference
on Machine Learning, pp. 1312–1320.

Schmidhuber, Jürgen (1991a). “A possibility for implementing curiosity
and boredom in model-building neural controllers.” In: Proc. of the
international conference on simulation of adaptive behavior: From animals
to animats, pp. 222–227.

– (1991b). “Curious model-building control systems.” In: [Proceedings]
1991 IEEE International Joint Conference on Neural Networks. IEEE,
pp. 1458–1463.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lock-



262 bibliography

hart, Demis Hassabis, Thore Graepel, et al. (2019). “Mastering Atari,
Go, Chess and Shogi by Planning with a Learned Model.” In: arXiv
preprint arXiv:1911.08265.

Schulman, John, Xi Chen, and Pieter Abbeel (2017). “Equivalence
between policy gradients and soft q-learning.” In: arXiv preprint
arXiv:1704.06440.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz (2015). “Trust region policy optimization.” In: Interna-
tional conference on machine learning, pp. 1889–1897.

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel (2016). “High-Dimensional Continuous Control Using
Generalized Advantage Estimation.” In: Proceedings of the International
Conference on Learning Representations (ICLR).

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov (2017). “Proximal policy optimization algorithms.” In:
arXiv preprint arXiv:1707.06347.

Schwartz, Barry, Andrew Ward, John Monterosso, Sonja Lyubomirsky,
Katherine White, and Darrin R Lehman (2002). “Maximizing versus
satisficing: Happiness is a matter of choice.” In: Journal of personality
and social psychology 83.5, p. 1178.

Sekar, Ramanan, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar
Hafner, and Deepak Pathak (2020). “Planning to Explore via Self-
Supervised World Models.” In: arXiv preprint arXiv:2005.05960.

Sequeira, Pedro, Francisco S Melo, and Ana Paiva (2014). “Learning by
appraising: an emotion-based approach to intrinsic reward design.”
In: Adaptive Behavior 22.5, pp. 330–349.

Sermanet, Pierre, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric
Jang, Stefan Schaal, Sergey Levine, and Google Brain (2018). “Time-
contrastive networks: Self-supervised learning from video.” In: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 1134–1141.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (2016).
“Safe, multi-agent, reinforcement learning for autonomous driving.”
In: arXiv preprint arXiv:1610.03295.

Sharma, Archit, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol
Hausman (2019). “Dynamics-Aware Unsupervised Discovery of Skills.”
In: International Conference on Learning Representations.

Sheppard, Brian (2002). “World-championship-caliber Scrabble.” In:
Artificial Intelligence 134.1-2, pp. 241–275.



bibliography 263

Shu, Tianmin, Caiming Xiong, and Richard Socher (2017). “Hierarchi-
cal and interpretable skill acquisition in multi-task reinforcement
learning.” In: arXiv preprint arXiv:1712.07294.

Shyam, Pranav, Wojciech Jaśkowski, and Faustino Gomez (2019). “Model-
Based Active Exploration.” In: International Conference on Machine
Learning, pp. 5779–5788.

Sigaud, Olivier, Camille Salaün, and Vincent Padois (2011). “On-line
regression algorithms for learning mechanical models of robots: a
survey.” In: Robotics and Autonomous Systems 59.12, pp. 1115–1129.

Silver, David, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur
Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Ra-
binowitz, Andre Barreto, et al. (2017a). “The predictron: End-to-end
learning and planning.” In: Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70. JMLR. org, pp. 3191–3199.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. (2016). “Mastering the
game of Go with deep neural networks and tree search.” In: nature
529.7587, p. 484.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. (2017b). “Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learning Algorithm.” In:
arXiv preprint arXiv:1712.01815.

– (2018). “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play.” In: Science 362.6419, pp. 1140–
1144.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller (2014). “Deterministic Policy Gradient
Algorithms.” In: International Conference on Machine Learning, pp. 387–
395.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew
Lai, Adrian Bolton, et al. (2017c). “Mastering the game of go without
human knowledge.” In: Nature 550.7676, p. 354.

Silver, David, Richard S Sutton, and Martin Müller (2008). “Sample-
based learning and search with permanent and transient memories.”
In: Proceedings of the 25th international conference on Machine learning.
ACM, pp. 968–975.



264 bibliography

Silver, David and Joel Veness (2010). “Monte-Carlo planning in large
POMDPs.” In: Advances in neural information processing systems, pp. 2164–
2172.

Simon, Herbert A (1944). “Decision-making and administrative organi-
zation.” In: Public Administration Review 4.1, pp. 16–30.

– (1957). “Models of man; social and rational.” In:
Şimşek, Özgür, Alicia P Wolfe, and Andrew G Barto (2005). “Identifying

useful subgoals in reinforcement learning by local graph partition-
ing.” In: Proceedings of the 22nd international conference on Machine
learning. ACM, pp. 816–823.

Singh, Satinder P, Tommi Jaakkola, and Michael I Jordan (1995). “Rein-
forcement learning with soft state aggregation.” In: Advances in neural
information processing systems, pp. 361–368.

Skinner, Burrhus F (1937). “Two types of conditioned reflex: A reply
to Konorski and Miller.” In: The Journal of General Psychology 16.1,
pp. 272–279.

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan (2015). “Learning struc-
tured output representation using deep conditional generative mod-
els.” In: Advances in Neural Information Processing Systems, pp. 3483–
3491.

Sønderby, Casper Kaae, Tapani Raiko, Lars Maaløe, Søren Kaae Søn-
derby, and Ole Winther (2016). “Ladder variational autoencoders.”
In: Advances in Neural Information Processing Systems, pp. 3738–3746.

Spaan, Matthijs TJ and Nikos Vlassis (2004). “A point-based POMDP
algorithm for robot planning.” In: Proc. IEEE Int. Conf. on Robotics and
Automation, New Orleans, Louisiana, pp. 2399–2404.

Spelke, Elizabeth S and Katherine D Kinzler (2007). “Core knowledge.”
In: Developmental science 10.1, pp. 89–96.

Srinivas, Aravind, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea
Finn (2018). “Universal planning networks.” In: arXiv preprint arXiv:1804.00645.

Stadie, Bradly C, Sergey Levine, and Pieter Abbeel (2015). “Incentivizing
exploration in reinforcement learning with deep predictive models.”
In: arXiv preprint arXiv:1507.00814.

Stigler, George J (1950). “The development of utility theory. I.” In: Journal
of political economy 58.4, pp. 307–327.

Such, Felipe Petroski, Vashisht Madhavan, Rosanne Liu, Rui Wang,
Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G
Bellemare, Jeff Clune, et al. (2018). “An atari model zoo for analyzing,
visualizing, and comparing deep reinforcement learning agents.” In:
arXiv preprint arXiv:1812.07069.



bibliography 265

Sun, Ron (2008). The Cambridge handbook of computational psychology.
Cambridge University Press.

Sun, Yi, Faustino Gomez, and Jürgen Schmidhuber (2011). “Planning
to be surprised: Optimal bayesian exploration in dynamic environ-
ments.” In: International Conference on Artificial General Intelligence.
Springer, pp. 41–51.

Sutton, Richard S (1988). “Learning to predict by the methods of tempo-
ral differences.” In: Machine learning 3.1, pp. 9–44.

– (1990). “Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming.” In: Machine
Learning Proceedings 1990. Elsevier, pp. 216–224.

– (1991). “Dyna, an integrated architecture for learning, planning, and
reacting.” In: ACM Sigart Bulletin 2.4, pp. 160–163.

– (1996). “Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding.” In: Advances in neural information
processing systems, pp. 1038–1044.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning:
An introduction. MIT press.

Sutton, Richard S, David A McAllester, Satinder P Singh, and Yishay
Mansour (2000). “Policy gradient methods for reinforcement learn-
ing with function approximation.” In: Advances in neural information
processing systems, pp. 1057–1063.

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning.” In: Artificial intelligence 112.1-2, pp. 181–211.

Sutton, Richard S, Csaba Szepesvári, Alborz Geramifard, and Michael P
Bowling (2012). “Dyna-style planning with linear function approxi-
mation and prioritized sweeping.” In: arXiv preprint arXiv:1206.3285.

Sutton, Richard S., Csaba Szepesvári, Alborz Geramifard, and Michael
Bowling (2008). “Dyna-style Planning with Linear Function Approxi-
mation and Prioritized Sweeping.” In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. UAI’08. Arlington,
Virginia, United States: AUAI Press, pp. 528–536. isbn: 0-9749039-4-9.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and An-
drew Rabinovich (2015). “Going deeper with convolutions.” In: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Tadepalli, Prasad, Robert Givan, and Kurt Driessens (2004). “Relational
reinforcement learning: An overview.” In: Proceedings of the ICML-
2004 workshop on relational reinforcement learning, pp. 1–9.



266 bibliography

Talvitie, Erik (2014). “Model Regularization for Stable Sample Rollouts.”
In: UAI, pp. 780–789.

– (2017). “Self-correcting models for model-based reinforcement learn-
ing.” In: Thirty-First AAAI Conference on Artificial Intelligence.

Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel
(2016). “Value iteration networks.” In: Advances in Neural Information
Processing Systems, pp. 2154–2162.

Tang, Yunhao and Shipra Agrawal (2018). “Exploration by distributional
reinforcement learning.” In: arXiv preprint arXiv:1805.01907.

Taylor, Matthew E and Peter Stone (2009). “Transfer learning for rein-
forcement learning domains: A survey.” In: Journal of Machine Learning
Research 10.Jul, pp. 1633–1685.

Tesauro, Gerald and Gregory R. Galperin (1997). “On-line Policy Im-
provement using Monte-Carlo Search.” In: Advances in Neural Infor-
mation Processing Systems 9. Ed. by M. C. Mozer, M. I. Jordan, and
T. Petsche. MIT Press, pp. 1068–1074.

Tesauro, Gerald, VT Rajan, and Richard Segal (2012). “Bayesian infer-
ence in monte-carlo tree search.” In: arXiv preprint arXiv:1203.3519.

Tessler, Chen, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and
Shie Mannor (2017). “A deep hierarchical approach to lifelong learn-
ing in minecraft.” In: Thirty-First AAAI Conference on Artificial Intelli-
gence.

Thomas, Valentin, Emmanuel Bengio, William Fedus, Jules Pondard,
Philippe Beaudoin, Hugo Larochelle, Joelle Pineau, Doina Precup, and
Yoshua Bengio (2018). “Disentangling the independently controllable
factors of variation by interacting with the world.” In: arXiv preprint
arXiv:1802.09484.

Thomas, YA (1975). “Linear quadratic optimal estimation and control
with receding horizon.” In: Electronics Letters 11.1, pp. 19–21.

Thompson, William R (1933). “On the likelihood that one unknown
probability exceeds another in view of the evidence of two samples.”
In: Biometrika 25.3/4, pp. 285–294.

Thrun, Sebastian B (1992). “Efficient exploration in reinforcement learn-
ing.” In:

Thrun, Sebastian and Anton Schwartz (1995). “Finding structure in
reinforcement learning.” In: Advances in neural information processing
systems, pp. 385–392.

Tobin, Josh, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel (2017). “Domain randomization for transferring
deep neural networks from simulation to the real world.” In: 2017



bibliography 267

IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE, pp. 23–30.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A
physics engine for model-based control.” In: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, pp. 5026–
5033.

Todorov, Emanuel and Weiwei Li (2005). “A generalized iterative LQG
method for locally-optimal feedback control of constrained nonlin-
ear stochastic systems.” In: Proceedings of the 2005, American Control
Conference, 2005. IEEE, pp. 300–306.

Tolman, Edward C (1948). “Cognitive maps in rats and men.” In: Psy-
chological review 55.4, p. 189.

Toussaint, Marc (2009). “Robot trajectory optimization using approxi-
mate inference.” In: Proceedings of the 26th annual international confer-
ence on machine learning. ACM, pp. 1049–1056.

Van Hoof, Herke, Nutan Chen, Maximilian Karl, Patrick van der Smagt,
and Jan Peters (2016). “Stable reinforcement learning with autoen-
coders for tactile and visual data.” In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3928–
3934.

Van Otterlo, Martijn (2005). “A survey of reinforcement learning in
relational domains.” In: Centre for Telematics and Information Technology
(CTIT) University of Twente, Tech. Rep.

Van Seijen, Harm, Hadi Nekoei, Evan Racah, and Sarath Chandar
(2020). “The LoCA Regret: A Consistent Metric to Evaluate Model-
Based Behavior in Reinforcement Learning.” In: Advances in Neural
Information Processing Systems 33.

Van Seijen, Harm, Hado Van Hasselt, Shimon Whiteson, and Marco
Wiering (2009). “A theoretical and empirical analysis of Expected
Sarsa.” In: 2009 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning. IEEE, pp. 177–184.

Van Steenkiste, Sjoerd, Michael Chang, Klaus Greff, and Jürgen Schmid-
huber (2018). “Relational neural expectation maximization: Unsuper-
vised discovery of objects and their interactions.” In: arXiv preprint
arXiv:1802.10353.

Vanschoren, Joaquin (2019). “Meta-learning.” In: Automated Machine
Learning. Springer, Cham, pp. 35–61.

Vanseijen, Harm and Rich Sutton (2015). “A deeper look at planning as
learning from replay.” In: International conference on machine learning,
pp. 2314–2322.



268 bibliography

Veness, Joel, David Silver, Alan Blair, and William Uther (2009). “Boot-
strapping from game tree search.” In: Advances in neural information
processing systems, pp. 1937–1945.

Venkatraman, Arun, Martial Hebert, and J Andrew Bagnell (2015).
“Improving multi-step prediction of learned time series models.” In:
Twenty-Ninth AAAI Conference on Artificial Intelligence.

Vezhnevets, Alexander Sasha, Simon Osindero, Tom Schaul, Nicolas
Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu (2017).
“Feudal networks for hierarchical reinforcement learning.” In: Pro-
ceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, pp. 3540–3549.

Vinyals, Oriol, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, et al. (2019). “Grandmaster level
in StarCraft II using multi-agent reinforcement learning.” In: Nature,
pp. 1–5.

Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.
(2016). “Matching networks for one shot learning.” In: Advances in
neural information processing systems, pp. 3630–3638.

Waa, Jasper van der, Jurriaan van Diggelen, Karel van den Bosch,
and Mark Neerincx (2018). “Contrastive explanations for reinforce-
ment learning in terms of expected consequences.” In: arXiv preprint
arXiv:1807.08706.

Wahlström, Niklas, Thomas B Schön, and Marc Peter Deisenroth (2015).
“From pixels to torques: Policy learning with deep dynamical mod-
els.” In: arXiv preprint arXiv:1502.02251.

Walker, Jacob, Carl Doersch, Abhinav Gupta, and Martial Hebert (2016).
“An Uncertain Future: Forecasting from Static Images Using Vari-
ational Autoencoders.” In: European Conference on Computer Vision.
Springer, pp. 835–851.

Wang, Jack, Aaron Hertzmann, and David J Fleet (2006). “Gaussian pro-
cess dynamical models.” In: Advances in neural information processing
systems, pp. 1441–1448.

Wang, Tingwu, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming
Wen, Eric Langlois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel,
and Jimmy Ba (2019). “Benchmarking Model-Based Reinforcement
Learning.” In: CoRR abs/1907.02057.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning.” In:
Machine learning 8.3-4, pp. 279–292.



bibliography 269

Watson, John S (1966). “The development and generalization of" con-
tingency awareness" in early infancy: Some hypotheses.” In: Merrill-
Palmer Quarterly of Behavior and Development 12.2, pp. 123–135.

Watter, Manuel, Jost Springenberg, Joschka Boedecker, and Martin
Riedmiller (2015). “Embed to control: A locally linear latent dynamics
model for control from raw images.” In: Advances in neural information
processing systems, pp. 2746–2754.

Watters, Nicholas, Loic Matthey, Matko Bosnjak, Christopher P Burgess,
and Alexander Lerchner (2019). “Cobra: Data-efficient model-based
rl through unsupervised object discovery and curiosity-driven explo-
ration.” In: arXiv preprint arXiv:1905.09275.

Werbos, Paul J (1989). “Neural networks for control and system iden-
tification.” In: Proceedings of the 28th IEEE Conference on Decision and
Control, IEEE, pp. 260–265.

White, Robert W (1959). “Motivation reconsidered: The concept of
competence.” In: Psychological review 66.5, p. 297.

Whiteson, Shimon and Peter Stone (2006). “Evolutionary function ap-
proximation for reinforcement learning.” In: Journal of Machine Learn-
ing Research 7.May, pp. 877–917.

Wiering, Marco A, Maikel Withagen, and Mădălina M Drugan (2014).
“Model-based multi-objective reinforcement learning.” In: 2014 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learn-
ing (ADPRL). IEEE, pp. 1–6.

Wiering, Marco and Jürgen Schmidhuber (1998). “Efficient model-based
exploration.” In: Proceedings of the Sixth International Conference on Sim-
ulation of Adaptive Behavior: From Animals to Animats. Vol. 6, pp. 223–
228.

Wiese, Jessica, Roger Buehler, and Dale Griffin (2016). “Backward plan-
ning: Effects of planning direction on predictions of task completion
time.” In: Judgment and Decision Making 11.2, p. 147.

Willemsen, Daniel, Hendrik Baier, and Michael Kaisers (2020). “Value
targets in off-policy AlphaZero: a new greedy backup.” In: Adaptive
and Learning Agents (ALA) Workshop.

Williams, Ronald J (1992). “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning.” In: Reinforcement
Learning. Springer, pp. 5–32.

Wilson, Aaron, Alan Fern, Soumya Ray, and Prasad Tadepalli (2007).
“Multi-task reinforcement learning: a hierarchical Bayesian approach.”
In: Proceedings of the 24th international conference on Machine learning.
ACM, pp. 1015–1022.



270 bibliography

Winands, Mark HM, Yngvi Björnsson, and Jahn-Takeshi Saito (2008).
“Monte-Carlo tree search solver.” In: International Conference on Com-
puters and Games. Springer, pp. 25–36.

Wolpert, Daniel M, Zoubin Ghahramani, and Michael I Jordan (1995).
“An internal model for sensorimotor integration.” In: Science 269.5232,
pp. 1880–1882.

Wu, Jiajun, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenen-
baum (2015). “Galileo: Perceiving physical object properties by inte-
grating a physics engine with deep learning.” In: Advances in neural
information processing systems 28, pp. 127–135.

Xu, Zhenjia, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman,
Joshua B Tenenbaum, and Jiajun Wu (2019). “Unsupervised discovery
of parts, structure, and dynamics.” In: arXiv preprint arXiv:1903.05136.

Yamaguchi, Tomohiro, Shota Nagahama, Yoshihiro Ichikawa, and Keiki
Takadama (2019). “Model-Based Multi-objective Reinforcement Learn-
ing with Unknown Weights.” In: International Conference on Human-
Computer Interaction. Springer, pp. 311–321.

Yoon, Sung Wook, Alan Fern, and Robert Givan (2007). “FF-Replan: A
Baseline for Probabilistic Planning.” In: ICAPS. Vol. 7, pp. 352–359.

Younes, Håkan LS and Michael L Littman (2004). “PPDDL1.0: An ex-
tension to PDDL for expressing planning domains with probabilistic
effects.” In: Techn. Rep. CMU-CS-04-162 2, p. 99.

Yu, Lantao, Weinan Zhang, Jun Wang, and Yong Yu (2017). “Seqgan:
Sequence generative adversarial nets with policy gradient.” In: Thirty-
First AAAI Conference on Artificial Intelligence.

Zhang, Marvin, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew
Johnson, and Sergey Levine (2019). “SOLAR: Deep Structured Repre-
sentations for Model-Based Reinforcement Learning.” In: International
Conference on Machine Learning, pp. 7444–7453.

Zhu, Zhuangdi, Kaixiang Lin, and Jiayu Zhou (2020). “Transfer Learn-
ing in Deep Reinforcement Learning: A Survey.” In: arXiv preprint
arXiv:2009.07888.

Ziegler, Zachary M and Alexander M Rush (2019). “Latent normalizing
flows for discrete sequences.” In: arXiv preprint arXiv:1901.10548.



S U M M A RY

Sequential decision making, commonly formalized as Markov Decision
Process (MDP) optimization, is a key challenge in artificial intelligence.
Two successful approaches to solve this problem are planning, a classic
subfield in artificial intelligence research, and reinforcement learning, a
subfield of machine learning. The key difference between planning and
learning is whether a model of the environment dynamics is known
(planning) or unknown (reinforcement learning).

Planning and learning may actually be combined, in a field which
is better known as model-based reinforcement learning. Model-based rein-
forcement learning has recently shown important empirical success, for
example defeating the human world champion in the classic boardgame
Go, a long-standing challenge in AI research. This emphasizes the im-
portance of a combined planning and learning approach.

While there is communication between the research fields of planning
and learning, they still largely operate as separate communities, each
with their own methodology. More important, literature still lacks a
systematic view on the relation between both fields, and how these may
be combined. This is the main topic of this dissertation. We discuss two
main questions: 1) how are planning and learning related (what are
the similarities and differences between their algorithms), and 2) how
can planning and learning be combined (and what advantage may this
provide)?

The first half of this thesis provides a conceptual answer to both ques-
tions, where Chapter 3 discusses the first research question, and Chapter
4 the second. Chapter 3 introduces the Framework for Reinforcement
Learning and Planning (FRAP). FRAP shows that both approaches
share exactly the same algorithmic design space. We disentangle this
space into six key dimensions: 1) for which states do we seek a solution,
2) how do we select the next trial in the environment, 3) how do we
estimate the cumulative reward after the trial, 4) how do we back-up
the acquired information to the begin state of the trial, 5) how do we
store the solution, and 6) how do we update the solution based on the
new back-up estimate obtained in step 4. At the end of the chapter, we
compare a variety of planning and learning algorithms along the dimen-
sions of our framework. The table reads like a patchwork, where similar
solutions appear throughout both planning and learning algorithms.

271



272 summary

Altogether, FRAP shows that the lines between both fields are blurry,
and usually based on convention. On a fundamental level, they face
the same challenges and possible solutions. As such, the framework
provides a bridge between both research fields, and a fundamental way
to categorize algorithms in both fields.

Chapter 4 provides a conceptual answer to the second research ques-
tion. Learning can be added to planning in two ways: 1) learning a
model of the transition dynamics, and 2) learning a value or policy
function to approximate the global solution to the MDP. Chapter 4

first extensively discusses model learning, focusing on the specific chal-
lenges involved. Examples of challenges are environment stochasticity,
uncertainty due to limited data, partial observability, non-stationarity,
and state and temporal abstraction. The next part of Chapter 4 systemat-
ically structures the combination of planning and learning to arrive at a
policy or value function. We again dissect the possible combinations into
several key questions, like 1) where to start planning, 2) what planning
budgets to allow for, 3) how to actually plan, and 4) how to integrate the
plan into the larger learning and acting loop. The last part of Chapter
4 discusses the possible benefits of the combination of planning and
learning: 1) enhanced data efficiency (lower sample complexity in the
real world), 2) targeted (and safe) exploration, 3) improved training
stability, 4) better transfer between tasks, and 5) explainability.

There appears to be a tension between Chapters 3 and 4. Whereas
Chapter 3 argues that planning and learning essentially do the same
thing, Chapter 4 shows that it may still be beneficial to combine both.
There are two main reasons why planning should be added to learning.
The first benefit originates from the difference between the real world
and internal simulation. Internal simulation (planning) is much safer,
and allows us to have fewer interactions with the real world (which can
be dangerous and/or time-consuming). The second benefit originates
from a convention difference in the type of representation used in both
fields. Learning algorithms use global approximation of policy and
value functions, which will inevitably make approximation errors. The
local tabular representation of planning can locally correct these errors.
During learning planning can thereby provide more stable back-ups, but
even after the global solution has converged, it will often still contain
approximation errors (due to capacity constraints), and planning may
still be beneficial. We further develop this idea in Chapter 7. Altogether,
Chapters 3 and 4 provide a systematic view on 1) the relation between
planning and learning, and 2) the potential ways to combine both. As
such, it forms the core part of this thesis.



summary 273

The second half of the dissertation provides experimental illustration
of the first conceptual half. We present four papers, each of which
deal with a different aspect of the above conceptual ideas. The first
three papers study new ways in which planning and learning can be
combined. Chapter 5 presents a new method to learn a dynamics model
in the context of stochasticity in the environment, which is usually
present in real-world environments. To accurately predict the possible
futures in the presence of multimodal stochasticity, we require models
that flexibly approximate distributions in high-dimensional spaces. We
present a novel model learning method based on conditional variational
inference in neural networks, which does allow for these properties.
This is an important preliminary to model-based reinforcement learning
in stochastic environments.

Chapter 6 studies a novel way to combine planning and learning.
We built upon a successful previous algorithm, AlphaGo Zero, which
combined planning (through search trees) and learning (through deep
neural networks) to achieve superhuman performance in the game
of Go. However, board games like Go have a discrete action space,
for which the algorithm was designed as well. Real-world problems
frequently have a continuous action space, like many robotics tasks.
Chapter 6 extends the successful AlphaGo Zero algorithm to also work
in continuous action spaces. With a different action space, we also
have a different representation of our policy network, which requires a
different way of training (planning to learning influence) and a different
way to bias new tree searches (learning to planning influence). As such,
Chapter 6 illustrates a new way to integrate planning and learning.

In Chapter 7 we take a deeper look at a specific benefit of the combi-
nation of planning and learning. Our hypothesis is that planning and
learning provide mutual benefit, due to the different ways in which
they represent their solutions. Learning allows us to store a global
solution to the entire problem, and generalize information between
similar states. However, learned predictions will have approximation
errors. The tabular representation of planning allows for exact local
separation of different futures, but we cannot afford to exhaustively
solve the entire planning problem, which makes it hard to scale the
approach to large problems. We hypothesize that the combination of
both provides the best of both worlds, since local planning can locally
correct the errors made in the function approximation. For example,
in a game of Chess, the current values of all available actions may be
hard to distinguish, but a few steps ahead the pay-off of certain futures
might be much more clear. We experimentally validate this idea in a



274 summary

planning-learning integration, in which we vary the planning budget
per timestep. On one extreme we do not plan at all (model-free RL),
and on the other extreme we extensively plan at every timestep (up to
exhaustive search). Our experiments show that both approaches are
suboptimal, and the best result is achieved when we make a moderate
planning effort per timestep. The identification of this trade-off was not
identified before as crucial to the performance of these algorithms, and
could be an important future research direction.

After these three experimental illustrations of the second research
question (the combination of planning and learning), we finish the
experimental section with an illustration of research question one (the
commonalities between planning and learning). If both approaches
really make the same algorithmic choices, then we should be able to
design a new algorithm in one field based on inspiration from the other.
Chapter 8 presents a new planning algorithm, MCTS-T+, which extends
the well-known planning algorithm Monte Carlo Tree Search (MCTS).
We took inspiration from the reinforcement learning literature, which
has frequently studied sparse exploration problems in problem with
asymmetry in the MDP tree. Sparse reward tasks are challenging for ex-
ploration, since we do not get any indication of the task goal for a long
time. We show that standard MCTS performs strongly suboptimal on
some well-known example tasks from the reinforcement learning com-
munity. The problem is that MCTS only weights how often a particular
action was tried (the classical statistical uncertainty), but ignore how
many different futures are possible after that action. If there are many
possible future, then the uncertainty should decrease more slowly, and
vice versa. Our algorithm, MCTS-T+, describes a way to heuristically
estimate this second type of uncertainty, and as such reaches much
higher planning efficiency in these tasks with asymmetry and sparse
rewards.

The dissertation concludes in Chapter 9 with a broad discussion
of the research field of planning and learning. We summarize where
the field stands, what this dissertation adds, and extensively highlight
promising directions for future work in model-based RL. In short, the
combination of planning and learning promises to be key research
field in AI in the forthcoming years. This dissertation presents a broad
conceptual view on the individual fields of planning and learning, their
similarities, and the possible ways in which both can be combined. In
the end, planning and learning are complementary phenomena.



S A M E N VAT T I N G

Een kernprobleem in de kunstmatige intelligentie (artificial intelligence,
AI) is het kunnen maken van een serie intelligente beslissingen. Zo’n
sequentieel beslisprobleem kan wiskundig beschreven worden als een
Markoviaans Beslissingsprobleem (Markov Decision Process, MDP). De
beslissingen in zo’n MDP worden genomen door een kunstmatige agent.
Zo’n agent kan een robot zijn, of een zelfrijdende auto, een virtuele
tegenstander in een bordspel, of eigenlijk elke kunstmatige entiteit die
een serie van beslissingen moet maken.

Op elke tijdstap in het probleem observeert de agent de huidige staat
van de omgeving, op basis van sensorische input. Vervolgens kiest de
agent een actie en voert deze uit. Op de volgende tijdstap observeert
de agent het effect hiervan. Allereerst ziet hij de nieuwe staat van de
omgeving, die verandert kan zijn door de actie, en daarnaast krijgt
de agent een beloning of straf, afhankelijk van hoe goed of slecht de
uitkomst van de actie was. Vervolgens herhaalt het proces zich, waarbij
de agent opnieuw een actie kiest.

Elke beloning of straf is voor de agent simpelweg een getal. Vaak
wordt een positief getal voor een beloning gebruikt, en een negatief
getal voor een straf. Het doel van de AI agent is om de optelsom van alle
beloning en straf over alle tijdstappen tesamen zo positief mogelijk te
maken. Het is cruciaal dat het hier om de optelsom van alle beloningen
gaat. In veel taken moeten we immers eerst moeite investeren (kleine
straffen) om uiteindelijk een grotere beloning te verwerven.

Het bovenstaande framework is generiek en toepasbaar op feitelijk
alle soorten beslisproblemen. Verschillende onderzoeksgemeenschap-
pen hebben daarom over de jaren oplossingen voor dit probleem
gezocht. In de klassieke kunstmatige intelligentie is er vooral gekeken
naar een groep van algoritmes die bekend staan als ‘plannen’. Bij plan-
nen krijgen we een model van de omgeving, wat ons vertelt hoe de
omgeving zal veranderen door een bepaalde actie. Belangrijk is dat we
een model ook terug kunnen spoelen, en dan een andere actie vanaf een
bepaalde staat kunnen proberen. Op die manier kunnen we een zoek-
boom bouwen, waarin we verschillende toekomstige paden proberen
om uiteindelijk tot de beste beslissing te komen. Dit valt te vergelijken
met de manier waarop mensen in gedachten vooruit kunnen plannen.

275



276 samenvatting

In de machine learning tak van kunstmatige intelligentie wordt
ook al meerdere decennia naar hetzelfde probleem gekeken, onder
de term ‘reinforcement learning’. Hier wordt echter een leerperspec-
tief aangenomen. We nemen aan dat de omgeving niet meer terug te
draaien is, en dat bij elke actie die we uitvoeren we daadwerkelijk verder
moeten vanaf de staat die we vervolgens bereiken. Dit valt te vergelijken
met hoe we moeten handelen in de echte wereld, waarbij een actie een
permanent effect heeft. Omdat we nu niet meer vooruit kunnen plannen,
proberen dit soort algoritmes een snelle benadering te leren van de
waarde van verschillende acties, op basis van patroonherkenning. Dit
kun je vergelijken met reactief, geleerd gedrag.

Mensen gebruiken voor hun beslissingen duidelijk een combinatie
van plannen en leren. In de kunstmatige intelligentie hebben beide
velden zich echter grotendeels zelfstandig ontwikkeld. Uiteraard is er
ook kruisbestuiving geweest, in een veld dat bekend staat als ‘model-
based reinforcement learning’. Dit veld heeft belangrijke empirische
successen laten zien, zoals recentelijk als ’s werelds sterkste speler in
klassieke bordspellen als Go, Schaken en Shogi. Dit illustreert het belang
van de combinatie van beide benaderingen.

Hoewel de plan en leer onderzoeksvelden al geruime tijd commu-
niceren, is er in de literatuur geen systematische blik op de relatie
tussen beide velden, en hoe deze zijn te combineren. Dit is daarom het
onderwerp van dit proefschrift. We stellen twee hoofdvragen: 1) hoe zijn
plannen en leren gerelateerd (wat zijn de overeenkomsten en verschillen
in de algoritmische benaderingen), en 2) hoe kunnen plannen en leren
worden gecombineerd (en wat voor voordelen kan dit bieden)?

De eerste helft van dit proefschrift geeft een conceptueel antwoord
op beide vragen, waarbij hoofdstuk 3 de eerste en hoofdstuk 4 de
tweede vraag behandelt. Hoofdstuk 3 introduceert een Framework voor
Reinforcement Learning en Plannen (FRAP). FRAP laat zien dat plan-
nen en leren exact dezelfde onderliggende algoritmische beslissingen
moeten maken. We snijden een algoritme op in 6 hoofdvragen, elke
met meerdere subdimensies. Deze vragen zijn: 1) voor welke staten
zoeken we een oplossing, 2) hoe selecteren we de volgende stap in de
omgeving, 3) hoe schatten we de som van beloningen na deze stap, 4)
hoe verwerken we deze informatie terug naar de staat waar we vandaan
kwamen, 5) hoe bewaren we de oplossing voor het probleem, en 6) hoe
verbeteren we onze oplossing op basis van de verwerkte informatie uit
vraag 4. Aan het eind van het hoofdstuk vergelijken we in een tabel een
breed spectrum aan plan- en leeralgoritmes op basis van de dimensies
van het framework. De tabel leest als een lappendeken, en toont dat



samenvatting 277

beide velden grotendeels soortgelijke oplossingen voor dezelfde on-
derliggende problemen hebben bedacht. Het illustreert daarmee dat de
lijnen tussen beide velden methodologisch grotendeels op conventies
zijn gebaseerd. Het framework verschaft nu een gemeenschappelijke
taal voor beide velden, en een manier om algoritmes in deze velden
meer systematisch te categoriseren.

Hoofdstuk 4 geeft een conceptueel overzicht van de manieren waarop
plannen en leren te combineren zijn. Leren kan op twee manieren aan
plannen toegevoegd worden: 1) leren hoe de omgeving werkt (het
model) zodat we daarin vooruit kunnen plannen, en 2) leren wat de
verwachte waarde (value) is van acties (of hoe we op basis daarvan
moeten handelen). Wat betreft het eerste punt categoriseert het hoofd-
stuk uitgebreid de verschillende uitdagingen van het leren van een
model van de omgeving. Voorbeelden van uitdagingen zijn onder an-
dere stochasticiteit in de omgeving, onzekerheid door een beperking
in de hoeveelheid geobserveerde data, incomplete informatie, en het
leren van informatieve abstracties uit complexe, hoog-dimensionale
informatie. Ten tweede behandelen we de manieren waarop plannen
en leren gecombineerd kunnen worden om een oplossing voor het
probleem te vinden. Wederom vergelijken we een brede set literatuur
volgens deze stappen in een tabel, wat de diversiteit aan verschillende
plan-leer integraties toont. Tot slot toont hoofdstuk 4 ook de manieren
waarop de combinatie van plannen en leren voordelen biedt: 1) zodat
we minder stappen in de echte wereld hoeven te maken, 2) zodat we
beter (en veiliger) kunnen exploreren (nieuwe dingen ontdekken), 3)
zodat we stabieler kunnen leren, 4) zodat we beter informatie kunnen
hergebruiken tussen taken, en 5) zodat de agent zijn beslissingen beter
kan uitleggen aan een mens.

Er lijkt een spanningsveld tussen hoofdstuk 3 en 4 te bestaan. Enerzijds
zijn plannen en leren onder de motorkap dus hetzelfde (hoofdstuk 3),
anderszijds blijkt het wel degelijk voordelig om beide te combineren.
In grote lijnen zijn er twee redenen waarom de combinatie desondanks
nuttig is. Het eerste voordeel komt voort uit het onderscheid tussen
een echte wereld en interne simulatie. Het intern kunnen simuleren
van toekomsten lijkt weliswaar sterk op hoe we leren van de echte
wereld, maar het is veel veiliger, en doorgaans veel sneller. Het tweede
fundamentele voordeel komt voort uit een conventie in beide velden
over de manier waarop ze de oplossing van het probleem opslaan.
Leeralgoritmes maken een globale, snelle benadering van de waardes
van acties, welke doorgaans benaderingsfouten bevatten. Plannen kan
helpen deze lokale fouten te corrigeren. We werken dit idee verder uit



278 samenvatting

in hoofdstuk 7. Tezamen geven hoofdstuk 3 en 4 een systematische blik
op 1) de relatie tussen plannen en leren, en 2) de mogelijke manieren
om beide te combineren.

De tweede helft van dit proefschrift is een experimentele illustratie
van het conceptuele deel. We bespreken vier papers, die elk een ander
aspect van de bovenstaande conceptuele ideeen verder uitwerken. De
eerste drie hoofdstukken gaan over nieuwe manieren om plannen en
leren te combineren. Hoofdstuk 5 focust op het leren van een model van
de omgeving, wanneer de omgeving zich stochastisch gedraagt. Stochas-
ticiteit doet zich voor wanneer een bepaalde actie in een huidige staat
verschillende toekomsten kan hebben. De echte wereld is in hoge mate
stochastisch, bijvoorbeeld door het gedrag van anderen. Als je in een
auto rijdt, is het gedrag van andere weggebruikers bijvoorbeeld niet al-
tijd hetzelfde. Het correct leren van dit soort kansverdelingen in grotere
problemen is uitdagend, vooral wanneer de kansverdeling massa heeft
op veel verschillende toekomsten. We beschrijven een nieuwe methode
om neural netwerken te trainen door middel van conditionele vari-
ationele inferentie, waarmee we complexe vormen van multimodale
stochasticiteit correct kunnen leren. Dit is een belangrijke eerste stap om
te kunnen plannen over een geleerd model in stochastische omgevingen,
zoals de echte wereld.

In hoofdstuk 6 kijken we vervolgens naar een nieuwe manier om
plannen en leren te combineren. We bouwen voort op een bekend recent
algoritme, AlphaGo Zero, wat plannen (op basis van zoekbomen) en
leren (op basis van diepe neurale netwerken) combineert en zo de
menselijke wereldkampioen in het bordspel Go versloeg. In bordspellen
zijn de acties discreet, we kunnen immers kiezen uit een eindig aantal
zetten. In de echte wereld, bijvoorbeeld in de robotica, zijn acties vaak
continu. Op de motoren van een robot kunnen we een voltage zetten,
wat varieert tussen een bepaald maximum en minimum, maar daar
zitten oneindig veel mogelijke voltages tussen. In hoofdstuk 6 laten
we zien hoe het succesvolle AlphaGo Zero algoritme aangepast kan
worden zodat het ook werkt in taken met een continue actie ruimte,
zoals we tonen op een gesimuleerd robotica experiment.

In hoofdstuk 7 kijken we dieper naar een specifiek voordeel van de
combinatie van plannen en leren. Onze hypothese is dat plannen en
leren een wederzijds voordeel bieden, door de manier waarop ze hun
oplossing representeren. De leerbenadering zorgt dat we een oplossing
voor het hele probleem kunnen opslaan, en dat we informatie kunnen
delen tussen soortgelijke situaties. De geleerde voorspelling kan echter
lokaal fout zijn. Plannen zorgt lokaal voor betere scheiding van de



samenvatting 279

mogelijke toekomsten, maar we hebben doorgaans niet de rekenkracht
of tijd om het gehele probleem door te plannen. Onze hypothese is
dat de combinatie van beide een wederzijds voordeel biedt, doordat
planning de lokale fouten in geleerde voorspellingen kan corrigeren.
We testen dit experimenteel door de mate van planning per tijdstap
in een plan-leer algoritme te varieren. In het ene extreme geval wordt
er helemaal niet gepland, en in het andere extreme geval plannen we
elke tijdstap zeer uitgebreid. We laten experimenteel zien dat beide
benaderingen suboptimaal zijn, en dat het beste resultaat wordt bereikt
als we een beetje plannen per tijdstap. Deze trade-off tussen plannen en
leren stond nog niet op de onderzoeksradar, maar blijkt cruciaal te zijn
voor het resultaat van het algoritme. Pschologisch onderzoek verkende
al soortgelijke ideeen, en toonde dat mensen adaptief beslissen wanneer
ze starten met plannen, en voor hoe lang. Dit kan een belangrijke
richting zijn voor toekomstig werk in dit veld.

Na deze drie illustraties van de combinatie van plannen en leren
(onderzoeksvraag 2), sluiten we in hoofdstuk 8 af met een illustratie
van de overeenkomsten tussen plannen en leren (onderzoeksvraag 1).
Als beide benaderingen onderliggend dezelfde keuzes maken, dan
moet het mogelijk zijn om een nieuw algoritme in een onderzoeksveld
te ontwerpen gebaseerd op inspiratie uit het andere onderzoeksveld.
In hoofdstuk 8 beschrijven we een nieuw plan algoritme, MCTS-T+,
wat een uitbreiding is van het succesvolle plan algoritme Monte Carlo
Tree Search (MCTS). We halen hiervoor inspiratie uit de reinforcement
learning literatuur, met name van werk over exploratie wanneer de
beloningen schaars zijn. Het is uitdagend om een taak met schaarse
beloning op te lossen, omdat we lange tijd geen indicatie krijgen wat
een goede uitkomst is. We laten zien dat standaard MCTS zeer slecht
presteert in een aantal van dit soort taken met schaarse beloning. Het
probleem is dat MCTS wel meeweegt hoe vaak een actie is geprobeerd
(de standaard statisische onzekerheid), maar negeert hoeveel mogelijke
toekomsten er op een actie kunnen volgen. Als een actie veel verschil-
lende toekomsten heeft, moet onze onzekerheid langzamer afnemen.
Ons algoritme, MCTS-T+, beschrijft een manier om deze onzekerheden
heuristisch te schatten, en komt zo tot veel grotere plan efficientie.

Het boek sluit af met een overkoepelende bespreking van het onder-
zoeksveld van plannen en leren (hoofdstuk 9). We kijken waar het veld
staat, wat dit proefschrift daar aan toevoegt, en besteden uitgebreid
aandacht aan mogelijke toekomstige onderzoeksrichtingen. De combi-
natie van plannen en leren belooft in de komende jaren een cruciaal
onderzoeksveld in de AI te worden. Dit proefschrift biedt een brede



280 samenvatting

conceptuele blik op de individuele velden van plannen en leren, hun
overeenkomsten, en de manieren waarop beide gecombineerd kunnen
worden. Uiteindelijk zijn plannen en leren complementaire fenomenen.



A C K N O W L E D G M E N T S

281





C U R R I C U L U M V I TA E

Thomas Marinus Moerland (1988)

education

2006-2014 Medical Doctor (MD), Leiden University, The Netherlands
Propedeuse - cum laude
Doctoraal - cum laude
Artsexamen - cum laude
Final rotation: Neurology department, Diaconessenhuis Lei-
den

2010-2015 Master of Science (MSc), Mathematics, Leiden University,
The Netherlands
Summa cum laude
Specialization: Machine learning
Master’s thesis: Vision-based Robotics, TU Delft

2016-2020 Doctor of Philosophy (PhD), Computer Science, TU Delft,
The Netherlands
Topic: Intersection of planning and learning.

awards & grants

2018 Qualcomm PhD fellowship

2018 Best reviewer award, Conference on Neural Information Pro-
cessing Systems

2016 Jan Hemelrijk Award, best Dutch master’s thesis in statistics
of 2016

2009-2011 Excellent student traject, Pulmonology department, Leiden
University Medical Center

283





L I S T O F P U B L I C AT I O N S

• Moerland TM, Broekens J, Jonker CM. A Framework for Rein-
forcement Learning and Planning. In submission. 2020.

• Moerland TM, Broekens J, Jonker CM. Model-based Reinforce-
ment Learning: A Survey. In submission. 2020.

• Moerland TM, Broekens J, Jonker CM. Model-based Reinforce-
ment Learning: A Compressed Survey. Deep Reinforcement Learn-
ing Workshop @ NeurIPS. 2020.

• Moerland TM, Broekens J, Jonker CM. A Framework for Rein-
forcement Learning and Planning: Extended Abstract. Bridging
the Gap Between AI Planning and Reinforcement Learning (PRL)
workshop @ ICAPS. 2020.

• Moerland TM, Broekens J, Jonker CM. Think Too Fast Nor Too
Slow: The computational trade-off between planning and rein-
forcement learning. Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL) workshop @ ICAPS. 2020.

• Moerland TM, Broekens J, Plaat A, Jonker CM. A0C: Alpha Zero in
Continuous Action Space. European Workshop on Reinforcement
Learning. 2018.

• Moerland TM, Broekens J, Plaat A, Jonker CM. Monte Carlo Tree
Search for Asymmetric Trees. 2018. Planning and Learning (PAL)
Workshop @ ICML. 2018.

• Moerland TM, Broekens J, Jonker CM. The Potential of the Return
Distribution for Exploration in RL. 2018. Exploration in Reinforce-
ment Learning Workshop @ ICML. 2018.

• W. J. Wolfslag, M. Bharatheesha, T. M. Moerland and M. Wisse.
RRT-CoLearn: Towards Kinodynamic Planning Without Numeri-
cal Trajectory Optimization. IEEE Robotics and Automation Let-
ters, vol. 3, no. 3, pp. 1655-1662. 2018.

285



286 list of publications

• Wolfslag WJ, Bharatheesha M, Moerland TM, Wisse M. RRT-
CoLearn: towards kinodynamic planning without numerical tra-
jectory optimization. International Conference on Robotics and
Automation (ICRA). 2018.

• Moerland TM, Broekens J, Jonker CM. Emotion in Reinforcement
Learning Agents and Robots: A Survey. Machine Learning 107(2),
443-480. 2017.

• Moerland TM, Broekens J, Jonker CM. Efficient Exploration with
Double Uncertain Value Networks. Deep Reinforcement Learn-
ing Symposium @ Conference on Neural Information Processing
Systems (NIPS). 2017.

• Moerland TM, Broekens J, Jonker CM. Learning Multimodal Tran-
sition Dynamics for Model-Based Reinforcement Learning. Scal-
ing Up Reinforcement Learning (SURL) Workshop @ European
Conference on Machine Learning (ECML). 2017.

• Bharatheesha M, Wolfslag W, Moerland TM. A dataset bias prob-
lem for learning-RRT, with two potential solutions. Delft Work-
shop on Robot Learning. 2017. (Extended abstract)

• Wolfslag WJ, Bharatheesa M, Moerland TM, Wisse M. Learning
indirect optimal control for dynamic motion planning with RRT.
Dynamic Walking. 2017. (Extended abstract)

• Moerland TM, Broekens J, Jonker CM. Fear and Hope Emerge
From Anticipation in Model-Based Reinforcement Learning. Inter-
national Joint Conference on Artificial Intelligence (IJCAI). 2016.

• Moerland TM, Chandarr A, Rudinac M and Jonker P. Knowing
What You Don’t Know: Novelty Detection for Action Recognition
in Personal Robots. VISAPP. 2016.


	Contents
	 Planning and Learning
	1 Introduction
	1.1 Planning and Reinforcement Learning
	1.2 Model-based Reinforcement Learning
	1.3 Research Questions
	1.4 Thesis Structure
	1.5 Notation

	2 Background
	2.1 Markov Decision Process
	2.2 Reversible versus irreversible access to the MDP dynamics
	2.3 Planning
	2.4 Model-free Reinforcement Learning
	2.5 Model-based Reinforcement Learning


	 Conceptual Integration of Planning and Learning
	3 FRAP: A Unifying Framework for Reinforcement learning and Planning
	3.1 Introduction
	3.2 Framework for Reinforcement learning and Planning
	3.2.1 Trials and back-ups
	3.2.2 Where to put our computational effort?
	3.2.3 Where to make the next trial?
	3.2.4 How to estimate the cumulative return?
	3.2.5 How to back-up?
	3.2.6 How to represent the solution?
	3.2.7 How to update the solution?

	3.3 Conceptual Comparison of Well-known Algorithms
	3.4 Related Work
	3.5 Discussion
	3.6 Conclusion

	4 Model-based Reinforcement Learning: A Survey
	4.1 Introduction
	4.2 Categories of model-based reinforcement learning
	4.3 Dynamics Model Learning
	4.3.1 Basic considerations
	4.3.2 Stochasticity
	4.3.3 Uncertainty
	4.3.4 Partial observability
	4.3.5 Non-stationarity
	4.3.6 Multi-step Prediction
	4.3.7 State abstraction
	4.3.8 Temporal abstraction

	4.4 Integration of Planning and Learning
	4.4.1 At which state to start planning?
	4.4.2 How much budget do we allocate for planning and real data collection?
	4.4.3 How to plan?
	4.4.4 How to integrate planning in the learning and acting loop?
	4.4.5 Conceptual comparison of approaches

	4.5 Implicit model-based RL
	4.5.1 Value equivalent models
	4.5.2 Learning to plan
	4.5.3 Combined learning of models and planning

	4.6 Benefits of Model-Based Reinforcement Learning
	4.6.1 Data Efficiency
	4.6.2 Exploration
	4.6.3 Stability
	4.6.4 Transfer
	4.6.5 Safety
	4.6.6 Explainability
	4.6.7 Disbenefits

	4.7 Related Work
	4.8 Discussion
	4.9 Summary


	 Experimental Integration of Planning and Learning
	5 Stochastic Dynamics Approximation with Conditional Variational Inference
	5.1 Introduction
	5.2 Challenge of Multimodal Transitions
	5.3 Conditional Variational Inference
	5.3.1 Reparametrization
	5.3.2 Discrete Latent Variables
	5.3.3 Transformations of Continuous Variables (Flow)
	5.3.4 Enforcing Latent Variable Use

	5.4 Results
	5.4.1 Toy Problem
	5.4.2 Stochastic Gridworld

	5.5 Related Work
	5.6 Future Work
	5.7 Conclusion
	5.8 Appendix
	5.8.1 Variational Auto-Encoder (VAE) Training Objective
	5.8.2 Test Set Negative Log-likelihood (NLL) for VAE
	5.8.3 Training Details


	6 AlphaZero in Continuous Action Space
	6.1 Introduction
	6.2 Preliminaries
	6.3 Tree Search in Continuous Action Space
	6.3.1 Progressive Widening
	6.3.2 Continuous policy network prior

	6.4 Neural Network Training in Continuous Action Space
	6.4.1 Policy Network
	6.4.2 Value Network

	6.5 Experiments
	6.6 Discussion
	6.7 Conclusion
	6.8 Appendix
	6.8.1 Enforcing Action Space Bounds with Transformed Beta Distributions
	6.8.2 Entropy of Transformed Beta Distribution


	7 Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning
	7.1 Introduction
	7.2 Multi-step Approximate Real-Time Dynamic Programming
	7.3 Methods
	7.4 Results
	7.5 Related Work
	7.6 Discussion
	7.7 Conclusion

	8 Improved Monte Carlo Tree Search through Subtree Depth Estimation
	8.1 Introduction
	8.2 Variation in Subtree Size
	8.2.1 MCTS with Tree Uncertainty Back-up (MCTS-T)
	8.2.2 Results on Chain

	8.3 Loops
	8.3.1 MCTS-T+: blocking loops.
	8.3.2 Results on Chain with loops

	8.4 Experiments
	8.5 Related Work
	8.6 Discussion
	8.7 Conclusion


	 Integration
	9 Discussion
	9.1 Answers to Research Questions
	9.2 Bigger Picture
	9.3 Computational Demands in AI Research
	9.4 Relation to Psychology Research
	9.5 Future Work in Planning and Learning

	10 Conclusion
	 Bibliography
	 Summary
	 Samenvatting
	 Acknowledgements
	 Curriculum Vitae
	 List of Publications


