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Prof. dr. H.H. Hoos
Prof. dr. J.W. van Holten
Prof. dr. C. Anastasiou (ETH Zürich)
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1I N T R O D U C T I O N

Understanding how Nature works on a fundamental level is one of the key goals of
physics. Consequently, physicists try to identify what the smallest building blocks
of our universe are and how they interact. The ideas about these fundamental
building blocks have undergone many revolutions, each radically changing the way
we describe Nature.

The ancients reasoned that all objects were composed of the elements fire, earth,
water, and air. As technology progressed, scientists discovered cells, molecules, and
atoms. Atoms only have a radius of about 30 trillionths of a meter. For a while it
was believed that the atom was the smallest component (the Greek name means
indivisible). This idea lasted until the early 20th century with the discoveries of the
electron and proton. Six decades later, it turned out that even protons and neutrons
were not fundamental, but consisted of quarks [15, 16].

From the invention of quantum mechanics in the early 1920s, it became clear that
these small particles behave differently from everyday experience: particles could
be in two places at once, act like waves, or spontaneously emerge from the vacuum,
and quickly disappear again [17]. The fact that the fundamental building blocks
had both particle-like and wave-like features was later unified by the framework
of Quantum Field Theory (QFT) [18]. The new quantum field theoretic description
of the electromagnetic interaction, Quantum Electrodynamics (QED), was hugely
successful and is still used to this day.

Below we provide a brief introduction to the world of QFT. We describe the
Standard Model in section 1.1, the aim for precise predictions in section 1.2, computer
methods in section 1.3, and Feynman diagrams in section 1.4. Then we formulate
our Problem Statement (PS) in section 1.5, and the Research Questions (RQs) in
section 1.6. In section 1.7 we list our contributions and in section 1.8 we outline the
structure of the thesis.

1.1 the standard model

In the early 1960s, the first version of the Standard Model was constructed [19].
The goal was to capture all fundamental particles and interactions in this model.
The first version contained several particles, such as quarks and electrons, and the
electromagnetic and weak forces. The electromagnetic force governs the interactions
of photons (light) with charged particles. The weak forces govern nuclear decay and
are mediated by the W and Z bosons. The Higgs boson, which is responsible for
giving elementary particles mass, was added to the model shortly after, in 1964 [20–
22]. Finally, the strong force, mediated by gluons, was added in 1973 [23, 24]. The
theory for the strong interaction, Quantum Chromodynamics (QCD), explained why
quarks of opposite charge can stay in a stable configuration in the nucleus of an

3



1

atom. In figure 1 the modern-day Standard Model is displayed [25]. It contains six
quarks, six leptons, and four force carriers. The shading signifies which particles
are susceptible to which force. All non-fundamental particles in the universe are
composed of these quarks. For example, the proton, which is part of the core of an
atom, consists of two up quarks and a down quark.

The theories behind the Standard Model describe many properties of the particles,
such as their charge and spin, and whether they have mass. However, the actual mass
is not predicted by the Standard Model and has to be experimentally determined.

F
O

R
C

E
 C

A
R

R
IE

R
S

Figure 1: The Standard Model of elementary particles [25]. It contains 6 quarks and
6 leptons. The gluon is the force carrier of the strong force, the photon of
the electromagnetic force, and Z/W bosons of the weak force. The shading
signifies which particles are involved with which force. The Higgs particle
is responsible for the mass of all massive particles.

Most features of the Standard Model are measured in particle accelerators, such as
the Large Hadron Collider (LHC) [26]. At the LHC clusters of protons are accelerated
in opposite directions in a 27 km long circular tunnel to almost the speed of light
and are made to collide. From the energy of the collisions, new particles may be
created, which are measured by detectors.

Over the last decades, many measurements have been performed that confirm the
successful match of the Standard Model with Nature. The most famous measurement
is the discovery of the Higgs boson in 2012 at the LHC [27, 28]. A second impressive
measurement is the value of the fine-structure constant [29, 30] which governs the
strength of the electromagnetic interaction. Theory and experiment are in agreement
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to within ten parts per billion. This staggering precision constitutes one of the best
predictions of mankind.

1.2 precise predictions

The Standard Model is extremely successful and has remained virtually unmodified
for the last thirty years. So far, there have been no measurements that conclusively
contradict the Standard Model. However, we know that it cannot be the final model,
since it for instance does not include gravity or explain dark matter. The question
then arises: how can we find physics beyond the Standard Model if we do not find
discrepancies?

One of the reasons why experiments at the LHC may not find discrepancies is
that the effects of new physics may only change the results of high-energy scattering
experiments by a tiny fraction. For gravity this scenario is likely, since quantum
gravity effects are believed to occur at the Planck scale, which is 1015 times higher
than the energy that the LHC can produce. For dark matter, some candidates derived
from Supersymmetry could be measured by the LHC, and those would lead to small
discrepancies.

Therefore, extremely precise predictions are imperative to detect minuscule differ-
ences between what is expected and what is observed. Obtaining precise predictions
will be the subject of the thesis.

1.3 computer methods

Precise predictions are hard to compute by hand, since performing the algebra is a
laborious exercise. With the rise of computers in the 1960s, software started to be
developed to perform calculations for quantum field theories.

In 1963 the computer program Schoonschip was created by Veltman for the
symbolic computation of the early Standard Model [31]. The program had to process
an expression with 50 000 terms, which at the time could only be done by storing
intermediate results on tape.

The development of the symbolic manipulation toolkit Form was started in 1984. It
was designed to efficiently handle large expressions. A notable package was Mincer,
originally developed for Schoonschip [32] and later ported to Form [33]. Using
Mincer and Form, the evolution of unpolarized combinations of quark densities
has been computed to next-to-next-to-leading order [34, 35].

Computer methods were also developed for numerical integration, which for
complicated integrals is almost impossible to do by hand. Monte Carlo integrators,
such as the popular Vegas [36] program, became the preferred way to compute
complicated scattering processes.

The fields of computer algebra and particle physics have developed hand in hand.
Even though new computational methods have been designed and the hardware has
had spectacular improvements, combinatorial and algorithmic challenges have not
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disappeared due to the need for more precision. In the 1960s a calculation involving
proton interactions was considered a success if the order of magnitude agreed with
the experiment. Nowadays, the goal is to achieve 1% accuracy. As a result, we will
encounter expressions with billions of terms, taking up more than a terabyte of
memory.

We are going to study some of these computational challenges. First, we will have
a slightly more detailed look at the objects that we wish to compute.

1.4 feynman diagrams

In particle colliders such as the LHC, fast moving protons collide with each other. The
new particles that are created are measured by detectors. Quantum Chromodynamics
is the theory that describes these collisions, in the same way that Newton’s equations
describe how two macroscopic objects collide [37].

In Quantum Chromodynamics, a scattering process can be described in pictures
called Feynman diagrams [38]. An example of a Feynman diagram is

, (1)

which signifies a process where two initial-state particles annihilate, creating a new
particle, which then splits up into two new particles. Each particle is represented
by a line, and each interaction by a vertex (a point where lines meet). The arrows
represent whether the particle is moving to or from a vertex. The two final-state
particles are measured by a detector.

One could imagine many more diagrams with two particles in the initial state and
two in the final state. For example:

, , . . . . (2)

Each diagram with more particles (edges), more interactions (vertices), and more
loops describes a more intricate process. From the rules of quantum mechanics, we
know that in order to describe a scattering process, we need to take into account
all the interactions that could happen in between [39]. This implies that we need to
compute an infinite series of Feynman diagrams.

Computing the infinite series up to a certain number of loops leads to a reasonable
estimate (i.e., the problem is suitable for perturbation theory). This is due to the fact
that every interaction is suppressed by the interaction strength, called the ‘coupling
constant’, which is smaller than one. Every diagram with the same number of loops
has the same suppression factor. Contrary to what its name suggests, the coupling
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constant is actually dependent on the energy of the collision. For low-energy QED,
the coupling constant is about 1/137. For the experimentally viable energies of QCD,
the coupling constant varies from 0.1 to 0.3. Consequently, for a two-loop process
the relative suppression of QED over QCD is 104, which means that for QCD more
diagrams have to be computed to obtain the same accuracy as for QED.

Below we consider a single particle moving in space-time (1 in and 1 out) expanded
up to two loops:

1→ 1 = ︸ ︷︷ ︸
leading order

+ ︸ ︷︷ ︸
one loop

+ +︸ ︷︷ ︸
two loops

. (3)

The number of possible diagrams increases exponentially with the number of loops.
By simply constructing all possible graphs with vertices of degree three (where we
enforce that a graph remains connected when one edge is removed), we see that at
two loops we have two diagrams and at four loops 95 diagrams. If we also allow
vertices with degree four, the number of diagrams at four loops is 1536.

For one-to-one reactions in QCD, the state-of-the-art is currently at four and five
loop accuracy [2, 4, 40, 41]. For processes in QCD, each particle in the diagram could
be of a different type (quark, gluon, etc.), which makes the number of diagrams
much higher. Additionally, each individual diagram represents many fundamental
integrals (also called scalar integrals). For example, at five loop accuracy one difficult
diagram of the gluon propagator (with 160 500 diagrams) generates twelve million
scalar integrals. This is an enormous number, which demands carefully constructed
algorithms to be able to get an answer without running out of memory or time.

Having thus described the field of my research, we are now ready to state the
overall problem statement of this thesis.

1.5 problem statement

Achieving higher precision, and thus going to a higher number of loops, creates at
least three computational challenges: (1) billions of terms may be created, (2) the
terms themselves may get large coefficients (fractions with more than a hundred
digits), and (3) for some Feynman diagrams it is unknown how to compute them
within a few months (or at all).

As we have reasoned in section 1.2, precise predictions are necessary to advance
our understanding of Nature, which means these challenges have to be overcome.
We now formulate our problem statement.

Problem statement: In what way can we improve the performance of QFT
calculations with respect to obtaining more precise predictions?

In this research we focus on three computational and combinatorial problems of
QFT calculations that we deemed the most urgent ones.

7
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Problem 1 Slowness of Monte Carlo integrations.

Monte Carlo integrators often take months on modern supercomputers to
obtain high-quality results. This is caused by the large size of the input
expression.

Problem 2 Slowness in the computation of massless propagator integrals.

Current methods based on Laporta-style algorithms [42] are notoriously slow.
Often computations run for months or years on clusters with more than forty
workstations.

Problem 3 Slowness when computing the singular parts of Feynman diagrams.

Computing the singular parts (poles) of diagrams is generally easier than
computing the finite pieces. There exists a complicated R∗ method that is not
used often, in part due to combinatorial blow-up.

Below we derive three research questions, one for each problem.

1.6 three research questions

problem 1 Monte Carlo methods are frequently used in QFT calculations, since
some integrals cannot be computed analytically. After the integrals are rewritten to
a suitable polynomial representation, they are sampled millions of times. Some of
these polynomials will have more than twenty variables and hundreds of thousands
of terms, making evaluation very slow. Simplification of these polynomials will
speed up integration. Thus, the first research question is as follows.

Research question 1 (RQ1): To what extent can the number of arithmetic
operations of large multivariate polynomials be reduced?

problem 2 Most integrals that can be computed analytically, are calculated by
using Integration by Parts (IBP) identities to express integrals into simpler ones [43].
This method is generally quite slow and often requires months of computation time
on a cluster. The Mincer program for three-loop massless propagator diagrams
solves the IBP systems in a parametric way, which is more difficult to construct, but
yields faster reductions [32, 33]. A four-loop equivalent of Mincer would mean
that computations that currently take months, could be done in hours. Hence, our
second research question reads as follows.

Research question 2 (RQ2): How can we construct a program that can
compute four-loop massless propagator integrals more efficiently?

problem 3 For five-loop calculations in QCD, so far only the poles of integrals
have been computed, as the finite pieces are too difficult [40, 44]. There are several
methods involving infrared rearrangement that allows one to compute the poles of
five-loop integrals using only four-loop integral computations. One of these is the
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R∗-operation [45], which is complicated and quite slow. Hence, we formulate our
third research question as follows.

Research question 3 (RQ3): To what extent can we compute the poles of
five-loop diagrams using only four-loop diagrams more efficiently?

1.7 research methodology and four contributions

The four main contributions of this thesis are listed below. After each bullet, we
summarise the research methodology.

• The improvement of expression simplification for large expressions.

We provide an algorithm that simplifies large expressions faster than the state-
of-the-art and with slightly improved quality. The simplifications result in a
speed-up of Monte Carlo integrations [11].

• The construction of Forcer, a program to compute massless four-loop propag-
ators.

The Forcer program has already been used in many large calculations, includ-
ing the computation of four-loop Mellin moments of structure functions. These
quantities are important ingredients for processes such as Higgs production at
the LHC. So far, the calculations of these objects could not be performed in a
reasonable amount of time by any other existing program [1].

• The generalisation of the R∗-operation to integrals with generic numerator
structure.

The R∗-operation can be used to compute the poles of Feynman diagrams
using an infrared-rearranged version of the diagram. We have extended the
R∗-operation to include Feynman diagrams with arbitrary numerator structure,
which makes the method more suitable for practical use. We have written a
computer code that can compute the poles of five-loop massless propagator
diagrams efficiently [3].

• The computation of the five-loop beta function for Yang-Mills theory with
fermions.

The five-loop beta function of QCD describes how the strength of the strong
coupling evolves with the energy scale. Precise determination is relevant for
many processes, as well as for studying theoretical properties of QFTs. We have
verified the QCD beta function presented in [40] and generalized the result to
an arbitrary colour group. Our more general computation took only six days
on a single 32-core machine using the methods developed in this thesis [4].
The computation in [40] took 1.5 years on 20 computers with 8 cores each.
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1.8 structure of the thesis

In chapter 1 we formulated the problem statement, stated the three research ques-
tions, and alluded to the contributions of this thesis. In chapter 2 we will address
RQ1. Chapter 3 is devoted to RQ2. Next, chapter 4 shows new four-loop results,
obtained by answering RQ2. Chapter 5 addresses RQ3. Finally, in chapter 6 we
compute the five-loop beta function for Yang-Mills theory with fermions, which was
only possible by using the methods developed to answer RQ2 and RQ3.
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2E X P R E S S I O N S I M P L I F I C AT I O N

Monte Carlo integration is the preferred way to compute complicated cross sections
of scattering processes [46–49]. The disadvantage of this method is that it converges
slowly and thus requires a large number of samples. Sampling large multivariate
polynomials is very time consuming, which makes Monte Carlo methods slow. In
this chapter we investigate these challenges by answering

RQ1: To what extent can the number of arithmetic operations of large multivari-
ate polynomials be reduced?

The expressions that arise from Quantum Chromodynamics (QCD) are polynomi-
als in many variables. The number of variables could range from a few to several
hundreds. Analogously, the number of terms range from ten thousand terms to
millions of terms [50]. In some extreme cases, the executable code that performs the
evaluation of the expression could take up a few gigabytes. If we are able to reduce
the number of operations required to evaluate these expressions, sampling becomes
faster. As a result, Monte Carlo integrators can obtain precise results much faster.

We describe two methods to reduce the number of operations. The first is Horner’s
rule for multivariate polynomials, which is extracting variables outside brackets
[51] (sec. 2.1.1). For multivariate expressions the order of these variables is called a
Horner scheme. The second is called Common Subexpression Elimination (CSEE) [52],
which is performed after the Horner scheme has been applied (sec. 2.1.2). We will
investigate four methods (named H1 to H4) of finding a Horner scheme that yields
a near-minimal number of operations after (1) the Horner scheme and (2) CSEE have
been applied. The first three are based on tree search algorithms, and the fourth is
based on local search algorithms.

H1. Following recent successes in expression simplification, we investigate tree
search methods such as Monte Carlo Tree Search (MCTS), using Upper Con-
fidence bounds applied to Trees (UCT) as best-child criterion [53] (sec. 2.3).
However, UCT is not straightforward, as (1) it introduces an exploration-
exploitation constant Cp that must be tuned, and (2) it does little exploration
at the bottom of the tree.

H2. The second method is Nested Monte Carlo Search (NMCS) [54], described in
sec. 2.3.2. NMCS does not not have the two issues of MCTS+UCT. However,
since our evaluation function is quite expensive (3 seconds for one of our
benchmark polynomials), NMCS performs (too) many evaluations to find a
path in the tree, rendering it unsuitable for our simplification task.

H3. We make a modification to UCT (sec. 2.3.3), which we call Simulated Annealing
- UCT (SA-UCT). SA-UCT introduces a dynamic exploration-exploitation para-
meter T(i) that decreases linearly with the iteration number i. SA-UCT causes
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a gradual shift from exploration at the start of the simulation to exploitation at
the end. As a consequence, the final iterations will be used for exploitation,
improving their solution quality. Additionally, more branches reach the final
states, resulting in more exploration at the bottom of the tree. Moreover, we
show that the tuning of Cp has become easier, since the region with appropriate
values for Cp has increased by at least a tenfold [14]. The main contribution of
SA-UCT is that this simplification of tuning allows for the results of our MCTS
approach to be obtained much faster.

H4. We study local search methods (sec. 2.4). We find that the state space of Horner
schemes is ideally suited for local search methods, since it is relatively flat and
contains few local minima. This allows us to simplify expressions without
expensive tuning of parameters. Our final algorithm is a variant of Stochastic
Hill Climbing, which requires about ten times fewer samples than SA-UCT for
similar results.

Our final Stochastic Hill Climbing algorithm is able to reduce the computation
time of numerical integration from weeks to days or even hours. The methods have
been implemented in Form and are used by at least one other research group.

The remainder of this chapter is structured as follows. First, we discuss methods
for expression simplification in section 2.1. In section 2.2 we discuss the experimental
setup. Next, we discuss tree search methods (method H1, H2, H3) in section 2.3. In
section 2.4 we examine local search methods (method H4). We discuss performance
and results in section 2.5. Finally, we present the chapter conclusion in section 2.6.

2.1 horner schemes and common subexpression elimination

Expression simplification is a widely studied problem. Some examples are Horner
schemes [52], common subexpression elimination (CSEE) [55], partial syntactic
factorisation [56] and Breuer’s growth algorithm [57]. Much research is put into sim-
plifications using more algebraic properties, such as factorisation, especially because
of its interest for cryptographic research [58, 59]. Simplification methods that depend
on factorisation have the major problem of being notoriously slow. Horner schemes
and CSEE do not require sophisticated mathematics: only the commutative and
associative properties of the operators are used. The expressions we are considering
often have more than twenty variables and more than a hundred thousand terms [50].
In this regime, computationally expensive methods are infeasible. Therefore, we
consider using basic methods such as Horner schemes and CSEE.

2.1.1 Horner Schemes

Horner’s rule reduces the number of multiplications in an expression by lifting
variables outside brackets [51, 52, 60]. For multivariate expressions Horner’s rule
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can be applied sequentially, once for each variable. The order of this sequence is
called the Horner scheme. Take for example:

x2z + x3y + x3yz→ x2(z + x(y(1 + z)) . (4)

Here, first the variable x is extracted (i.e., x2 and x) and second, y. The number
of multiplications is now reduced from 8 to 4. However, the order x, y is chosen
arbitrarily. One could also try the order y, x:

x2z + x3y + x3yz→ x2z + y(x3(1 + z)) , (5)

for which the number of multiplications is 6. Evidently, this is a sub-optimal Horner
scheme. There are n! orders of extracting variables, where n is the number of
variables, and it turns out that the problem of selecting an optimal ordering is
NP-hard [60].

A heuristic that works reasonably well is selecting variables according to how
frequently a term with such a variable occurs (“occurrence order”) [53]. A counter-
example that shows that occurrence order is not always optimal is

x50y + x40 + y + yz , (6)

where extracting the most occurring variable y first causes the x50 and x40 to end up
in different subparts of the polynomial, preventing their common terms from being
extracted. We note that ordering the variables according to its highest power or to
the sum of its powers in all the terms leads to other counter-examples.

2.1.2 Common subexpression elimination

The number of operations can be reduced further by applying common subexpres-
sion elimination (CSEE). This method is well known from the fields of compiler
construction [55] and computer chess [61], where it is applied to much smaller ex-
pressions or subtrees than what we are considering here. Figure 2 shows an example
of a common subexpression in a tree representation of an expression. The shaded
expression b(a + e) appears twice, and its removal means removing one superfluous
addition and one multiplication.

CSEE is able to reduce both the number of multiplications and the number
of additions, whereas Horner schemes are only able to reduce the number of
multiplications.

2.1.3 The evaluation function

Writing an efficient evaluation function is important, since this function gets called
many times. It consists of two parts: (1) applying the Horner scheme to an expres-
sion, and (2) removing common subexpressions. The Horner scheme is applied
to the expression in Form’s internal format, which is a linear representation of a
polynomial.
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Figure 2: A common subexpression (shaded) in an associative and commutative tree
representation.

In order to compute subexpressions efficiently, we transform the expression from
a linear internal format to a tree. While building the expression tree (similar to
figure 2), we store a hash of the branch that starts at the current node. Since the tree
is built from the bottom up, we combine the hashes of the two subnodes. When
the tree is completely built, we try to find common subexpressions. We keep track
of each subtree we have come across in a hashtable. If a node is found, we skip
exploring the subnodes, since it is a common subexpression. If we have not found
the node before, we add the appropriate number of operations, add the node to
the hashtable (the hash for the entire subtree is easily and quickly retrieved from
the node itself), and continue to its children. A top-down approach has the benefit
that entire subtrees can be easily identified as common subexpressions and double
searches can be prevented. This process outweighs the time it takes to build the
tree1.

We apply two improvements to increase the number of common subexpressions:
(1) when we extract the Horner scheme variable, we also extract a greatest common
divisor (gcd). From our measurements, we have seen that this exposes more common
subexpressions. (2) We store common subexpressions for exponentiations as well:

x20 = (x10)2 = ((x5)2)2 = x(((x2)2)2)2 . (7)

2.1.4 Interplay

We note that there is an interplay between Horner schemes and CSEE: a certain
“optimal” Horner scheme may reduce the number of multiplications the most, but
may expose fewer common subexpressions than a “mediocre” Horner scheme. Thus,
we need to find a way to obtain a Horner scheme that reduces the number of
operations the most after both Horner and CSEE have been applied.

Finding appropriate Horner schemes is not a trivial task, for at least three reasons.
First, there are no known local heuristics. For the Travelling Salesman Problem (TSP),
the distance between two cities can be used as a heuristic [62], and more specialised

1 The tree can be allocated at once, since a close upper bound to the number of nodes is known.
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variables terms operations eval. time (s)
res(7,4) 13 2561 29 163 0.001

res(7,5) 14 11 379 142 711 0.03

res(7,6) 15 43 165 587 880 0.13

res(9,8) 19 4 793 296 83 778 591 25.0
HEP(σ) 15 5716 47 424 0.008

HEP(F13) 24 105 058 1 068 153 0.4
HEP(F24) 31 836 009 7 722 027 3.0
HEP(b) 107 193 767 1 817 520 2.0

Table 1: The number of variables, terms, operations, and the evaluation time of
applying a single Horner scheme and CSEE in seconds, for our eight (unop-
timised) benchmark expressions. The time measurement is performed on a
2.4 GHz Xeon computer. All expressions fit in memory (192 GB).

heuristics are able to solve symmetric TSP instances with thousands of cities (a
historic example is a TSP with 7397 cities [63, 64]). Second, the Horner scheme is
applied to an expression. This means that the scheme has a particular context: the
nth entry applies to the subexpressions that are created after the first n− 1 entries in
the Horner scheme have been applied to the expression. Third, the evaluation of a
Horner scheme and CSEE is slow: for some benchmark expressions the evaluation
took multiple seconds on a 2.4 GHz computer (see table 1). Since the evaluation is
so slow, we have to find an optimisation algorithm that performs well with only a
limited number of samples. Our attempted parallelisation of the evaluation function
was unsuccessful, since the Horner scheme evaluation function is too fine-grained.

The time it takes to apply a Horner scheme is directly related to the number of
variables and the number of terms in the expression. The common subexpression
elimination time scales linearly with the number of operations. The difficulty of
finding a good Horner scheme is related to (1) the size of the permutation space, i.e.,
related to the number of variables, but also to (2) the distribution of the variables in
the terms. The composition of the variables affects the flatness of the state space and
the occurrence of saddle points and local minima, as we shall see in section 2.4.3.

2.2 experimental setup

We use eight large benchmark expressions, four from mathematics and four from
real-world High Energy Physics (HEP) calculations. In table 1 statistics for the
expressions are displayed. We show the number of variables, terms, operations, and
the evaluation time of applying a Horner scheme and CSEE.

The expressions called res(7,4), res(7,5), res(7,6), and res(9,8) are resolvents and are
defined by res(m, n) = resx(∑m

i=0 aixi, ∑n
i=0 bixi), as described in [56]. The number

of variables is m + n + 2. The polynomial res(9,8) is the largest polynomial we have
tested and has been included to test the boundaries of our hardware.
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The High Energy Physics expressions represent scattering processes for the future
International Linear Collider, a likely successor to the Large Hadron Collider [50].
A standard method of calculating the probability of certain collision events is by
using perturbation theory. As a result, for each order of perturbations, additional
expressions are calculated as corrections to previous orders of precision. The HEP
polynomials of table 1 are second-order corrections to various processes.

HEP(σ) describes parts of the process e+e− → µ+µ−γ, namely the collision of an
electron and positron that creates a muon, an anti-muon, and a photon.

HEP(F13), HEP(F24), and HEP(b) are obtained from the process e+e− → µ+µ−uū,
namely the collision of an electron and positron that creates a muon, anti-muon, an
up-quark, and an up-antiquark. The results can be used to obtain next-generation
precision measurements for electron-positron scattering [50].

These four HEP polynomials represent classes of polynomials with approximately
the same behaviour.

2.3 tree search methods

In this section we investigate three tree search methods. First, we review MCTS
combined with UCT and discuss some issues in section 2.3.1. Second, we consider
Nested Monte Carlo Search (NMCS) in section 2.3.2. Third, we construct a new
best-child criterion called SA-UCT in section 2.3.3.

2.3.1 Monte Carlo Tree Search

Recently, Monte Carlo Tree Search has been shown to yield good quality Horner
schemes [53]. We will describe its characteristics, so that we can see if we can
improve its performance.

Monte Carlo Tree Search (MCTS) is a tree search method that has been successful
in games such as Go, Hex, and other applications with a large state space [65, 66]. It
works by selectively building a tree, expanding only branches it deems worthwhile
to explore. MCTS consists of four steps, which are displayed in figure 3. The first
step (3a) is the selection step, where a leaf or a not fully expanded node is selected
according to some criterion (see below). Our choice is node z. In the expansion step
(3b), a random unexplored child of the selected node is added to the tree (node y).
In the simulation step (3(c)), the rest of the path to a final node is completed using
random child selection. Finally a score ∆ is obtained that signifies the score of the
chosen path through the state space. In the backpropagation step (3d), this value
is propagated back through the tree, which affects the average score (winrate) of a
node (see below). The tree is built iteratively by repeating the four steps.

In the game of Go, each node represents a player move and in the expansion
phase the game is played out, in basic implementations, by random moves. In the
best performing implementations heuristics and pattern knowledge are used to

16



2

complement a random playout [65]. The final score is 1 if the game is won, and 0 if
the game is lost. The entire tree is built, ultimately, to select the best first move.

For our purposes, we need to build a complete Horner scheme, variable by variable.
As such, each node will represent a variable and the depth of a node in the tree
represents the position in the Horner scheme. Thus, in figure 3(c) the partial Horner
scheme is x,z,y and the rest of the scheme is filled in randomly with unused variables.
The score of a path in our case, is the improvement of the path on the number of
operations: the original number of operations divided by the number of operations
after the Horner scheme and CSEE have been applied. We note that for our purposes
the entire Horner scheme is important and not just the first variable.

x

z

w

a.

x

z

w y

b.

x

z

w y

c.

Random scheme

∆

∆

∆

∆

∆

d.

Figure 3: An overview of the four phases of MCTS: selection (a), expansion (b),
simulation (c), and backpropagation (d). The selection of a not fully
expanded node is done using the best child criterion (in our case UCT). ∆
is the number of operations left in the final expression, after the Horner
scheme and CSEE have been applied. See also [67].

In many MCTS implementations UCT (formula 8) is chosen as the selection
criterion [67, 68]: 2

argmax
children c of s

x̄(c) + 2Cp

√
2 ln n(s)

n(c)
, (8)

where c is a child node of node s, x̄(c) the average score of node c, n(c) the number
of times the node c has been visited, Cp the exploration-exploitation constant, and
argmax the function that selects the child with the maximum value. This formula
balances exploitation, i.e., picking terms with a high average score, and exploration,
i.e., selecting nodes where the child has not been visited often compared to the
parent. The Cp constant determines how strong the exploration term is: for high Cp
the focus will be on exploration, and for low Cp the focus will be on exploitation.

There are two issues with the current form of the MCTS algorithm. The first
was already mentioned and involves the tuning of the Cp parameter. Sometimes

2 The factor two outside and inside the square root of the UCT formula are a convention.
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the region of Cp that yields good values is small, thus it may be computationally
expensive to find an appropriate Cp. We return to this issue in section 2.3.3. Now
we focus on the second issue: due to the natural asymmetry of trees, there is more
exploration at nodes close to the root compared to the nodes deeper in the tree.
Moreover, only a few branches are fully expanded to the bottom. Consequently, the
final variables in the scheme will be filled out with the variables of a random playout.
No optimisation is done at the end of these branches. As a result, if a very specific
order of moves at the end of the tree gives a better outcome, this solution will not
be found by MCTS. The issue can be partially reduced by adding a new parameter
that specifies whether the Horner scheme should be constructed in reverse, so that
the variables selected near the root of the tree are actually the last to be extracted
[14, 53].
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Figure 4: res(7,5): differences between forward (left) and backward (right) Horner
schemes, at N = 1000 tree updates with SA-UCT. Forward Horner schemes
generate a region of Cp where the number of operations is near the global
minimum, whereas backward schemes have multiple high-density local
minima and a diffuse region.

In figure 4 the difference between a forward and a backward MCTS search with
1000 updates is shown for the polynomial res(7,5) in scatter plot. For the forward
construction, we see that there is a region in Cp where the results are good: the
lowest measured value is found often. However, the backward scheme does not have
a similar range. For other polynomials, it may be better to use the backward scheme,
as is the case for HEP(σ) and HEP(F13). Currently, there is no known way to predict
whether forward or backward construction should be used. Thus, this introduces an
extra parameter to our algorithm.

Even though the scheme direction parameter reduces the problem somewhat, the
underlying problem that there is little exploration at the end of the tree still remains.
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To overcome the issues of tuning Cp and the lack of exploration, we study a related
tree search method called Nested Monte Carlo Search in the next section.

2.3.2 Nested Monte Carlo Search

Nested Monte Carlo Search (NMCS) addresses the issue of the exploration bias
towards the top of the tree by sampling all children at every level of the tree [54]. In
its simplest form, called a level-1 search, a random playout is performed for each
child of a node. Next, the child with the best score is selected, and the process is
repeated until one of the end states is reached. This method can be generalized to a
level k search, where the above process is nested: a level k search chooses the best
node from a level k− 1 search performed on its children. Thus, if the NMCS level is
increased, the top of the tree is optimised with greater detail. Even though NMCS
makes use of random playouts, it does so at every depth of the tree as the search
progresses. Consequently, there is always exploration near the end of the tree.

In figure ?? the results for level 2 NMCS are shown for HEP(σ). The average
number of operations is 4189± 43 (a standard deviation of 43). To compare the
performance of NMCS to that of MCTS, we study the run-time. Since more than 90%
of the run-time is spent on the evaluation function, we may compare the number of
evaluations instead. A level-2 search for HEP(σ) takes 8500 evaluations. In order to
be on a par with MCTS, the score should have been between MCTS 1000 and MCTS
10 000 iterations. However, we see that the score is higher than MCTS with 1000
iterations and thus we may conclude that the performance of NMCS is inferior to
MCTS for HEP(σ).

We have performed similar experiments with NMCS on other polynomials, but
the resulting average number of operations were always greater than MCTS’s. The
reason is likely because we select a low level k: a level-1 search selects the best
child using one sample per child, a process which is highly influenced by chance.
However, there are some performance issues with using a higher k. To analyse these,
we investigate the number of evaluations that a level n search requires.

The form of our tree is known, since every variable should appear only once. This
means that there are n children at the root, n− 1 children of children, and n− d
children at depth d. Thus a level-1 search takes n + (n− 1) + (n− 2) + . . . + 1 =
n(n + 1)/2 evaluations. It can be shown that a level k search takes Sk+n

n , where S
is the Stirling Number of the First Kind. This number grows rapidly: if k = 1 and
n = 15, the number of evaluations is 120, and for level k = 2, it takes 8500 evaluations.
For an expression with 100 variables, a level-1 search takes 5050 evaluations, and a
level-2 search takes 13 092 125 evaluations.

The evaluation function is expensive for our polynomials: HEP(F13) takes about
0.4 second per evaluation and HEP(F24) takes 3.0 seconds. We have experimented
with paralellising the evaluation function, but due to the fine-grained nature of the
evaluation function, this was unsuccessful. For HEP(F24) a million iterations will be
slow, hence for practical reasons we have only experimented with a level-1 search.
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Figure 5: NMCS level 2 for HEP(σ), taking 8500 evaluations. This is comparable in
CPU time to MCTS with 8500 runs. The number of operations is 4189± 43,
averaged over 292 samples.

The domains in which NMCS performed well, such as Morpion Solitaire and
SameGame, have a cheap evaluation function relative to the tree construction [54]. If
the evaluation function is expensive, even the level-1 search takes a long time.

Based on the remarks above, we may conclude that for polynomials with a large
number of variables, NMCS becomes infeasible.

2.3.3 SA-UCT

Since NMCS is unsuitable for simplifying large expressions, we return our focus to
MCTS, but this time on the UCT best child criterion. We now consider the role of
the exploration-exploitation constant Cp. We notice that in the first iterations of the
simulation there is as much exploration as there is in the final iterations, since Cp
remains constant throughout the search. For example, the final 100 iterations of a
1000 iterations MCTS run are used to explore new branches even though we know in
advance that there is likely not enough time to reach the final nodes. Thus we would
like to modify the Cp to change during the simulation to emphasise exploration early
in the search and emphasise exploitation towards the end.

We introduce a new, dynamic exploration-exploitation parameter T that decreases
linearly with the iteration number:

T(i) = Cp
N − i

N
, (9)
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where i is the current iteration number, N the preset maximum number of iterations,
and Cp the initial exploration-exploitation constant at i = 0.

We modify the UCT formula to become:

argmax
children c of s

x̄(c) + 2T(i)

√
2 ln n(s)

n(c)
, (10)

where c is a child of node s, x̄(c) is the average score of child c, n(c) the number of
visits at node c, and T(i) the dynamic exploration-exploitation parameter of formula
(9).

The role of T is similar to the role of the temperature in Simulated Annealing [69]:
in the beginning of the simulation there is much emphasis on exploration, the
analogue of allowing transitions to energetically unfavourable states. During the
simulation the focus gradually shifts to exploitation, analogous to annealing. Hence,
we call our new UCT formula “Simulated Annealing UCT (SA-UCT)”.

In the past related changes have been proposed. For example, Discounted UCB
[70] and Accelerated UCT [71] both modify the average score of a node to discount
old wins over new ones. The difference between our method and past work is that
the previous modifications alter the importance of exploring based on the history
and do not guarantee that the focus shifts from exploration to exploitation. In
contrast, this work focuses on the exploration-exploitation constant Cp and on the
role of exploration during the simulation.

We implemented four improvements over UCT. (1) The final iterations are used
effectively. (2) There is more exploration in the middle and at the bottom of the tree.
This is due to more nodes being expanded at lower levels, because the T is lowered.
As a consequence, we see that (3) more branches reach the end states. As a result, (4)
there is exploration near the bottom, where there was none for the random playouts.

In order to analyse the effect of SA-UCT on the fine-tuning of Cp (the initial
temperature), we perform a sensitivity analysis on Cp and N [14]. In figure 6 the
results for the res(7,5) polynomial with 14 variables are displayed. Horizontally, we
have Cp, and vertically we have the number of operations (where less is better). A
total of 4000 MCTS runs (dots) are performed for a Cp between 0.001 and 10. On the
left we show the results for UCT and on the right for SA-UCT. We identify a region
with local minima for low Cp, a diffuse region for high Cp and an intermediate
region in Cp where good results are obtained. This region becomes wider if the
number of iterations N increases, for both SA-UCT and UCT.

However, we notice that the intermediate region is wider for SA-UCT, compared
to UCT. For N = 1000, the region is [0.1, 1.0] for SA-UCT, whereas it is [0.07, 0.15] for
UCT. Thus, SA-UCT makes the region of interest about 11 times larger for res(7,5).
This stretching is not just an overall rescaling of Cp: the uninteresting region of low
Cp did not grow significantly. For N = 3000, the difference in width of the region of
interest is even larger.

In figure 7, we show a similar sensitivity analysis for HEP(σ) with 15 variables.
We identify the same three regions and see that the region of interest is [0.5, 0.7] for
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UCT and [0.8, 5.0] for SA-UCT at N = 1000. This means that the region is about 20
times larger relative to the uninteresting region of low Cp, which grew from 0.5 to
0.8. We have performed experiments on six other expressions, and we obtain similar
results [14].

On the basis that SA-UCT compared to UCT (1) decreases the sensitivity to Cp by
an order of magnitude, and (2) produces Horner schemes of the same quality, we
may conclude that SA-UCT reduces the fine-tuning problem without overhead.

2.4 stochastic local search

In the preceding sections we have concluded that MCTS with SA-UCT is able to find
Horner schemes that yield a smaller number of operations than the naive occurrence
order schemes. For some polynomials, MCTS yields reductions of more than a factor
24. However, in section 2.3.1 we have seen that there are some intrinsic shortcomings
to using a tree representation, especially if the depth of the search tree becomes
(too) large. We noticed that many branches do not reach the bottom when there are
more than 20 variables (we remind the reader that the problem depth is equivalent
to the number of variables) as is the case with many of our expressions. MCTS
determines the scores of a branch by performing a random play-out. If the branch is
not constructed all the way to the bottom, the final nodes are therefore random (no
optimisation). For Horner schemes, the entire scheme is important, so sub-optimal
selection of variables at the end of the scheme can have a significant impact.

The issue of poor optimisation at the bottom of the tree motivated us to look for a
method that is symmetric in its optimisation: both the beginning and the end should
be optimised equally well. In this section we (re)consider which class of algorithms
is best suited for the Horner scheme problem. The Horner scheme problem belongs
to the class of permutation problems. Many algorithms for optimising permutation
problems have been suggested in the literature, such as Stochastic Hill Climbing
(SHC) [72], Simulated Annealing (SA) [69], Tabu Search [62], Ant Colony Optimisa-
tion [73], and Evolutionary Algorithms [74]. Since measurements take weeks per
algorithm, we limit ourselves to two. In [11] we provide qualitative motivations for
focusing on SHC and SA. In summary, the absence of heuristics and the high cost of
sampling to tune parameters make the other options less interesting.

The structure of section 2.4 is as follows. In section 2.4.1 we consider the differ-
ences between SHC and SA, in section 2.4.2 we find an appropriate neighbourhood
structure, and in 2.4.3 we study the state space properties for given neighbourhood
structures.

2.4.1 SHC versus SA

A Stochastic Hill Climbing procedure, also known as iterative improvement local
search, has two parameters: (1) the number of iterations N, and (2) the neigh-
bourhood structure, which defines the transition function [75]. We consider the
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Figure 6: res(7,5) polynomial with 14 variables: on the x-axis we show Cp and on the
y-axis the number of operations. A lower number of operations is better.
On the left, we show UCT with constant Cp and on the right we show
SA-UCT where Cp is the starting value of T. Vertically, we increase the tree
updates N from 300, to 1000, to 3000. As indicated by the dashed lines,
an area with an operation count close to the global minimum appears, as
soon as there are sufficient tree updates N. This area is wider for SA-UCT
than for UCT.
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Figure 7: HEP(σ) with 15 variables: on the x-axis we show Cp and on the y-axis the
number of operations. A lower number of operations is better. On the left,
we show UCT with constant Cp and on the right we show SA-UCT where
Cp is the starting value of T. Vertically, we increase the tree updates N
from 300, to 1000, to 3000. As indicated by the dashed lines, an area with
an operation count close to the global minimum appears, as soon as there
are sufficient tree updates N. This area is wider for SA-UCT than for UCT.
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neighbourhood structure the most important parameter, since it is tunable. A
Stochastic Hill Climbing procedure only moves to a neighbour if the evaluation score
(number of operations) is improved. As a consequence, SHC could get stuck in local
minima. Therefore, we consider to use Simulated Annealing instead of SHC, since
SA has the ability to escape from local minima.

Simulated Annealing (SA) is a popular generalisation of SHC. It has four additional
parameters with respect to SHC, namely (3) the initial temperature Ti, (4) the final
temperature Tf , (5) the acceptance scheme, and (6) the cooling scheme [69]. The
temperature governs the probability of accepting transitions with an energy higher
than the energy of the current state. The cooling scheme governs how fast and in
what way the temperature is decreased during the simulation (linearly, exponentially,
etc.). Exponential cooling is frequently used. The acceptance scheme is most often
the Boltzmann probability exp(∆E/T), that defines the probability of selecting a
transition to an inferior state, given the difference in evaluation score ∆E. The
number of iterations (1) of SA is not independent of the other parameters, as it can
be computed from the initial temperature, final temperature, and cooling scheme.
Most often, the search is started from a random position in the state space. In
our application, we start from a random permutation of the variables. A basic SA
algorithm is displayed in Algorithm 1.

s← random state, best← s, T ← Ti;
while T > Tf do

s′ ← random neighbour(s);

if e(Es−Es′)/T > rand(0, 1) then
s← s′; /* Accept new state */

if Es < Ebest then
best← s;

end
end
T ← αT; /* Annealing */

end
return best;

Algorithm 1: A basic SA implementation, with a neighbourhood function (2),
initial temperature Ti (3), final temperature Tf (4), a Boltzmann acceptance
scheme (5), and exponential cooling with cooling parameter α (6). The number
of iterations (1) is logα(Tf /Ti).

For SA we consider the following. If the initial temperature is high, then transitions
to inferior states are permitted, allowing an escape from local minima. In order to
determine the effect of the initial temperature Ti on the results, we will perform
a sensitivity analysis. We use Boltzmann probability as the acceptance scheme,
exponential cooling, a final temperature of 0.01, N = 1000 iterations, and a swap
neighbourhood structure (for a visualisation, see figure 9).
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Figure 8: The relative improvement (lower is better) of the number of operations
for a given initial temperature Ti, compared to Ti = 0. Each data point is
the average of more than 100 SA runs with 1000 iterations, and a swap
neighbourhood structure. We show the expressions HEP(σ), HEP(F13),
res(7,5), and HEP(b). The number of operations is only slightly influenced
by the initial temperature, since the best improvement over Ti = 0 is smaller
than 5%.

In figure 8 we show the relative improvement (lower is better) of the number of
iterations for a given initial temperature Ti compared to Ti = 0 for the expressions
HEP(σ), HEP(F13), res(7,5), and HEP(b). Naturally, for Ti = 0, the relative improve-
ment to itself is 1. For all expressions except HEP(b), we see a region where the
improvement is largest: for HEP(σ) it is approximately [1000, 7000], for HEP(F13) it
is [12 000, 17 000] and for res(7,5) it is [5000, 20 000]. This improvement is less than
5%. For higher T, too many transitions to inferior states are accepted to obtain good
results. HEP(b) seems to be independent of the initial temperature. The fluctuations
of 1% are statistical fluctuations.

The difference between the best results for all the expressions in figure 8 and
the result at T = 0 is less than 5%. Since a Ti = 0 SA search is effectively an SHC
search, this means that an almost parameterless Stochastic Hill Climbing (SHC) is
able to obtain results that are only slightly inferior. This is surprising, since the way
SHC traverses the state space is different from the way by SA. We here reiterate
once more, SHC can get stuck in local minima, whereas SA has the possibility to
escape. Furthermore, if a saddle point is reached, SA is able to climb over the hill,
whereas SHC has to walk around the hill in order to escape. In subsection 2.4.3
we will show that local minima are uncommon, and that most of them are actually
saddle points (i.e., local “minima” with a way to escape). Consequently, SA performs
slightly better not because it can escape from local minima, but because, for some
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polynomials, walking over a saddle point (SA) is slightly faster to find better states
than trying to circumvent the saddle point (SHC).

The reason why we prefer SHC over SA is that (1) the fundamental algorithmic
improvement of SA – the ability to escape from local minima – is not used in practice,
as we will see in subsection 2.4.3, and (2) tuning the SA parameters is expensive.
Several methods have been suggested to tune the initial temperature, such as [76]
and [77], but they often take several hundred iterations to obtain reliable values
(which is quite expensive in our case). The small benefit of SA can be obtained by
three other ways. First, by performing SHC runs in parallel (see section 2.4.2), second,
by increasing the number of iterations, and third by selecting an initial temperature
based on previous information such as figure 8. Using these three optimisations, a
small improvement is obtained without increasing the run time.

2.4.2 Neighbourhood structure

The main parameter of SHC is the neighbourhood structure. Choosing an appropriate
neighbourhood structure is crucial, since it determines the shape of the search
space and thus influences the search performance. In [78] it is observed that the
neighbourhood structure can have a significant impact on the quality of the solutions
for the Travelling Salesman Problem, the Quadratic Assignment Problem, and the
Flow-shop Scheduling Problem.

There are many neighbourhood structures for permutation problems such as
Horner schemes. For example, a transition could swap two variables in the Horner
scheme or move a variable in the scheme. However, there are also neighbourhood
structures that involve changing larger structures. Figure 9 gives an overview of four
basic transitions from which others can be constructed. From top to bottom, it shows
(a) a single swap of two variables in the scheme, (b) a shift of a variable, (c) a shift
of a sublist, and (d) a mirroring of a sublist. At each iteration of SHC, a transition
to a randomly chosen neighbour is proposed. For the single swap transition, this
involves the selection of two random variables in the scheme.

To examine which neighbourhood structure performs best for Horner schemes,
we investigate seven (combinations of) neighbourhood structures, viz. (1) a single
swap, (2) two consecutive swaps, (3) three consecutive swaps, (4) a shift of a single
variable, (5) mirroring of a sublist, (6) a sublist shift (which we call ‘many shift’),
and (7) mirroring and/or shifting with an equal probability (which we call ‘mirror
shift’). Swapping multiple times in succession allows for faster traversal of the
state space, but also runs the risk to miss states. Moreover, we have tested hybrid
transitions. For instance, we performed two consecutive swaps in the first half of the
simulation and resorted to single swaps for the latter half. However, we found that
these combinations did not perform better. In order to present clear plots, we have
omitted the plots resulting from these combinations.

Below we discuss (A) the measuring quality, (B) detailed results for res(7,6) and
HEP(σ), (C) detailed results for HEP(F13) and HEP(b), and (D) combined results.
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(b) a b c d b a c d

(c) a b c d c a b d

(d) a b c d c b a d

Figure 9: The elementary neighbourhood structures we use. From top to bottom: (a)
a single swap, (b) a single shift, (c) shift of a sublist, and (d) mirroring of a
sublist.

(A) Measuring quality

We now start investigating two methods of measuring the quality of a neighbour-
hood structure by: (A1) the average number of operations obtained by using a
neighbourhood structure, and (A2) the lowest number of operations after performing
several runs.

a1 Figure 10 shows the distribution of the number of operations of the expression
HEP(F13) after 10 000 SHC runs with the neighbourhood structure that exchanges
two random variables. The average of this distribution is somewhere in the middle,
but the actual values that one will measure will be either near 51 000 or near 62 000.
Thus, the average is not an appropriate measure.

a2 So, we decided to measure the lowest score of several runs (A2), because in
practice SHC is run in parallel, and so the results are more in line with those from
practical applications. Thus, we are interested in the neighbourhood structure that
has the lowest expected value of the minimum of k measurements. Here, we can use
the expected value E [min (X0, . . . , Xk−1)]:

V0 +
L−2

∑
t=0

(Vt+1 −Vt) (1− cdf(D, t))k (11)

where k is the number of measurements, Xn is the score of the nth measurement,
t is an index in the discrete distribution, Vt is the number of operations at t, Dt
is the probability of outcome Vt, L is the number of possible outcomes, and cdf
the cumulative distribution function. We shall denote the expected value of the
minimum of k runs by Emin,k.

Because the number of measurements k is in the exponent in eq. (11), Emin,k
decreases exponentially with k and finally converges to V0. As a consequence,
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Figure 10: HEP(F13) expression with 10 000 runs and 1 swap as a neighbourhood
structure. Typical for our domain is that there are often two or more
spikes. If the simulation is run multiple times, the probability of finding a
value close to the minimum is high.

neighbourhood structures with a high standard deviation are more likely to achieve
better results, since at high k the probability of finding a low value at least once is
high. We found that four parallel runs (k = 4) yielded good results.

The results for res(7,4), res(7,5), and HEP(F24) are similar, and are omitted for
brevity (see [11]). Polynomial res(9,8) is too time consuming for such a detailed
analysis (it would take around 35 days to collect all data).

(B) Results for res(7,6) and HEP(σ)

In figure 11a the performance of the neighbourhood structures for the expression
res(7,6) is shown. We see that shifting a single variable (‘1 shift’) has the best
performance at a low number of iterations N, followed by 2 consecutive swaps (‘2
swap’). At around N = 900 all neighbourhood structures have converged. Thus,
from N = 900 onward it does not matter which structure is chosen.

In figure 11b we show the performance of the neighbourhood structures for
HEP(σ). We see that ‘1 shift’ has the best performance at low N. At N = 600, all the
neighbourhood structures have converged. The characteristics of this plot are similar
to those of res(7,6).

We suspect that for a small state space, i.e., a small number of variables, there is
not much difference between the neighbourhood structures, since the convergence
occurs quite early (below N = 1000). Therefore, we look at two expressions with
more variables: HEP(F13) with 24 variables, and HEP(b) with 107 variables.
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Figure 11: The expected number of operations of the minimum of four SHC runs with
N iterations for res(7,6) (left), and HEP(σ) (right). For res(7,6) the 1 shift
performs best for low N, followed by the 2 swap. All the neighbourhood
structures converge at N = 900. For HEP(σ), we see that 1 shift has the
best performance at low N. At N = 600, all the neighbourhood structures
have converged. The characteristics of the two plots are similar.

(C) Results for HEP(F13) and HEP(b)

In figure 12a we show the results for HEP(F13). We see that all the neighbourhood
structures that involve small changes (‘1 swap’, ‘2 swap’, ‘3 swap’, and ‘1 shift’) are
outperformed by the neighbourhood structures that have larger structural changes
(‘mirror’, ‘many shift’, and ‘mirror shift’). The difference is approximately 8%. Both
groups seem to have converged independently to different values. However, for
larger N, we expect all neighbourhood structures to converge to the same value. The
point of convergence has shifted to higher N compared to res(7,6), and HEP(σ), since
the state space has increased in size from 15! to 24!. From this plot, we may conclude
that the state space of HEP(F13) is more suited to be traversed with larger changes.

In figure 12b the performance of the neighbourhood structures for HEP(b) is
shown. We see that two consecutive swaps perform best at low N and that ‘1 swap’,
‘2 swap’, ‘3 swap’, and ‘1 shift’ converge at N = 1000. The neighbourhood structures
that involve larger structural changes (‘mirror’, ‘many shift’, ‘mirror shift’) perform
worse. These results are different from those of HEP(F13): for HEP(b), with an
even larger state space than HEP(F13), smaller moves are better suited. This means
that the mere number of variables is not a good indicator for the selection of a
neighbourhood scheme.
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Figure 12: The expected number of operations of the minimum of four SHC runs
with N iterations for HEP(F13) (left), and HEP(b) (right). For HEP(F13),
mirror, many shift, and mirror shift converge to a lower value than the
neighbourhood structures 1 swap, 2 swap, 3 swap, and 1 shift. For HEP(b),
the 2 swap performs best for low N. 1 swap, 2 swap, 3 swap, and 1 shift
converge at N = 1000. The other neighbourhood structures perform
worse. Thus, the characteristics of HEP(F13) and HEP(b) are different.

(D) Combined results

For the four benchmark expressions described in (B) and (C), and for the other three
benchmark expressions, we observe that the relative improvement of the choice of
the best neighbourhood structure compared to the worst neighbourhood structure
is never more than 10%. Furthermore, we observe that there are two groups of
neighbourhood structures when the state space is sufficiently large. Group 1 makes
small changes to the state (‘1 swap’, ‘2 swap’, ‘3 swap’, ‘1 shift’). Group 2 makes large
structural changes (‘mirror’, ‘many shift’ ‘mirror shift’). The two groups converge
before N = 1000 for expressions with small state spaces, such as HEP(σ), but are
further apart for expressions with more variables, such as HEP(F13) and HEP(b). The
difference in quality in the group itself is often negligible (less than 3%). Thus, as a
strategy to apply the appropriate neighbourhood structure, we suggest to distribute
the number of parallel runs evenly among the two groups: in the case of four parallel
runs, two of the runs can be performed using one neighbourhood structure from the
group 1 and two from group 2.

2.4.3 Two state space properties

The fact that SHC works so well is surprising. Two well-known obstacles are (1)
a Stochastic Hill Climbing can get stuck in local minima which yields inferior
results [72], and (2) the Horner scheme problem does not have local heuristics, so
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Figure 13: The distribution of the number of operations for the HEP(F13) expression
with 1 swaps for 1000 iterations (left), 10 000 iterations (middle) and
100 000 iterations (right) at T = 0. There appears to be a local minimum
around 62 000. However, as the number of iterations is increased, the
local minimum becomes smaller relative to the global minimum region
(middle) and completely disappears (right). We may conclude that the
apparent local minimum is not a local minimum, but a saddle point, since
SHC is able to escape from the ‘minimum’.

there is no guidance for any best-first search. Remarkably, SHC only needs 1000

iterations for a 107 variable expression (HEP(b)) to obtain good results, whereas a
TSP benchmark problem with a comparable state space size, viz. kroA100 [79] with
100 variables, takes more than a million iterations to converge using a manually
tuned SA search.

A thousand iterations is also a small number compared to the size of the state
space. The average distance between two arbitrary states is 98 swaps. A thousand
iteration SHC search accepts approximately 300 suggested swaps, so at least 33%
of all the accepted moves should move towards the global minimum. This scenario
would be unlikely if the state space is unsuited for SHC, so perhaps the state
space has convenient properties for our purposes. We discuss the following two
properties in the subsections below: (A) local minima, and (B) the region of the
global minimum.

(A) Local minima and saddle points

To obtain an idea on the number of local minima, we measure how often the
simulation gets stuck: if there are many local minima, we expect the simulation to
get stuck often. In figure 13, we show the distribution of HEP(F13) for 1000, 10 000,
and 100 000 SHC runs respectively. For 1000 and 10 000 runs we see two peaks: one
at the global minimum near 51 000 and one at an apparent local minimum near
62 000. As the number of iterations is increased, the weight shifts from the apparent
local minimum to the global minimum: at 1000 iterations, there is a probability of
27.5% of arriving in the region of the global minimum, whereas this is 36.3% at
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10 000 iterations. Apparently the local minimum is ‘leaking’: given sufficient time,
the search is able to escape. The figure on the right with 100 000 iterations confirms
the escaping possibility: the apparent local minimum has completely disappeared.
Thus, the local minimum is in reality a saddle point, since for a true local minimum
there is no path with a lower score leading away from the minimum. Since SHC
requires many iterations to escape from the saddle point, only a few transitions
reduce the number of operations.

We observe that apparent local minima disappear for our other benchmark ex-
pressions as well. SHC runs with 100 000 iterations approach the global minimum
for all of our benchmark expressions. For example, for HEP(F13) mentioned above,
the result is 50636± 57 and for HEP(σ) the result is 4078± 9. The small standard
deviations indicate that no runs get stuck in local minima (at least not in local
minima significantly higher than the standard deviation).

From these results we may conclude that true local minima, from which a
Stochastic Hill Climbing cannot escape, are rare for Horner schemes.

(B) Flatness of the state space

To build an intuition for what the state space looks like, we consider its flatness. We
measure how many of the neighbours have a value (number of operations) that does
not differ by more than 1%: |xn−x|

|x| < 1%, where x is the reference state and xn is a
neighbour of x. For brevity, we shall refer to this as ‘close’.

In figure 14a we show the results for HEP(σ) for the current states during a typical
single SHC run. We see that throughout the simulation the percentage of close
neighbours is approximately 30%. We compare these results to an SA run of the TSP
problem kroA100 (displayed in figure 14b). We see that for a random starting state
the number of close neighbours is 30% as well, but as the simulation approaches
the global minimum (at the right of the graph), the number of close neighbours
decreases to 0.9%. As a result, the global minimum for TSP must be very narrow.

These results are a first hint that the state space of Horner is flat and terrace-like,
whereas the TSP problem is more trough-like, with steep global/local minima. To
investigate the flatness more deeply, we have looked at the distribution of the relative
difference |xn−x|

|x| . For the global minimum of the HEP(b) expression, this is depicted
in figure 15. We see that about 75% of the neighbours are within 1% and 95% within
5%, which is even higher than for HEP(σ). We observed similar features for the other
points in the state space, including hard to escape saddle points.

The property that the state space is flat is not only present in physics expressions,
but is found in our other four benchmark expressions as well. Additionally, we have
generated test expressions that we know to have interesting mathematical structures,
such as powers of expressions. For example, for the expression (4a + 9b + 12c2 +
2d + 4e3 − 2 f + 8g2 − 10h + i − j + 2k2 − 3j4 + l − 15m2)6, 43% of the neighbours,
18% of the second neighbours and 7.3% of the third neighbours are close.

The question arises why the number of close neighbours is so high for the HEP(b)
expression. For most expressions it is around 30%, but for HEP(b) it is 75%. A closer
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(a) HEP(σ) with SHC
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(b) kroA100 with SA

Figure 14: The typical number of close neighbours (value difference within 1%) for
the current state for HEP(σ) and SHC on the left, and for SA on the the
TSP benchmark problem kroA100 with 100 cities on the right. HEP(σ)
does not show a decrease in the number of close neighbours, but remains
steady around 30%. This is an indication that the state space is flat.
For kroA100, the early states have many close neighbours, but as the
simulation is converging to a minimum, the number of close neighbours
decreases to about 0.9%. This is an indication that the state space has
steep (local) minima.

inspection revealed that the HEP(b) expression has the special property that 90 of
the 107 variables never appear in the same term: a term that contains variable x does
not contain variable y and vice versa. As a result, the partial Horner schemes x, y
and y, x yield the same expression. The HEP(b) expression is not the only expression
with a high number of close neighbours: it represents a class of problems that often
appears in electron-positron scattering processes.

The fact that some variables do not appear together in the same term is caused
by a symmetry of the expression, since rearranging these variables in the scheme
does nothing if they are direct neighbours in the scheme. The more symmetrical
the expression is, the more likely it is that neighbours have the exact same value
or a close value (within 5%). In the case of a uniformly random expression where
the number of terms is much greater than the number of variables, we expect that
practically all swaps are ineffective. The reason is that there is a high probability
that each variable appears in an equal number of terms and has equal mixing.

Many, if not all, large expressions exhibit the ‘flatness’ property of their state space,
since in most cases the number of terms is much larger than the number of variables.
For the expressions that we have tested, the ratio of the number of terms and the
number of variables is always more than a factor 1000. As a consequence, most
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Figure 15: Relative difference of the values of swap neighbours of global minima for
the HEP(b) expression, sampled over 37 states. The mean is 0.015± 0.034.
The region is very flat: we observe that 85% of the neighbours have a
value that is within 1% of the current value.

variables will appear in many terms, which in turn increases uniformity, resulting in
neighbouring states with small differences in value (less than 5%).

2.5 performance of shc vs . mcts

Below, we compare the results of Stochastic Hill Climbing to the previous best results
from MCTS, for our eight benchmark expressions res(7,4), res(7,5), res(7,6), res(9,8),
HEP(σ), HEP(F13), HEP(F24) and HEP(b). The results of all the MCTS runs except for
res(9,8), and HEP(b) are taken from [53].3 The results are displayed in table 2.

The results for MCTS with 1000 and 10 000 iterations are obtained after consid-
erable tuning of Cp and after selecting whether the scheme should be constructed
forward or in reverse (i.e., the scheme is applied backwards [14]).

For smaller problems, we observe that the averages of SHC are on a par with
MCTS. However, we see that the standard deviations of SHC are higher than MCTS.
This is because for MCTS the first nodes are fixed rather fast, which limits the variety.
Consequently, we expect SHC to outperform MCTS if several runs are performed
in parallel. Indeed, this is what we see in the last column of table 2. The standard
deviations of MCTS are often an order of magnitude smaller than those of SHC, so
the benefits of running MCTS in parallel are smaller. We may conclude that SHC
has a better minimal behaviour if run in parallel.

3 We only consider optimisations by Horner schemes and CSEE. Additional optimisations that are men-
tioned in [53], such as ‘greedy’ optimisations, can just as well be applied to the results of SHC.
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vars original MCTS 1k MCTS 10k SHC 1k SHC 10k Emin,4 1k
res(7,4) 13 29 163 (3.86± 0.1) · 103 (3.84± 0.01) · 103 (3.92± 0.28) · 103 3834± 26 3819± 9
res(7,5) 14 142 711 (1.39± 0.01) · 104 13768± 28 13841± 441 13767± 21 13770± 5
res(7,6) 15 587 880 (4.58± 0.05) · 104 (4.54± 0.01) · 104 46642± 3852 (4.61± 0.25) · 104 (4.55± 0.16) · 104

res(9,8) 19 83 778 591 (5.27± 0.25) · 106 (4.33± 0.31) · 106 (4.13± 0.34) · 106 (4.03± 0.17) · 106 (3.97± 0.18) · 106

HEP(σ) 15 47 424 4114± 14 4087± 5 4226± 257 4082± 58 4075± 25
HEP(F13) 24 1 068 153 (6.6± 0.2) · 104 (6.47± 0.08) · 104 (5.99± 0.51) · 104 (5.80± 0.55) · 104 (5.37± 0.40) · 104

HEP(F24) 31 7 722 027 (3.80± 0.06) · 105 (3.19± 0.04) · 105 (3.16± 0.23) · 105 (3.06± 0.23) · 105 (2.98± 0.09) · 105

HEP(b) 107 1 817 520 (1.81± 0.04) · 105 (1.65± 0.08) · 105 (1.50± 0.08) · 105 (1.40± 0.06) · 105 (1.44± 0.04) · 105

Table 2: SHC compared to MCTS. The MCTS results for all expressions except
res(9,8) and HEP(b) are from [53]. All the values are statistical averages over
at least 100 runs. SHC results have a larger standard deviation, and thus the
expected value of the minimum is often lower than these values (see last
column).

For our largest expressions, HEP(F13), HEP(F24) and HEP(b), we observe that
SHC with 1000 iterations yields better results than MCTS with 10 000 iterations.
For HEP(F24), the average of SHC with 1000 iterations is about 20% better than the
average for MCTS with 1000 iterations. In fact, the results are slightly better than
MCTS with 10 000 iterations. If we take the Emin,4 into account, the expected value
for HEP(F24) is an additional 7% less.

The fact that SHC outperforms MCTS when the number of variables is larger than
23, may be due to the fact that there are not sufficient iterations for the branches to
reach the bottom, making the choice of the last variables essentially random (see
section 2.4 and [14]). This may also be the reason why for MCTS it is important
whether the scheme is constructed forward or in reverse: if most of the performance
can be gained by carefully selecting the last variables, building the scheme in reverse
will yield better performance.

SHC is 10 times faster (in clock time) than MCTS, since most of the time is spent
in the evaluation function. It is able to make reductions up to a factor of 26 for our
largest expression.

2.6 chapter conclusion

Monte Carlo Tree Search (MCTS) with UCT has proven to be a good candidate to
simplify large expression [53]. A downside of this method is that the constant Cp
that governs exploration versus exploitation has to be tuned. The quality of the final
scheme largely depends on this constant. We have modified the UCT algorithm
so that Cp decreases linearly with the iteration number [14]. As a result, the final
iterations are spent on optimising the end of the tree, instead of exploring. We show
that using this modified UCT, the sensitivity to Cp is decreased by at least a factor
10 [13, 14]. Thus, the tuning is simplified.

Tree search methods, even with SA-UCT, have the problem that the beginning of
the tree is optimised more than the end. For Horner schemes this does not lead to
optimal solutions. Therefore we considered other algorithms that optimise uniformly.
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Since sampling is slow for our use case, tuning many parameters is infeasible. For
this reason, we preferred straightforward algorithms over sophisticated ones. In
the case of Horner schemes, we have found that one of the most basic algorithms,
Stochastic Hill Climbing, yields the best results.

2.6.1 Findings and conclusions

Stochastic Hill Climbing provides a search method with two parameters: (1) the
number of iterations (computation time) and (2) the neighbourhood structure, which
is a tunable parameter. We found that running half of the simulations with a
neighbourhood structure that makes minor changes to the state (i.e., a single shift of
a variable), and running the other half with a neighbourhood structure that involves
larger changes (i.e., the mirroring of a random sublist) is a good strategy for all of our
benchmark expressions (see subsection 2.4.2). Consequently, only the computation
time remains as an actual parameter. From our experimental results we arrive at
three subconclusions: (1) SHC obtains similar results to MCTS for expressions with
around 15 variables, (2) SHC outperforms MCTS for expressions with 24 or more
variables, and (3) SHC requires ten times fewer samples than MCTS to obtain similar
results. Therefore we may conclude that SHC is more than 10 times faster [11].

The result that a basic algorithm such as SHC performs well is surprising, since
Horner schemes have at least two properties that make the search hard: (1) there
are no known local heuristics, and (2) evaluations could take several seconds. In the
previous sections we have shown that the performance of SHC is so good, because
the state space of Horner schemes is flat and has few local minima.

The number of operations is linearly related to the time it takes to perform
numerical evaluations. The difference between the number of operations for the
unoptimised and the optimised expression is more than a factor 24 compared. As a
consequence, we are able to perform numerical integration (via repeated numerical
evaluations) at least 24 times faster.

For High Energy Physics, the contribution is immediate: numerical integration of
processes that are currently experimentally verified at CERN can be done significantly
faster.

2.6.2 Future research

We see two promising options for future research. First, our algorithms assume that
the expressions are commutative, but our implementation could be expanded to be
applied to generic expressions with non-commuting variables. Especially in physics,
where tensors are common objects, this is useful. Horner’s rule can only be applied
uniquely to commutative variables, but the pulling outside brackets keeps the order
of the non-commuting objects intact. Thus, for Horner’s rule the only required
change is the selection of commutative variables for the scheme. The common
subexpression elimination should honour the ordering of the non-commutative
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objects. For example, in figure 2, the two highlighted parts are not a common
subexpression if the variables are non-commutative (a + e cannot be moved to the
left of c). To enable non-commutative objects, CSEE should only compare connected
subsets.

Second, additional work can be put in finding other methods of reductions. For
example, expressing certain variables as linear combinations of other variables may
reduce the number of operations even further. Many of these patterns cannot
be recognised by common subexpression elimination alone. Determining which
variables should be expressed as linear combinations of other variables to yield
optimal results is an open problem. Perhaps Stochastic Local Search techniques are
applicable to this subject as well.

Our algorithms are implemented in the next release of the open source symbolic
manipulation system Form [80] and are used by multiple research groups.
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3
F O U R L O O P F E Y N M A N D I A G R A M C A L C U L AT I O N S

In this chapter we focus on answering

RQ2: How can we construct a program that can compute four-loop massless
propagator integrals more efficiently?

Over the years particle physics experiments have become more and more precise.
This creates the need for more accurate calculations of the underlying processes.
Quantum Field Theory (QFT) has proven to be a successful framework for mak-
ing predictions about scattering experiments in particle accelerators such as the
Large Hadron Collider (LHC). Especially Quantum Chromodynamics (QCD), the
theory that describes the strong nuclear force mediated by gluons, is essential. One
key feature of QCD is that interactions between particles can be described as a
perturbative series, where every order improves the accuracy. Since the coupling
constant is relatively large, higher order calculations are not negligible. For processes
such as the production of Higgs bosons, three-loop calculations have recently been
performed [81, 82]. This in turn necessitates the evaluation of the four-loop splitting
functions to determine the parton distributions inside the proton. A complete calcu-
lation of the four-loop splitting functions is currently out of the question, in part due
to the complexity of the integral reductions. The next best solution is to evaluate
a number of Mellin moments as was done at the three-loop level over the past 25

years [83–87]. One way to obtain such moments is by converting them to integrals
of a massless propagator nature by expansions in terms of the parton momentum.
The computer program that could deal with the resulting three-loop integrals is
called Mincer [32, 33] and its algorithms are based on Integration by Parts (IBP)
identities [43]. To obtain higher moments Mincer has been optimised heavily. This
eventually resulted in an N = 29 moment calculation for polarised scattering [88].

The construction of a similar program for four-loop propagator integrals is a far
more formidable task. The attempts to solve the problem have led to the exploration
of different techniques, such as the 1/D expansions of Baikov [89–91]. Instead of
solving the systems of IBP equations parametrically as was done in Mincer, Laporta
developed a method to solve the system by substituting values for its parameters [42].
This method has been used to create generic programs that can handle integrals
in a flexible way [92–96]. The drawback of these programs is that it is in essence
a brute-force Gaussian reduction, that needs to reduce many subsystems that will
drop out of the final answer. An extra complication is the fact that the system is
riddled with ‘spurious poles’ which are powers in 1/ε = 2/(4− D) that only cancel
by the time all contributions to the coefficient of a master integral have been added.
If it is not known in advance how many of these spurious poles will occur, one
cannot safely perform a fixed expansions in ε. In the three-loop Mincer program
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the spurious poles could be avoided thanks to the resolved triangle formula by
Tkachov [97], but for the all-N calculation these spurious poles caused significant
issues [34, 35, 98]. In general, spurious pole avoidance is considered too complicated
and is resorted to the very slow but exact arithmetic of rational polynomials.

A method capable for a parametric reduction of massless four-loop propagator
integrals has been developed by Roman Lee in a series of papers [99, 100]. It resulted
in the LiteRed program, which is a Mathematica package that constructs reduction
programs (also in Mathematica code). Although it is extremely elegant and as a
method powerful, the resulting four-loop propagator programs are too slow for most
practical applications (reductions take months or years).

In this chapter we describe Forcer, a Form [101, 102] program that is a hybrid
between various approaches. We discuss the construction of a precomputed reduc-
tion graph that describes how to reduce each topology and how to map topologies
with missing propagators into each other. Most topologies have straightforward
reduction rules due to known reducible substructures, such as triangles or inser-
tions. However, 21 topologies require a custom reduction rule (see section 3.6). Our
research methodology consists of three steps. (1) We construct the diamond rule,
which is able to efficiently reduce more topologies. Next, (2) we provide several
heuristics for custom reductions. Finally, (3) we construct a program that applies the
reduction rules to every topology.

The remainder of this chapter is structured as follows. In section 3.1 we define our
Feynman diagrams. We discuss the reductions of simple substructures in sections 3.2
(the insertion rule) and 3.3 (the carpet rule). Next, we introduce Integration by Parts
identities (IBPs) and construct the diamond rule in section 3.4 (step 1). In section 3.5
we show how to solve parametric IBPs by using heuristics (step 2). Section 3.6 lists all
21 topologies that are considered to be irreducible by lacking simple substructures.
These involve the master integrals and a few more topologies that cannot be resolved
in a single reduction step. In section 3.7 the superstructure of the program and its
derivation are described (step 3). The usage of the program is discussed in section 3.8.
In section 3.9 we show how to use expansions with Forcer. We describe how to
transform physical diagrams to input for Forcer in section 3.10. In section 3.11 we
show examples and we study the performance. Finally, section 3.12 provides the
chapter conclusion.

3.1 generalised feynman diagrams

We start by describing the objects we would like to compute. Each scattering
process requires the computation of Feynman integrals, which have an intuitive
graph representation. The order of perturbations is captured by the number of
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fundamental cycles (‘loops’) in the graph. An example of a two-loop Feynman
diagram with its corresponding integral is

Q

p1 p2

p3p4

p5 =
∫

dD p1dD p2
1

p2
1 p2

2(Q + p2)2(Q + p1)2(p1 − p2)2
, (12)

where D is the dimension. Each propagator is rewritten in terms of the momentum
basis {Q, p1, p2}. For physical calculations, the integrals should be computed in
four dimensions, but sadly many integrals are divergent in D = 4. To regulate the
infinities, which we should subtract at some point, we shift the space-time dimension
to D = 4− 2ε, where ε is a small positive number.

The diagram in eq. (12) has two loops and is scalar. In QCD, each propagator
(line) and vertex are functions, defined by Feynman rules, that can be rewritten into
a sum of scalar diagrams. For now we assume that the Feynman rules have been
applied, so that we are now concerned with computing diagrams of the form:

F =
∫

dDl1 · · · dDlm
(pr1 · pr2)

nr12 · · · (pr3 · pr4)
nr34

(p1 · p1)n1 · · · (pk · pk)nk
, (13)

where D is the dimension, li are loop momenta, and pi are momenta of propagators.
Potentially, the powers of the propagators ni contain powers of ε. These diagrams
with arbitrary powers on the numerator are not physical, but can be obtained from
them by rewriting momenta. Thus we consider a class of generalized Feynman
diagrams.

All dot products can always be rewritten into a basis. For an L-loop diagram with
K external momenta, the basis size is (L + 1)L/2 + LK. If the number of edges is E,
then there are (L + 1)L/2 + LK− E irreducible numerators for that topology.

In order to compute these diagrams, we shall rewrite them into a sum over simpler
integrals. A simpler integral is an integral with fewer number of lines or loops, or
with fewer numerators. Especially a reduction in the number of loops makes the
integral easier, as the degrees of freedom are lowered.

An example of a simplification of the numerator structure is given below:∫
dD p

p ·Q
p2(p + Q)2 =

∫
dD p

1
2
(p + Q)2 − p2 −Q2

p2(p + Q)2

=
∫

dD p
1
2

1
p2 +

∫
dD p

1
2

1
(p + Q)2 +

∫
dD p

1
2

−Q2

p2(p + Q)2

=
−Q2

2

∫
dD p

1
p2(p + Q)2 , (14)

where the first two terms are dropped since they are massless tadpoles. The last
term has no numerator structure and is thus considered simpler.
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In the following sections we describe simplifications of integrals that can always
be performed if the integral has a certain substructure.

3.2 integration of one-loop two-point functions

If the Feynman graph has a massless one-loop two-point function, as shown in figure
16, the bubble can be integrated. This structure is also referred to as an insertion.

p1

Q− p1

Q Q

Figure 16: A massless one-loop two-point function, also referred to as an insertion.

An efficient formula that works for an insertion with an arbitrary numerator
structure and arbitrary (including non-integer) powers for the propagators is the
following formula [103]:

∫ dDP
(2π)D

Pn(P)
P2α(P−Q)2β

=

1
(4π)2 (Q

2)D/2−α−β
[n/2]

∑
σ≥0

G(α, β, n, σ)Q2σ

{
1
σ!

(2
4

)σ
Pn(P)

}
P=Q

, (15)

where
Pn(P) = Pµ1 Pµ2 · · · Pµn , 2 = ∂2/∂Pµ∂Pµ , (16)

and G can be expressed in terms of Γ-functions:

G(α, β, n, σ) = (4π)ε Γ(α + β− σ− D/2)Γ(D/2− α + n− σ)Γ(D/2− β + σ)

Γ(α)Γ(β)Γ(D− α− β + n)
.

(17)
The function G is normalised to a function G in which (1) the powers of the

denominators are one plus potentially a multiple of ε and (2) there are no numerators.
The difference is a number of Pochhammer symbols in ε which can either be
expressed as rational polynomials or can be expanded in terms of ε, depending
on what is needed. When finite expansions are used it is easy to generate tables
of these Pochhammer symbols. The remaining function G is basically part of the
master integral and kept for the end of the program when the master integrals are
substituted.

In the presence of powers of the loop momentum P in the numerator, it is much
faster to apply the above formula then to use IBP identities to lower the numerator.
This holds in particular when one works with the Form system, because its instruc-
tion set allows the evaluation of powers of the d’Alembertians with perfect efficiency.
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It means that each term will be generated with the proper combinatoric factor and
hence never gets generated more than once. The latter is owing to the combinatoric
functions distrib and dd . The code is displayed in listing 3.1.

Listing 3.1: Form code for one-loop insertion

Tensor Ptensor,del;

Vector P,Q,p1,p2,p3,p4;

Symbols dAlembertian,j;

Local F = dAlembertian^15*P.p1^15*P.p2^15*P.p3^15*P.p4^15;

ToTensor,P,Ptensor;

id dAlembertian^j?*Ptensor(?a) = distrib_(1,2*j,del,Ptensor,?a);

ToVector,Ptensor,Q;

id del(?a) = dd_(?a);

Print +f +s;

.end

Time = 3.09 sec Generated terms = 1133616

F Terms in output = 1133616

Bytes used = 140937744

F =

+ 3092470075094400000*Q.p1*Q.p2*Q.p3^13*Q.p4^15*p1.p1*

p1.p2^10*p1.p3^2*p2.p2^2

.....

+ 1451044943048200500000*Q.p1^7*Q.p2^10*Q.p3^13*p1.p1^3*

p1.p4^2*p2.p2*p2.p3^2*p2.p4*p4.p4^6

etc.

When computing Mellin moments of structure functions (see 4.3), the efficient
combinatoric functions described above are essential, since they are used both in the
one-loop integrals and the harmonic projections.

Two drawbacks of the approach is that (1) one may need to rewrite the dot products
or invariants in the numerator to such a form that they are usable for the above
formula. (2) The result of integrating out the insertion is that the remaining graph
edge will have a non-integer power. Since the two-point function was embedded
in a larger diagram, this edge may be internal. Consequently, this line can never be
reduced to zero again by IBP identities.

3.3 carpet rule

For integrals where a subgraph is embedded in an outer one-loop graph, scaling
and Lorenz invariance arguments [43] allow us to integrate out the outer one first.
In figure 17, we show this structure.
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Q Q

p1

p2

Figure 17: An subgraph (blob) embedded in a one-loop graph. The green triple line
can be integrated out, regardless of the content of the shaded blob.

The generalized rule that works for these topologies with a generic numerator
structure, we call the ‘carpet’ rule:

∫ dD p
(2π)D

1

(p2)α
[
(p− q)2

]β

[Lsub

∏
i=1

∫ dDli
(2π)D

][Nsub

∏
i=1

1
(p2

i )
ai

]
Pn({pi}, q)

=
1

(4π)2 (q
2)D/2−α−β

bn/2c

∑
σ=0

(
D
2
+ n− σ

)
−σ

× G
(

α +
Nsub

∑
i=1

ai −
D
2

Lsub − σ, β, n− 2σ, 0
)

×
bn/2−σc

∑
j=0

(−1)j
(

D
2
+ n− 2σ− 1

)
−j
(q2)σ+j

×
[Lsub

∏
i=1

∫ dDli
(2π)D

][Nsub

∏
i=1

1
(p2

i )
ai

][
1

σ!j!

(2q

4

)σ+j
Pn({pi}, q)

]
p=q

.

(18)

Here Lsub is the number of loops in the embedded subgraph. The integrand of
the subgraph consists of two parts: a product of 1/(p2

i )
ai and Pn({pi}, q). Each p2

i
indicates not only a squared propagator in the subgraph but also any quadratic
Lorentz scalar that becomes p2 after the integrations in the subgraph, e.g., pi · pj and
pi · p. If Pn({pi}, q) = 1 (and n = 0), the formula just describes that the knowledge
of the dimension of the subgraph is sufficient to write down the result of the outer
loop integral. In general, Pn({pi}, q) is a polynomial with degree n both in pi and
q, which are taken as dot products of pi · q in Forcer. In the right-hand side of the
formula, (x)n = Γ(x + n)/Γ(x) is the Pochhammer symbol and the function G is
given by eq. (17). The d’Alembertian 2q = ∂2/∂qµ∂qµ can be efficiently implemented
by distrib and dd functions in Form as explained in sec. 3.2.
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3.4 integration by parts

A whole class of simplification identities can be derived from the following rule
stemming from partial integration of any Feynman integral F [43]:

∂

∂pi
pj ◦ F = 0 , (19)

where the operator ◦ means that the preceding factors should be applied to the
integrand of F (so before integration). Here we remark that pi and pj can be any
momentum. However, the equation will yield different relations only if pi and pj are
part of the same loop momentum basis, or pj is the external momentum. Thus, in
total there are L(L + K) independent partial integration equations.

Let us consider the following (generalised) diagram:

Q

p1 p2

p3

p4

=
∫

dD p1dD p2
1

(p2
1)

n1(p2
2)

n2(p1 − p2)2n3(Q + p1)2n4
, (20)

to which we apply the IBP identity Qµ ∂
∂pµ

2
:

Qµ ∂

∂pµ
2
◦ F =

∫
dD p1dD p2Qµ ∂

∂pµ
2

[
1

(p2
1)

n1(p2
2)

n2(p1 − p2)2n3(Q + p1)2n4

]

=
∫

dD p1dD p2

[
−2n2

Q · p2

(p2
1)

n1(p2
2)

n2+1(p2
3)

n3(p2
4)

n4
− 2n3

Q · p1 −Q · p2

(p2
1)

n1(p2
2)

n2(p2
3)

n3+1(p2
4)

n4

]

=

[
−2n2

Q · p2

p2
2

+ 2n3
Q · p2

p2
3
− n3

p2
4

p2
3
+ n3

p2
1

p2
3
+ n3

Q2

p2
3

]
◦ F = 0 , (21)

where we have suppressed the integration and written the diagram in the basis
{p2

1, p2
2, p2

3, p2
4, 2Q · p2}. For each index, described by ni, we introduce a raising and

lowering operator N+
i and N−i (capitalising the index letter and making it bold),

which raise or lower the power of the index. By definition, we consider the powers
of the numerator to be negative. Thus, the raising operator on a numerator will
decrease its power. We get:[

−n2N+
5 N+

2 + n3

(
N+

5 N+
3 − N−4 N+

3 + N−1 N+
3 + Q2N+

3

)]
F = 0 . (22)

Alternatively, we can write:

n2F(n1, n2 + 1, n3, n4, n5 + 1) + n3F(n1, n2, n3 + 1, n4, n5 + 1)

− n3F(n1, n2, n3 + 1, n4 − 1, n5)− n3F(n1 − 1, n2, n3 + 1, n4, n5)
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+ n3Q2F(n1, n2, n3 + 1, n4, n5) = 0 . (23)

Systems of IBP identities can be solved such that repeated application of a rule
always decreases one of the lines to zero. Below we show two IBP identities that
can always be applied if the integral has a certain substructure. In section 3.4.1 we
discuss the rule of the triangle, and in section 3.4.2 we construct the diamond rule.
Finally, we sketch the construction of custom rules in section 3.4.3.

3.4.1 The rule of the triangle

Since the 1980s, the so-called triangle rule [43, 103] has been used for removing a
propagator line from diagrams corresponding to a certain class of integrals. Any
topology that has the following substructure can be simplified using the triangle
rule:

F(a1, a2, b, c1, c2) =∫
dDk

kµ1 . . . kµN[
(k + p1)2 + m2

1
]a1
[
(k + p2)2 + m2

2
]a2(k2)b(p2

1 + m2
1)

c1(p2
2 + m2

2)
c2

,
(24)

where b, c1, c2 are positive integers. The diagram corresponding to this integral is
shown in fig. 18.

k

b

k + p2a2k + p1 a1

p2 c2p1c1

Figure 18: A triangle subtopology where the loop momentum k is assigned to the
central line. p1 and p2 are external momenta. a1, a2, b, c1, and c2 represent
the powers of their associated propagators.

We write out the IBP relation ∂
∂kµ

kµ ◦ F = 0 to obtain

1 =
1

D + N − a1 − a2 − 2b

[
a1 A+

1 (B− − C−1 ) + a2 A+
2 (B− − C−2 )

]
, (25)

where again A+
i , B−, and C−i are operators acting on an integral that increase the

power ai by one, decrease the power b by one, and decrease the power ci by one,
respectively. Numerators that are expressed in dot products of k and an external line,
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k1 k2 kL kL+1 = −
L∑

i=1

ki −
S∑

i=1

li

p1
p2 pL

pL+1

a1 a2 aL aL+1

b1 b2 bL bL+1

· · · · · ·l1 lS

s1 sS

T

B

Figure 19: (L + S)-loop diamond-shaped diagram. (L + 1)-lines have external con-
nections and S-lines do not. Red with dashed lines, green with double
lines, and blue with thick lines represent upper, lower, and external lines
of the diamond, respectively. Label T represents the top vertex, and B the
bottom vertex. ki, pi, and li are momenta, and ai, bi, and si are the powers
of their associated propagators.

contribute as a constant N to the rule. The rule of the triangle can be recursively
applied to remove one of the propagators associated with k, p1, or p2 from the
system.

The recursion in the triangle rule can be explicitly ‘solved’ [97], such that the
solution is expressed as a linear combination of integrals for which either b, c1, or
c2 is 0. The advantage of the summed system over the recursion is that it generates
fewer intermediate terms and it cannot have spurious poles: terms in which the factor
D + N − a1 − a2 − 2b becomes proportional to ε more than once during the full
recursion.

3.4.2 The rule of the diamond

Next, we derive a rule for a new substructure we call a diamond. Consider the
following family of Feynman integrals in D-dimensions arising from the (L + S)-
loop diagram in Fig. 19:

F
(
{ai}, {bi}

)
=

[
L

∏
i=1

∫
dDki

] [
S

∏
i=1

∫
dDli

]
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×

L+1

∏
i=1

k
µ
(i)
1

i . . . k
µ
(i)
Ni

i[
(ki + pi)2 + m2

i
]ai (k2

i )
bi


 S

∏
i=1

l
ν
(i)
1

i . . . l
ν
(i)
Ri

i
(l2

i )
si

 . (26)

The diagram consists of (L + 1) paths from the top vertex T to the bottom vertex
B with an external connection in between, and S lines without external connections.
The upper, lower, and external lines of the diamond are represented by red with
dashed lines, green with double lines, and blue with thick lines, respectively. The
lines without external connections, we call spectator lines. In principle any pair
of spectator lines can be seen as a two point function which can be reduced to
a single line by integration. This line would then have a power that is not an
integer. Depending on the complete framework of the reductions this may or may
not be desirable. Hence we leave the number of spectators arbitrary. In any case,
the contribution of the spectators is a constant (see below), which allows us to
characterise integrals in the family only by 2(L + 1) indices ai and bi, and not by
si. Without loss of generality, we assign loop momenta ki to the lower lines of the
diamond as well as li to the spectator lines, except the last diamond line which is
fixed by momentum conservation:

kL+1 = −
L

∑
i=1

ki −
S

∑
i=1

li. (27)

In contrast, we do not require any constraints on the momentum conservation at
the top vertex in the arguments below, hence any number of external lines can be
attached to this point. In the middle of the diamond, external lines with momentum
pi are attached by three-point vertices. The upper lines in the diamond may have
masses mi, whereas the lower lines in the diamond and the spectator lines have
to be massless. In addition, we allow arbitrary tensor structures of ki and li with
homogeneous degrees Ni and Ri, respectively, in the numerator.

Constructing the IBP identity corresponding to the operator

L

∑
i=1

∂

∂ki
·ki +

S

∑
i=1

∂

∂li
·li, (28)

straightforwardly gives the following operator identity:

(L + S)D +
L+1

∑
i=1

(Ni − ai − 2bi) +
S

∑
i=1

(Ri − 2si) =
L+1

∑
i=1

ai A+
i
[
B−i − (p2

i + m2
i )
]
. (29)

Here A+
i and B−i are understood as operators increasing ai and decreasing bi by

one, respectively, when acting on F({ai}, {bi}). Note that operators changing the
spectator indices si are absent in the identity.

For a typical usage of eq. (29), one may identify a diamond structure as a subgraph
in a larger graph. If the line with the momentum pi has the same mass mi as the
corresponding upper line, the term (p2

i + m2
i ) in the identity reads as an operator C−i
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decreasing the corresponding index ci of the power of the propagator (p2
i + m2

i )
−ci

in the larger graph by one. Applying the rule

1 =
1
E

L+1

∑
i=1

ai A+
i (B−i − C−i ), (30)

where

E = (L + S)D +
L+1

∑
i=1

(Ni − ai − 2bi) +
S

∑
i=1

(Ri − 2si), (31)

decreases ∑L+1
i=1 (bi + ci) of integrals appearing in the right-hand side, at the cost of

increasing ∑L+1
i=1 ai. Starting from positive integer indices bi and ci, one can repeatedly

use the rule until one of either bi or ci is reduced to zero.1

The above diamond rule contains the conventional triangle rule as a special case.
For the one-loop case L = 1 and S = 0, the two lower lines may be identified as a
single line and the triangle integral in eq. (24) can be reproduced. Correspondingly,
the IBP identity (30) becomes eq. (25).

Below we will (A) derive an explicit summation formula for the recursion in the
diamond rule. Then (B) we will provide four examples of the diamond structure.

(A) Summation rule

We start by considering the possible connectivities in the diamond structure. If we
allow for some external lines to be directly connected to each other, we get at least
one triangle that can be used for the triangle rule: suppose the external momenta of
ki and of k j are connected and identified with pij, then this triangle is ki, k j, pij. In
this case, the triangle rule generates fewer terms and is preferred to the diamond
rule. Thus, we only consider the case where the diamond does not have direct
connections of external lines.

We follow the same procedure as outlined in [97]. First, we rewrite eq. (30) as:

F =

[
L+1

∑
i=1

ai A+
i (B−i − C−i )

]
E−1F, (32)

where E is the operator (L + S)D + ∑L+1
i=1 (Ni − ai − 2bi) + ∑S

i=1(Ri − 2si). We split
our solution in two classes A+

i B−i and A+
i C−i satisfying

E−1(A+
i B−i ) = (A+

i B−i )(E + 1)−1, E−1(A+
i C−i ) = (A+

i C−i )(E− 1)−1. (33)

We identify the first class with the label +, since it increases E by 1, and the latter
with the label −, since it decreases E by 1. The remaining part of the derivation is
analogous to the one in [97].

1 Note that ai are allowed to be non-integers provided the denominator in the right-hand side of eq. (30)
never vanishes.
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Finally, we obtain the explicit summation formula:

F({ai}, {bi}, {ci}) =
L+1

∑
r=1

[(
L+1

∏
i=1
i 6=r

bi−1

∑
k+i =0

)(
L+1

∏
i=1

ci−1

∑
k−i =0

)
(−1)k− k+r (k+ + k− − 1)!

∏L+1
i=1 k+i !k−i !

(E + k+)−k+−k−

×
(

L+1

∏
i=1

(ai)k+i +k−i

)
F
(
{ai + k+i + k−i }, {bi − k+i }, {ci − k−i }

)]
k+r =br

+
L+1

∑
r=1

[(
L+1

∏
i=1

bi−1

∑
k+i =0

)(
L+1

∏
i=1
i 6=r

ci−1

∑
k−i =0

)
(−1)k− k−r (k+ + k− − 1)!

∏L+1
i=1 k+i !k−i !

(E + k+ + 1)−k+−k−

×
(

L+1

∏
i=1

(ai)k+i +k−i

)
F
(
{ai + k+i + k−i }, {bi − k+i }, {ci − k−i }

)]
k−r =cr

,

(34)

where k+ = ∑L
i=1 k+i , k− = ∑L

i=1 k−i , and (a)b is the rising Pochhammer symbol
Γ(a + b)/Γ(a). The first term decreases the power br to 0, and the second term
decreases cr to 0. The only significant difference between the two terms is the +1 in
the Pochhammer symbol.

Because the Pochhammer symbol that depends on E only appears once in each
term, powers of 1/ε2 or higher cannot occur. Thus, the explicit summation formula
for the diamond rule does not have spurious poles.

(B) Examples

Four examples of diamond structures are displayed in Fig. 20. The role of each line
in the diamond rule is highlighted by different colours and shapes. Red dashed lines,
green double lines, and blue thick lines represent upper, lower, and external lines
of the diamond, respectively. Label T represents the top vertex, and B the bottom
vertex. In Fig. 20a a four-loop diagram is displayed. For this diagram, the line of
either p5, p6, p7, p8, p9, or p10 can be removed by recursive use of the diamond rule
or by the explicit formula given in the previous section. The irreducible numerators
of this diagram are selected as Q·p8, Q·p10, p5 ·p10, and p5 ·p7, such that they adhere
to the tensorial structure in the diamond rule. The last numerator, p5·p7, lies outside
of the diamond and does not interfere with the rule.

If, in this figure, we draw an additional line from the top (T) to the bottom (B)
vertex, we obtain the simplest non-trivial propagator topology with a spectator line.
As a five-loop diagram it is unique.

In Fig. 20b the three-loop master topology NO is displayed. Q·p5 is chosen as
irreducible numerator. One of the lines attached to the diamond is actually an
off-shell external line. In general, if the line with momentum pL+1 is one of the
external momenta of the larger graph, the factor (p2

L+1 + m2
L+1) is just a constant

with respect to the loop integration and has no role for reducing the complexity of
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Q Q

p1

p5

p4

p8 p9

p6

p7

p2

p10

p3

T

B

(a) Four-loop topology

Q Q

p1

p6

p2

p5

p4

p3
p7 p8

B

T

(b) Three-loop NO topology
T

B

T

B

(c) Five-loop topologies

Figure 20: Four topologies with highlighted diamond structures. Red with dashed
lines, green with double lines, and blue with thick lines represent upper,
lower, and external lines of the diamond, respectively. Label T represents
the top vertex, and B the bottom vertex. (a) shows a four-loop topology
which can be completely reduced. (b) shows the three-loop NO master
topology, for which a modified form of the diamond rule can be applied
to lower the power of line p1 to 1. (c) shows two five-loop topologies,
which the diamond rule can be applied to.

the integral. As a result, the rule (30) is not applicable to remove one of the internal
lines. Even for such cases, one can still find a useful rule by shifting aL+1 → aL+1− 1:

1 =
1

p2
L+1 + m2

L+1

[
L

∑
i=1

ai
aL+1 − 1

A+
i A−L+1(B−i − C−i )− E + 1

aL+1 − 1
A−L+1 + B−L+1

]
, (35)

which decreases at least aL+1 or bL+1 by one. Repeated use of this rule from positive
integer aL+1 and bL+1 reduces aL+1 or bL+1 to 1. For the NO topology, this variant
yields the rule to reduce the line p1 to 1 in Mincer [32, 33].2

In Fig. 20c we show two five-loop topologies for which the diamond rule can
eliminate one line. The first diagram is unique in the sense that it is the simplest
diagram for which L = 3, S = 0. The second diagram is a typical representative

2 The triangle rule counterpart of this variant was used to reduce the peripheral lines of the massless
two-loop propagator-type diagrams with non-integer powers of the central line to unity.
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of the 29 five-loop topologies with L = 2, S = 0 and all three p-momenta of the
diamond internal.

3.4.3 Custom solutions

Using the combination of above rules, many topologies can be simplified. However,
if the Feynman diagram does not contain a triangle, a diamond, an insertion, or
a carpet, the IBPs have to be solved manually. One well-known example is the
reduction of the three-loop non-planar diagram [43], which paved the way for fast
three-loop reductions.

Let us consider a straightforward example with a system of two equations:

1) Z(n1, n2, n3) = n1Z(n1 − 1, n2, n3) + Z(n1, n2 + 1, n3)

2) Z(n1, n2, n3) = n3Z(n1, n2, n3 − 1) + n2Z(n1, n2 + 1, n3) (36)

Here we see that we have two terms that only increase indices without lowering
any others, highlighted in bold. These terms have to be removed in order to have a
reduction scheme that, when repeatedly applied, always lowers one of the indices.
Solving it analytically, we get:

Z(n1, n2, n3) =
1

1− n2

(
n3Z(n1, n2, n3 − 1)− n1n2Z(n1 − 1, n2, n3)

)
(37)

This rule can be applied until n2 = 1 or until n1 = 0 or n3 = 0, since the latter cases
mean we have removed a propagator. The next step would be to solve Z(n1, 1, n3),
since any configuration with n2 > 1 will have n1 = 0 or n3 = 0.

In general, it is quite difficult to solve these systems parametrically. Therefore,
many computations are performed using the Laporta method [42, 94, 95, 100]. In its
basic form, each parameter is substituted by a number, and every configuration is
solved separately. The solutions to the system are brute force Gaussian eliminations,
which is a time consuming process.

The Laporta system above for Z(1, 2, 1) looks like:

1) Z(1, 2, 1) = Z(0, 2, 1) + Z(1, 3, 1)

2) Z(1, 2, 1) = Z(1, 2, 0) + 2Z(1, 3, 1)

⇒ Z(1, 2, 1) = 2Z(0, 2, 1)− Z(1, 2, 0) . (38)

If we had to solve Z(2, 2, 1), we would have to solve the system of eq. (36) for
Z(2, 2, 1) and for Z(1, 2, 1).

Some topologies are called master topologies: these cannot be guaranteed to get a
line removed through IBPs, and they have to be solved using different methods. An
example is the simple system above, that could be used to reduce n2 to 1, but not to
0. In all cases we have encountered, the IBP reduction rules can be used to simplify
the edge powers to 1, and the numerator powers to 0.
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3.5 solving parametric ibp identities by heuristics

In this section we will give heuristics on how to solve more complicated IBP systems
parametrically. In an N-loop propagator graph we have N + 1 independent vectors:
the external vector Q and N loop momenta pi, where i = 1, . . . , N. Together there
are (N + 2)(N + 1)/2 independent variables. One of them, Q2, can be used to set the
scale. Hence there are (N + 2)(N + 1)/2− 1 variables in the loops. Because there
are at most 3N − 1 propagators, the remaining variables will be in the numerator
and there is often quite some freedom as to which variables to choose. In topologies
in which there are fewer propagators there will correspondingly be more variables
in the numerator. The efficiency of the reduction depends critically on the selected
numerators. In the Mincer program the numerators were chosen to be dot products,
such as 2 p7 · p8 for the ladder topology or 2Q · p2 for the Benz topology. Alternatively,
one could use extra squared momenta such p2

9 with p9 = p7 − p8. The advantage of
the invariant method is that when rewriting the numerators to a new basis after a
line removal, more invariants of the old basis can be a part of the new basis. The
advantage of using dot products is that integration of one-loop subintegrals and
the use of the rule of the triangle/diamond generates fewer terms compared to
using invariants. Especially the simpler structure for integrating one-loop two-point
subgraphs is important, since we apply this rule as early as possible to reduce the
number of loops (and thus the number of parameters). Hence we choose to use dot
products for the variables in the numerator in Forcer.

In the reduction routines we represent the integrals by a function Z with 14

variables (for fewer than four loops there will naturally be fewer variables) in which
powers of variables in the denominators are given by positive numbers and powers
in the numerator by negative numbers, as is commonly used. For example:

Z(1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−2,−2,−2) (39)

is a four-loop integral with four dot products. One dot product has power one, and
the other three have two powers. Each of the 10 denominators has power 1. Note
that all information about the topology or the choice of dot products is erased in this
notation. Once the IBP relations are constructed, such information should be kept by
different means. We note that some indices may be associated with propagators that
have non-integer powers if insertions are involved (see section 3.5.3).

We define the integral in which all denominators have power one (possibly with
an extra multiple of ε) and all numerators have power zero to have complexity zero.
For each extra power of a denominator or of a numerator the complexity is increased
by one. When we construct the IBPs parametrically the variables are represented by
parameters n1 . . . n14 in which at least three represent numerators. Now we define
the integral with just n1 . . . n14 as arguments to have complexity zero and again
raising the value of a denominator by one, or subtracting one from a numerator
raises the complexity by one. To improve readability, we represent denominators by
parameters n and numerators by parameters k in the examples.
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We redefine Z by adding minus the complexity as the first argument.3 For ex-
ample:

Z(−3; 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,−1,−1), (40)

Z(−1; n1, n2, n3 + 1, n4, n5, n6, n7, n8, n9, n10, n11 − 1, k12 + 1, k13 − 1, k14 − 1). (41)

In general, the goal is to construct a rule under which the basic complexity 0

integral Z(0; n1, . . . , n14) is expressed in terms of other complexity 0 integrals or in
terms of integrals with negative complexity.

The remainder of this section is structured as follows. We provide heuristics to
find reduction rules in section 3.5.1. Next, we generate new IBP rules in section 3.5.2.
We describe special rules for diagrams with non-integer powers in section 3.5.3.
Finally, we summarise our solving strategy in section 3.5.4.

3.5.1 Heuristics and equation generation

For four-loop diagrams there are at first instance 20 unique IBP relations, formed
from the operation ∂

∂pµ qµ, where p is one of the four loop momenta and q is one of
the four loop momenta or the external momentum. This set of equations can often
be simplified by a Gaussian elimination of the more complex integrals. We call the
simplified set of equations S0. The most complex terms in S0 have complexity 2 and
have one raised denominator and one raised irreducible numerator. This is a direct
consequence of the IBP structure.

In the set S0 one can distinguish several types of reduction identities. The nicest
identities are the ones that lower the complexity, sometimes even by more than one
unit. An example is

0 = Z(−2; . . . , n + 1, . . . , k− 1, . . .) · n
+Z(0; . . . , n, . . . , k, . . .) + . . . , (42)

where both a propagator and numerator are raised in the complexity 2 term. By
shifting n→ n− 1 and k→ k + 1, we find the reduction rule:

Z(0; . . . , n, . . . , k, . . .) =
−1

n− 1
[
Z(2; . . . , n− 1, . . . , k + 1, . . .) + . . .

]
. (43)

Such identities are used for the simultaneous reduction of two variables. Since the
equation will vanish once n = 1 or ‘overshoot’ when k = 0, it can only be used to
speed up a reduction. Consequently, rules for the individual reduction of n and k
are still required.

In what follows we will omit the last step of shifting the equation such that the
highest complexity term becomes complexity 0. We also omit the coefficients of the
Z functions when they are deemed irrelevant and we do not consider integrals with
lines missing to be Z-integrals.

3 We use minus the complexity, so that Form prints the integrals with the highest complexity first.
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We now study relations that raise only one coefficient:

0 = Z(−1; . . . , n + 1, . . . ) · n
+Z(0; . . .) + . . . . (44)

Repeated application of this relation will either take the variable n down to one, or
eventually create integrals in which one or more of the other lines are missing. For
non-master topologies, at some point we find an equation that looks like

0 = Z(−1; . . . , n + 1, . . .) · (ε + . . .)

+Z(0; . . .) + . . . . (45)

This equation has an ε in the coefficient, which means it does not vanish if n = 1.
As a result, it can be used to reduce n to 0.

If after there is an equation in which the highest complexity is zero and the integral
for which none of the parameters has been raised or lowered is present, there is a
good chance that one can eliminate at least one line in that topology by repeated
application of this identity, provided that there are no lines with a non-integer power.
One example of such an equation is the rule of the triangle. The finding of more
such equations while investigating the IBP systems of five-loop propagator diagrams
led to the discovery of the diamond rule [10].

3.5.2 Reduction rules beyond S0

Even though the triangle and diamond rule can be derived from equations in the set
S0, the set generally does not contain enough equations to reduce a topology straight
away. Therefore, we expand our system by taking the set S0 and constructing all
equations in which either one denominator has been raised by one or one numerator
lowered by one (which means that there is one more power of that variable because
the numerators ‘count negative’). This set is called S1, since the IBPs are constructed
from a complexity one integral. In total, we now have 20 + 280 equations. Similarly
we could construct the set S2 by raising the complexity of one of the variables in the
set S1 in all possible ways, generating an additional 2100 equations. Usually S2 is
not needed. In some cases we may need a set like S−1 in which the complexity of
one of the variables has been lowered, or even S1,−1 in which one has been raised
and one has been lowered.

The essence of our method is to construct the combined sets S0 and S1 and use
Gaussian elimination to remove all objects of complexities 3 and 2 from the equations.
The remaining equations only have objects of complexity one or lower. Out of these
equations we construct an elimination scheme by defining an order of the variables,
and we select for each variable an equation to eliminate it. For a denominator
variable this is ideally an equation with a single term in which a variable n has been
raised and all other parameters are at their default values: Z(−1, n1, n2, . . . , n+ 1, . . .)
Once we have such an equation we can lower n + m, with m being a positive integer,
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in all other equations to n. Since we know that after this either one of the other ni
will be 0 (meaning the reduction is done) or n = 1, we can assume from this point
on that n = 1. Thus, in all other equations we now set n to 1, lowering the number
of parameters by one. Similarly the numerator variables are worked up from n−m
to n after which this variable is given the value zero. The order of elimination and
the selection of the equations is critical: one of our early carefully selected schemes
resulted in a benchmark run of 53000 seconds, whereas a scheme with a different
variable order and a more sophisticated combination of the equations, performed
the same test in 555 seconds.

Above we gave an example of a simple, useful equation. However, sometimes
these equations are not there. Below we discuss several other types of equations one
may encounter. One example is if there are more integrals of complexity one:

0 = Z(−1; . . .)

+Z(−1; . . .)

+Z(−1; . . .)

+Z(−1; . . . , n + 1, . . .) · n
+Z(0; . . .) + . . . , (46)

where the last complexity one term can be used to eliminate the variable n (provided
that all other parameters have not been raised/lowered in this term), but this goes
at the cost of increasing the number of terms with the same complexity. When the
scheme is not carefully selected, the number of terms in the intermediate stages may
become very large and the rational polynomials could become complicated.

A convenient subclass of the type shown in eq. (46) is one that increases an index
in only a single term in the equation, independent of the complexity:

0 = Z(−1; n1 + 1, . . .) · n1

+Z(−1; n1, . . .)

+Z(0; n1, . . .)

+Z(1; n1, . . .)

+ . . . . (47)

As a result, the equation can be used to lower the value of this variable at any level
of complexity c:

0 = Z(−c; n1 + 1, . . .) · n1

+Z(−c; n1, . . .)

+Z(−c + 1; n1, . . .)

+Z(−c + 2; n1, . . .)

+ . . . . (48)

We emphasise that we apply these equations to any value of n1, so also to terms that
look like Z(−2, n1 + 2, . . .). In Form this can be done with a pattern match:

56



3

id Z(-c?,n1?,...,n14?) = Z(-c,n1-1,...)/(n1-1)

+ Z(-c+1,n1-1,...)/(n1-1)

+ Z(-c+2,n1-1,...)/(n1-1)

+ ...;

These equations are convenient because after applying them and after setting the
variable to 1, there will not be a single term in the remaining equations in which
there is a number greater than 1 in its position. We will later see why this is desirable.

The next type of equations also has more than one term at complexity one, but
there is no clean reduction of a given variable:

0 = Z(−1; n1 + 1, n2 − 1, n3 + 1, . . .) · n1

+Z(−1; n1 + 1, . . .) · n1

+Z(−1; n1, . . .)

+Z(−1; n1, . . .)

+Z(0; . . .) + . . . . (49)

In the numerical case, one just moves the second term to the left and either n1 will
be reduced to one or n2 will eventually become zero. However, in the derivation of
the scheme one needs to apply this equation inside other parametric equations and
more care is called for. One should apply the equation as many times as needed
until terms either have n1 (or n1 − 1, etc.) or the n2 position has n2 − 1. This means
that for the integral

Z(−1; n1 + 1, n2 + 2, . . .) (50)

equation (49) will have to be used up to three times. Once n1 has been set equal to
one, one may end up with terms such as

Z(−1; 2, n2 − 1, . . .) , (51)

which are undesirable. The solution to this problem is to try to deal with n2
immediately after n1. Once we can put n2 equal to one, n2 − 1 becomes zero and
hence it is an integral with a missing line. If one waits with the n2 reduction and
does another variable first, one risks that n2 is raised because the equation for the
other variable could have a term with n2 + 1 and then one would end up with an
integral of the type

Z(−1; 2, n2, . . .) . (52)

This introduces either unresolved integrals or loops in the reduction scheme. It is
also possible that one has reductions with two such conditions as we saw above.
This requires great care in the selection of the next equation. We have not run into
impossible situations at this stage.

Another case is one where the coefficient limits its application. For example

0 = Z(−1; n1 + 1, . . .) · (n1 − n2)

+Z(0; . . .) + . . . (53)
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cannot be applied when n1 = n2. Such rules could be very compact and are therefore
used as a special case while the case in which n1 is equal to n2 is handled by a more
general rule with less favourable properties but effectively one parameter less.

By far the most difficult equations are of the type

0 = Z(−1; n1 + 1, n2 − 1, n3 + 1, . . .) · a(n1, n2, n3)

+Z(−1; n1 + 1, n2 + 1, n3 − 1, . . .) · b(n1, n2, n3)

+Z(−1; n1 + 1, . . .)

+Z(−1; n1, . . .)

+Z(0; . . .) + . . . , (54)

where a and b are coefficient functions. We call this type a yoyo. As a recursion it
will never end, because the values of n2 and n3 will keep going up and down. There
are various ways to resolve this. The first is to construct a new type of recursion.
This is done by applying the equation twice:

Z(n1 + 1,n2, n3, . . .)→
+ a(n1, n2, n3)Z(n1 + 1, n2 − 1, n3 + 1, . . .)

+ b(n1, n2, n3)Z(n1 + 1, n2 + 1, n3 − 1, . . .) + . . .

→ + a(n1, n2, n3)a(n1, n2 − 1, n3 + 1)Z(n1 + 1, n2 − 2, n3 + 2, . . .)

+ b(n1, n2, n3)b(n1, n2 + 1, n3 − 1)Z(n1 + 1, n2 + 2, n3 − 2, . . .)

+ (a(n1, n2, n3)b(n1, n2 + 1, n3 − 1)+

b(n1, n2, n3)a(n1, n2 − 1, n3 + 1))Z(n1 + 1, n2, n3, ...) + . . . (55)

By moving the third term to the left one has a new recursion with a shift of two
units. This procedure can be repeated i times until both n2 − 2i and n3 − 2i are less
than one. The price to pay for this solution is high: fractions become enormously
complicated and the number of terms could become very large.

An improved solution is to find another equation with a similar yoyo and combine
the equations in such a way that one of the yoyo terms is eliminated. After this,
one has a regular condition. We call this ‘breaking the yoyo’. There is another way
to break the yoyo that will be introduced below. We had to apply both methods
of breaking the yoyo several times in the creation of the reduction schemes for the
master topologies.

A final consideration is the structure of the coefficients of the integrals. In principle
it is not very difficult to construct a reduction scheme from the available equations.
The problem is that most schemes will end up with rational coefficients that take
many megabytes to store because there are still quite a few variables in them.
During the derivation this may cause problems with the limitations of the computer
algebra system that is used (in our case Form). More importantly, the evaluation
of such rational polynomials in the application of the reduction scheme to millions
of integrals will render the reductions impossibly slow and hence useless for all
practical purposes. Thus, if the coefficients are too large, an alternative reduction
has to be found.
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3.5.3 Identities for topologies with insertions

When a topology contains a line that does not have an integer power, the method of
the previous section has to be slightly extended. Such cases occur either when the
input diagram(s) can be written with a higher-order propagator in it, or when during
the reduction a two-point function can be integrated out. If the resulting topology
needs a custom reduction, we not only have to lower powers of denominators and
numerators, but we also have to bring the powers of the non-integer lines to a
canonical value, which we take to be 1 + mε for some positive integer m. As an
example, we consider the two-loop t1star05 topology (see also refs. [32, 33])

Q

p1

p4

p2

p3

Q
p5

,

which has an ε in index 5, indicated by a single cross. We call such a cross an
insertion. We have the relation:

Zt1star05(n1, n2, n3, n4, n5) = Zt1(n1, n2, n3, n4, n5 + ε), (56)

where the topology t1 is the same two-loop topology but without any implicit
non-integer powers. Since the ε can never be removed from the index during the
reduction, we suppress it in our notation for t1star05. The IBPs for t1star5 are
generated from those of t1 by a substitution n5 → n5 + ε. Typically, one tries to first
reduce the integer indices n1, . . . , n4 to 1. During these reductions, the contribution to
the integral complexity from n5 could be taken as the absolute value of the difference
to penalise any change of n5, or just be ignored to allow any change:

Complexity(n5 + m5) = |m5|, or Complexity(n5 + m5) = 0. (57)

After all n1, . . . , n4 are 1, we reduce the remaining index n5 to 1, which may be
positive or negative at this point. To derive a rule for the positive n5 case, the
complexity of n5 can be defined as usual for a propagator:

Complexity(n5 + m5) = m5, for a rule with n5 > 1. (58)

On the other hand, for the negative n5 case, the complexity of n5 can be defined as
usual for a numerator:

Complexity(n5 + m5) = −m5, for a rule with n5 < 1. (59)

In this way, all integrals belonging to t1star05 can be reduced to the master integral
Zt1star05(1, 1, 1, 1, 1) and integrals with simpler topologies.
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3.5.4 Solving strategy

The heuristics for ‘solving’ a topology can now be outlined in a list of nine steps.

1. Select a numerator basis. The quality of the IBPs will depend on this choice.

2. Construct the IBP identities.

3. (Important) Use a type of Gaussian elimination to simplify the IBP identities,
minimising the number of terms with the highest complexity. We call this
set S0. Most of the time this simplification can be done in an automated way.
Only for the most difficult cases we have applied manual interference to obtain
better results.

4. Construct the set S1 by generating all possible options of raising an index in S0.
This gives terms of complexity 2 and 3. Use Gaussian elimination to eliminate
all those terms. The remaining set of equations has terms of at most complexity
1.

5. (Important) Use the equations of the set S0 (applying it to any complexity
and configuration as in eq. 48) to eliminate as many complexity one terms as
possible. This can simplify the following task and results in simpler formulas
in the final reduction program. It also breaks up some difficult yoyos.

6. Determine an order of elimination of the variables. Often the first variables
are rather obvious from the presence of simple reduction equations. Some
variables may not be so obvious and one may have to experiment. The resulting
programs may differ by orders of magnitude in their efficiency. Here is where
either human intelligence, or a cleverly written AI program can help.

7. In many cases, one cannot find a decent equation for the last variable. This
can be because either the results have become extremely lengthy, or one has
discarded some long equations that seemed of no further relevance. In that
case, the almost complete reduction scheme is applied to the set S0. This will
give a number of varieties of the final reduction(s). One can select the shortest
one.

8. (Checking) Now apply the custom reduction scheme to the set S0 with numbers
for the variables and make sure that master integrals are indeed irreducible,
and that the program does not get caught in loops. There may be equations
remaining which only consist of integrals with missing lines. We did not take
relations between those into account.

9. Combine all reductions and useful double reduction equations (equations that
need at least two variables that are above their minimal complexity) based on
S0 or substitutions made during the Gaussian elimination. Together this forms
the reduction procedure for the given topology.
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In some cases the resulting schemes were still deemed too slow and more exhaust-
ive methods were asked for. In such cases the sets S2 and S−1 were also constructed
and many different ways of combining the equations were tried automatically. Such
programs could take much time because of the very complicated rational polynomi-
als in the parameters of the integrals, but they eventually did result in a number of
shorter reductions.

A number of Form procedures has been constructed to execute the above steps.
The most laborious step is to determine a proper order for the elimination sequence,
and which equations to use for each. Furthermore, we had a case (the bebe topology
of section 3.6) in which there were no good reductions for two of the variables, unless
we used two of the equations in the set S0 to eliminate them with a complexity
raising operation. It also reduced the number of remaining equations to 18 and
hence left fewer options during the remaining parts of the derivation.

There are two major reasons why some reduction rules perform faster than others.
The first reason is that even though a rule may have only one Z(−1; ...) term, it
could be that the sub-leading terms increase the value of a variable that was set to 1

in one of the early steps of the scheme (see eq. 51). This forces the program back
to an earlier reduction rule of the scheme, even though now at a lower complexity.
The second reason is the coefficient growth: if a rule has a particularly complicated
overall coefficient, it multiplies every term in the RHS and all subsequent terms will
have rather lengthy rational polynomials in ε. Expanding in ε (see appendix 3.9)
can alleviate some of these problems, provided one expands deep enough to avoid
issues with spurious poles.

Determining the order of elimination seems suited for AI techniques, such as
Monte Carlo Tree Search (see, e.g., [67]). One could use the number of top complexity
terms, the number of lower complexity terms, the number of spectators and the
size of the most complicated rational polynomial as parameters for an evaluation
function for a given scheme and then use this in a MCTS to find an optimal scheme.
This is currently under investigation. It should be noted that such type of use of AI
for precisely this purpose was already hinted at in ref. [104].

3.6 the 21 topologies that need custom reductions

Because we integrate over one-loop two-point functions, our classification of the
master integrals differs from refs. [105, 106]. In general, any diagram that factorises
we do not consider a master topology. The master diagrams that contain one-loop
two-point functions that cannot be factorised, will have slightly different values,
since we integrate out the bubble. The full list with the values of the master integrals
in our convention are given in [1].

There are eight four-loop master integrals, excluding the diagrams in which a
2-point function can be integrated out.
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Q Q

p1

p6

p3

p4

p2

p5

p11
p7

p8

p9

p10

Topology name: haha, master.
Momenta: p1, p2, p4, p5.
Numerators: 2Q · p2, 2Q · p5, 2 p1 ·
p4

Q Q

p1

p8

p4

p5

p2 p3

p7 p6

p9 p10p11

Topology name: no1, master.
Momenta: p1, p2, p3, p4.
Numerators: 2 p2 · p4, 2Q · p2, 2Q ·
p3.

Q Q

p1

p8

p4

p5

p2 p3

p7 p6

p9
p10

p11
Topology name: no2, master.
Momenta: p1, p2, p3, p4.
Numerators: 2Q · p2, 2 p1 · p4, 2Q ·
p3.

Q Q

p1

p4

p5

p8 p7 p10

p6

p3

p2

p9
Topology name: no6, master.
Momenta: p1, p2, p3, p4.
Numerators: 2 p1 · p2, 2 p2 · p4,
2 Q · p2, 2 Q · p3.

Q Q

p1 p2
p3

p4
p5p6

p7p8p9

Topology name: lala, master.
Momenta: p1, p2, p4, p5.
Numerators: 2Q · p5, 2Q · p2, 2 p1 ·
p4,
2 p1 · p5, 2 p2 · p4.

Q
p7

p1

p6

p3

p4

Q
p2

p5

p9

p8

Topology name: nono, master.
Momenta: p1, p2, p3, p10 = p2 +
p8.
Numerators: 2 p2 · p8, 2 p6 ·
p7, 2 Q · p2,
2 p1 · p2, 2 p7 · p9.

Q

p1

p3

p2

p4

Qp5 p6
p7

p8

Topology name: cross, master.
Momenta: p1, p2, p3, p4.
Numerators: 2Q · p1, 2Q · p2, 2Q ·
p3,
2 Q · p4, 2 p1 · p4, 2 p2 · p3.
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Q Q

p1

p3

p2

p4

p5

p6

p7

p8

Topology name: bebe, master.
Momenta: p1, p2, p4, p6.
Numerators: 2Q · p2, 2Q · p4, 2Q ·
p6,
2 p1 · p2, 2 p2 · p6, 2 p1 · p4.

Q Q

p4

p7
p8

p6

p9

p1

p2

p5

p3

Topology name: bubu, not a mas-
ter.
Momenta: p2, p3, p8, p9.
Numerators: 2Q · p2, 2Q · p8, 2 p2 ·
p3,
2 p2 · p9, 2 p3 · p8.

Q

p1

p6

p3

p4

Q
p2

p5

p8p7 Topology name: nostar5, master.
Momenta: p1, p2, p3.
Numerators: 2 Q · p2,

Q

p1

p6

p3

p4

Q
p2

p5

p8p7 Topology name: nostar6, master.
Momenta: p1, p2, p3.
Numerators: 2 Q · p2,

Q

p1

p6

p3

p4

Q
p2

p5

p8p7

Topology name: lastar5, not a
master.
Momenta: p1, p2, p3.
Numerators: 2 p1 · p3,

Q

p1

p5

p3

p4

Q
p2

p7p6

Topology name: fastar1, not a
master.
Momenta: p1, p2, p3.
Numerators: 2 p1 · p3, 2 Q · p2,

Q

p1

p5

p3

p4

Q
p2

p7p6

Topology name: fastar2, master.
Momenta: p1, p2, p3.
Numerators: 2 p1 · p3, 2 Q · p2,

63



3

Q

p1

p3

p6

p7

Qp2
p4

p5

Topology name: bustar5, not a
master.
Momenta: p4, p5, p6.
Numerators: 2 Q · p4, 2 Q · p5,

Q

p1

p4

p2

p3

Q
p5

Topology name: t1star55, master.
Momenta: p1, p2.

Q

p1

p4

p2

p3

Q
p5

Topology name: t1star24, master.
Momenta: p1, p2.

Q

p1

p4

p2

p3

Q
p5

Topology name: t1star34, not a
master.
Momenta: p1, p2.

Q

p1

p4

p2

p3

Q
p5

Topology name: t1star45, master.
Momenta: p1, p2.

Q

p1

p6

p3

p4

Q
p2

p5

p8p7
Topology name: no, master.
Momenta: p1, p2, p3.
Numerators: 2 Q · p2,
Remarks: Already in Mincer.

Q

p1

p4

p2

p3

Q
p5

Topology name: t1star05, master.
Momenta: p1, p2.
Remarks: Already present in Min-
cer.

Table 3: Table of all the topologies that require a custom reduction.
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For these master integrals we have to design a custom scheme in which the
parameters are reduced, one by one, to the value they have in the master integral. In
addition (and perhaps surprisingly) there are four non-master topologies that need
such a custom reduction.

Only when all but a few parameters are set to 1, do we find a relation to reduce an
edge to 0. In this category there is one at the four-loop level, two at the three-loop
level (with one non-integer edge) and one at the two-loop level (with two non-integer
edges). In total we need 21 custom reduction schemes. All other topologies can be
dealt with using generic formulas that can either eliminate a line or integrate out a
loop. We list all topologies that need a custom reduction scheme in table 3.

In order to choose the best reduction schemes for the topologies in table 3, we
measure the performance of a complete calculation of the integrals with all indices
raised by 1 (a complexity 14 integral at four loops). By performing a complete
calculation, we confirm that the number of terms with a simpler topology created by
the reduction rules does not cause bottlenecks. Additionally, we confirm that for the
case where all indices are raised by 2 (a complexity 28 integral at four loops), the
reduction is still performing well.

We note that the ordering of variables in the reductions scheme is not the only rel-
evant parameter. The choice of numerators can influence the presence of non-leading
terms, which after the Gaussian elimination become leading terms. Such terms can
spoil the efficiency of certain reduction rules. In particular the three complicated
topologies nono, bebe, and no2 are sensitive to the choice of dot products.

Most schemes could be derived using the heuristics introduced in section 3.5,
by selecting the reduction variable that corresponds to the shortest reduction rule.
However, there are a few derivations that need more care. For nono, one needs to
avoid a circular path in a special way. The formulas for the last two variables, n4 and
n8, can only be obtained by reusing the original set S0. At this point one uses either
combinations of nearly all equations to obtain very lengthy formulas (> 1000 lines)
or one uses a relatively short formula with a term that sends the reduction back to
a previous rule, because it contains a term with n11 = −1. This would normally
introduce a loop, but by sending only this term through the unfinished scheme and
combining the result with the remaining part of the formula, we obtain a compact
reduction formula for n4 (39 terms).

The bebe reduction is more complicated as it does not yield a regular reduction
for n1 and n3. However, in the set S0 there are equations that can be used for their
reduction, provided we are willing to raise the complexity. This does not agree
with the automatic nature of our derivation tools, and hence some work needs to
be guided by hand. Furthermore, we can no longer use a number of equations
from the S0 set for generating reduction rules for other variables. As a consequence,
we are left with far fewer equations after the Gaussian eliminations, although their
number is still sufficient for the next 11 variables. Eventually the n2 variable has to
be obtained again from the S0 set.

For the construction of a reduction scheme the bubu topology is by far the most
complicated, even though it is not a master topology. There are five different
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numerators and the elimination of the last numerator needs to be split into several
cases, each with a rather lengthy formula involving complicated rational polynomials.
In order to prevent a blow-up of terms, the order of elimination of the variables is
critical, as well as using the equations obtained during the Gaussian elimination that
give a direct reduction of the complexity. It took more than two months to find a
first suitable reduction scheme.

We use the S0 set and equations that come from the Gaussian elimination before
we start with the 14 reduction identities of the complete schemes. This speeds up
the reduction by a factor two or more, because these equations are usually much
more compact and will often reduce the complexity immediately. It turns out that
the final result is very sensitive to how we use these equations, because sometimes
there are options when there is more than one term with the highest complexity,
and also the order in which they are applied is relevant. Additionally one has to be
careful with this ordering to avoid loops in the reduction. Unfortunately, it is not
always possible to indicate which ordering is optimal, because some orderings may
yield a faster scheme at the cost of more spectator terms and/or higher powers of ε
in the rational polynomials.

Considering the amount of work involved in deriving the schemes, it is quite
conceivable that better schemes will be found. It seems to be a good candidate for
the application of automated AI techniques.

3.7 the forcer framework

In essence, the Forcer program provides a method to reduce each topology to
simpler ones. There is quite some freedom: sometimes multiple reduction rules can
be applied, sometimes it is best to use a different set of independent momenta, etc.
In order to obtain the best performance, all decisions in the Forcer program are pre-
computed by a script: for each topology the action is hard-coded and the momentum
rewrites are known. The advantage of this method is that costly optimisations, such
as choosing an optimal basis for each topology, have no runtime cost.

The remainder of this section is structured as follows. In section 3.7.1 we describe
the construction of the reduction graph. Next, the execution of the reduction graph
is shown in section 3.7.2. Finally, we give an example of the treatment of a topology
in section 3.7.3.

3.7.1 Reduction graph generation

Before going into details, we first give an overview of the program. The program
structure can be viewed as a directed acyclic graph (DAG), the reduction graph, where
the nodes are topologies and each edge indicates a transition from one topology
to another when a propagator is removed. As a result, each node may have more
than one parent. The root nodes of the reduction graph are the top-level topologies,
which are topologies that only have three-point vertices. All tadpole topologies will
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be zero, so they are not included in the graph. To reduce the number of topologies,
propagators with the same momentum are always merged.

Each node represents a topology, which consists of a graph with a certain fixed
labelling of all the propagators, including momentum directions, and a fixed set of
irreducible numerators. Each topology also has an action that determines how it can
be reduced. They are, in order of preference: integration of a two-point function,
carpet rule, triangle/diamond rule, or a custom reduction. Each topology contains
transitions to other topologies for all removable edges (edges with integer power).
Even though the specific rule may not be able to nullify any propagator in the graph,
the dot product rewrites may, so therefore we generate all possible transitions. If
there are lines missing, in most cases the topology action is not executed and the
topology is automatically rewritten to another. The exception is for integrating
insertions: insertions are guaranteed to reduce the number of loops, which simplifies
the dot product basis. Thus, first rewriting the dot products to a new topology
would be wasteful.

benz

d34 d35d38d39 d40

la

d36 d37

no

t1star5

d12

d3 d6

d1

d5

d27 d24d29d22d28 d25

d21 d18 d20d15d19

d10

d4

d7

d14

d2

d13 d9 d8

d17

d11

d31d32d33

d30

d23d26

Figure 21: The three-loop reduction graph. Each node represents a topology, and
each arrow a transition if a certain line is removed. The colour defines
the topology action: white means the triangle or diamond rule, cyan the
carpet rule, green the insertion rule, and red a custom reduction.

In figure 21 the reduction graph is displayed for three-loop massless propagator
graphs. The names of the topologies are automatically generated. Every arrow
denotes a transition that occurs when a propagator is removed. Multiply arrows
could point to the same node if the resulting diagram is isomorphic. An example of
this is t1star5 (same as t1star05 in section 3.6), where removing any of the four
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outside lines results in the same topology. The central line cannot be removed, since
it has a non-integer power. The four-loop reduction graph, with over 400 nodes, is
far too large to display.

The reduction graph is generated from the top-level topologies down. For every
topology, a new one is generated where a particular line is missing, For this new
topology, we determine its action. Next, we generate a dot product basis that is
compatible with the action, e.g., for the insertion rule all dot products should only
involve at most one of the two momenta. We also determine its automorphisms
(graph symmetries), so that we can map every topology instance to the same unique
form (we will go into more detail about this in the next section).

The dot product basis is chosen according to the following three rules: (1) it is
compatible with the action, (2) it minimises the number of terms created when
rewriting from the parent topology. As a criterion we choose the sum of the square
of the number of terms that are created in rewriting each dot product. (3) The dot
products are chosen in line with the symmetries of the topology.

We summarise the generation of the reduction graph in algorithm 2.

Input : top-level topologies T
Output : reduction tree Tall
Tall ← T ;
foreach t ∈ T do determine action and

automorphisms;
while T 6= ∅ do

take t ∈ T;
foreach propagator p ∈ t do

h← new topology without p ;
if h′ ∈ Tall isomorphic to h then

construct mapping from h→ h′;
else

determine action for h;
generate dot product basis for h;
generate automorphisms for h;
generate mapping of dot products from

t to h;
add node h to tree Tall;
T ← T ∪ {h};

end
end

end
Algorithm 2: Reduction graph generation.

The reduction graph is generated with a Python script, using igraph [107] for a
basic graph representation of the topologies and for the isomorphism algorithm.
Since by default only simple graphs (without self-edges and duplicate edges) are
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supported by the isomorphism algorithm, we merge all double edges and use a
custom function to determine if the topologies are truly isomorphic (one could view
duplicate edges with possible insertions as a special edge colouring). This function
enforces that the number of duplicate edges is the same, and that the distribution of
insertions over duplicate edges is the same. Additionally, we generate all possible
permutations over similar duplicate edges, to generate the edge isomorphisms. The
reduction graph contains 438 topologies and requires 40 000 lines of Form code.

3.7.2 Reduction graph execution

So far, we have discussed the generation of the reduction graph. Now we consider
how the graph is processed in runtime.

As input, we have integrals that are labelled by the name of their topology
in a symbol. In contrast to Mincer, the input expressions can contain multiple
topologies. In Forcer, every topology is put in a separate expression and is hidden.
The topologies are processed one by one, in the order of the number of edges. When
a topology is treated, the expression is unhidden, the integrals are symmetrised
using automorphisms, the topology action is executed, and finally, the resulting
integrals are rewritten to their new topology. The topologies in the output are either
master integrals, which require no further reductions, or topologies with fewer lines.
These topologies will be merged into the designated expression for that topology.
All the masters integrals are stored in their own expression.

After rewriting dot products, multiple edges could have vanished. Some of
the integrals that remain could have become massless tadpoles, which are zero in
dimensional regularisation. A table is used that maps the topology and a list of
missing edges to zero if the resulting topology is a tadpole.

The execution of the reduction graph is summarised in algorithm 3.

3.7.3 Example

Below we give an example of the treatment of a topology. The topology is depicted
in figure 22, and is internally called d366.

In the input, the integral is represented as follows by a compact notation in terms
of symbols only:

Md366/i1/i2/i3/i4^2/i5/i6/i7/i8/i9*i10*i11*i13;

where Md366 is the marker of the topology and the powers of in represent the
propagator and numerator powers. In this example we have three additional powers:
1/p2

4, Q · p4, p1 · p6, and p1 · p4. Since all rules are precomputed, the information
of the topology such as the vertex structure, momentum flow, non-integer powers
of lines and which dot products are in the basis, is never stored in the terms that
are processed. Instead, the topology marker Md366 will be used to call the correct
routines.
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Input : input integrals I
Input : reduction graph Tall
convert I to Forcer topologies ;
foreach t ∈ I do put in its own expression Et and

deactivate;
for l = 11 to 1 do

foreach t ∈ Tall with l edges (any order) do
activate expression with topologies t ;
symmetrise terms (apply automorphisms) ;
perform reduction operation (triangle,

carpet, etc.) ;
rewrite result with missing lines to Forcer

topologies hi ∈ Tall ;
move the terms with topology hi to Ehi

;
end

end
Algorithm 3: Reduction graph execution.

p1

p2

p3 p4
p5

p6

p7

p8

p9

n10 = Q · p4 n13 = p1 · p4

n11 = Q · p6 n14 = p1 · p6

n12 = p1 · p3

Figure 22: Forcer topology d366.

When treating topology d366, we first apply symmetries to make sure that similar
configurations of d366 are merged. We use the automorphisms of the graph, of
which there are four: (p1 ↔ p2)× (p4 ↔ p6, p3 ↔ p7, p7 ↔ p8). However, since
there may be dot products in these momenta, the symmetry may be broken unless
the set of dot products maps into itself. For the symmetry (p1 ↔ p2), the dot
products p1 · p3, p1 · p4, p1 · p6 should be absent. The other symmetry can only be
applied when p1 · p3 is absent.

To find the smallest isomorphism, we hash the powers of the i, and take the
smallest. The code is displayed in listing 3.2.

Listing 3.2: Form code for finding the smallest isomorphism

if (match(Md366*<1/i1^n1?$n1>*...*<1/i14^n14?$n14>));

if (($n12==0)&&($n13==0)&&($n14==0));

#call hash(0,$n14,$n13,$n12,$n11,$n10,$n9,$n8,$n7,$n6,$n5,$n4,$n3,

$n1,$n2)
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#call hash(1,$n14,$n13,$n12,$n10,$n11,$n9,$n5,$n3,$n4,$n8,$n6,$n7,

$n1,$n2)

endif;

if (($n12==0));

#call hash(2,$n14,$n13,$n12,$n11,$n10,$n9,$n8,$n7,$n6,$n5,$n4,$n3,

$n2,$n1)

#call hash(3,$n13,$n14,$n12,$n10,$n11,$n9,$n5,$n3,$n4,$n8,$n6,$n7,

$n2,$n1)

endif;

* stores best hash in $bestiso

#call smallesthash(0,1,2,3)

if ($bestiso == 0); Multiply replace_(i1,i2,i2,i1);

elseif ($bestiso == 1); Multiply sign_($n10+$n11+$n13+$n14)

*replace_(i1,i2,i2,i1,i3,i7,i4,i6,i5,i8,i6,i4,i7,i3,i8,i5,i10,i11,

i11,i10);

elseif ($bestiso == 3); Multiply sign_($n10+$n11+$n13+$n14)

*replace_(i3,i7,i4,i6,i5,i8,i6,i4,i7,i3,i8,i5,i10,i11,i11,i10,i13,

i14,i14,i13);

endif;

endif;

The action that will be performed in d366 is the integration of the left bubble,
p1 and p2. As can be seen in figure 22, all relevant dot products are written only
in terms of p1 and none in terms of p2, in alignment with the insertion rule. The
dot products that involve p1 can all be re-expressed in terms of inverse propagators
after integrating the insertion. The two dot products that remain, Q · p4, and Q · p6
(represented by i10 and i11 respectively) have to be rewritten to the new topology.

The new topology is called d118:

p2 p1
p7

p6

p3

p4

p5

n8 = Q · p4

n9 = Q · p7

where we have suppressed the ε power of the external line.
In listing 3.3, we display the mapping from d366 to d118, which includes rewriting

the old dot products.

Listing 3.3: Form code for rewriting dot products

Multiply replace_(i3,j2,i4,j1,i5,j7,i6,j6,i7,j3,i8,j4,i9,j5);

id i10 = Q^2/2+j2/2-j3/2-j9;
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id i11 = -Q^2/2+j2/2-j3/2+j8;

Multiply replace_(Md366,Md118,<j1,i1>,...,<j7,i7>,j8,-i8,j9,i9);

3.8 usage

The Forcer program can be downloaded from https://github.com/benruijl/

forcer. Currently, the latest development version of Form is required, which can
be obtained from https://github.com/vermaseren/form. The generation scripts
require Python 2.7, Python 3 or higher as well igraph [107], numpy [108] and
sympy [109].

An example of Forcer input is displayed in listing 3.4.

Listing 3.4: Example input for Forcer

#-

#include forcer.h

L F =

+1/<p1.p1>/.../<p6.p6>*Q.p3*Q.p4*vx(Q,p1,p5,p6)*vx(-p1,p2,p3)*vx(-p5,-

p6,p4)*vx(-Q,-p2,-p3,-p4)

+1/<p1.p1>/.../<p5.p5>*vx(-Q,p2,p3)*vx(p1,-p2,p5)*vx(-p1,p4,Q)*vx(-p3,-

p4,-p5)*ex(p1,p4)

;

#call Forcer(msbarexpand=4)

B ep;

P +s;

.end

After forcer.h is included, the input integral can be defined. This is done by
specifying the vertex structure using vx. The external momentum should be called Q.
The propagators and momenta can simply be multiplied in, as shown in the example
above. Insertions on lines can be specified using the ex function. In the second
integral above ex(p1,p4) means that there is a single ε on the propagator associated
with momentum p1, and one on p4. The topologies will automatically be matched to
Forcer’s internal topologies. The dot products will also automatically be rewritten
(see subsection 3.10.4).

By calling the Forcer procedure, the integrals are computed. The optional argu-
ment msbarexpand can give the (unrenormalised) answer expanded in MS. Other-
wise, the result will be given exactly in terms of the master integrals and rational
coefficients. Other options include polyratfunexpand=div and polyratfunexpand=
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maxpow, which enable the expansions of rational coefficients in ε at intermediate
steps using the Form statement PolyRatFun (see 3.9).

3.9 expansions

In principle the coefficients of the integrals can be kept as rational polynomials
in D or ε. However, the nature of the reductions is such that these polynomials
can contain very high powers in their numerators and denominators. Adding
such rational polynomials is easily the most costly operation during the reductions.
During the development of the Forcer program, we have encountered polynomials
with powers of ε that went over 700, and that was not even for a complete reduction.
In practice one needs such ‘precision’ only in very rare cases, such as when one
needs to change dimensions during or after the reduction. In our program this
is not necessary, and hence a better strategy is to expand these polynomials to
a finite power of ε. The main problem is that we do not know in advance how
many powers are needed. The reductions will at times generate extra powers of
1/ε (spurious poles) that will only cancel near the end of the reduction when all
terms that contribute to a given master integral are added. An exact solution for the
spurious problem is a denominator notation [110], but to make this workable Form

still needs supporting facilities.

We have opted for a method in which the reduction formulas still use rational
polynomials, but after each step they are expanded to sufficient depth. It is possible
to make a special trial run to determine how many powers are needed. In this trial
run only the minimum power of ε is kept with the coefficient one, to avoid that
such terms can cancel. Avoiding all calculations, such a run can be relatively fast,
provided that the main computational effort is in the Forcer part of the program
(it usually is). After the run, one can see how deep the expansions have to be. We
usually take the worst value that we encounter for all diagrams and add one ‘guard
power’. With this value the program generates the proper tables for the various
Pochhammer symbols and other objects that may need expansions. Then during the
actual reductions the rational polynomials will be expanded to the proper depth.

A simpler and safer method is to run the whole calculation twice with different
settings for the expansion depth and observe at which power of ε the coefficients
change. This is similar to running numerical programs with different floating point
precisions to study the numerical instabilities.

Form has options to use expansions in its coefficients. The command PolyRatFun,

rat(divergence,variable) keeps only the lowest power of ε. Generally, the pro-
gram is quite fast in this mode. To expand, the statement PolyRatFun,rat(expand,
variable,maxpow) can be used. These commands are implemented in the latest
development version of Form.
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3.10 from physical diagrams to forcer

The interface provided in the previous section expects scalar integrals as input.
In order to compute Feynman diagrams, process-specific preprocessing has to be
performed. Since the actual implementation is highly dependent on conventions, we
will only sketch certain parts.

The program Qgraf [111] provides a convenient way to generate the Feynman
graphs that are needed for the actual calculations, because it can generate Form

compatible output. However, the challenge remains of converting the diagrams as
presented by Qgraf to something that the Forcer program can deal with. This
involves mapping the topology and momenta of the diagrams to Forcer’s internal
notation. For this purpose, the Python program that generates the reduction graph
also generates a file called notation.h which contains a specification of all topologies
in such a way that a conversion program can use it for

1. topology recognition,

2. labelling the momenta and their directions for each line,

3. using symmetry transformations.

Each topology is represented by a term in Form notation. Two typical terms are
displayed in listing 3.5.

Listing 3.5: Two entries in the notation file

+vx(-Q,p4,p5)

*vx(p3,-p4,p11)

*vx(p6,p7,p10)

*vx(p2,-p3,-p10)

*vx(p1,-p2,p9)

*vx(-p5,-p6,-p9)

*vx(-p7,p8,-p11)

*vx(-p1,-p8,Q)

*SYM()

*SYM(Q,-Q,p1,-p5,p2,p6,p3,-p7,p4,-p8,p5,-p1,p6,p2,p7,-p3,p8,-p4,p9,-

p9,p10,-p10,p11,-p11)

*SYM(Q,-Q,p1,-p4,p2,-p3,p3,-p2,p4,-p1,p5,-p8,p6,p7,p7,p6,p8,-p5,p9,

p11,p11,p9)

*SYM(p1,p8,p2,p7,p3,-p6,p4,p5,p5,p4,p6,-p3,p7,p2,p8,p1,p9,-p11,p10,-

p10,p11,-p9)

*TOPO(Mno2)

+vx(-Q,p3,p4)

*vx(p2,-p3,p7)

*vx(p1,-p2,p6)

*vx(-p1,p5,Q)
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*vx(-p4,-p5,-p6,-p7)

*ex(p2)

*SYM()

*SYM(Q,-Q,p1,-p3,p2,-p2,p3,-p1,p4,p5,p5,p4,p6,p7,p7,p6)

*TOPO(Mfastar2)

The first term indicates the no2 topology. The function vx indicates the vertices
and the momenta belonging to that vertex. Negative momenta are incoming. The
function TOPO has a symbol as an argument that indicates the topology. In the
Forcer program terms that are in the notation of a given topology are labelled with
one power of the corresponding symbol. The function SYM describes a symmetry
operation of the topology. The Form statement

id,once,SYM(?a) = replace_(?a);

will execute such an operation. In practice one could use it as described in
listing 3.6.

Listing 3.6: Form code for applying symmetries

id vx(?a) = f1(vx(?a));

repeat id f1(x1?)*f1(x2?) = f1(x1*x2);

repeat id SYM(?a)*f1(x?) = f1(x)*f2(x*replace_(?a));

id f1(x1?)*f2(x2?) = x2;

id f2(x?) = 1;

This process makes for each occurrence of the function SYM a copy of the contents
of the function f1 in which the corresponding symmetry operation has been applied.
Because the normal ordering algorithm of Form puts the smallest of the functions
f2 first, we end up with the smallest representation of the term. If this is applied at
a later stage in the program more statements may be needed, because there may be
more objects than vx.

The notation file includes more topologies than actually exist in the Forcer

reduction graph, since physical diagrams can have duplicate momenta. If this
is the case, the term in the notation file also contains a function ID, for example
ID(p4,-p5), indicating that p4 and −p5 are actually the same momentum. After
the topology is matched and the labelling is done, the following ID function can be
applied.

id ID(p1?,p2?) = replace_(p1,p2);

The first step in determining the topology of a diagram is to read the notation.h

file, number its topologies, and store each of them in a dollar variable with a name
that is labelled by this number. We also store the names of the topologies in such
an array of dollar variables. The topology of a diagram can now be determined by
trying whether one of the topologies can be substituted in the term. If this pattern
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matching involves wildcards, and the match of the wildcards is stored inside dollar
variables we can use this to relabel the diagram itself and bring it to the notation
of the topology. The main problem is creating the match structure, since we need
wildcards for all the momenta followed by the name of a dollar variable. This issue
is resolved with the dictionary feature of Form. The essential part of the code is
shown in listing 3.7.

Listing 3.7: Form code for topology matching

#OpenDictionary wildmom

#do i = 1,‘$MAXPROPS’

#add p‘i’: "p‘i’?$p‘i’"

#enddo

#CloseDictionary

#do i = 1,‘$MAXPROPS’

$p‘i’ = p‘i’;

#enddo

#UseDictionary wildmom($)

#do i = 1,‘$numtopo’

if ( match(‘$topo‘i’’) );

$toponum = ‘i’;

goto caught;

endif;

#enddo

#CloseDictionary

label caught;

Multiply replace_(Q,Q,<$p1,p1>,...,<$p‘$MAXPROPS’,p‘$MAXPROPS’>)*topo(

$toponum);

When we try to match, the printing of the ‘$topo‘i’’ variable will result in
objects like vx(p1?$p1,p2?$p2,p3?$p3)*... rather than the vx(p1,p2,p3)*... that
it actually contains. This way the $-variables get the value of the momenta in the
diagram for which we want to determine the topology and the notation. The final
replace substitutes these momenta by the value they have in the topology file.

It is possible to speed up the process considerably by hashing the topologies by
the number of vertices and by first stripping the signs of the momenta. These signs
can be recovered in a later step.

The remainder of this section is structured as follows. In section 3.10.1 we
describe how to filter self-energies. The colour split-off is shown in section 3.10.2. In
section 3.10.3 we describe the diagram database. Finally, we construct the momentum
substitution routines in section 3.10.4.
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3.10.1 Self-energy filtering

An optimisation is to filter self-energy insertions from the Qgraf output. Here we
present an algorithm that can detect one particle reducible propagator insertions.

1. Select a representative for a one-loop propagator. A representative is a single
diagram that occurs in this propagator. For the ghost and the quark propagators
this is trivial, since there is only a single diagram. For the gluon we select the
diagram with the ghost loop (not forgetting the minus sign).

2. In the propagators we indicate the number of loops with an extra parameter.
Adjacent loop representatives are combined and their number of loops is the
sum of those parameters. This means that the representative of a three-loop
gluon propagator is a chain of three one-loop diagrams, each with a ghost
loop.

3. Next we make a copy of all remaining vertices into a function acc. In this
function we remove all vertices that have an external line.

4. In the function acc we start selecting one vertex in all possible ways.

5. If this special vertex has more than two lines, it ‘consumes’ in all possible ways
one of its neighbouring vertices, removing the connecting momentum. If the
same momentum connects twice to the new vertex, it is removed as well.

6. We keep doing this until either the super-vertex in one of the terms has two
lines remaining in which case we can eliminate the whole diagram as it is part
of a propagator, or we cannot remove any more lines. If all possibilities end in
the last way we keep the diagram.

Let us show this diagrammatically for a non-trivial diagram:

Step 3

Step 4

2× +2× +2×

Step 5,1
4× +8× +2×
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Step 5,2
8× +24× +8×

Step 5,3
56× +32× +32× +72×

Step 5,4 Step 5,5
304× +72×

In the example, the diagram can be eliminated at the moment the super-vertex
with just two lines appears. This is at step 5,3. We did not stop at that point because
we wanted to show how the other possibilities develop for diagrams that would
survive.

The above algorithm can be programmed rather easily in Form with the new id,all
option of the id statement. For instance step 4 is just the statement

id,all,v(?a) = w(?a);

in which v represents the vertices and w is the super-vertex. This is followed by a
symmetrisation to reduce the number of different diagrams. A complete procedure
that works for all types of diagrams, independent of the number of external lines
or loops contains 30 Form statements. The elimination of insertions simplifies the
calculation considerably, because multi-loop gluon propagator insertions have many
diagrams. This is particularly important when calculating moments of splitting and
coefficient functions in DIS.

3.10.2 Colour split-off

We split each diagram in its colour part and its ‘Lorentz’ part before applying the
Feynman rules. The 4-gluon vertex is split up into three terms with their own overall
colour factor. Technically it is not required to do the split-off at this stage, but the
remaining program will be considerably faster when the colour is a global factor.

To compute the colour factor we use a modified version of the color package of
ref. [112]. It has been observed that even when one may have 100 000 diagrams or
more, there are usually at most a few hundred different colour factors to be worked
out. Hence, the way to process these factors is by pulling all colour objects into a
function color and then, after using colour projectors on the external lines, only
working out the colour bracket. The process is shown in listing 3.8.
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Listing 3.8: Form code for backeting in a function

Normalize color;

B color;

.sort: Prepare color;

Keep brackets;

Argument color;

#call color

#call simpli

EndArgument;

Replacing every .sort by the procedure described in listing 3.9, guarantees that
each different colour object is worked out only once.

Listing 3.9: Form code for a bracketed sort

#procedure SORT(text)

EndArgument;

B color;

.sort:‘text’;

Keep Brackets;

Argument color;

#endprocedure

3.10.3 Diagram database

Diagrams with the same topology and colour factor are grouped together in super-
diagrams. The superdiagrams provide a convenient way to distribute the work over
multiple computers. This grouping can speed up the calculation by a factor three.

We use the minos database program provided (with its source code) in the Form

pages to store the superdiagrams. After each superdiagram is computed, it is
multiplied with its colour factors. Finally, the values of all superdiagrams are added.
Only at this stage do we substitute the formulas for the insertion propagators and
the master integrals. Up until the substitution of the master integrals the results are
exact to all orders in ε if one uses rational polynomials in ε for the coefficients of the
terms.

3.10.4 Momentum substitutions

After the Feynman rules have been applied, the integrals are in a form in which
they can be converted to Forcer’s basis for the topologies. The reduction to this
basis needs to be done with great care as it is quite easy to generate an extremely
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large number of terms. This process is split up into two components: rewriting the
momenta to a momentum basis and rewriting the dot products to Forcer’s basis.

The momentum basis should contain all the momenta of the irreducible dot
products belonging to this Forcer topology. The other basis elements are obtained
by an exhaustive search that tries to minimise the number of terms that will be
created when rewriting to the basis. The optimisation criterion is the sum of the
square of the number of terms that get created for all the momentum and dot
product rewrites.

In order to prevent a blow-up in the number of terms, we create a layered rewrite
of momenta. This layering is constructed automatically and makes the momentum
rewrites order dependent:

p9.p?!{p9,}=+p2.p+p7.p+p11.p-Q.p;

p5.p?!{p5,}=-p11.p-p3.p+Q.p;

p6.p?!{p6,}=-p2.p+p3.p-p7.p;

p1.p?!{p1,p4}=+Q.p-p8.p;

p10.p?!{p10,}=+p2.p-p3.p;

p4.p?!{p4,p1}=+p11.p+p3.p;

p7.p?!{p7,}=+p8.p-p11.p;

p9.p?!{p9,}=-p6.p-p5.p;

p5.p?!{p5,}=-p4.p+Q.p;

p6.p?!{p6,}=-p10.p-p7.p;

p1.p?!{p1,p4}=+Q.p-p8.p;

p10.p?!{p10,}=+p2.p-p3.p;

p4.p?!{p4,p1}=+p11.p+p3.p;

p7.p?!{p7,}=+p8.p-p11.p;

Because some terms will merge during the momentum rewrites, the layered
approach is much faster. Note that dot products will not be rewritten if they are
elements of the dot product basis.

Finally, the dot products are rewritten, straight to the internal Forcer notation.
This is displayed in listing 3.10.

Listing 3.10: Form code for dot product rewriting

id Q.p1 = Q^2/2+i1/2-i8/2;

id p1.p2 = i1/2+i2/2-i9/2;

id p2.p3 = -i10/2+i2/2+i3/2;

id Q.p4 = Q^2/2+i4/2-i5/2;

id p3.p4 = -i11/2+i3/2+i4/2;

id p1.p3 = -Q^2/2+i11/2+i13+i14-i4/2+i5/2-i7/2+i8/2;

id p2.p4 = -Q^2/2-i1/2+i12+i13+i5/2-i6/2+i8/2+i9/2;

We note that in the actual code there will be .sort statements between the id
statements and that there are extra optimisations in place to prevent excessive term
generation.

3.11 examples and performance

The Forcer program has recently been used in many large calculations. As a
first demonstration of its capabilities, the four-loop QCD beta function has been
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recomputed [7, 9], and it agrees with refs. [113, 114]. Other major computations
(refs. [2, 4, 5, 115, 116]) will be discussed in chapter 4 and chapter 6.

Below we demonstrate some benchmarks of the Forcer program. We start
with some specific configurations, displayed in table 4. We have chosen top-level
topologies for the benchmark, since these are the most time-consuming ones. In
their reduction, many other master topologies (and thus custom reductions) are
encountered. The topology la4 is the four-loop ladder topology.

ID Configuration Time (s)
no1 Z(−14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,−1,−1,−1) 10476

no2 Z(−14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,−1,−1,−1) 147

haha Z(−14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,−1,−1,−1) 338

la4 Z(−14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,−1,−1,−1) 68

no2 Z(−17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,−2,−2,−2) 370

la4 Z(−20; 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2,−2,−2,−3) 2848

haha Z(−20; 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2,−4,−4,−4) 12943

la4 Z(−20; 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2,−4,−4,−4) 117906

Table 4: Benchmark for several specific configurations, using 4 cores.

Next, we compute samples of configurations with a specific complexity of the
top-level non-planar master integral no1 and no2. In figure 23, we show the total
wall-clock time of computing 10 and 100 samples for a given complexity at the same
time, using 4 cores. We observe that even though the difference in number of samples
is a factor 10, the computation time increases only by about 20%. This demonstrates
that the Forcer program makes use of symmetries and grouping, which cause
shared configurations deeper in the reduction process to merge. Additionally, the
graph shows that the computation time scales exponentially in the complexity with
a base of about 2.5.

Finally, figure 24 shows the timings for computing four-loop QCD self-energies
for a certain maximum power of the (unrenormalised) gauge parameter ξ. Here
ξ = 0 corresponds to the Feynman gauge. In our setup, all techniques discussed in
section 3.10 are applied.

The background field propagator in figure 24 can be used to obtain the beta
function without computing an additional propagator and a vertex [117, 118]. Inter-
estingly, the curve for the background-gluon is quite similar to that for the gluon,
even though one may expect that the background-gluon to be more time consuming
than the gluon propagator because of extra vertices. The high performance can be
understood by the fact that we are using superdiagrams; as we have seen in figure 23,
the increase of the number of terms does not matter much, provided complexities of
integrals are similar, and there are many chances for merges and cancellations of
coefficients of the integrals at intermediate stages in the reduction.

Using the background field method, we are able to compute the four-loop beta
function for Yang-Mills theory with fermions in less than three minutes in the
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Figure 23: A benchmark (wall time) for the complete reduction of no1 and no2

configurations, using 4 cores (2.6 GHz). The line with the dots indicates
the joint computation time of 100 sampled configurations, the line with
the squares the computation time of 10 samples. Even though 10 times
more integrals are computed, the computation time is only 20% longer.
The scaling in complexity is exponential: each increase in complexity
increases the computation time by 2.5.
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Figure 24: A benchmark (wall time) for computing four-loop QCD self-energies
(ghost, quark, gluon and background-gluon) on a 32-core machine. The
two curves for the gluon and background-gluon almost coincide.
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Feynman gauge, and in about four hours for all powers of the gauge parameter on a
single machine with 32 cores.

3.12 chapter conclusion

We are now able to answer

RQ2: How can we construct a program that can compute four-loop massless
propagator integrals more efficiently?

We have shown how the Forcer program has been constructed, what algorithms
it uses and demonstrated its performance [1]. We have derived the diamond rule,
which is able to efficiently reduce integrals with a certain substructure [10]. Next, we
have shown how to derive parametric reduction rules. In addition, we have outlined
how Forcer may be used for computing physical diagrams.

3.12.1 Findings and main conclusion

We have shown that the Forcer program is able to compute the four-loop beta
function in only three minutes on a 32-core machine. We have given benchmarks
of configurations that would take months to compute with Laporta-like methods.
Additionally, the Forcer program has already been used for some large calculations
at four- and five-loop accuracy [2, 4, 5, 7, 9, 115, 116]. These computations will be
discussed in chapter 4 and chapter 6. From our benchmarks and the use in large
calculations, we may conclude that Forcer is an efficient program for computing
four-loop massless propagator integrals.

3.12.2 Future research

An interesting area for future research is to extend Forcer to five loops. Most parts
of the program are easily extended, since the predominantly automatic construction
of the program is not limited to four loops. We have even computed 30% of the
diagrams of the five-loop gluon propagator using the five-loop Forcer. The challenge
is that over 200 topologies have an unknown reduction scheme. If the heuristics for
deriving reduction schemes can be extended and fully automated, a full five-loop
Forcer can be constructed shortly after. The idea is quite challenging: the number
of parameters that have to be reduced grows from 14 at four loops to 20 at five loops.
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4
R E S U LT S F O R F O U R - L O O P C O M P U TAT I O N S

In this chapter we use the Forcer program, constructed in chapter 3 as part of
the answer to RQ2, to compute two classes of four-loop objects. Class 1 concerns
propagators and vertices of QCD, and Class 2 concerns Mellin moments of splitting
functions and coefficient functions.

class 1 The first class of objects that we are going to compute are the finite
pieces of propagators and vertices to any power in ε = (D− 4)/2, where D is the
space-time dimension. Up until this point, only the poles and the ε0 coefficients
are known, since they have been used in computations of the basic renormalisation
group functions of QCD [23, 24, 113, 114, 119–126] which have recently reached
five-loop accuracy [4, 40, 41, 127–129]. In the modified minimal subtraction (MS)
scheme [130, 131], defined by subtracting the poles in ε together with a fixed term
that occurs in dimensional regularisation , these functions are obtained by computing
single poles in corresponding Green’s functions. Since only the poles are required,
the above four- and five-loop results were first obtained using the method of infrared
rearrangement [4, 124, 132–138] which simplifies computations without changing
the ultraviolet singular structure, but modifies the finite parts. Therefore, it is not
possible to compute the complete finite piece using these standard methods.

Our aim is to provide the self-energies and a set of vertices with one vanishing
external momentum for massless QCD at four-loop accuracy. The unrenormalised
results are exact in terms of ε, and four-loop master integrals [105, 106]. The
computation has been performed for a general gauge group and in an arbitrary
covariant linear gauge, by using the Forcer program [1, 7, 9] for massless four-loop
propagator-type integrals. For the vertices, setting one of the momenta to zero
effectively reduces vertex integrals to propagator-type integrals. In QCD this does
not create Infrared (IR) divergences, which means the poles do not change. At
the three-loop level, similar computations were performed in ref. [139], but with
an expansion in ε. In addition, studies of QCD vertices in perturbation theory for
various configurations include refs. [140–152].

We compute all QCD vertices in a general linear covariant gauge, with the excep-
tion of the four-gluon vertex for which there are at least three difficulties: first, two
momenta have to be nullified before the diagrams become propagator-like. Second,
the number of diagrams is large at four loops. Third, the colour structure for a
generic group is no longer an overall factor, but will be term dependent.

A direct application of our results is to compute conversion factors for renormal-
isation group functions from the MS scheme to momentum subtraction schemes, see,
e.g., refs. [140, 143]. In a later chapter (6.5), we will use the results presented here to
convert the five loop beta function to the MiniMOM scheme [153]. The MiniMOM

85



4

scheme is a momentum subtraction scheme that is more convenient than MS for
comparing QCD in the perturbative and non-perturbative regime.

class 2 The second class of objects we are going to compute are Mellin moments
of four-loop splitting functions and coefficient functions. Even though for most cases
three-loop accuracy is adequate, there are at least two cases where the next order is
of interest due to (1) very high requirements on the theoretical accuracy, such as in
the determination of the strong coupling constant αs from deep-inelastic scattering
(DIS), see, e.g., [154], or (2) a slow convergence of the perturbation series, such as for
Higgs production in proton-proton collisions, see, e.g., [82, 155].

At present, a direct computation of the four-loop splitting functions appears to
be too difficult. Work on low-integer Mellin moments of these functions started
ten years ago [156]; until recently only the N = 2 and N = 4 moments had been
obtained of the quark+antiquark non-singlet splitting function P(3)+

ns together with
the N = 3 result for its quark–antiquark counterpart P(3)−

ns [157–159].
The goal in this chapter is to employ the Forcer program to extend the Mincer-

based fixed Mellin-N calculations of refs. [84–86] to four-loop accuracy. We will
use the optical theorem method [83–86] to compute low-N splitting functions and
coefficient functions. Next, we will use the operator product expansion method [158,
160] to compute higher moments of splitting functions.

We now provide the layout of this chapter. In section 4.1, we define the group
notations. In section 4.2, we compute Yang-Mills propagators and vertices with a
vanishing momentum (objects of Class 1). Next, we compute Mellin moments of
splitting functions and coefficient functions (objects of Class 2) in section 4.3. Finally,
we provide the chapter conclusion in section 4.4.

4.1 group notations

In this section we will introduce our notations for the group invariants appearing
in the remainder of this thesis. Ta are the generators of the representation of the
fermions, and f abc are the structure constants of the Lie algebra of a compact simple
Lie group,

TaTb − TbTa = i f abc Tc . (60)

The quadratic Casimir operators CF and CA of the N-dimensional fermion and
the NA-dimensional adjoint representation are given by [TaTa]ik = CFδik and
f acd f bcd = CAδ ab, respectively. The trace normalisation of the fermion repres-
entation is Tr(TaTb) = TFδ ab. At L ≥ 3 loops also quartic group invariants enter
the results. These can be expressed in terms of contractions of the totally symmetric
tensors

d abcd
F =

1
6

Tr(Ta Tb Tc Td + five bcd permutations ) ,

d abcd
A =

1
6

Tr(CaCbCcCd + five bcd permutations ) . (61)
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Here the matrices [Ca ]bc = −i f abc are the generators of the adjoint representation.
It should be noted that in QCD-like theories without particles that are colour neutral,
Furry’s theorem [161] prevents the occurrence of symmetric tensors with an odd
number of indices.

For fermions transforming according to the fundamental representation and the
standard normalisation of the SU(N) generators, these ‘colour factors’ have the
values

TF =
1
2

, CA = N , CF =
NA
2N

=
N2 − 1

2N
,

d abcd
A d abcd

A
NA

=
N2(N2 + 36)

24
,

d abcd
F d abcd

A
NA

=
N(N2 + 6)

48
,

d abcd
F d abcd

F
NA

=
N4 − 6N2 + 18

96 N2 . (62)

The results for QED (i.e., the group U(1)) are obtained for CA = 0, d abcd
A = 0, CF = 1,

TF = 1, dabcd
F = 1, and NA = 1. For a discussion of other gauge groups the reader is

referred to ref. [113].

4.2 propagators and vertices

In this section we will present the computation of four-loop QCD propagators and
vertices with a vanishing momentum.

First, we summarise the notations for self-energies and vertex functions with one
vanishing momentum presented in section 4.2.1 to section 4.2.4. In most cases we
follow the conventions in ref. [139].1 Next, we describe our renormalisation method
in section 4.2.5 and how to compute anomalous dimensions in section 4.2.6. Finally,
we present the results of our computation in section 4.2.7.

4.2.1 Self energies

The gluon, ghost and quark self-energies (figure 25) are of the form

Πab
µν(q) = −δab(q2gµν − qµqν)Π(q2), (63)

Π̃ab(q) = δabq2Π̃(q2), (64)

Σij(q) = δij
/qΣV(q2). (65)

The colour indices are understood such that a and b are for the adjoint representation
of the gauge group, i and j for the representation to which the quarks transform. In
eq. (63) we have used the fact that the Ward identities render the gluon propagator
transversal. The ‘form factors’ Π(q2), Π̃(q2) and ΣV(q2) can easily be extracted from
contributions of the corresponding one-particle irreducible diagrams by applying

1 We note that these conventions may be different from the ones commonly used in the literature. In fact,
the Feynman rules in Forcer are different as well, and hence we occasionally had to convert intermediate
results from one convention to the other and back.
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Figure 25: The gluon, ghost and quark self-energies Πab
µν(q) (a), Π̃ab(q) (b) and

Σij(q) (c).

projection operators [139] (the same holds for the vertex functions discussed below).
They are related to the full gluon, ghost and quark propagators as follows:

Dab
µν(q) =

δab

−q2

[(
−gµν +

qµqν

q2

) 1
1 + Π(q2)

− ξ
qµqν

q2

]
, (66)

∆ab(q) =
δab

−q2
1

1 + Π̃(q2)
, (67)

Sij(q) =
δij

−q2
/q

1 + ΣV(q2)
. (68)

Here the Landau gauge corresponds to ξ = 0, and the Feynman gauge to ξ = 1.
We note that this convention differs from that in the widely used Form version
[33] of the Mincer program [32] for three-loop self-energies, where the symbol xi
represents 1− ξ.

4.2.2 Triple-gluon vertex

Without loss of generality, one can set the momentum of the third gluon to zero, as
depicted in figure 26. Then the triple-gluon vertex can be written in the following
form:

Γabc
µνρ(q,−q, 0) = −ig f abc

[
(2gµνqρ− gµρqν− gρνqµ) T1(q2)−

(
gµν−

qµqν

q2

)
qρT2(q2)

]
,

(69)

q

−q

0

a, µ

b, ν c, ρ

Figure 26: The triple-gluon vertex with one vanishing momentum, Γabc
µνρ(q,−q, 0).
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q
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a b
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Figure 27: The ghost-gluon vertex: (a) Γ̃abc
µ (−q, 0; q) has a vanishing incoming ghost

momentum and (b) Γ̃abc
µ (−q, q; 0) a vanishing gluon momentum.

where g is the coupling constant and f abc are the structure constants of the gauge
group in eq. 60. The first term in the square bracket corresponds to the tree-level
vertex while the second term arises from radiative corrections, i.e., at the tree-level
the form factors T1,2(q2) read

T1(q2)
∣∣
tree = 1, T2(q2)

∣∣
tree = 0. (70)

Because of Furry’s theorem [161] and the fact that we have no colour-neutral
particles, symmetric invariants with an odd number of indices cannot occur for
internal fermion lines. Neither can such invariants occur for the adjoint represent-
ation. Hence, if we project out a dabc structure, we would get a scalar invariant
with an odd number of f tensors, and such a combination must be zero. This has
been checked explicitly to the equivalent of six-loop vertices in ref [112]. Due to
the bosonic property of gluons, the totally antisymmetric colour factor f abc leads to
antisymmetric Lorentz structure as in eq. (69). One could consider another Lorentz
structure,

−ig f abcqµqνqρT3(q2). (71)

However, a Slavnov-Taylor identity requires T3(q2) to vanish [139].

4.2.3 Ghost-gluon vertex

Since the tree-level vertex is proportional to the outgoing ghost momentum in our
convention, nullifying this momentum gives identically zero in perturbation theory.
Therefore, we only have two possibilities to set one of the external momenta to
zero. One is the incoming ghost momentum and the other is the gluon momentum
(figure 27):

Γ̃abc
µ (−q, 0; q) = −ig f abcqµΓ̃h(q2), (72)

Γ̃abc
µ (−q, q; 0) = −ig f abcqµΓ̃g(q2). (73)
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The subscript h of Γ̃h(q2) indicates the function with vanishing incoming ghost
momentum, whereas g of Γ̃g(q2) denotes the vanishing gluon momentum. These
functions are equal to one at the tree-level,

Γ̃h(q2)
∣∣
tree = Γ̃g(q2)

∣∣
tree = 1. (74)

4.2.4 Quark-gluon vertex

q

−q 0

a, µ

a b

0

−q q

a, µ

i j

(a) (b)

Figure 28: The quark-gluon vertex: (a) Λa
µ,ij(−q, 0; q) has a vanishing incoming quark

momentum and (b) Λa
µ,ij(−q, q; 0) a vanishing gluon momentum.

We consider the case of a vanishing incoming quark momentum and the case of a
vanishing gluon momentum (figure 28). Nullifying the outgoing quark momentum
gives the same result as nullifying the incoming quark momentum. Then the vertex
can be written as

Λa
µ,ij(−q, 0; q) = gTa

ij

[
γµΛq(q2) + γν

(
gµν −

qµqν

q2

)
ΛT

q (q
2)
]
, (75)

Λa
µ,ij(−q, q; 0) = gTa

ij

[
γµΛg(q2) + γν

(
gµν −

qµqν

q2

)
ΛT

g (q
2)
]
. (76)

Ta
ij are the generators of the representation for the quarks. The subscript q indicates

the functions with vanishing incoming quark momentum and g indicates those with
vanishing gluon momentum. At the tree-level we have

Λq(q2)
∣∣
tree= Λg(q2)

∣∣
tree = 1, (77)

ΛT
q (q

2)
∣∣
tree= ΛT

g (q
2)
∣∣
tree = 0. (78)

4.2.5 Renormalisation

All the quantities we compute contain divergences. The theory of renormalisation
states that for QCD these can be absorbed into redefinitions of the interaction
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strength, mass parameter, and field definitions. This implies that the observables
such as the mass of a particle, and the strength of the strong coupling constant
depend on the energy scale at which one measures. In this section we will define
renormalisation constants which make the observable quantities finite.

In a generic renormalisation scheme R, the respective renormalisations of the
gluon, ghost and quark fields can be written as

(AB)a
µ =

√
ZR

3 (AR)a
µ, (79)

(ηB)a =
√

Z̃R
3 (ηR)a, (80)

ψB
i f =

√
ZR

2 ψR
i f . (81)

The superscript “B” indicates a bare (divergent) quantity and “R” a renormalised
(finite) one. For the coupling constant, we define a = αs/(4π) = g2/(16π2). Then
a and the gauge parameter ξ are renormalised in dimensional regularisation (D =
4− 2ε) as follows:

aB = µ2εZR
a aR, (82)

ξB = ZR
3 ξR. (83)

Here µ is the ’t Hooft mass scale, which is added to make the coupling constant
dimensionless. We have used the fact that the gauge parameter is also renormalised
by the gluon field renormalisation constant, ZR

ξ = ZR
3 . The renormalisation of the

self-energies and vertex functions is performed as

1 + ΠR = ZR
3 (1 + ΠB), (84)

1 + Π̃R = Z̃R
3 (1 + Π̃B), (85)

1 + ΣR
V = ZR

2 (1 + ΣB
V), (86)

and

TR
i = ZR

1 TB
i , i = 1, 2, (87)

Γ̃R
i = Z̃R

1 Γ̃B
i , i = h, g, (88)

ΛR
i = Z̄R

1 ΛB
i , ΛT,R

i = Z̄R
1 ΛT,B

i , i = q, g, (89)

where the vertex renormalisation constants are related to the field and coupling
renormalisation constants via the Slavnov-Taylor identities by√

ZR
a ZR

3 =
ZR

1
ZR

3
=

Z̃R
1

Z̃R
3

=
Z̄R

1
ZR

2
. (90)

In MS-like schemes, the renormalisation constants contain only pole terms with
respect to ε and thus take the form

ZMS
i = 1 +

∞

∑
l=1

alZMS,(l)
i = 1 +

∞

∑
l=1

al
l

∑
n=1

ZMS,(l,n)
i

εn . (91)
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The coefficients ZMS,(l,n)
i are determined order by order in such a way that any

renormalised Green’s function becomes finite. Below we give an example for the
three-loop background field propagator G. In the background field the field strength
renormalisation is simply Z−1/2

a (see section 6.2). We assume we are in the Landau
gauge (ξ = 0), so that we need not worry about renormalising ξ:

GB = 1 + aBG1 + a2
BG2 + a3

BG3 + . . . ,

GR = Z−1
a (1 + aZaG1 + a2Z2

a G2 + a3Z3
a G3 + . . .)

= 1 + a(G1 − ZMS,(1)) + a2(G2 + ZMS,(1)2
− ZMS,(2))

+ a3(G3 + G2ZMS,(1) − ZMS,(1)3
+ 2ZMS,(1)ZMS,(2) − ZMS,(3)) + . . . . (92)

If we introduce the pole operator K(∑∞
i=−∞

xi
εi ) = ∑−1

i=−∞
xi
εi ), which takes the pole

part of a Laurent series in ε, we can write:

ZMS,(1) = K(G1) ,

ZMS,(2) = K(G2) + K(G1)
2 ,

ZMS,(3) = K(G3) + K (G2K(G1))− K(G1)
3 + 2K(G1)

(
K(G2) + K(G1)

2
)

.

(93)

In the case of computing other self-energies, the field strength renormalisation will
not be Z−1/2

a , but will have its own Z. This means a system of equations has to be
solved. For perturbatively renormalisable theories, such a system can always be
solved order by order.

4.2.6 Anomalous dimensions

Renormalisation introduces an arbitrary scale µ on which the bare quantities do
not depend. Let us take for example the gluon propagator with zero quark masses
R(Q, a, ξ, µ) = Z3RB(Q, ZaaB, Z3ξB), where we suppress the MS label and we have
used the fact that gauge invariance ensures that the gauge parameter is renormalised
with Z3. If we enforce that dRB

dµ = 0 we obtain the following Callan-Symanzik
renormalisation group equation [162, 163]:

µ2 d
dµ2 R(Q, a) =

[
µ2 ∂

∂µ2 + µ2 da
dµ2

∂

∂a
+ µ2ξ

d ln ξ

dµ2
∂

∂ξ
− µ2 d ln Z3

dµ2

]
R(Q, a)

≡
[

µ2 ∂

∂µ2 + β̃
∂

∂a
+ ξγ3

∂

dξ
− γ3

]
R(Q, a) = 0 , (94)

where the quantity γ3 is the anomalous dimension of the external gluon field and
β̃ is the D-dimensional beta function. The anomalous dimension γ3 describes how
the field evolves with the energy scale, and β̃ describes how the strong coupling
constant evolves with the energy scale.
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We rewrite:

β̃ ≡ µ2 da
dµ2 = µ2 dZ−1

a aB

dµ2

= µ2Z−1
a

daB

dµ2 + µ2aB
dZ−1

a
dµ2

= −εa + µ2aZ−1
a

dZa

da
da

dµ2

= −εa + a
d ln Z

da
β̃

≡ −εa + β ,

(95)

where β is the beta function in four dimensions and we used that the beta function
is gauge independent in MS-like schemes.

For both the beta function and anomalous dimension, the following reasoning
holds (where γ is the anomalous dimension associated with Z):

Zγ = Zµ2 d ln Z
dµ2 = µ2 ∂Z

∂a
da

dµ2 + µ2 ∂Z
∂ξ

dξ

dµ2

=
∂Z
∂a

(−εa + β) +
∂Z
∂ξ

γ3, (96)

This equation holds for any power of ε, so we compare the ε0 part (for which β and
γ3 drop out):

γ = −
∞

∑
n=1

nanZMS,(n,1), β = −
∞

∑
n=1

nanZMS,(n,1)
a . (97)

Even though the anomalous dimensions are thus only comprised of the simple poles
of Z in MS-like renormalisation schemes, there is no loss of information: the entire
Z can be reconstructed from (96). This also means that the higher-order poles of
Z are completely determined by lower-order renormalisation group contributions.
Consequently, the higher-order poles serve as a check for higher-order results.

4.2.7 Computations and checks

The results in this section are obtained by direct computation using the Forcer

package, as described in chapter 3. The topologies are mapped to a built-in Forcer

topology, after nullifying a leg for the vertices. To extract the form factors defined
above, a generalisation of the projection operators in ref. [139] to a generic gauge
group is used. Then the Feynman rules are applied. The remaining Lorentz-scalar
integrals (which include loop-momenta numerators) are computed by the Forcer

program.
The computation time varied between an hour and a week, on a single computer.

The easy cases, such as the ghost propagator and quark propagator took an hour.
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The gluon propagators and ghost-gluon-gluon vertex and quark-gluon-gluon vertex
took about eight hours per configuration. The triple gluon vertex was the hardest
case and took a week per configuration on a single machine with 24 cores. Had we
chosen to compute with an expansion in ε, the computations would have been much
faster.

We have checked our setup and results in various ways.

• The longitudinal component of the gluon self-energy δabqµqνΠL(q2), see eq. (63),
was shown to be zero by an explicit calculation at the four-loop level.

• The form factor T3(q2) of the triple-gluon vertex in eq. (71) was computed and
indeed vanished at the four-loop level.

• All the self-energies and vertex functions computed in this work were compared
up to three loops with those in ref. [139]. Note that the finite parts of the vertex-
function results in ref. [139] are only correct for SU(N) gauge groups, since
the presence of quartic Casimir operators was not taken into account in the
reconstruction of the general case. This fact was also noted in ref. [129].

• The four-loop renormalisation constants and anomalous dimensions for the
case of SU(N) and a general linear covariant gauge were provided in ancillary
files of ref. [126]. Directly after Forcer was completed, we established agree-
ment with those results. For a generic group our results are in agreement with
ancillary files of ref. [129].

• We remark that the ghost-gluon vertex is unrenormalised Z̃MS
1 = Z̃MS

3

√
ZMS

a ZMS
3

= 1 in the Landau gauge. Moreover, our results confirm that the vertex has
no radiative corrections when the incoming ghost momentum is nullified (i.e.,
Γ̃MS

h = 1) in the Landau gauge up to four loops.

Since the results are rather lengthy, we will not include them in this thesis. All
result can be obtained in a digital form as ancillary files to the article [2]. The files
contain the bare results for the self-energies and vertices in terms of master integrals
with coefficients that are exact in for any dimension D, as well as the results in the
MS scheme for D = 4.

4.3 splitting functions and coefficient functions

In order to describe collisions involving protons in colliders, one effectively describes
the interactions between a particle from a proton, called a parton, and a probe. The
probe could be a parton or any of the force carriers. The interaction depends on the
relative momenta of the particles, their energy, and their type (up quark, down quark,
gluon, etc). Consequently, an accurate model of the proton structure is required. A
critical ingredient is the parton density function (pdf), which captures the probability
that a certain particle with a certain (collinear) momentum fraction is inside the
proton. A pdf has to be experimentally determined, since it involves low-energy
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QCD which is outside the regime of perturbation theory. It also depends on the
renormalisation scale, and this dependence can be determined by making precise
computations in perturbative QCD.

Since QFT predicts that particles can briefly split up into others (for example
a quark splitting into a quark with smaller momentum and a gluon), quantum
corrections will influence the pdfs. How sensitive the system is to these virtual
particles depends on the energy at which we are measuring. Below we show the
DGLAP equation [164–166], which describes the dependence of a pdf fi for a parton
i (could be all light quarks, light antiquarks and the gluon), depending on an energy
scale µ2 (we set the factorisation scale to the renormalisation scale without loss of
generality):

∂ fi(x, µ2)

∂µ2 =
αs(µ2)

2π

∫ 1

x

dz
z

[
∑

j
f j(z, µ2)Pij

( x
z

, αs(µ
2)
)]

(98)

where x is the fraction of the proton momentum, j sums over all possible partons, the
integral is over all possible momentum fractions, and Pij are the splitting functions: a
quantity related to the probability that parton j will split up into i and other particles.
What this equation in essence describes is that the probability of finding a parton i
with momentum fraction x is changed by the event where a parton with a higher
energy splits up into a parton of type i with exactly momentum fraction x.

Equation (98) is a complicated integro-differential equation. To solve it, we first
turn the convolution of the splitting function and the pdf in eq. (98) into an ordinary
product using a Mellin transform:

fi(N, µ2) =
∫ 1

0
dx xN−1 fi(x, µ2) . (99)

The Mellin moments of splitting functions can be decoupled into a 2n f − 1 scalar
equations and a 2x2 flavour-singlet system, see, e.g., [5, 8]. The non-singlet split-
ting functions P±ns are the two combinations of quark–quark and quark–anti-quark
splitting functions relevant to the 2nf − 2 flavour differences

q±ns,ik = qi ± q̄i − (qk ± q̄k) (100)

of quark distributions that evolve as scalars [167].
Since even or odd Mellin moments of splitting functions are anomalous dimen-

sions, they are often expressed as such. We are going to calculate them up to fourth
order in the reduced coupling constant a = as/4π:

γ±ns(N) = −P±ns(N) = −aP±(0)ns (N)− a2P±(1)ns (N)− a3P±(2)ns (N)− a4P±(3)ns (N) .
(101)

We will discuss two different methods to compute Mellin moments of splitting
functions. The first is the optical theorem method described in section 4.3.1, and the
second is the operator method described in section 4.3.2. Finally, we compute the
axial vector current in 4.3.3.
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4.3.1 Optical theorem method

The higher Mellin moments N can be obtained for the splitting functions Pij(N),
the better an approximation can be made for the splitting functions in x-space. We
use exactly the same method as described in [83–86], only we use Forcer instead
of Mincer. In summary, using the optical theorem and a dispersion relation, the
bare structure functions can be expressed as forward amplitudes. After applying
a harmonic projection to isolate the desired coefficient, the Mellin moment of the
structure function is expressed in terms of a propagator integral. These integrals
are then computed with Forcer. The 1/ε poles provide the splitting functions. The
finite piece after renormalisation yields the coefficient function.

Using this procedure, we have computed up to N = 6 for the non-singlet splitting
functions and coefficient functions [8]. In figure 29 we show the results for the first
Mellin moments. The dashed and dotted lines are the Padé approximations from the
three-loop results of ref. [34]. For the singlet case, we have computed up to N = 4.

Figure 29: The lowest three even-N and odd-N values, respectively, of the anomalous
dimensions γ

(3)+
NS and γ

(3)−
NS , compared to Padé estimates derived from

the NNLO results of ref. [34].

We have computed significantly more moments for specific colour factors. For
diagrams with a high number of (light) fermion loops, indicated by powers of n f ,
the complexity of the diagrams is simplified: for Pqq there are no four-loop diagrams
without insertions that have a fermion loop. In figure 30 we show all three-loop
graphs with two fermion loops, where a single fermion insertion on one of the
gluon lines is understood. These graphs have been evaluated to the 40th Mellin
moment, leading to more than complexity 80 integrals (as defined in section 3.5).
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This provided enough information to reconstruct the analytic form in N using the
LLL-algorithm [88, 168]. With this method, we have computed the n2

f contribution for

the four-loop non-singlet splitting function and the n3
f contribution to the four-loop

singlet splitting function [5].

Figure 30: All three-loop diagrams with n2
f for Pqq, where a single fermion insertion

on one of the gluon propagators is understood. There are no four-loop
diagrams of this kind.

4.3.2 Operator method

Another way to compute moments of splitting functions is the light-cone operator
product expansion (OPE) method [158, 160]. Although there are some challenges in
constructing the operators, the advantage is that the complexity of the integrals scales
like N, whereas for the optical theorem method it scales like 2N. The coefficient
functions are not addressed in this approach.

We have computed the non-singlet splitting function up to N = 16 moments [115].
In the large-nc limit, up to N = 19 has been computed. Eighteen moment were
used for a full reconstruction of the N dependence, and the nineteenth was used
to confirm the result. Since in the large-nc limit, γ−NS = γ+

NS, both even and odd
moments could be used in the reconstruction.

In figure 31 we show how the large-nc limit matches up with the first 16 moments
of the non-singlet splitting function, when studying the n0

f and n1
f coefficient. We

expect an error of about 10% percent ( nc
n3

c
) for QCD that will decrease at large N.

We see that even for low N, the error is less than 10% and that the (relative) error
decreases fast with high N.

In figure 32 we show how moments of the non-singlet splitting function compare to
the large-nc result, for physical values of n f . For n f = 3, n f = 4, and n f = 6, we see
that the error is small, even for low values of N. For the physically important n f = 5,
sizeable cancellations between non-n f and n f pieces result in a loss of accuracy for
the large-nc limit. To improve the large-nc approximation, some (approximations of)
non-leading large-nc contributions have to be computed as well.

Since we have reconstructed the non-singlet splitting function for all N, we can
study the large-N behaviour. It has the following form in MS [169–171]:

γ = A ln N + B + C
1
N

ln N + D
1
N

+ . . . (102)
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Figure 31: The large nc limit versus the first Mellin moments of the non-singlet
splitting function. The error is small, even for low N.

where A is a quantity known as the cusp anomalous dimension. This quantity is
relevant beyond pdf evolution and is for example used in soft-gluon exponentiation
and soft-collinear effective theories (SCET).

Taking the limit of N → ∞ on our result yields a new n3
c CF term for the four-loop

cusp anomalous dimension:

γ
(3)
cusp =+ n3

c CF

(
+

84278
81
− 88832

81
ζ2 +

20992
27

ζ3 + 1804ζ4 −
352
3

ζ3ζ2

− 352ζ5 − 32ζ2
3 − 876ζ6

)
+ . . . .

The n3
c CF term was soon afterwards confirmed via a calculation of the γqq form

factor in the large-nc limit [172].

4.3.3 Axial vector current

In order to compute the vector-axial interference structure function F3, it is necessary
to know the anomalous dimension of the axial vector current γµγ5 to correct the
treatment of γ5. This can be retrieved from the ratio of the vector current (quark-
quark-photon vertex) and axial vector current (quark-quark-Z vertex). The quark-
quark-Z current contains a γ5, which in its standard description as iγ0γ1γ2γ3 is
strictly 4-dimensional instead of D-dimensional. To work around this issue we use
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Figure 32: Comparison of the large nc limit to Mellin moments of the non-singlet
splitting functions for physical values of n f .

the so-called Larin prescription of [173, 174]: γµγ5 = iεµνρσγνγργσ. As a projector,
we use:

P =
εµνρσγνγργσ

4(D− 1)(D− 2)(D− 3)
, (103)

which makes the tree-level contribution 1.
However, the Larin prescription breaks the axial Ward identity [173, 174]. As a

result, an additional renormalisation for the axial vector current relative to the vector
current is required. We define two quantities: ZA and Z5. ZA is the additional renor-
malisation required for the axial current, and Z5 is an extra finite renormalisation. Z5
is used to map the renormalised axial current onto the renormalised vector current
to ‘fix’ the anomaly. Given the renormalisation of the vector current V and the axial
current A:

VR = ZVCVB , AR = ZAC AB , (104)

where ZVC and ZAC contain the quark field renormalisation Z2, the renormalisation
of the strong coupling Za, and the renormalisation of the gauge parameter Z3.

From these quantities, we can compute ZA and Z5:

ZA =
ZAC
ZVC

, Z5 = lim
ε→0

VR
AR

. (105)

Both ZA and Z5 are gauge invariant. We have checked this by running with all
powers of the gauge parameter.

Calculating the traces is the most expensive part of the computation. Using the
optimisation from [175], we could have made the calculation much faster. The total
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computation takes 107 hours to compute on a single 2.4 GHz core. Below we present
the results.

Z(2)
A =

1
ε

(
22
3

CACF −
8
3

CFTFnf

)
,

Z(3)
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1
ε2
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Z(1)
5 = 4CF,
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5 =

107
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We have verified the correctness of these two quantities, by verifying fermion
number conservation (γ−NS(N = 1) = 0), and by confirming the a4

s contribution to
the Gross-Llewellyn-Smith (GLS) sum rule with [176].

4.4 chapter conclusion

In this chapter we have computed two classes of four-loop objects.
First, we have computed the finite pieces of all the QCD propagators and vertices

with one vanishing momentum with generic colour group exactly in terms of master
integrals. The results of these calculations can be used to convert quantities such as
the beta function from MS to any momentum subtraction scheme with a nullified
momentum (see section 6.5).

Second, we have computed Mellin moments of four-loop splitting functions and
coefficient functions. These are used as basic ingredients for collision processes, such
as Higgs production [81]. We have computed Mellin moments N = 2, 4, 6 for the
non-singlet case and N = 2, 4 for the singlet case. Additionally, we have calculated
N = 1, 3, 5 of vector-axial interference F3 [8]. By computing to N = 40 and beyond,
we have reconstructed the all-N n2

f contribution to the four-loop non-singlet splitting

function and the n3
f contribution to the four-loop singlet splitting function [5].

Using the OPE method, we have computed up to N = 16 for the non-singlet
splitting function. For the large-nc limit, we have computed up to N = 19 [115]. This
allowed for an all-N reconstruction and yielded a new term to the four-loop planar
cusp anomalous dimension.

4.4.1 Findings and main conclusion

We have computed the complete finite piece of the four-loop propagators and vertices
and four-loop higher Mellin moments, using the Forcer program. So far, other
currently existing programs were unable to calculate these objects. Thus, these results
serve as valuable contributions to the field of high precision calculations. Moreover,
we may also conclude that the effectiveness of Forcer has given an adequate and
sufficient answer to RQ2.
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4.4.2 Future research

A first goal for future research is to compute the finite pieces of propagators and
vertices at five loops. However, this is a formidable challenge. So far, most meth-
ods used for computations at five loops use Infrared Rearrangement (IRR), which
modifies the finite terms. A direct computation would require a five-loop Forcer

equivalent.
A second topic for future research is to compute higher Mellin moments. Cal-

culating Mellin moments using the optical theorem method becomes quite hard
for Pgg after N = 4. Due to its scaling behaviour, the OPE method is promising
to compute more moments of the singlet case. An approximation of the x-space
four-loop splitting functions derived from these future results will improve the
predictions for three-loop Higgs production [81, 82, 155].
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5
I N F R A R E D R E A R R A N G E M E N T

In this chapter we focus on answering

RQ3: Can we compute the poles of five-loop diagrams using only four-loop
diagrams more efficiently?

The appearance of divergences (poles) has perhaps been the most serious problem
of Quantum Field Theory (QFT). In particular, the treatment of Ultraviolet (UV)
divergences in Feynman diagrams at higher loops took many years to develop.
Besides UV divergences, another class of divergences are encountered in the limit of
vanishing internal and external masses. These divergences are known as collinear
and soft divergences and are often collectively called Infrared (IR) divergences.
Whereas the UV and initial state-collinear divergences can be renormalised into
physical parameters and parton densities respectively, the soft IR divergences are
known to cancel in the sum over all Feynman diagrams [177, 178] contributing to a
particular observable.

Dimensional regularisation [179, 180] is the prevailing way to deal with the diver-
gences of a QFT as it conserves both Lorentz and Gauge invariance. Furthermore
it regulates UV and IR divergences at the same time and in a similar fashion, by
expressing all divergences as poles in ε = (4− D)/2, where D is the dimension of
space-time. This makes it particularly convenient for analytic calculations, which
are often the preferred way to perform multi-loop calculations. The problem to
obtain a Laurent series in ε of a general higher-loop Feynman integral remains
a challenge and is an active field of research. Driven by the need for precision,
enormous progress has been made in the development of general methods, based on
differential equations [181–183], Mellin-Barnes representations [184–187], sector de-
composition [188–190], analytic regularisation [191] and finite Master integrals [192]
using integration-by-parts (IBP) identities [42, 92, 93, 95, 96]. While these methods
are general, some either require computationally expensive IBP identities or lead to
intractable large expressions, which make analytic evaluations very challenging.

A method to renormalise a Feynman diagram or amplitude is the Bogolioubov,
Parasiuk, Hepp and Zimmermann (BPHZ) renormalisation scheme [190, 193, 194].
The BPHZ method is implemented by acting onto a given Feynman integral with the
recursive BPHZ R-operation and is based solely on the graph theoretic properties of
the underlying Feynman graph. The R-operation subtracts from a Feynman graph
a number of counterterms which precisely capture the complicated combinatoric
structure of the superficial, sub-, and overlapping UV divergences present in Feyn-
man diagrams at arbitrary loop order. The BPHZ renormalisation prescription is
not unique, in the sense that the definition of a counterterm operation in the R-
operation can be adjusted to change to another renormalisation scheme. As such the
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BPHZ renormalisation can also be defined in the minimal subtraction (MS) scheme
[130] of dimensional regularisation [195]. Since the counterterms generated by the
R-operation belong to a simpler class of Feynman graphs (lower loops or factoris-
able) than the original Feynman graph, the R-operation provides a prescription to
compute the Laurent series in ε of any IR convergent Feynman graph. Interestingly,
it has been shown the combinatorial structure of the R-operation gives rise to a Hopf
algebra [196, 197].

However, in QFTs which contain massless particles the R-operation is not sufficient
to render all Feynman graphs finite, due to the presence of IR divergences. A gener-
alisation of the R-operation called the R∗-operation, was suggested more than thirty
years ago by Chetyrkin, Tkachov and Smirnov in [45, 133, 134]. The R∗-operation is
capable of subtracting both the ultraviolet and the infrared divergences of Euclidean
non-exceptional Feynman graphs (Feynman graphs with non-exceptional external mo-
menta). As a result, a powerful technique known as Infrared Rearrangement (IRR)
[132] can be applied to reroute the external momenta of a Feynman diagram and to
set masses to zero, in such a way as to maximally simplify its calculation. Critically,
the IRR procedure does not alter the behaviour of the superficial UV divergence
of a Feynman graph, but may lead to the creation of new IR divergences. The
R∗-operation can be used to track and subtract these extra IR divergences. In ana-
logy to Zimmermann’s forest formula as a solution to the recursive R-operation, a
solution to the recursive R∗-operation can be written as a generalised infrared forest
formula [45, 135]. Several theorems concerning the validity and correctness of the
R∗-operation have been proven in [135].

The R∗-operation has been used in a large number of milestone multi-loop
Quantum Field theoretic calculations, such as the recent computation of the five-loop
beta function in QCD [4, 40] or the calculation of the five- and six–loop anomalous
dimensions in φ4-theory [198–202]. Other applications include the calculation of
the hadronic R-ratio [176, 203], the quark mass and field anomalous dimensions
at five-loop in QCD [127, 204], as well as the inclusive Higgs decay rate into a
light quarks [205]. The applications of the R∗-operation may be classified into two
different types:

a) the local R∗-method,

b) the global R∗-method.

The local R∗-method is based on directly applying the R∗-operator to individual
Feynman diagrams. The global R∗-method seeks to globally IR rearrange an entire
amplitude (a sum of appropriately weighted Feynman graphs) instead. By applying
the R∗-operator to this decomposition, it has been possible to work out global
counterterms in a number of different calculations. In fact, all applications of the
R∗-operation in QCD beyond the three-loop level (except for [4], which uses the
method described in this work) have been based on this global approach, whereas
the local R∗-method has been used beyond three loops only in φ4-theory. There are
at least two complications that arise in a direct application of the R∗-operation to
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QCD. First, there is a performance challenge of constructing counterterms for billions
of integrals at the five-loop level in the input. Second, QCD diagrams introduce
irreducible numerators, which require careful treatment. The R∗ methods which
have been advocated and used in the calculations in φ4-theory [45, 206–208] are not
sufficient to deal with these extra complications. However, the advantage of the local
approach over the global approach is that the same procedure can be applied to any
process on a term by term basis. Instead, the global R∗-method has to be worked out
independently for different correlators, which was highly challenging for the five
loop QCD beta function [40] and has at present only been achieved for the SU(3)
gauge group.

In this work we shall develop a local R∗-framework which allows us to compute the
pole parts of non-exceptional Feynman graphs with arbitrary numerators, including
tensors. To achieve this goal we will identify the basic building blocks of all UV
counterterms as the set of scaleless vacuum tensor Feynman graphs with logarithmic
superficial degree of divergence. Such a Logarithmic Tensor Vacuum Graph (LTVG)
has more symmetry than the graph it was derived from and allows for more dot
products to be rewritten, which vastly reduces their number and their complexity.
We will further show that all IR counterterms can be neatly extracted from the UV
counterterms of LTVGs. This framework has already been used to compute the five
loop beta function for a general gauge group [4]. In this work we present the results
for the poles of all non-factorisable (those which do not factorise into products of
Feynman graphs of lower loops) Feynman graphs appearing in φ3-theory in four
dimensions. A subset of these, so far unknown, Feynman graphs is likely to provide
good candidates for master integrals. We anticipate that these results will provide a
useful cross-check for future evaluations by alternative methods, which may also
include finite parts.

The chapter is organised as follows. In section 5.1 we will review the notions of
power counting for both UV and IR–divergences which can occur in non-exceptional
Feynman graphs. In section 5.2 we will review the R-operation. In section 5.3 we
discuss contraction anomalies and how to extend the R-operation to Feynman graphs
with generic numerators. In section 5.4 we review the R∗-operation, introduce LTVGs,
derive a new representation of the IR counterterm, and discuss how to extend the
R∗-operation to tensor Feynman graphs. In section 5.5 we show applications at five
loops. We discuss some differences between our method and the literature in section
5.6. Finally, we provide conclusions and an outlook in section 5.7.

5.1 divergences in euclidean non-exceptional feynman graphs

We impose that all Feynman graphs to be considered in the following are Euclidean
and will always have non-exceptional external momenta. To be precise, this means that
no linear combination of a subset of external momenta p1, . . . , pn vanishes:

∑
i∈I

pi 6= 0, for I any subset of {1, . . . , n}. (108)
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The divergences which exist in non-exceptional Feynman graphs can be classed into
two types:

(i) UV divergences, related to infinite loop momentum configurations,

(ii) IR divergences, related to vanishing loop momentum configurations.

In the following we shall review the basic notions of power counting for UV and IR
divergences (section 5.1.1 and section 5.1.2 respectively) and thereby introduce the
necessary language which will be needed later to define the R- and R∗-operations.

5.1.1 UV divergences in Feynman graphs

An important notion in UV power counting is the Superficial Degree of Divergence
(SDD). To compute the superficial degree of divergence ω(G) of a Feynman graph G,
one rescales all of its independent loop momenta ki with a parameter λ, i.e., ki → λki.
The leading power of λ in the limit λ → ∞ then defines the superficial degree of
divergence of the Feynman graph. If ω ≥ 0, the integral is called superficially UV
divergent. Let us consider a simple example:

G = p p

k + p

k

=
∫ dDk

iπD/2
1

k2(k + p)2 . (109)

Rescaling k→ λk and expanding to leading order around λ→ ∞ we get

lim
λ→∞

G ∼ λD−4
∫ dDk

iπD/2
1
k4 . (110)

Hence in the limit D = 4 we find ω(G) = 0, which is referred to as a logarithmic
divergence. The notion of superficial degree of divergence can also be used to
identify subdivergences, where only some loop momenta ki diverge. Let us remind
the reader at this point that in any parametrisation each loop momentum always
flows around in a “loop”. Thus, the contributions to a subdivergence are due to the
propagators in the loop and the loop momentum in the numerator. This implies that
UV divergences are always associated to one-particle-irreducible (1PI)1 subgraphs
of loop one or higher. We will call any 1PI subgraph, which has a non-negative
superficial degree of divergence, a UV subgraph. As an example consider

G =
1 2

3

4
, ω(G) = 0 , (111)

where we have introduced the line labels 1, 2, 3, 4. Let us call the subgraph consisting
of lines a, b, c, . . . and those vertices connecting them as γabc..., such that

γ23 =
2

3
, γ124 = 1

2

4
, γ134 = 1

3

4
(112)

1 A graph is 1PI if it can not be separated into two by cutting any one propagator.
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The superficial degrees of divergence of these subgraphs are given by

ω(γ23) = 0, ω(γ124) = −2, ω(γ134) = −2, (113)

It is easy to see that γ23 is nothing but an insertion of our previous example and as
such it can diverge by itself. This is an instance of a UV subdivergence. We note that
the other one-loop subgraphs are finite. Another example is given by

G =
1 2

3

45
6

. (114)

This Feynman graph has the following UV subgraphs:

γ23 =
3

2
, γ56 =

6

5
, (115)

with superficial degrees of divergence

ω(γ23) = 0, ω(γ56) = 0 . (116)

The subgraphs γ23 and γ56 are strongly disjoint: they have no common lines or
vertices. As such, the loop momenta in both graphs can diverge independently. For
dimensionless vertices, the same holds for weakly disjoint subgraphs, which may
share vertices. We will call any set of pairwise strongly disjoint UV subgraphs UV
disjoint. As a last example let us consider

G =
1

2

3

4

5

, ω(G) = 2 . (117)

The five UV subdivergences of this Feynman graph are given by

γ23 =
3

2
, γ45 =

4

5
, γ1234 =

1 2
3

4
, γ1235 =

1 2
3

5
, γ2345 =

2

3

4

5
,

(118)
with

ω(γ23) = ω(γ45) = ω(γ1234) = ω(γ1235) = ω(γ2345) = 0 . (119)

All of these subgraphs pairwise overlap: they share at least one common vertex or
line. Thus, no combination of these subgraphs can diverge independently.

5.1.2 IR divergences in Feynman graphs

In analogy to the UV one can quantify the degree of IR divergence of a Feynman
graph or subgraph G by introducing the notion of an IR superficial degree of divergence
ω̃(G). Let us consider the simple example

G = p p

k + p

k

1

2

=
∫ dDk

iπD/2
1

(k2)2(k + p)2 . (120)
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We will use a small dot to indicate a vertex. A vertex which has only two edges
in effect creates a squared propagator. Such squared propagators are the simplest
instance of an IR divergence in non-exceptional Feynman graphs. We note that a
graph can only have a superficial IR divergence if no external momenta flow through
it. To study the IR properties of the line with a dot, we route the external momentum
through the top line and compute its superficial degree of divergence by rescaling,
k→ λk. This time we wish to extract the leading power −ω̃ of λ in the limit λ→ 0.
Performing this rescaling and taking the limit we find

lim
λ→0

G ∼ λD−4 1
p2

∫ dDk
iπD/2

1
k4 . (121)

And thus we get that ω̃(G) = 0 for D = 4, indicating that the integral diverges
logarithmically in the IR. One interesting difference between IR and UV divergences
is that IR divergences are not usually associated to 1PI subgraphs, but they are (with
minor exceptions) associated to connected subgraphs, which, as it turns out, is why
many of the features of UV divergences explained above extend to the case of IR
divergences. The exception is always related to self-energy insertions, of which we
will give an example further below. This case was in fact missed in the original
R∗-paper [133] and was later corrected in [134].

We will use the notation γ′abc... to identify a certain IR subgraph containing lines
a, b, c, . . . and those vertices which connect only to a, b, c, . . ., but no other lines. That
is, the graph γ′ does not contain any vertices through which it is connected to the
remaining graph; such vertices will be called external to the graph γ′. We define the
graph γ̄ = G\γ′ to be the remaining graph where the IR subgraph is deleted from G.
Further we define the contracted vacuum graph γ̃ = G/γ̄ by contracting γ̄ to a point
in G. An example is given by

G =
1

2
, γ′2 = 2, γ̄2 =

1

2 , γ̃2 =
2

, (122)

where we have use filled dots to denote internal vertices and hollow dots to denote
external vertices. The momenta of the IR subgraph are considered as external to the
remaining graph and are indicated with amputated lines in γ̄. It is worth remarking
here that the associated contracted vacuum graph γ̃ contains the same IR divergent
behaviour as the original graph, even though it is scaleless and thus vanishing in
dimensional regularisation. Indeed, the integrand of eq.(121) is nothing but the
integrand of γ̃2.

Now that we have defined the appropriate notations, we describe the conditions
for an IR subgraph to be IR irreducible (IRI) [134]:

(i) No external momentum flows into an internal vertex of γ′,

(ii) γ′ cannot contain massive lines,

(iii) the associated contracted (vacuum) graph γ̃ cannot contain cut-vertices 2,

2 A cut-vertex is a vertex which when cut separates a graph into two or more disconnected subgraphs.
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(iv) [for insertions] each connected component in the remaining graph γ̄ should be
1PI after shrinking massive lines and welding the vertices together that have
external momenta attached to it.

Rule (i) and (ii) follow straightforwardly from the fact that such propagators are IR
regulated. Rule (iii) prevents cases such as:

G =

1

2

3
, γ̃13 =

1 3

, (123)

where in fact γ′1 and γ′3 are two separate IR subgraphs. Finally, rule (iv) treats IRI
subgraphs that appear disjoint in the diagram:

G =
1

2

3
, (124)

where γ′12, γ′13, and γ′23 are not IRI if lines 1,2,3 are all massless propagators and no
additional external momentum flows through them. In that case, only γ′123 is IRI,
which can easily be seen by this equivalence:

= . (125)

Let us now consider the following case,

G =
1

2
. (126)

This graph contains two distinct IR subgraphs

γ′1 = 1, γ′2 = 2 , (127)

with the following degree of divergences:

ω̃(γ′1) = 0, ω̃(γ′2) = 2 . (128)

One may wonder whether γ′1 and γ′2 could diverge simultaneously. However, since
momentum conservation at each vertex demands the incoming momentum to flow
through at least one of the two propagators, only one of the momenta can vanish
‘at a time’. It is useful to define, in analogy to the UV, the notion of IR disjointness.
Loosely speaking we will call any set of non-overlapping (no common lines or
internal vertices) IR subgraphs which can diverge simultaneously IR disjoint. This
can be formulated more precisely as follows. A set S′ of IR subgraphs of G is said to
be IR disjoint if the following criteria are met:
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(i) the IR subgraphs in S′ are pairwise non-overlapping,

(ii) no other IR subgraphs can be composed from any subset of IR subgraphs in S′,

(iii) the remaining graph G \ S′, defined by deleting in G all lines and internal
vertices of all IR subgraphs in S′, is connected.

For the Feynman graph above, each of γ′1 or γ′2 then form themselves an IR disjoint
set (of one element) but their union does not. To see this in practice let us consider
the Feynman graph

G =
1 2

34

5 , (129)

which has the following IR subgraphs,

γ′4 = 4, γ′5 = 5, γ′125 = 1 5 2 , γ′345 = 3 4 5 (130)

with superficial degree of divergences,

ω̃(γ′4) = ω̃(γ′5) = ω̃(γ′125) = 0, ω̃(γ′345) = 2 . (131)

Let us also consider the IR disjoint sets of IR subgraphs, which can occur in this
example. From momentum flow considerations one can see that the only possible
choice of having several disconnected IR divergences occurring simultaneously
would be {γ′4, γ′5}. However momentum conservation (at the vertex connecting
lines 3, 4 and 5) would in this case also force propagator 3 to vanish, leading to the
divergence γ′345, which we have already covered. In such a case we say that union of
the IR subgraphs γ′3 and γ′4 compose γ′345. Thus, this combination is prohibited by
rule (ii).

5.2 the r-operation in the ms-scheme

In the following we will review the R-operation in the MS-scheme [195]. In the
MS-scheme divergences are isolated as poles in the dimensional regulator ε. It is
convenient to introduce a pole operator K, which acting on an arbitrary meromorphic
function F(ε), with Laurent series

F(ε) =
∞

∑
n=−∞

cnεn , (132)

will return only its poles, i.e.,

KF(ε) =
∞

∑
n=1

c−n

εn . (133)
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The K-operation acting on a product of meromorphic functions fulfils what is known
as a Rota-Baxter algebra:

K(AB) = K(AK(B)) + K(BK(A))− K(A)K(B) . (134)

The R-operation will make any purely UV divergent Feynman graph G finite. The
following equation must therefore hold in any renormalisation scheme:

K R G = 0 . (135)

Writing R = 1 + δR, where δR denotes the counterterms generated by R, we obtain:

KG = −KδRG . (136)

In section 5.2.1 we will define the R-operation in the MS-scheme. Subsequently,
we will show some examples of the R-operation in section 5.2.2.

5.2.1 Definition of the R-operation in the MS-scheme

The R-operation renders a Feynman graph finite by subtracting from it all of its
UV divergences. In section 5.1.1 we introduced the concept of a UV disjoint set of
subgraphs. This concept lies at the very heart of the R-operation and makes up one
of the two fundamental ingredients with which the R-operation is equipped. These
are:

(i) a notion of a set of disjoint connected subgraphs,

(ii) a (non-unique) counterterm operation.

Ingredient (i) informs the R-operation about the set of distinct UV divergences which
may appear in the domain of loop-integration. The R-operation then associates
a counterterm to each UV disjoint set of UV subgraphs. Mathematically the R-
operation is then expressed as a sum over the different required counterterms:

RG = ∑
S∈W(G)

∆(S) ∗ G/S . (137)

Here ∆(S) denotes the counterterm operation acting on the “singular” part of G
specified by S, while G/S represents the “non-singular” part of G, constructed by
contracting in G all subgraphs γ to points. G/S is also called the remaining diagram.
S, sometimes referred to as a spinney, is a set of UV disjoint UV subgraphs of G and
W(G), which is sometimes referred to as a wood, is the set of all such sets S, which
can be constructed from the UV subgraphs of G. W(G) also includes the spinney
containing the full graph, i.e., {G}. The ∗-operation takes the role of an insertion
operator in the presence of non-logarithmic divergences, but reduces to a simple
product for logarithmic divergences. In the case of S = {G}, we obtain the trivial
identity

∆({G}) ∗ G/{G} = ∆(G) ∗ 1 = ∆(G) , (138)
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to include a counterterm for the superficial divergence of G. Further W(G) includes
the empty set ∅, whose counterterm is included simply to include the full graph G
in the sum, i.e.,

∆(∅) ∗ G/∅ = 1 ∗ G = G . (139)

Up until this point, the R-operation is general, but we haven’t defined yet what
the counterterm operation ∆ is. Although it has to satisfy certain criteria, the coun-
terterm operation ∆ is not unique. This non-uniqueness is directly related to the
renormalisation scheme and regulator dependence which is always present in any
(non-finite) Quantum Field Theory. As such, the non-uniqueness of the counterterm
operation should come as no surprise. Nevertheless a minimal prescription, the
MS-scheme [130], can be defined in dimensional regularisation, and it is this scheme
which we shall employ in the following. The counterterm ∆(S) must isolate the di-
vergence associated to the disjoint singular subgraphs γ in S. Given their disjointness
it is clear that ∆(S) must factorise,

∆(S) = ∏
γ∈S

∆(γ) . (140)

Let us now discuss the minimal counterterm operation ∆(γ). One may be tempted
to replace ∆(γ) with −Kγ, i.e., its divergent parts in MS. However, −Kγ is not a local
operation if γ contains subdivergences. These subdivergences will already have been
accounted for in the sum over all S. The solution to this problem is to isolate the
superficial divergence of γ by subtracting from it all its subdivergences. This can be
achieved by using a variant of the R-operation, where we just omit the counterterm
of the full graph G in the sum. We will call this operation the R̄-operation:

R̄G = ∑
S∈W̄(G)

∆(S) ∗ G/S, with W̄(G) = W(G) \ {G} . (141)

Finally we must add the K-operator in order to comply with the MS-scheme (where
no finite pieces are kept). This leads us to the definition of the counterterm operation:

∆(γ) = −KR̄γ . (142)

The counterterm operation of a graph ∆(γ) in the MS-scheme can be shown to be a
polynomial in the external momenta and masses of the graph γ of homogeneous
degree ω(γ), see e.g. [195]. This implies that the counterterm operation can be
replaced with its Taylor expanded version:

∆(γ) =
ω(γ)

∑
n=0
T (n)
{pi}

∆(γ), (143)

where {pi} = {p1, . . . , pn} shall denote the set of external momenta of γ and T (n)
{pi}

is a Taylor expansion operator, defined in the usual sense:

T (w)
{pi}

f ({pi}) = ∑
α1+...+αn=w

n

∏
i=1

(pi · ∂p′i
)αi

αi!
f ({p′i})

∣∣∣∣
p′i=0

, ∂
µ
p =

∂

∂pµ
. (144)
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We can now use the fact that derivatives with respect to external momenta commute
with the R̄ operation,

[∂
µ
pi , R̄] = 0 , (145)

which is true as long as no IR divergences are created, see [195] for a proof, to derive

∆(γ) = −
ω(γ)

∑
n=0

KR̄ T (n)
{pi}

γ . (146)

Thus, we can further simplify the expression for the UV counterterm by replacing
γ with its Taylor expanded version. Finally this leads us to the definition of the
∗-product in the presence of higher degree divergences, whose task is to insert the
polynomial dependence on the external momenta {pi} back into the contracted
graph G/S.

We shall see some examples of the R-operation for massive diagrams below.

5.2.2 Examples of R-operations

We shall start with our trivial example from above

R = 1 ∗ + ∆
( )

∗ 1 (147)

= + ∆
( )

Note that we dropped the ∗ for the standard multiplication · in the second line. A
less trivial example is given by

R 1 2
3

4
= 1 ∗ 1 2

3

4
+ ∆

(
1 2

3

4

)
∗ 1 + ∆

(
2

3

)
∗

1

4
(148)

=
1 2

3

4
+ ∆

(
1 2

3

4

)
+ ∆

(
2

3

)
·

1

4
.

A three-loop example is given by

R
1 2

3

45
6

= 1 ∗
1 2

3

45
6

+ ∆
(

1 2
3

45
6

)
∗ 1

+∆
(

5

6

)
∗ 1 2

3

4
+ ∆

(
2

3

)
∗ 4 5

6

1
(149)

+∆
(

5

6

)
∆
(

2

3

)
∗

1

4

Assuming that all propagators are massive, we can recursively obtain the values of
∆ from those of massive tadpoles:

∆
( )

= −K( ) = ∆
( )

= −K
( )

(150)
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∆
( )

= ∆
( )

= −K
(

+ ∆
( )

∗
)

(151)

∆
( )

= ∆
( )

= −K
(

+ 2∆
( )

∗

+∆
( )

∆
( )

∗
)

(152)

Next, we consider a massive quadratic graph, which we Taylor expand:

∆
1

2

3

= −KR̄
1

2

3

+ 2QαKR̄
[

pα
3

1

2

3

]
(153)

− 4QαQβKR̄
[

pα
3 pβ

3
1

2

3

]
+ QαQβKR̄

[
gαβ 1

2

3

]
(154)

We now see the emergence of tensor diagrams. In the next chapter we provide a
consistent R formalism to compute those graphs.

5.3 the r-operation for generic feynman graphs in ms

Let us call a generic Feynman graph any Feynman graph which contains products of
vectors or scalar products of loop momenta in the numerator. In order to diagram-
matically denote generic Feynman graphs we introduce the following Feynman rule:

µ1µ2 . . . µn =
kµ1 kµ2 · · · kµn

k2 . (155)

An example of a simple generic Feynman graph is given by

p
µ

µ
p =

∫ dDk
iπD/2

kµ

k2
(k− p)µ

(k− p)2 . (156)

Before diving into the subtleties related to the application of the R-operation to gen-
eric Feynman graphs, let us briefly consider the possible uses of such a formalism
and consider the potential difficulties which one may encounter. First of all, it is
important to understand that the R-operation in the MS-scheme that we have presen-
ted above can readily be applied to Feynman graphs containing particles of arbitrary
spin: besides scalars, also fermions, photons, gluons, gravitinos or gravitons, etc.,
connected by appropriate vertices, can straightforwardly be accommodated. Further-
more, the R-operation can be used to construct the renormalisation counterterms
diagram by diagram, in a way completely equivalent to that of renormalising the
operators of the corresponding Lagrangian. It is instructive to see how this would
work for a simple example in QCD:

R = + ∆
( )
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+ ∆
( )

∗ + ∆
( )

∗ . (157)

Here the slightly fatter dot is used to indicate the insertion point of the triangle
counterterm into the remaining graph. We remark that the triangle counterterm is a
3-gluon vertex: that is, it is a local operator linear in the three external momenta and
depends on the three external colour and Lorentz indices.

The fact that in the MS-scheme the counterterm operation ∆ is based on the
K-operation leads to what one may call contraction anomalies. To illustrate this, let us
consider the numerators created by the evaluating the Feynman rules3, i.e.,

=
2

∑
k=0

εk Nk({qi, pi}) . (158)

Here Nk({ki, pi}) are polynomials in the external and internal momenta, pi and
qi respectively, and we have made the dependence on ε explicit. The contraction
anomaly now emerges in the following inequality:

R


 6= 2

∑
k=0

εkR
(

Nk({qi, pi})
)

, (159)

and follows from the fact that the K-operation does not generally commute with
factors of ε. The right hand side will thus lead to a different result for the renormal-
ised Feynman graph. While both sides of (159) would still be finite, the right hand
side will no longer correspond to the finite value which one should have obtained in
the original MS-scheme. Given the argument above, it is clear that the R-operation for
a generic Feynman graph brings with it a certain arbitrariness when it comes to the
definition of its renormalisation scheme. Consequently, the operation R̄ cannot be
used to correctly extract the UV counterterm of a QCD diagram after the contraction
of the Feynman rules has been carried out. Nevertheless, the R-operation can still
be used after contractions to build valid counterterms which render any Feynman
graph finite. In turn, these counterterms can be used to extract the poles in ε of a
given Feynman graph via eq. (136): K(G) = −KδRG.

In section 5.3.1 we discuss contraction anomalies concerning tensor reductions.
Subsequently, we consider a second kind of contraction anomalies due to counterterm
factorisation in section 5.3.2.

3 Performing the Lorentz contractions among vertices and propagators and evaluating traces of gamma-
matrices.
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5.3.1 Contraction anomalies and tensor reduction

The counterterm operation ∆ and the K-operation do not naively commute with the
contraction operation, as was discussed in [e.g., 195, 209]. It is an intricate feature of
dimensional regularisation. In general we have

Pµ1 ...µn ∆
(
γµ1 ...µn

)
6= ∆

(
Pµ1 ...µn γµ1 ...µn

)
, (160)

where the contraction operator P may be any even rank tensor built purely from
products of metric tensors gµν:

Pµ1 ...µn = ∑
σ

cσgµσ(1)µσ(2) · · · gµσ(n−1)µσ(n) . (161)

This means that special care has to be taken to reduce counterterms of tensor graphs
to counterterms of scalar diagrams. Let us consider some examples to clarify this
issue further. A simple one-loop example is given by

∆
(

µν

)
= −K

µν
= Agµν (162)

where A is some constant to be determined. In general one may expect that there
could be a second tensor structure of kind QµQν, but this is excluded since a
counterterm of logarithmic SDD cannot depend on its external momenta. One may
be tempted to extract the value of A by contracting both sides of (162) with a projector
gµν/D. However, this will lead to the wrong result, precisely because contraction
does not commute with the K-operator. The correct result for the coefficient A is
obtained by performing the tensor reduction inside the K-operation:

K
µν

= K
(

gµν

D αα

)
⇒ A = −K

(
1
D

)
. (163)

Here we used that the metric tensor can be commuted with a K-operation as long as
this does not lead to any contractions inside that K. Applying a tensor reduction
for a ∆-operation at higher loops is more involved: a safe procedure is to first apply
the counterterm operation recursively to obtain an expression in terms of nested
K-operations, and then apply the tensor reduction iteratively, starting inside the
most inner K and then commuting tensors outwards. Let us consider how this works
for the following simple two loop example:

∆
( µν

)
= −K

( µν
)
+ K

(
K
(

µν

) )
(164)

= gµν

[
−K

(
1
D

)
+ K

(
K
(

1
D

) )]
.

We see that one cannot naively extract the value of ∆ of a tensor Feynman graph
from that of its tensor reduced version:

∆
( µν

)
6= gµν∆

(
1
D

)
(165)
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= gµν

[
−K

(
1
D

)
+ K

(
1
D

K
( ) )]

.

5.3.2 Contraction anomalies and counterterm factorisation

A second kind of contraction anomalies is encountered when one considers the
counterterm operation acting on a product of graphs. For factorising scalar graphs
the following factorisation formula holds (see appendix A for an inductive proof):

∆(G1G2) = ∆(G1)∆(G2) . (166)

The formula no longer holds when G1 and G2 are replaced with tensor graphs. To
clarify this issue, let us consider the following example:

Ga =

µ1..µ4
1

2

3

4

5

6

µ1..µ4

. (167)

It is perhaps worth reiterating that this generic graph is rather unphysical. In physical
graphs a Lorentz index of a particular propagator would always be contracted with
its neighbouring vertices. Any uncontracted indices that enter a counterterm in a
physical Feynman graph would thus always be “external” and should be treated
as commuting with respect to the K-operation. This is rather different for the
graph under consideration. Its indices are in some sense internal and yet they are
uncontracted. A problem when acting the R-operation onto this graph becomes
apparent when representing the graph in a different order:

Gb =

µ1..µ4
1

22

µ1..µ4
5

6

3

4
. (168)

The difference of acting the R-operation on Ga and Gb then becomes

RGa − RGb =

(
∆

( µ1..µ4
1

2

)
∆

( µ1..µ4
5

6

)
− ∆

( µ1..µ4
1

2

µ1..µ4
5

6

))
3

4

+∆

( µ1..µ4
1

2

3

4

5

6

µ1..µ4 )
− ∆

( µ1..µ4
1

22

µ1..µ4
5

6

3

4

)
(169)

= −(1− K)

([
(1− K)K

( µ1..µ4
1

2

)
K

( µ1..µ4
5

6

)]
3

4

)
.

= finite but non-zero,

where we used
R = (1− K)R̄, (170)

which in some sense guarantees finiteness. It shows, however, that reordering of the
subgraphs effectively results in a transition to a different renormalisation scheme, as
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we anticipated in our discussion in the beginning of this chapter. The difference in
schemes may be traced back to the breaking of (166), which is caused by a violation
of the identity

K(K(A)K(B)) = K(A)K(B) (171)

if A and B are contracted tensors. Another way to phrase this observation is that the
Rota-Baxter algebra of eq.(134) is not valid for contracted tensor graphs.

Even though both RGa and RGb are finite, this calculation clearly shows that the
counterterm operation ∆ is not invariant under reorderings. A possible choice to
enforce the re-ordering property is to use the replacement

∆(G1G2)→ ∆(G1)∆(G2) (172)

A convenient way to incorporate (172) into the R-operation is to introduce a modified
notion of UV disjointness. If one defines a spinney to consist of a set of weakly
disjoint subgraphs, i.e., subgraphs which contain no common lines but may have
common vertices, the right hand side of (172) is automatically produced. Apart
from leading to perfectly finite results, this weakly disjoint renormalisation scheme has
the advantages that it restores invariance under re-ordering of cut-vertex connected
subgraphs. It further simplifies calculations since the right hand side of (172)
generally leads to fewer terms than the left hand side. A proof for the finiteness of
the factorised renormalisation scheme is sketched for factorised graphs in appendix
B.

5.4 the r*-operation

The R∗-operation [45, 133, 134] extends the R-operation to the subtraction of in-
frared divergences of Euclidean Feynman graphs with non-exceptional external
momenta. The main power of the R∗-formalism derives from a trick known as in-
frared rearrangement (IRR). The trick uses the feature that the counterterm operation
associated to a logarithmic superficially UV divergent Feynman graph is independent
of its external momenta and masses. Infrared rearrangement allows one to compute
the counterterm operation ∆ of a graph G from a simpler rearranged version of it,
called G′. We have essentially performed IR rearrangements in the context of the
standard R-operation, which in the presence of internal masses can be exploited
to set all external momenta to zero. In the absence of masses in propagators, IR
rearrangement may lead to infrared divergences. This is illustrated in the following
example:

→ . (173)

In order to subtract the newly created IR divergences, the R-operation must be
equipped with an infrared counterterm operation. We shall review the defintion of
the R∗-operation in the following and extend it to generic Feynman graphs. We will
furthermore introduce the concept of vacuum Feynman graphs of logarithmic SDD
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which will take centre stage in our formalism. We will also show that the concept
offers an alternative description of the IR counterterm operation.

The remainder of this section is structured as follows. In section 5.4.1 we define
the R∗-operation. We construct the infrared counterterm operation in section 5.4.2.
Next, we provide some examples of the R∗-operation in section 5.4.3. Finally, we
discuss properties of logarithmic vacuum graphs in section 5.4.4.

5.4.1 Definition of the R∗-operation

In section 5.1.2 we have already introduced the notions of IR subgraphs and IR
disjoint sets of IR divergences. These are all the necessary notions to readily gen-
eralise the R-operation. First, we note that a given subgraph can never at the same
time become IR and UV divergent. This trivially implies that overlapping UV IR
counterterms do not need to be considered. The R∗-operation acting on a given
graph G then takes the following form:

R∗G = ∑
S∈W(G),S′∈W ′(G)

S∩S′=∅

∆̃(S′) ∗ ∆(S) ∗ G/S \ S′ . (174)

We will explain the details of equation (174) in the following. The sum goes over
all non-intersecting sets S and S′, where S is a UV spinney, as before a set of UV
disjoint UV subgraphs, and S′, is an IR spinney, a set of IR disjoint IR subgraphs.
As before W(G) is the set of all UV spinneys S of G, whereas W ′(G) is the set of all
IR spinneys S′ of G. An efficient algorithm to construct the IR spinney is given in
appendix C.

The IR counterterm operation ∆̃ factorises, similarly to the UV counterterm
operation ∆, over disjoint IR subgraphs:

∆̃(S′) = ∏
γ′∈S′

∆̃(γ′) , ∆(S) = ∏
γ∈S

∆(γ) . (175)

The reduced graph G/S \ S′ is constructed by first shrinking all UV subgraphs in
S into points in G, identically as in the case of the R-operation, and then deleting
in G/S all the lines and vertices of all IR subgraphs in S′. The UV counterterm
operation ∆ is defined, identically to the case of the R̄-operation, to isolate the
superficial UV divergence. This is achieved by subtracting from the given Feynman
graph or subgraph all UV subdivergences as well as all IR divergences. The UV
counterterm operation is then defined as

∆(G) = −KR̄∗G , (176)

with the R̄∗-operation being defined recursively via

R̄∗G = ∑
S∈W̄(G),S′∈W ′(G)

S∩S′=∅

∆̃(S′) ∗ ∆(S) ∗ G/S \ S′ . (177)
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The proper UV wood W̄(G) (as in the case of the R̄-operation) includes all UV
spinneys apart from the one which consists of the graph G itself. Equivalently, we
can extract the same UV counterterm from a set of massless vacuum integrals by
Taylor expanding the graph G up to order ω(G) around all of its external momenta
{pi} and masses {mi}. We will call the scaleless vacuum tensor graphs of logarithmic
SDD logarithmic tensor vacuum graphs (LTVGs). It leads us to the alternative definition
in terms of LTVGs:

∆(G) = −KR̄∗T (ω(G))
{pi ,mi}

G . (178)

In contrast to eq.(146) we have dropped in the above all terms in the Taylor series
but the massless logarithmic ones. This relies entirely on the property that in
dimensional regularisation all scaleless integrals are zero. Since non-logarithmic
integrals require a scale, which is absent, they must be zero. For LTVGs this statement
must be understood as a cancellation of poles between IR and UV divergences. For
a massless vacuum graph G the statement is thus that unless the vacuum graph
is an LTVG, its UV counterterm must be set to zero. This has some far-reaching
consequences: the UV counterterm of any generic Feynman graph can always be
expressed as a counterterm of an LTVG. Consequently, the counterterm operation
of many seemingly different graphs can easily be related to one another. In order
to compute the counterterm of an LTVG, one can then always choose to compute
it from a convenient single scale graph. For example, the UV counterterm of the
following two-loop vacuum, propagator or vertex Feynman graphs are all identical,
whether they include massive lines or not:

∆
( )

= ∆
( )

= ∆
( )

= ∆
( )

. (179)

Such relations, when combined with rewriting dot products and a powerful graph
canonicalisation algorithm that maps each isomorphic graph to the same graph,
can be used to reduce the number of unique counterterms to a comparably small
number, even at five loops.

The IR counterterm operation ∆̃ can be defined analogously by isolating the
superficial IR divergence of the IR subgraph by subtracting from it all UV divergences
as well as all IR subdivergences. For this concept to make sense it is useful to recall
the definition of the contracted vacuum IR subgraph which we introduced in section
5.1.2. Given some IR subgraph G′, and its associated contracted vacuum graph G̃,
we define

∆̃(G′) = −K
¯
R∗G̃ , (180)

with the
¯
R∗-operation defined recursively via

¯
R∗G̃ = ∑

S∈W(G̃),S′∈
¯
W ′(G̃)

S∩S′=∅

∆̃(S′) ∗ ∆(S) ∗ G̃/S \ S′ . (181)

The proper IR wood
¯

W(G) then includes all IR spinneys apart from the one which
consists of the (vacuum) graph G itself. We remark that for Euclidean non-exceptional
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Feynman graphs only vacuum graphs can actually carry superficial IR divergences.
For IR divergences with higher than logarithmic SDD, the internal momenta of the
IR subgraphs γ′ should be viewed as external to G/S \ S′ and ∆̃(γ′) is promoted
to become a Taylor expansion operator acting on the remaining graph G/S \ S′. To
understand the origin of this prescription, it is useful to review how the factorisation
of the IR counterterm really comes to be. This will be discussed in more detail in the
next section.

To familiarise the reader with the underlying simplicity of the procedure, which is
easily lost in the formalism, let us for now give a few examples of the R∗-operation.
The simplest example is given by a one-loop bubble with a dotted line:

R∗ = 1 ∗ 1 ∗ + ∆̃
( )

∗ 1 ∗ (182)

= + ∆̃
( )

.

Here we use truncated lines to indicate that the infrared propagators enter as external
lines into the vertices of the remaining graph. In the second line we have evaluated
the ∗-product in the IR counterterm, which for logarithmic SDD simply results in
setting the external IR legs to zero. We further used the trivial identity 1 ∗ 1 ∗ G =
1 ∗ G = G. We now present a slightly more complicated example at two loops:

R∗ = 1 ∗ + ∆̃
( )

∗ + ∆̃
( )

∗ ∆
( )

∗

+∆
( )

∗ + ∆
( )

∗ 1 (183)

= + ∆̃
( )

+ ∆̃
( )

∆
( )

+ ∆
( )

.

This example illustrates the interplay of the subtraction of IR and UV divergences.
Notice that one of the counterterms for the UV subdivergence vanishes as it contains
a massless tadpole. Below is an example containing a two-loop IR subgraph:

R∗ = 1 ∗ + ∆
( )

∗

+ ∆̃
( )

∗ ∆
( )

∗ + ∆̃
( )

∗

= + ∆
( )

(184)

+ ∆̃
( )

∆
( )

+ ∆̃
( )

.
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5.4.2 The infrared counterterm operation

While our presentation of the IR counterterm will differ in parts from the literature
[45, 133–135, 206, 207], it is nevertheless consistent with all accounts given there, at
least when it comes to the evaluation of logarithmic IR divergences in scalar theories.
Let us now study the singular behaviour of the integrand of the graph G in the limit
where the momenta k1, . . . , kn which are contained in a given IR divergent subgraph
γ′ approach zero. In order to make the singular behaviour of G explicit, let us write

G({ki}) = γ̃({ki}) · (G \ γ′)({ki}) , (185)

where we remind the reader that γ̃ is the contracted IR vacuum graph (see eq. 122).
Even though the IR divergence of degree ω̃ is entirely captured by the factor γ̃, the
remaining graph G \ γ′ still depends on the momenta {ki} as external momenta,
which flow into G \ γ′ through those vertices which connect it to γ′. Having made
this dependence explicit, we now Taylor expand the remaining graph around ki = 0
up to and including order kω̃

i . The singular behaviour of G in the limit ki → 0 is
then entirely captured by

G({ki}) =
ω̃

∑
r=0

γ̃({ki}) · T
(r)
{ki}

(G \ γ′)({ki}) +O(k0
i ) . (186)

To build a counterterm for γ′ we have to isolate its superficial IR divergence. We
can accomplish this by introducing the operator K

¯
R∗ which will now act not only on

γ̃i, but also on the polynomial ki-dependent terms which are created by the Taylor
expansion. Explicitly, this means that we can identify:

∆̃(γ′) ∗ G \ γ′ = − ∑
α1+..+αn=ω̃

K
¯
R∗
(

γ̃({ki})
n

∏
i=1

kµi1
i · · · k

µiαi
i

)
(187)

·
[( n

∏
i=1

1
αi!

∂
µi1
k′i
· · · ∂

µiαi
k′i

)
(G \ γ′)({k′i})

]
k′i=0

,

where we have dropped all orders in the Taylor expansion other than ω̃, since these
would give rise to scaleless vacuum graphs of non-logarithmic SDD which vanish
under the operation K

¯
R∗. Furthermore, we have introduced a set of dummy Lorentz

indices µij with i ∈ {1, .., n} and j ∈ {1, .., αi} . In conclusion we can write:

∆̃(γ′) = −K
¯
R∗γ̃ T (ω̃(γ′))

{ki}
. (188)

We see that ∆̃(γ′) is promoted to a Taylor expansion operator which acts onto the
remaining graph. This should be contrasted to the UV counterterm where the Taylor
expansion operator acts on the UV subgraph and simply inserts the polynomial
dependence of the counterterm into the remaining graph as a vertex. Thus whereas
the UV counterterm is local in configuration space, the IR counterterm is local in
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momentum space. We remark that the IR counterterm is usually presented after
integration as a sum over derivatives of the Dirac-delta function times Z-factors. Our
representation is completely analogous to this representation, as one can easily show.
However it further illuminates that the same Taylor expansion technique, which can
be used to derive the UV counterterm in momentum space a la Zimmermann [194],
can be used in complete analogy for the case of IR divergences.

From eq.(187) we see that the Taylor expansion makes the IR subgraph logarithmic
by multiplying γ̃ with monomials of IR momenta. In effect this procedure thus relates
the IR counterterm operation of IR subgraphs of arbitrary SDD to IR counterterm
operations of LTVGs. Let us denote such an LTVG by γ̃log. Although ∆̃γ̃log is in
principle a well defined operation, one never actually has to explicitly compute it.
Instead, the value of ∆̃(γ̃log) can always be extracted recursively from the action of
∆ on γ̃log and its subdivergences [45, 133, 135]. The conversion between these two
operations can be established from the equation

R∗γ̃log = 0 , (189)

which follows immediately from the fact that scaleless vacuum graphs vanish in
dimensional regularisation. Expanding the left hand-side and rearranging we then
obtain

∆̃(γ̃log) = −∆(γ̃log)− ∑
S∈W̄∅(γ̃log),S′∈ ¯

W ′∅(γ̃log)

S∩S′=∅

∆̃(S′) ∗ ∆(S) ∗ γ̃log/S \ S′ (190)

where W̄∅ and
¯

W∅ are proper UV and IR -woods which exclude the empty graph.
The sum over IR and UV spinneys in the above equation may be simplified further
by imposing the requirement S ∪ S′ = {γ̃log}. Terms in the sum not satisfying this
requirement would be proportional to scaleless vacuum graphs and hence vanish.
Below are some simple examples for rewriting IR in terms of UV counterterms.

∆̃
( )

= ∆̃
( )

= −∆
( )

(191)

∆̃
( )

= ∆̃
( )

= −∆
( )

+ ∆̃
( )

∆
( )

More examples, including IR counterterms with higher SDDs, will be given in the
next section.

5.4.3 Examples of R∗ for generic Feynman graphs

The methods which we presented in section 5.3 for dealing with arbitrary numerators
and tensors within the R-operation can be applied in the same manner when dealing
with IR divergences in the context of the R∗-operation. This follows mostly from
the fact that the values of IR counterterms can be extracted from UV counterterms.
However, subtleties arise when IR divergences of higher SDDs are encountered; in
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particular when they neighbour higher order UV divergences. In the following we
will illustrate how the methods presented above are fully sufficient to tackle all of
these cases.

Below we show an example of a diagram with a linear IR divergence:

R∗
α

α
=

α

α
+ ∆̃

(
α

)
∗ α

=
α

α
+ ∆̃

(
αβ

) [
∂

β
p1 α

1

]
p1=0

(192)

=
α

α
− 2∆̃

(
αβ

)
α β

Here p1 is used to denote the momentum of the IR leg flowing into the remaining
diagram. In the second line we evaluated the linear order term of the p1 = 0 Taylor
expansion of the remaining graph. We see that this Taylor expansion leaves us with
an IR counterterm of a rank 2 tensor. This term can be evaluated using eq.(190) and
the tensor reduction method introduced in section 5.3.1:

∆̃
(

αβ

)
= −∆

(
αβ

)
= gαβK

(
1
D

)
. (193)

Inserting this expression back into eq.(192) we then obtain:

R∗
α

α
=

α

α
+ 2K

(
1
D

)
(194)

The insertion of higher order UV counterterms and higher order IR counterterms
does not commute in general: it is crucial to first insert the UV counterterm and
only then to apply the Taylor expansion corresponding to the IR counterterm. This
is illustrated in the following example:

R∗
(

µ

µ

)
= 1 ∗

µ

µ

+ ∆

(
µ

µ

)
∗ 1

+∆̃
(

µ

)
∗

µ

+ ∆̃
(

µ

)
∗ ∆

(
µ

)
∗

=
µ

µ

+ ∆

(
µ

µ

)
− 2∆̃

(
µα

)
µ

α

−2∆
(

µ

α

)
·
(

∆̃
(

µ

)
∗

α
)

=
µ

µ

+ ∆

(
µ

µ

)
− 2∆̃

(
µα

)
µ

α

−2∆̃
(

µβ

)
∆
(

µ

α

)
gαβ , (195)
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where the pα created by the UV Taylor expansion was acted upon by the IR Taylor
expansion. Substituting the results for the tensor reduced counterterms we then
obtain

R∗
(

µ

µ

)
=

µ

µ

+ ∆

(
µ

µ

)
− 2K

(
1
D

)
µ

µ

+ 2D K
(

1
D

)
K
(

1
D

)
. (196)

The factor of D is produced outside any K-operation and signifies the interplay
between neighbouring higher order IR and UV divergences. The fact that the sub-
traction of IR and UV divergences does not commute in general was also discussed
in [206].

We can drastically simplify the computation of the UV counterterm of the above
diagram by dropping the external momenta, rewriting the dot product, and using
symmetry:

∆

(
µ

µ

)
= ∆

(
µ

µ

)
=

1
2

∆
(

− −
)

= −1
2

∆
( )

(197)

This shows how LTVGs can be conveniently used to simplify the calculation of
counterterms. Let us now study

R∗
µ

µ

=

µ

µ

+ ∆̃
( )

∗
µ

µ

+ ∆
(

µ
)
∗

µ

(198)

+∆̃
( )

∗ ∆
(

µ
)
∗

µ

(199)

+∆̃
( )

∗
(

µ

µ

)
+∆̃

( )
∗ ∆

(
µ

)
∗

µ

.

This example shows several interesting features. First, we consider the three-line IR
subgraph which appears in the second and third line. By constructing its associated
contracted vacuum graph we can relate its IR counterterm to one which we already
computed in eq.(192):

∆̃
( )

= ∆̃
( )

= ∆̃
( )

. (200)

Second, we notice that this IR subgraph is disjoint in the original graph, a feature
which was already discussed for a simpler example in section 5.1.2. As a result,
the remaining graph splits into two disjoint components. Since one of the two
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components has no dependence on external momenta, it becomes scaleless when it
is acted upon by the Taylor expansion operator, and as a result vanishes:

∆̃
( )

∗
(

µ

µ

)
= 0 . (201)

Third, we see that the counterterm in eq.(200) has a linear UV subgraph that will
generate a momentum that belongs to the IR in the remaining diagram. In this case,
the IR subgraph has logarithmic SDD, which means that after Taylor expanding the
IR — setting all IR momenta to 0 — this counterterm will vanish:

∆̃
( )

∗ ∆
(

µ
)
∗

µ

= −2∆
(

µ

α

)
·
(

∆̃
( )

∗
µ

α

)
(202)

= 0.

Thus we see that both counterterms containing this particular IR subgraph vanish,
although for completely different reasons. We continue with another example:

R∗
µ

=

µ

+ ∗
µ

+ ∆̃
(

µ

)
∗ , (203)

which shows an IR divergence of linear SDD with three IR legs entering the remaining
graph. Here one can choose to Taylor expand around any independent set of IR
subgraph momenta. Taking p3 = p3′ ≡ −p1 − p2 we may Taylor expand around
p1 = p2 = 0:

∆̃
(

µ

)
∗ = ∆̃

(
α µ

) [
∂α

p1

1 2 3′
]

p1,2=0

+∆̃
(

α µ

) [
∂α

p2

1 2 3′
]

p1,2=0
(204)

= −2∆̃
(

α µ

)
α

− 2∆̃
(

α µ

)
α

.

The IR counterterms are recursively converted to UV counterterms, i.e.,

∆̃
(

α µ

)
= ∆̃

( µ

α

)
= −∆

( µ

α

)
− ∆̃

( )
∆
(

µ

α

)

∆̃
(

α µ

)
= ∆̃

( µ

α

)
= −∆

( µ

α

)
, (205)

and then tensor reduced as discussed before.
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5.4.4 Properties of logarithmic vacuum graphs

We will now summarise a few properties of counterterms of LTVGs. Even though
the UV counterterm operation does not generally commute with contraction, it is
additive under integrand relations:

∆(G1 + G2) = ∆(G1) + ∆(G2) . (206)

In stark contrast, it appears that ∆̃ does not satisfy an analog of the additivity
property in eq.(206). Consider for instance the graph:

µ

µ =
1
2

(
− −

)
, (207)

for which one can easily confirm confirm additivity:

∆
(

µ

µ

)
=

1
2

∆
( )

, given ∆
( )

= 0 . (208)

However the same is not true for the IR counterterm:

∆̃
(

µ

µ

)
6= 1

2
∆̃
( )

, given ∆̃
( )

= 0 . (209)

This can be verified by direct computation:

∆̃
(

µ

µ

)
= −∆

(
µ

µ

)
− ∆̃

( )
∗ ∆

(
µ

µ

)
∗

= −1
2

∆
( )

+
1
2

DK
(

1
D

)
K
( )

, (210)

while instead

∆̃
( )

= −∆
( )

− ∆̃
( )

∗ ∆
( )

∗ 1

= −∆
( )

+ K
( )

K
( )

. (211)

We note that the reason for this apparent disagreement stems from a non-cancellation
of Ds in K( 1

D A)D 6= K(A). While a consistent scheme may exist where the IR
counterterms could be chosen to be additive, this scheme would likely destroy some
of the nice properties of the UV counterterm operation. One could imagine that such
a scheme arises naturally if the R∗-operation was to be formulated in configuration
space, where the roles of IR and UV are effectively interchanged. The absence of
additivity of the IR counterterm may appear to be a hindrance in calculations, but
it does not present a practical limitation since it is always possible to rewrite IR
counterterms in terms of UV counterterms of LTVGs via eq.(190). In turn, the LTVGs
can be simplified using the additivity property of eq.(206).
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A second useful property of the UV counterterm operation is that it commutes
with uncontracted differentiation operators. This also allows one to derive IBP-like
relations:

∆(∂µ
pi p

ν
j γ̃({pk})) = 0 , (212)

where {pi} is a set of independent momenta spanning the LTVG γ̃. When applying
eq.(212) to LTVGs of a certain tensorial rank, it returns relations among LTVGs with
the tensorial rank raised by up to two. An example is given by the IBP

∆
(

∂ν
p1

pµ
1

1

2

3

)
= 0 , (213)

which yields the relation:

0 = −gµν∆
( )

− 2∆

(
µν

)
+ 2∆

(
µ

ν

)
. (214)

IBP relations thus allow one to find relations between counterterms of LTVGs of
different tensorial rank, which can be used to simplify calculations. Let us finish this
section by giving examples for some common UV counterterms of LTVGs. We shall
use the following normalisation for the integration measure of each independent
loop momentum:

µ2εeε(γE+ζ2/2)
∫ dDk

πD/2 , (215)

with γE the Euler-Mascheroni constant and ζn the Riemann zeta function.

∆
( )

=
1
ε

, ∆
(

µ1µ2

)
=

1
4ε

gµ1µ2 ,

∆
(

µ1 . . . µ4

)
=

1
24ε

(
gµ1µ2 gµ3µ4 + gµ1µ3 gµ2µ4 + gµ1µ4 gµ2µ3

)
,

∆
( )

= − 1
2ε2 +

1
2ε

, ∆
(

µ1µ2

)
= gµ1µ2

(
1

16ε
− 1

8ε2

)
, (216)

∆
( µ1 . . . µ4 )

= − 1
96ε

(
gµ1µ2 gµ3µ4 + gµ1µ3 gµ2µ4 + gµ1µ4 gµ2µ3

)
,

∆
( )

=
1

3ε3 −
2

3ε2 +
1
3ε

, ∆
(

µ1µ2

)
= gµ1µ2

ζ3

2ε
.

5.5 applications of r*

In this section we shall demonstrate the R∗ method introduced in the previous
sections to compute the pole part of a number of complicated, and so far unknown,
five loop propagator integrals. This is achieved through the relations introduced in
section 5.2:

KG = −KδR∗G, δR∗ = R∗ − 1 , (217)
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which allows one to compute the poles of any L-loop propagator integral from
propagator integrals of maximally L− 1 loops, a fact which follows straight forwardly
from the structure of the R∗-operation.

We have implemented the algorithms described in this work in two independent
computer codes. One is written entirely in Form [102] and the other is mostly
written in Maple. We interfaced both of these implementations with the Forcer

program [1, 7, 9], a highly efficient Form program that uses parametric integration-
by-parts reduction rules to reduce any propagator up to four loops to a set of
known master integrals. This makes it possible to compute all five-loop propagator
integrals from the knowledge of up to four-loop integrals. The combination of the
R∗ algorithm presented in this work and the Forcer program was used in the recent
computation of the five-loop beta function for Yang-Mills theory with fermions (as
will be discussed in chapter 6) [4], which took three days on a cluster. The latest
version of the code can perform the same calculation in six days on one 32-core
machine. It is worth emphasising that our application of the R∗-operation differs in
spirit not only from the global approach of [40], but also from the local approach
which was taken for instance in [199–201] to compute the six loop anomalous
dimensions in scalar φ4 theory. Indeed, the local R∗ approach taken there was based
on the application of KR̄∗, which allows one to directly isolate the renormalisation
group constant of the relevant order. Our approach focuses on simply computing
the poles of a given amplitude from which the corresponding renormalisation group
constants can of course be extracted. In the case of non-scalar QFTs, such as QCD,
there are advantages in our approach. While the UV counterterm operation KR̄∗

is sensitive to the contraction anomalies, discussed extensively in section 5.3, the
operation KδR∗ is insensitive to them. This observation allows us to make full use
of integrand (and even integral) relations of generic Feynman graphs. In contrast
the traditional local approach with KR̄∗ would not easily allow for the use of such
relations.

We shall start by presenting results for the poles of a number of five-loop integrals
in φ3-theory in four dimensions. While these integrals are in fact not superficially
UV divergent, they do contain highly intricate IR divergences with high SDDs.
Furthermore, some of these integrals are part of a yet to be found basis of five-loop
master integrals, and we thus anticipate that the explicit results for their poles will
constitute useful benchmarks for future evaluations of their finite parts. All results
in the following will be normalised according to eq.(215), and we set Q2 = µ2 = 1,
where Q is the (Euclidean) external momentum.

Below we present the pole part of five φ3 topologies:

K =− 56
ε

ζ7 (218)
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K =
4
ε2 ζ5 +

1
ε

(
10ζ6 + 4ζ2

3

)
(219)

K =− 9
10ε3 ζ3 +

1
ε2

(
−ζ5 −

27
20

ζ4 −
81
20

ζ3

)
(220)

+
1
ε

(
−5

2
ζ6 +

1
5

ζ5 −
243
40

ζ4 +
159

8
ζ3 − 5ζ2

3

)

K =
1

5ε3 ζ3 +
1
ε2

(
3

10
ζ4 +

1
2

ζ3

)
(221)

+
1
ε

(
−147

40
ζ7 +

11
15

ζ5 +
3
4

ζ4 −
641
60

ζ3 +
1
5

ζ2
3

)

K =
6
ε2 ζ5 +

1
ε

(
42ζ7 + 15ζ6 + 21ζ5 + 6ζ2

3

)
(222)

The computation of the pole parts only takes a few seconds on a single core. A list of
all top-level five-loop φ3 topologies will be provided on arXiv.org as an attachment
to this article.

Next, we present the pole parts of some five-loop ghost propagator diagrams,
where we enforce that the ghost line goes through all vertices. If we use the Feynman
gauge, the QCD diagram has a one-to-one correspondence to a generic Feynman
graph. This is illustrated below:

→
µ

ρ

κ

µ

ρ σ

ν

ν

σ ρ

=
1
ε2

(
11

2560
− 1

64
ζ5 +

3
256

ζ3

)
+

1
ε

(
551
5120

− 5
128

ζ6

− 109
256

ζ5 +
9

512
ζ4 +

729
2560

ζ3 +
1
32

ζ2
3

)
+O(ε0)

(223)

Every Feynman diagram of this type has five dot products. As a result, there will
be many tensor UV subgraphs. We have not rewritten the dot products to a basis,
since this will create higher-order UV and IR divergences. Any speed gains from
the simplified topologies are negated by expensive Taylor expansions and tensor
reductions.
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Below we present three more examples:

K
µ

ρ

κ σ

ν

κ ν

µ σ

ρ =
1
ε2

(
1

512
− 1

320
ζ3

)
+ (224)

1
ε

(
337

5120
− 161

1280
ζ7 −

25
128

ζ5 −
3

640
ζ4 +

341
1280

ζ3 −
9

160
ζ2

3

)

K
µ

σ

κ

κ

ν

ν

µ

σ

ρ

ρ
=

1
ε2

(
1

2560
+

1
64

ζ5 −
3

128
ζ3

)
+ (225)

1
ε

(
− 17

5120
+

161
640

ζ7 +
5

128
ζ6 +

19
128

ζ5 −
9

256
ζ4 −

1291
2560

ζ3 +
1

40
ζ2

3

)

K
µ

ν

σ

ρ κ

µ

ν

ρ

σ
κ

=
1
ε2

(
− 7

5120
− 1

128
ζ5 +

1
128

ζ3

)
+ (226)

1
ε

(
73

15360
+

441
2560

ζ7 −
5

256
ζ6 −

29
64

ζ5 +
3

256
ζ4 +

951
2560

ζ3 −
71

640
ζ2

3

)
Finally, we present an example of a hard four-loop diagram:

K

ρσ κλ

µν

µν ρσ

κλ =− 13
2304ε4 +

1789
55296ε3 +

91757
331776ε2 −

17
256ε2 ζ3

+
1
ε

(
199997
248832

+
5
4

ζ5 −
51

512
ζ4 −

17797
13824

ζ3

)
(227)

The diagram of eq. (227) has six dot products, one quadratic IR line, two quadratic
UVs, and several logarithmic UV and IR subgraphs. The diagram requires 187

unique, scalarised counterterms to compute the diagram. It is interesting to compare
the time required for computing the poles of this Feynman graph with the R∗-
method with the time which a direct computation takes using the Forcer program.
On a single core it takes 150 seconds to obtain the result with the R∗-operation. A
direct computation with the Forcer program takes 675 seconds, 4.5 times as long.
The reason why a direct computation is slower is because this particular integral
requires reductions of seven master topologies at four loops, which are generally
slow. In contrast, the R∗-operation only requires counterterms of up to three loops
and thus avoids these complex reductions. This shows that sometimes it is beneficial
to use R∗, even if a direct reduction is available.
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5.6 discussion of the literature

In this section we are going to discuss three differences of the R∗-method proposed in
this work with those proposed in the literature, viz. application of the d’Alambertian
versus Taylor expansion, treatment of the IR counterterm operation, and factorisation
of the R∗-operation.

d’alembertian versus taylor expansion In [206] it is proposed that the
UV counterterm of a single scale quadratic integral can be computed from logar-
ithmic ones by taking the d’Alembertian:

∆(G) = Q2∆
( 2

2D
G
)

, 2 = gµν ∂

∂Qµ

∂

∂Qν
. (228)

To evaluate the d’Alembertian acting on a Feynman graph, one must choose a path
which routes the flow of the external momentum through the graph. Whereas
the value of the integral 2G should be independent of the path taken, this is not
necessarily true for the counterterm operation ∆( 2

2D G) which as we discussed in
section 5.3 is not generally invariant under contractions with gµν. Below we give an
example where this problem becomes apparent.

∆

( )
= −∆

( )
∆
( )

=
1

4ε2 , (229)

∆

(
2

2D

)
=

1
4ε2 −

1
8ε

. (230)

We can easily see from the cutvertex rule that the UV counterterm cannot have a 1
ε

pole. In most φ4 topologies one may get the correct result by using the d’Alembertian,
but this is in no way guaranteed. Consider for example the following diagram.

(231)

If one chooses to evaluate the d’Alembertian along a path through the sunrise
subgraph on the top, a wrong answer is obtained. Instead, the only safe procedure
for computing the UV counterterm of higher order UV or IR subgraphs, is to perform
a Taylor expansion. That is, instead of the d’Alembertian the following differential
operator should be used:

1
2

QµQν∂µ∂ν , (232)

which is guaranteed to commute with the counterterm operation.
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ir counterterm operation The IR counterterm operation proposed in [45,
133, 134, 206–208] is usually formulated as

∆̃(γ′) = Pγ′({∂pi})
l(γ′)

∏
k=1

(2π)Dµ−2εδ(D)(pi) . (233)

Here l(γ′) is the number of loops of the IR subgraph γ′, Pγ′({∂pi}) is a homogen-
eous polynomial of degree ω̃(γ′) in the differential operators {∂p1 , . . . , ∂pl} and
{p1, . . . , pl(γ′)} is a set of independent momenta spanning the IR subgraph. The
strategy to compute the IR counterterm in [45, 133, 134, 206–208] relies on setting
up a system of equations, by inserting the IR subgraph γ′ into several suitable
graphs, and demanding the coefficients of P′γ({∂pi}) to render this system finite
after applying the R∗-operation. It is straightforward to show that our definition
of the IR counterterm given in eq.(188) leads to a similar form to that of eq.(233).
The main difference in our approach is that we directly compute the coefficients of
P′γ({∂pi}) from the values of tensor IR subgraphs of logarithmic SDD. The advantage
of [45, 133, 134, 206–208] is that no extra tensor reduction due to the Taylor expansion
has to be considered. Even though no such examples exist in the literature, this
approach will require tensor reduction as well when applied to generic Feynman
graphs. Since our entire setting relies on reducing both UV and IR counterterms to a
common basis of LTVGs this is a small price to pay and allows a unified setting for
the computation of the UV and IR counterterms, whose linear dependence is neatly
expressed through eq.(190).

factorisation of the r*-operation A third point we wish to raise, con-
cerns the factorisation of the R∗-operation into a pure UV subtraction R-operation
and a pure IR subtraction operation R̃, as noted in, e.g., [135, 207]:

R∗ = R̃ R . (234)

It has already been shown in [206, 207] that for local R∗, higher degree IR divergences
the R̃ and R do not generally commute:

R∗ 6= R R̃. (235)

We wish to point out that even R∗ = R̃ R cannot be naively applied to generic
Feynman graphs and is explicitly broken in graphs where higher degree IR subgraphs
neighbour higher degree UV subgraphs. To illustrate this, we use the same example
as in [206] where it was used to show the non-commutativity of the UV and IR
counterterm operators. Using the relation

∆

( )
= −K

(
1

Q2

)
Q2, (236)
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which is valid only because the subdivergences of this Feynman graph are vanishing,
we get:

KR̄∗
( )

= K

[
+ ∆̃

( )
∗ + ∆̃

( )
∗ ∆

( )
∗

]
(237)

= K

[
+ ∆̃

( )
∗ + DK

(
1
D

)
K

(
1

Q2

)]
.

In contrast, the factorised approach yields

KR̃ R̄

( )

= KR̃

[
− K

(
1

Q2

)(
Q2 + 2

µ

µ +

)]
(238)

= K

[
+ ∆̃

( )
∗ + K

( )
K

(
1

Q2

)]
.

Thus we see that different results are obtained using the factorised or non-factorised
approach. By IR rearrangement, we can rewrite the counterterm to be IR finite:

KR̄

( )
= K

[
− K

(
1

Q2

) ]
. (239)

The result of eq.(239) agrees with eq.(237), as was shown in [206] as well, and thereby
clearly falsifies the approach taken in eq.(238). This example further illustrates the
importance of factors of D which are created in the interplay of higher degree IR
and UV divergences.

5.7 chapter conclusion

We will now answer

RQ3: Can we compute the poles of five-loop diagrams using only four-loop
diagrams more efficiently?

The R∗-operation is a powerful tool to compute the poles of arbitrary Euclidean
Feynman graphs with non-exceptional external momenta from simpler Feynman
graphs. In this chapter we have extended the R∗-operation to Feynman graphs with
arbitrary numerators and of arbitrary tensorial rank. Since the local R∗-operation
had previously only been applied to scalar theories, we have vastly generalised its
range of applicability.
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The methods proposed in this chapter make full use of rewriting the counterterm
operations for arbitrary divergent UV and IR subgraphs in terms of scaleless tensor
vacuum graphs of logarithmic superficial degree of divergence, which we called
LTVGs. This concept, which to the best of our knowledge has not previously been
employed to this extent, allows one to take advantage of the enhanced symmetry
properties of vacuum graphs. We analysed contraction anomalies, which are easily
traceable within dimensional regularisation, and provided a consistent scheme that
uses LTVGs as basic building blocks for UV and IR counterterms. Additionally, we
have refined the definition and evaluation of the IR counterterm operation, so that it
resembles its UV counterpart.

5.7.1 Findings and main conclusion

Our two main contributions are (1) the generalisation of the R∗-method and (2)
its implementation in an efficient computer code. Additionally, we have verified
the correctness of our method and code by computing the five loop beta function
of QCD with an arbitrary simple gauge group [4] (see chapter 6). In this chapter
we provided results for the poles of all five-loop top-level propagator graphs in
φ3 theory in four dimensions, as well as several explicit results for five-loop ghost
propagator graphs with highly non-trivial numerator structures. From the results
we derive our main conclusion: the method presented in this chapter provides an
efficient way to compute the poles of complicated Feynman diagrams, even at five
loops.

5.7.2 Future research

We see three lines of future research. First, we envisage that these results will provide
useful cross-checks once analytic computations, which also contain the finite parts
of these Feynman graphs, become available.

Second, our R∗ method may shed some further light on an old puzzle related to
the absence of certain higher zeta values in the anomalous dimensions, such as the
beta function in QCD. While some explanations for this phenomenon have been
given in [105], we believe that the many relations among LTVGs should allow to
further illuminate the origin of the absence of these zeta-values, as they can clearly
be traced to the UV counterterms of only a handful of LTVGs.

Third, among many other applications, these techniques could be used to compute
Mellin moments of splitting functions at five loops, a problem which is currently
well out of reach with any other method known to us.
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6T H E F I V E - L O O P B E TA F U N C T I O N

In this chapter we report on the first computation of the five loop beta function
for a general Yang-Mills theory with one set of fermions. This is only possible
by combining the results of RQ2, the Forcer program for four-loop calculations
described in chapter 3, and RQ3, the R∗-operation described in chapter 5.

The beta function governs how the strength of the strong interaction scales with
the energy. The determination of the (sign of the) leading one-loop coefficient β0
[23, 24], soon followed by the calculation of the two-loop correction β1 [119, 210]
shows that the strong interaction vanishes at large energies (or very short distances).
This asymptotic freedom means that QCD is a viable theory for the strong interaction.
The discovery of asymptotic freedom was awarded the Nobel Prize for Physics in
2004.

The scale dependence (‘running’) of the renormalised coupling constant αi can be
written in perturbation theory as

da
d ln µ2 = β(a) = −

∞

∑
n=0

βn an+2 , a =
αi(µ)

4π
(240)

where µ is the renormalisation scale.
The renormalisation-scheme dependent three-loop (next-to-next-to-leading order,

N2LO) and four-loop (next-to-next-to-next-to-leading order, N3LO) coefficients β2
and β3 were computed in refs. [122, 211] and [113, 114] in minimal subtraction
schemes [130, 131] of dimensional regularisation [179, 180].

Precise determination of the beta function is important for all renormalisation
group improved perturbation theory calculations. Below we mention two important
use-cases. First, in the past years, N2LO accuracy has been reached for many
processes at high-energy colliders. N3LO corrections have been determined for
structure functions in inclusive deep-inelastic scattering (DIS) [98, 212] and for the
total cross section for Higgs-boson production at hadron colliders [82, 155]. Second,
we have computed moments of coefficient functions for DIS at N4LO [8]. Obtaining
full results at this order would virtually remove the uncertainty due to the truncation
of the series of massless perturbative QCD in determinations of the strong coupling
constant αs from the scaling violations of structure functions in DIS.

The corresponding five-loop contributions to the beta functions of QCD, with all
colour factors ‘hard-wired’, and QED have already been computed in refs. [40, 213].
Their leading large-nf contributions have long been known [214], and the sub-leading
large-nf terms have been checked and generalized to a general simple gauge group
in ref. [128]. The real tour de force of ref. [40] though, are the parts proportional
to n 0

f , n 1
f and n 2

f which together required more than a year of computations on 20

multi-core workstations in a highly non-trivial theoretical framework. These critical
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parts have neither been extended to a general gauge group nor validated by a second
independent calculation.

In the following chapter we address this issue and present the five-loop beta
function for a general simple compact gauge group. Unlike the calculations in
refs. [23, 24, 113, 114, 119, 120, 122, 210, 211], we have employed the background
field method (see section 6.2), and the R∗ method (see chapter 5).

Finally, we transform the five-loop Yang-Mills beta function from MS to the
MiniMOM scheme [153]. The MiniMOM scheme is more convenient than MS for
analysis in the non-perturbative regime of QCD.

The remainder of this chapter is structured as follows. We first explore five
optimisations in section 6.1, after which we define the background field in section 6.2.
Next, we present the computation of the five-loop beta function for Yang-Mills theory
with fermions in section 6.3. We discuss the results in section 6.4. In section 6.5, we
transform the five-loop beta function from MS to the MiniMOM scheme. Finally, we
present the chapter conclusions in section 6.6.

6.1 optimisations

Performing computations at five loops introduces at least five new bottlenecks
compared to four loops. (1) The number of diagrams and their complexity grow
exponentially. (2) The substitution of the Feynman rules is slow and creates millions
of term. (3) The Taylor expansion to make the diagrams logarithmic creates many
terms. (4) The number of counterterms grows exponentially. (5) Tensors of rank 10

have to be reduced, which involves solving large systems.

In this section we address these issues by presenting five optimisations, namely
improved treatment of propagator insertions in section 6.1.1, delayed Feynman
rule substitution in section 6.1.2, improved rules to make diagrams logarithmic in
section 6.1.3, a canonical form algorithm for Feynman diagrams in section 6.1.4, and
an efficient tensor reduction algorithm in section 6.1.5.

6.1.1 Treatment of propagator insertions

Many of the higher-loop corrections are self-energies of propagators in the diagram.
Due to the local nature of the Feynman rules, these self-energies only depend on
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their external momentum (there are no contractions with other parts of the larger
diagram), so they can be ‘factorised’ out (see also 3.10):

+ + =

 + +

× =

Σ1PR
2 ,

(241)

where the L-loop self-energy is replaced by (p2)−εL in the larger diagram (marked
by L crosses). In a sense, the subdiagram is integrated out. The resulting simpler
topology is multiplied by the one-particle-reducible L-loop self-energy. Since the
L-loop subdiagram is of lower order, these quantities have already been computed
and can easily be tabulated to prevent recomputations. For example, a five-loop
diagram may contain the expensive 4-loop gluon propagator as a subdiagram.

For the R∗-operation, this representation has an issue: the non-integer power
hides UV-divergent subdiagrams, which should be subtracted. However, since the
exact contents of the (p2)−εL is factorised out, we may replace it with any L-loop
subdiagram. Therefore we choose the simplest configuration: L scalar one-loop
bubbles side by side.

Thus, for the R∗-operation we can remove propagator insertions by using the
following relation:

L

=

L




L ×

1 L

. (242)
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6.1.2 Delayed Feynman rule substitution

Substituting the Feynman rules creates many terms. For example, the following fully
gluonic five-loop graph creates 12 029 521 scalar integrals in the Feynman gauge:

. (243)

The source of the blow-up is the Feynman rule for the triple gluon vertex, which can
be written in the following way:

v3g(pµ,a
1 , pν,b

2 , pρ,c
3 ) = −i f abc [(p1 − p2)

ρgµν + (2p2 + p1)
µgνρ + (−2p1 − p2)

νgµρ

]
.

(244)
Thus, for every vertex, six terms are created, of which some will evaluate to the
same expression due to symmetries. For all these terms, expensive operations such
as Taylor expansions and divergent subgraph recognitions have to be performed.
However, these operations only depend on the momentum powers and are invariant
under the way the momenta contract. So, we rewrite the triple gluon vertex in a way
that exposes the momenta, but keeps all the contractions unsubstituted:

v3g(pµ,a
1 , pν,b

2 , pρ,c
3 ) = −i f abc pσ

1 t3(σ, ν, ρ, µ) + i f abc pσ
2 t3(σ, µ, ρ, ν) , (245)

where
t3(µ, ν, ρ, σ) = gµρgνσ + gµσgνρ − 2gµνgρσ . (246)

After rewriting v3g in terms of t3, there are only 210 = 1024 terms for the Feynman
diagram in eq. (243). We can keep our input in this compactified notation for as long
as the actual contractions are not important, which is right until the tensor reduction.

We define the operation ◦ that applies the remaining Feynman rules to all com-
ponents of the R∗-operation. For example:

t3(µ, ν, ρ, σ) ◦ ∆
(

µν

)
ρ

σ
= 2∆

(
µν

)
µ

ν
− 2∆

( )
ρ

ρ
.

(247)

We stress that for this particular case contraction is necessary.
Similar rules can be devised for the other vertices and for the trace of gamma

matrices. At five loops, the substitution of t3 and similar structures is an expensive
part of the calculation, since the number of generated terms is high.

6.1.3 Rules to make Feynman diagrams logarithmic

Since we compute
K(G) = −KδR∗G , (248)
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we can make G logarithmic, by d’Alembertian-like derivatives inside K(G). The
advantage over just Taylor expanding ∆(G), is that we are allowed to contract inside
K(G). We first consider the following linear integral F:

F = QµFµ, Fµ = Qµ(Q2)−εL f (ε) . (249)

We take the following derivative and solve the new equation for F:

∂µFµ = (1− 2εL)(Q2)−εL f (ε)

f (ε) =
1

1− 2εL
(Q2)εL∂µFµ

F =
Q2

1− 2εL
∂µFµ .

(250)

Thus, we have re-expressed F into a logarithmic integral with a new dot product
that is internal to the graph. For the R∗-operation, this is generally better than a dot
product with Q, since a dot product with the external momentum always requires a
projection whereas internal momenta may be in the same divergent subdiagram.

For quadratic integrals F, we can apply the d’Alembertian to achieve the same
effect:

F = (Q2)1−εL f (ε)

2F = 4(εL− 1)(ε(L + 1)− 2)(Q2)1−εL f (ε)

F =
Q2

4(εL− 1)(ε(L + 1)− 2)
2F .

(251)

For quadratic integrals of the form QµQνFµν, we can derive a special rule as well:

F =
∂µ∂νFµν(2− 2εL) + ∂α∂αFµµ

−8(−1 + εL)(−3 + ε + εL)(−2 + ε + εL)
(252)

For integrals with more Qs, or higher than quadratic ones, there are not sufficient
ways available to contract existing vectors to solve the system. To make these
integrals logarithmic, one could use Euler’s homogeneous function theorem:

Qα∂αF = nF , (253)

where n is the order in Q. For a Feynman integral of degree S we have n = S− 2εL.
Thus we formulate:

F =

(
1

S− 2εL
Qα∂α

)S
F (254)

Every time a derivative is taken, another Q-path can be chosen through the diagram,
to limit the growth of the number of terms. However, since the shape of eq. (254) is
similar to a Taylor expansion, it is faster to only perform the Taylor expansion on
∆(G).

It is important to construct the counterterms of the rearranged G′ at the same
time as the subdivergences of G. Since many counterterms of G are also in G′, the
number of relevant counterterms is reduced. This saves a factor three at four loops.
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6.1.4 Canonical forms for Feynman diagrams

The R∗-operation applied to five-loop diagrams will create many counterterms. In
order to reduce computation time, it is important to compute the counterterms of
a specific graph only once. In turn, this requires an efficient way to detect if two
graphs are equal. One straightforward option is to keep a list of all the graphs that
have already been processed and test for isomorphisms on every element of the list
until one is found. If no match is found, the current graph can be added to the list.
The two downsides of this method are that (1) an isomorphism test can be rather
slow at five loops and (2) that the list of topologies grows rapidly.

A better alternative is to construct a canonical form of a graph. A canonical form is
an isomorphism of the graph that is designated as the smallest by some yet to be
defined measure. To test for equality, one can simply compare the canonical forms.
Since isomorphy is first and foremost a property of the vertices, we give each vertex
a label from 1 to n. For simplicity, let us consider a graph that has no dot products
and only has edges with power 1.

We convert our graph to an edge representation:

1 3

2

0 4

= e(0, 1)e(1, 2)e(2, 3)e(2, 3)e(1, 3)e(3, 4) . (255)

Here, e(n1, n2) is the edge function, in which we place the smallest vertex index as
the first argument. The edge list is a lexicographically sorted list of edge functions, as
is shown in eq. (255). Now we define the smallest isomorphism of a graph as the
vertex labelling for which the edge list is lexicographically smallest.1

We can easily extend the graph notation to a graph where propagators can have
different powers, by introducing a third argument to the edge function e:

1 3

2

0 4

= e(0, 1, 1)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2)e(1, 3, 1)e(3, 4, 1) , (256)

where we again make sure that the first two arguments of e(n1, n2, . . .) are sorted. To
add support for dot products and tensors, we extend the edge function even further:

µ

µ

1 3

2
0 4 = e(0, 1, 1, µ)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2, µ)e(1, 3, 1)e(3, 4, 1) . (257)

1 In our program, we use the internal (deterministic) sorting order of Form to determine the smallest
isomorphism instead.
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We define the canonical signs of the momenta such that they always flow from the
smallest vertex label to the highest. If a transformation changes the order, we flip
the sign if the number of vectors in the momentum is odd:

e(2, 1, n, µ1, . . . , µk) = (−1)ke(1, 2, n, µ1, . . . , µk) . (258)

Finally, the momentum label pi of each edge is uniquely defined by the position i of
the edge in the edge list.

Now that most properties of the Feynman integral are captured in the extended
edge list and we have defined which edge list is smallest, we use McKay’s canon-
icalisation algorithm [215] to efficiently rewrite the complete Feynman integral to
canonical form. A simplified version of this algorithm is implemented in Form code.

6.1.5 Efficient tensor reduction

It can be shown that the tensor reduction of ultraviolet and infrared subtraction
terms, required for the R∗-operation, is equivalent to the tensor reduction of tensor
vacuum bubble integrals. In general tensor vacuum integrals can be reduced to linear
combinations of products of metric tensors gµν whose coefficients are scalar vacuum
integrals. Specifically a rank r tensor, Tµ1 ... µr , is written as a linear combination of
n = r!/2(r/2)/(r/2)! combinations of (r/2) metric tensors with coefficients cσ, i.e.,

Tµ1 ... µr = ∑
σ∈ 2Sr

cσ Tµ1 ...µr
σ , Tµ1 ... µr

σ = gµσ(1)µσ(2) . . . gµσ(r−1)µσ(r) . (259)

Here we define 2Sr as the group of permutations which do not leave the tensor
Tµ1 ... µr

σ invariant. The coefficients cσ can be obtained by acting onto the tensor
Tµ1 ... µr with certain projectors Pµ1 ...µr

σ , such that

cσ = Pµ1 ... µr
σ Tµ1 ... µr . (260)

From this it follows that the orthogonality relation,

Pµ1 ... µr
σ Tτ, µ1 ... µr = δστ , (261)

must hold, where δ is the Kronecker-delta. Since the projector Pµ1 ... µr
σ of each tensor

can also be written in terms of a linear combination of products of metric tensors,
inverting an n × n matrix determines all the projectors. However, there are two
issues. The first is that the size of the matrix grows rather rapidly as r increases.
Instead of solving an n× n linear system, the symmetry group of the metric tensors
can be utilised to reduce the size of the system. From eq. (261) it follows that the
projector Pσ is in the same symmetry group (the group of permutations which leave
it invariant) as Tσ. For example, given a permutation σ1 = (123...(r− 1)r),

Tµ1 ... µr
σ1 = gµ1µ2 gµ3µ4 . . . gµr−1µr . (262)

The corresponding projector Pµ1 ... µr
σ1 must be symmetric under interchanges of indices

such as µ1 ↔ µ2, (µ1, µ2)↔ (µ3, µ4) and so on. Grouping the metric tensors by the
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symmetry leads to the fact that Pσ is actually written in a linear combination of a
small number of m tensors instead of n (m ≤ n),

Pµ1 ... µr
σ =

m

∑
k=1

bk ∑
τ∈Aσ

m

Tµ1 ... µr
τ . (263)

The set of groups {Aσ
k |k = 1..m} must therefore each be closed under the permuta-

tions which leaves Tσ invariant and at the same time their union must cover once
the group 2Sn. Contracting Pσ with a representative in each group gives an m×m
matrix which can be inverted to yield the coefficients bk. The number of unknowns
m is m = 5 for r = 8 and m = 22 for r = 16, whereas we have n = 105 for r = 8
and n = 2027025 for r = 16. The comparison of these numbers illustrates that the
exploitation of the symmetry of the projectors makes it possible to find the tensor
reduction even for very large values of r, which could never have been obtained by
solving the n× n matrix.

The second issue with tensors of high rank is the large number of intermediate
terms that are created. Even though the system for the projector can be solved
efficiently, O(n2) terms will be created, of which some will merge due to symmetry.
Let us consider rank 6, with 15 terms:

c1gµ1µ2 gµ3µ4 gµ5µ6 + c2gµ1µ3 gµ2µ4 gµ5µ6 + . . . . (264)

In most practical situations there is symmetry, both on the inside of the object that
will be projected as on the outside. For example

A(pµ1
1 pµ2

1 pµ3
1 pµ4

1 pµ5
2 pµ6

2 )pµ1
3 pµ2

3 pµ3
4 pµ4

4 pµ5
4 pµ6

4 (265)

is symmetric in exchanges of µ1, . . . , µ4 and µ5, µ6 inside A, and is symmetric in
µ1, µ2 and µ3, . . . , µ6 outside A. The symmetry inside the object A will enforce that
coefficient c1 and c2 (and others) will actually be the same. The symmetry on the
outside will cause terms to merge. In the end, we could have used the symmetrised
variant of eq. (264) instead:

c1 · (gµ1µ2 gµ3µ4 gµ5µ6 + 2gµ1µ3 gµ2µ4 gµ5µ6) + c3(2gµ1µ2 gµ3µ5 gµ4µ6 + 10gµ1µ5 gµ2µ6 gµ3µ4).
(266)

We see that only two coefficients have to be computed instead of 15 and that there
are only 4 terms in the output instead of 15. The challenge is to prevent these
terms from being created in the first place by exploiting symmetry, instead of
starting from eq. (264). We make use of the optimised Form command dd , which
creates the tensor structure Tµ1,...,µr without generating duplicates. If we evaluate
dd (p1,p1,p1,p1,p2,p2) and strip the coefficient we get p1.p1^2*p2.p2+p1.p1*p1.
p2^2. These two terms represent the structure outside of c1 and c3 in (266). For
each of these two terms, we solve for the coefficient. Next, we recreate the metric
structures that would give this specific contraction.

A term generated by dd consists of two different factors: (p · p)a and (p1 · p2)
a.

For (p · p)a, we collect all possible indices involved with p. For eq. (265), this would
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be µ1, . . . , µ4. Then we select all possible ways to get 2a elements from that list with
distrib . Next, we use dd on those indices. Thus, for p1 · p1 in the example we
would get gµ1µ2 + gµ1µ3 + gµ2µ3 . For cases such as (p1 · p2)

a, we select a from the list
of indices associated to p1 and a from the list of p2. Then we permute over the list of
p2. Using this algorithm, one can generate all possible contractions from the result
without generating duplicates. To apply the outside symmetry, one can easily fill
in the outside momenta associated to the indices instead of the indices themselves.
distrib and dd will take the symmetry into account automatically.

6.2 the background field

A convenient and efficient method to extract the Yang-Mills beta function is to make
use of the background field. We will briefly review this formalism. We start with
the Lagrangian of Yang-Mills theory coupled to fermions in a non-trivial (often
the fundamental) representation of the gauge group, the theory for which we will
present the five-loop beta-function in section 6.3.

The Lagrangian of this theory can be decomposed as

LYM+FER = LCYM + LGF + LFPG + LFER . (267)

Here the classical Yang-Mills Lagrangian (CYM), a gauge-fixing term (GF), the
Faddeev-Popov ghost term (FPG) and the fermion term (FER) are given by

LCYM = −1
4

Fa
µν(A)Fµν

a (A) ,

LGF = − 1
2ξ

(Ga)2 ,

LFPG = −η†
a ∂µDab

µ (A) ηb ,

LFER = ∑
i,j, f

ψ̄i f (i /Dij(A)−mf δij)ψj f . (268)

In the fermion term the sum goes over colours i, j, and n f flavours f , and we use the
standard Feynman-slash notation. The field strength is given by

Fa
µν(A) = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν (269)

and the covariant derivatives are defined as

Dab
µ (A) = δab∂µ − g f abc Ac

µ ,

Dµ
ij(A) = δij∂

µ − ig Ta
ij A

µ
a . (270)

The conventions associated to the generators Ta and structure constants f abc of the
gauge group will be explained in section 4.1. The gauge-fixing term depends on
making a suitable choice for Ga, which is usually taken as Ga = ∂µ Aa

µ.
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The background-field Lagrangian is derived by decomposing the gauge field as

Aa
µ(x) = Ba

µ(x) + Âa
µ(x) , (271)

where Ba
µ(x) is the classical background field while Âa

µ(x) contains the quantum
degrees of freedom of the gauge field Aa

µ(x). The background-field Lagrangian is
then written as

LBYM+FER = LBCYM + LBGF + LBFPG + LBFER . (272)

LBCYM and LBFER are derived simply by substituting eq. (271) into the corresponding
terms in the Yang-Mills Lagrangian. However a clever choice exists [117, 118] for
the ghost and gauge fixing terms, which allows this Lagrangian to maintain explicit
gauge invariance for the background field Ba

µ(x), while fixing only the gauge freedom
of the quantum field Âa

µ(x). The gauge fixing then uses instead

Ga = Dab
µ (B)Âµ

b , (273)

while the ghost term is given by

LBFPG = −η†
a Dab;µ(B) Dbc

µ (B + Â) ηc . (274)

The Lagrangian LBYM+FER then gives rise to additional interactions which are dif-
ferent from the normal QCD interactions of the quantum field Âa

µ(x) also contain
interactions of Ba

µ(x) with all other fields.
A remarkable fact is found when considering the renormalisation of this Lag-

rangian. Indeed it turns out, see e.g., [117, 118], that the coupling renormalisation,
g→ Zg g, which determines the beta function, is directly related to the renormalisa-
tion of the background field, B→ BZB, via the identity:

Zg
√

ZB = 1 . (275)

When working in the Landau gauge, the only anomalous dimension needed in
the background field gauge formalism is then the beta function. However in the
Feynman gauge the gauge parameter ξ requires the renormalisation constant Zξ –
which equals the gluon field renormalisation constant – but only to one loop lower.
In turn this allows one to extract the beta function from the single equation

ZB(1 + ΠB(Q2; Zξ ξ, Zgg)) = finite, (276)

with
Πµν

B (Q; Zξξ, Zgg) = (Q2gµν −QµQν) ΠB(Q2; Zξ ξ, Zgg) , (277)

where Πµν
B (Q2; ξ, g) is the bare self energy of the background field. This self-energy

is computed by keeping the fields B external while the only propagating fields are
Â, η and ψ.
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Obtaining the beta function through the background field gauge is faster and
simpler than the traditional method of computing the gluon propagator, ghost
propagator and ghost-ghost-gluon vertex due to a lower total number of diagrams
and the above reduction to a scalar renormalisation. The number of diagrams for the
background field propagator at four loops is 7435, whereas the smallest combination
needed for the beta function (gluon and ghost propagator + ghost-ghost-gluon vertex)
requires 5245 + 1507 + 18034 = 24786 diagrams. This speed-up is also evident from
figure 24, which shows that calculating the background field propagator takes about
as much time as computing the gluon propagator.

The additional Feynman rules required for the background field propagator are
displayed in table 5. The vertices with two background fields attached to it yield 0,
since these are tadpoles.

Now that we have discussed several optimisations and defined the background
field propagator, we can focus on the computation of the five-loop beta function.

6.3 diagram computations and analysis

As outlined in 6.2, it is possible to extract the five-loop beta function from the poles
(in the dimensional regulator ε) of the bare background field self-energy ΠB(Q).
It is beyond current computational capabilities to calculate the required five-loop
propagator integrals directly. The main obstacle preventing such an attempt is the
difficulty of performing the required IBP reductions (see section 3.5).

However, the problem can be simplified via the use of the R∗-operation. This
allows us to decompose the five-loop integral into a five-loop counterterm and
counterterms of lower loops. We infrared-rearrange (IRR) the five-loop counter term
to a carpet integral. For example:

→ . (278)

These carpet integrals can always be reduced to four loops (see section 3.3). If the
counterterm is not logarithmic, we first apply the rules provided in section 6.1.3.
After we use the Forcer program to compute the four-loop integrals.

The Feynman diagrams for the background propagator up to five loops have
been generated using Qgraf [111]. They have then been heavily manipulated by
a Form [101, 102, 216] program that determines the topology and calculates the
colour factor using the program of ref. [112]. Additionally, it merges diagrams of
the same topology, colour factor, and maximal power of nf into meta diagrams for
computational efficiency. Integrals containing massless tadpoles or symmetric colour
tensors with an odd number of indices have been filtered out from the beginning.
Lower-order self-energy insertions have been ‘factorised’ out. In this manner we
arrive at 2 one-loop, 9 two-loop, 55 three-loop, 572 four-loop and 9414 five-loop meta
diagrams. We refer the reader to section 3.10 for a more detailed description.

The diagrams up to four loops have been computed earlier to all powers of the
gauge parameter using the Forcer program [1, 7, 9]. For the time being, our five-loop
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p
q

r
a, µ

b, ν

c, λ

g fabc

[
gµλ

(
p− r− q

ξ

)
ν

+ gνλ (r− q)µ + gµν

(
q− p +

r
ξ

)
λ

]

a, µ b, ν

c, λd, ρ

−ig2
[

fabx fxcd
(

gµ,λgν,ρ − gµ,ρgν,λ
)

+ fadx fxbc
(

gµ,νgλ,ρ − gµ,λgν,ρ
)

+ facx fxbd
(

gµ,νgλ,ρ − gµ,ρgν,λ
)]

a, µ b, ν

cd

−ig2 fcax fxbdgµν

q

r
a, µ

b, ν

c, λ

−g fbac(r + q)µ

p

a, µ

b

c

−igγµ(ta)b
c

Table 5: Additional Feynman rules for the background field. Note the dependence
on 1/ξ in the background-gluon-gluon vertex.
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computation has been restricted to the Feynman gauge, ξF = 1− ξ = 0. An extension
to the first power in ξF would be considerably slower; the five-loop computation
for a general ξ would be impossible without substantial further optimisations of
our code. Instead of varying ξ, we have checked our computations by verifying the
relation QµQν Πµν

B = 0 required by eq. (277). This check took considerably more
time than the actual determination of β4 due to the increase in tensor rank.

The five-loop diagrams have been calculated on computers with a combined total
of more than 500 cores, 80% of which are older and slower by a factor of almost three
than the latest Intel Xeon 2.6 GHz workstations. One core of the latter performs
a ‘raw-speed’ Form benchmark, a four-dimensional trace of 14 Dirac matrices, in
about 0.02 seconds which corresponds to 50 ‘form units’ (fu) per hour. The total
CPU time for the five-loop diagrams was 3.8 · 107 seconds which corresponds to
about 2.6 · 105 fu on the computers used. The TForm parallelisation efficiency for
single meta diagrams run with 8 or 16 cores was roughly 0.5; the whole calculation
of β4, distributed ‘by hand’ over the available machines, finished in three days.

For comparison, the corresponding R∗ computation for ξF = 0 at four loops
required about 103 fu, which is roughly the same as for the first computation of the
four-loop beta function to order ξ 1

F by a totally different method given in ref. [113].
The computation with the Forcer program at four and fewer loops is much faster,
as demonstrated in section 3.11.

The determination of ZB from the unrenormalised background propagator is
performed by imposing, order by order, the finiteness of its renormalised counterpart.
The beta function can simply be read off from the 1/ε coefficients of ZB. If the
calculation is performed in the Landau gauge, the gauge parameter does not have to
be renormalised. In a k-th order expansion about the Feynman gauge at five loops,
the L< 5 loop contributions are needed up to ξ 5−L

F . The four-loop renormalisation
constant for the gauge parameter is not determined in the background field and has
to be ‘imported’. In the present k = 0 case, the terms already specified in ref. [114]
would have been sufficient had we not performed the four-loop calculation to all
powers of ξF anyway.

6.4 results and discussion

Before we present our new results, it may be convenient to recall the beta function
(240) up to four loops [23, 24, 113, 114, 119, 120, 122, 210, 211] in terms of the colour
factors defined in section 4.1,

β0 =
11
3

CA −
4
3

TF nf , (279)

β1 =
34
3

C 2
A −

20
3

CA TF nf − 4 CF TF nf , (280)

β2 =
2857

54
C 3

A −
1415
27

C 2
A TF nf −

205
9

CF CA TF nf + 2 C 2
F TF nf
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+
44
9

CF T 2
F n 2

f +
158
27

CA T 2
F n 2

f , (281)

β3 = C 4
A

(
150653

486
− 44

9
ζ3

)
+

d abcd
A d abcd

A
NA

(
−80

9
+

704
3

ζ3

)
+ C 3

A TF nf

(
−39143

81
+

136
3

ζ3

)
+ C 2

A CF TF nf

(
7073
243
− 656

9
ζ3

)

+ CA C 2
F TF nf

(
−4204

27
+

352
9

ζ3

)
+

d abcd
F d abcd

A
NA

nf

(
512

9
− 1664

3
ζ3

)
+ 46 C 3

F TF nf + C 2
A T 2

F n 2
f

(
7930

81
+

224
9

ζ3

)
+ C 2

F T 2
F n 2

f

(
1352

27
− 704

9
ζ3

)

+ CA CF T 2
F n 2

f

(
17152

243
+

448
9

ζ3

)
+

d abcd
F d abcd

F
NA

n 2
f

(
−704

9
+

512
3

ζ3

)
+

424
243

CA T 3
F n 3

f +
1232
243

CF T 3
F n 3

f , (282)

where n f is the number of fermion (in QCD, quark) flavours. βn are the same in all
MS-like schemes [130, 131], i.e. within the class of renormalisation schemes which
differ only by a shift of the scale µ.

Below we will present the results (A) for a generic Yang-Mills theory, (B) for QCD,
and (C) for QED.

(a) yang-mills In the same notation and scheme, the five-loop contribution reads

β4 = C 5
A

(
8296235

3888
− 1630

81
ζ3 +

121
6

ζ4 −
1045

9
ζ5

)

+
d abcd

A d abcd
A

NA
CA

(
−514

3
+

18716
3

ζ3 − 968 ζ4 −
15400

3
ζ5

)
+ C 4

A TF nf

(
−5048959

972
+

10505
81

ζ3 −
583

3
ζ4 + 1230 ζ5

)
+ C 3

A CF TF nf

(
8141995

1944
+ 146 ζ3 +

902
3

ζ4 −
8720

3
ζ5

)
+ C 2

A C 2
F TF nf

(
−548732

81
− 50581

27
ζ3 −

484
3

ζ4 +
12820

3
ζ5

)
+ CA C 3

F TF nf

(
3717 +

5696
3

ζ3 −
7480

3
ζ5

)
− C 4

F TF nf

(
4157

6
+ 128 ζ3

)

+
d abcd

A d abcd
A

NA
TF nf

(
904

9
− 20752

9
ζ3 + 352 ζ4 +

4000
9

ζ5

)

+
d abcd

F d abcd
A

NA
CA nf

(
11312

9
− 127736

9
ζ3 + 2288 ζ4 +

67520
9

ζ5

)
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+
d abcd

F d abcd
A

NA
CF nf

(
−320 +

1280
3

ζ3 +
6400

3
ζ5

)
+ C 3

A T 2
F n 2

f

(
843067

486
+

18446
27

ζ3 −
104

3
ζ4 −

2200
3

ζ5

)
+ C 2

A CF T 2
F n 2

f

(
5701
162

+
26452

27
ζ3 −

944
3

ζ4 +
1600

3
ζ5

)
+ C 2

F CA T 2
F n 2

f

(
31583

18
− 28628

27
ζ3 +

1144
3

ζ4 −
4400

3
ζ5

)
+ C 3

F T 2
F n 2

f

(
−5018

9
− 2144

3
ζ3 +

4640
3

ζ5

)

+
d abcd

F d abcd
A

NA
TF n 2

f

(
−3680

9
+

40160
9

ζ3 − 832 ζ4 −
1280

9
ζ5

)

+
d abcd

F d abcd
F

NA
CA n 2

f

(
−7184

3
+

40336
9

ζ3 − 704 ζ4 +
2240

9
ζ5

)

+
d abcd

F d abcd
F

NA
CF n 2

f

(
4160

3
+

5120
3

ζ3 −
12800

3
ζ5

)
+ C 2

A T 3
F n 3

f

(
−2077

27
− 9736

81
ζ3 +

112
3

ζ4 +
320

9
ζ5

)
+ CA CF T 3

F n 3
f

(
−736

81
− 5680

27
ζ3 +

224
3

ζ4

)
+ C 2

F T 3
F n 3

f

(
−9922

81
+

7616
27

ζ3 −
352

3
ζ4

)

+
d abcd

F d abcd
F

NA
TF n 3

f

(
3520

9
− 2624

3
ζ3 + 256 ζ4 +

1280
3

ζ5

)
+ CA T 4

F n 4
f

(
916
243
− 640

81
ζ3

)
− CF T 4

F n 4
f

(
856
243

+
128
27

ζ3

)
. (283)

ζ denotes the Riemann zeta function with ζ3 ∼= 1.202056903, ζ4 = π4/90 ∼=
1.08232323 and ζ5 ∼= 1.036927755. As expected from the lower-order and QED
results, higher values of the zeta function do not occur despite their occurrence in
the results for individual diagrams; for further discussions see ref. [105, 204, 213].

(b) qcd Inserting the group factors of SU(3) as given in eq. (62) leads to the QCD
results

β0 = 11 − 2
3

nf , β1 = 102 − 38
3

nf ,

β2 =
2857

2
− 5033

18
nf +

325
54

n 2
f ,
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β3 =
149753

6
+ 3564 ζ3 + nf

(
−1078361

162
− 6508

27
ζ3

)
+ n 2

f

(
50065

162
+

6472
81

ζ3

)
+

1093
729

n 3
f (284)

and

β4 =
8157455

16
+

621885
2

ζ3 −
88209

2
ζ4 − 288090 ζ5

+ nf

(
−336460813

1944
− 4811164

81
ζ3 +

33935
6

ζ4 +
1358995

27
ζ5

)
+ n 2

f

(
25960913

1944
+

698531
81

ζ3 −
10526

9
ζ4 −

381760
81

ζ5

)
+ n 3

f

(
−630559

5832
− 48722

243
ζ3 +

1618
27

ζ4 +
460
9

ζ5

)
+ n 4

f

(
1205
2916

− 152
81

ζ3

)
.(285)

In truncated numerical form β3 and β4 are given by

β3 ∼= 29242.964− 6946.2896 nf + 405.08904 n 2
f + 1.499314 n 3

f , (286)

β4
∼= 537147.67− 186161.95 nf + 17567.758 n 2

f − 231.2777 n 3
f − 1.842474 n 4

f .(287)

In contrast to β0, β1, and β2, which change sign at about nf = 16.5, 8.05, and 5.84

respectively, β3 and β4 are positive (except at very large nf for β4), but have a (local)
minimum at nf ' 8.20 and nf ' 6.07.

(c) qed The corresponding analytical result for QED, in the same renormalisation
scheme(s) but defined without the overall minus sign in eq. (240) is given by

β0 =
4
3

nf , β1 = 4 nf , β2 = − 2 nf −
44
9

n 2
f ,

β3 = − 46 nf + n 2
f

(
760
27
− 832

9
ζ3

)
− 1232

243
n 3

f (288)

and

β4 = nf

(
4157

6
+ 128 ζ3

)
+ n 2

f

(
−7462

9
− 992 ζ3 + 2720 ζ5

)
+ n 3

f

(
−21758

81
+

16000
27

ζ3 −
416

3
ζ4 −

1280
3

ζ5

)
+ n 4

f

(
856
243

+
128
27

ζ3

)
.(289)

The (corresponding parts of the) results (283), (285) and (289) are in complete
agreement with the findings of refs. [40, 128, 213, 214]. Consequently, eq. (289) also
agrees with the result for QED at nf = 1, which was obtained in ref. [44] somewhat
earlier than the general result [213].
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In the following sections we will analyse three properties of the beta function. First,
we study the n f -dependence in section 6.4.1. Then, we analyse the N-dependence
in section 6.4.2. Finally, we study the cumulative effects of the QCD beta function
corrections in section 6.4.3

6.4.1 Analysis of nf -dependence in QCD

As already noted in ref. [40], the five-loop QCD coefficient of the beta function is
rather small [recall that we use a convenient but very small expansion parameter in
eq. (240)]. Indeed, for the physically relevant values of nf the expansion in powers
of αs reads

β̃(αs, nf =3) = 1 + 0.565884 αs + 0.453014 α 2
s + 0.676967 α 3

s + 0.580928 α 4
s ,

β̃(αs, nf =4) = 1 + 0.490197 αs + 0.308790 α 2
s + 0.485901 α 3

s + 0.280601 α 4
s ,

β̃(αs, nf =5) = 1 + 0.401347 αs + 0.149427 α 2
s + 0.317223 α 3

s + 0.080921 α 4
s ,

β̃(αs, nf =6) = 1 + 0.295573 αs − 0.029401 α 2
s + 0.177980 α 3

s + 0.001555 α 4
s ,(290)

where β̃ ≡ −β(as)/(a 2
s β0) has been re-expanded in powers of αs = 4π as. Clearly

there is no sign so far of a possible divergence of the perturbation series for this
quantity.

In order to further illustrate the nf -dependent convergence (or the lack thereof) of
the beta function of QCD, we introduce the quantity

α̂
(n)
s (nf ) = 4π

∣∣∣∣∣ βn−1(nf )

4 βn(nf )

∣∣∣∣∣ . (291)

Recalling the normalisation (240) of our expansion parameter, α̂
(n)
s (nf ) represents

the value of αs for which the n-th order correction is 1/4 of that of the previous
order. Therefore, αs <∼ α̂

(n)
s (nf ) defines (somewhat arbitrarily due to the choice of

a factor of 1/4) a region of fast convergence of β(αs, nf ). Obviously, the absolute

size of the n-th and (n−1)-th order effects are equal for αs = 4 α̂ (n)(nf ). Thus the
quantity (291) also indicates where the expansion appears not to be reliable anymore,
αs >∼ 4 α̂

(n)
s (nf ), for a given value of nf that is not too close to zeros or minima of the

coefficients βn−1 and βn.
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6.4.2 Analysis of N-dependence in SU(N)

It is interesting to briefly study the N-dependence of the convergence behaviour for
the case of SU(N) gauge theories. For our brief illustration we confine ourselves to
pure Yang-Mills theory, nf = 0, and consider

α̂
(n)
YM(N) = 4π N

∣∣∣∣ βn−1(N)

4 βn(N)

∣∣∣∣ , (292)

where the factor N compensates the leading large-N dependence Nn+1 of βn, i.e.,
the parameter that needs to be small in SU(N) Yang-Mills theory is not αYM but
NαYM .

The quantities (291) and (292) are displayed in the left and right panel of figure 33,
respectively. The behaviour of α̂

(n)
s at the upper end of the nf range shown in the

figure is affected by the zeros and minima of the coefficients βn > 0 mentioned below
eq. (287). The N-dependence of α̂YM for pure Yang-Mills theory, where only terms
with Nn+1 and Nn−1 enter βn (the latter only at n ≥ 4 via d abcd

A d abcd
A /NA, cf. eq. (62)

above), is rather weak. With only the curves up to four loops, one might be tempted
to draw conclusions from the shrinking of the ‘stable’ αs region from NLO to N2LO
and from N2LO to N3LO that are not supported by the N4LO (five-loop) results of
ref. [40] and the present section.

6.4.3 Cumulative effects of the QCD beta function corrections

Finally, we briefly illustrate the cumulative effect of the orders up to N4LO on the
beta function of QCD and the scale dependence of the strong coupling constant αs
in figure 34. For this illustration we set nf = 4 and choose, in order to only show
the differences caused by the running of the coupling, an order-independent value
of αs = 0.2 at µ2 = 40 GeV2. A realistic order dependence of αs at this scale, as
determined from the scaling violations in DIS, would be 0.208, 0.201, 0.200, and 0.200

at NLO, N2LO, N3LO, and N4LO, respectively [98].
Adding the N4LO contributions changes the beta function by less than 1% at

αs = 0.47 for nf = 4 and at αs = 0.39 for nf = 3; the corresponding values at

N3LO are 0.29 and 0.26. The N4LO effect on the values of αs as shown in figure 34

are as small as 0.08% (0.4%) at µ2 = 3 GeV2 (1 GeV2); the corresponding N3LO
corrections are 0.5% (2%). Of course, these results do not preclude sizeable purely
non-perturbative corrections, but it appears that the perturbative running of αs is
now fully under control for all practical purposes.

6.5 qcd beta function in the minimom scheme

Unlike the MS scheme, momentum subtraction schemes are defined in a regularisation-
independent way. In these schemes, the field renormalisations are performed such
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Figure 33: The values (291) and (292) of the coupling constants of QCD (left) and pure SU(N)
Yang-Mills theory (right) for which the absolute size of the NnLO contribution to
the beta function is a quarter of that of the Nn−1LO term for n = 1, 2, 3 (dashed
curves) and 4 (solid curves).

that finite radiative corrections on propagators are absorbed as well as divergences
and hence they coincide with their tree-level values at the renormalisation point.
Then one of (or an arbitrary linear combination of) the vertex functions is normalised
to its tree-level value and the other vertices are fixed via the Slavnov-Taylor identit-
ies. Common choices for the subtraction point of the vertex are a symmetric point
(referred as MOM schemes) and an asymmetric point where one of the momenta is
nullified, sometimes referred as M̃OM schemes. The latter choice corresponds to our
result for the vertex functions, given in section 4.2. Indeed, ref. [139] derived four-
loop beta functions in four particular M̃OM schemes from that in the MS scheme by
computing conversion factors via finite parts of two- and three-point functions in
the MS scheme.

As an example application, we provide the five-loop beta function in the minimal
momentum subtraction (MiniMOM) scheme introduced in ref. [153], thus extending
previous results [153, 217] by one order in the coupling constant. This scheme, see
the preceding references for a detailed discussion, is more convenient than MS for
extending analyses of the strong coupling constant and its scale dependence into
the non-perturbative regime, e.g., via lattice QCD; for a recent analysis see ref. [218].
In the perturbative regime the MiniMOM scheme provides an alternative to MS for
studying the behaviour and truncation uncertainty of the perturbation series for
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resulting scale dependence of αs for a value of 0.2 at 40 GeV2, also normalised to
the NLO result in order to show the small higher-order effects more clearly, for
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benchmark quantities such as the R-ratio in e+e− annihilation and the Higgs-boson
decay to gluons, see refs. [219, 220].

In the MiniMOM scheme [153], the self-energies are completely absorbed into the
field renormalisation constants at the subtraction point q2 = −µ2:

1 + ΠMM(−µ2) = ZMM
3

[
1 + ΠB(−µ2)

]
= 1, (293)

1 + Π̃MM(−µ2) = Z̃MM
3

[
1 + Π̃B(−µ2)

]
= 1, (294)

1 + ΣMM
V (−µ2) = ZMM

2

[
1 + ΣB

V(−µ2)
]
= 1. (295)

Here the superscript “MM” indicates a quantity in the MiniMOM scheme. In
addition, motivated by the non-renormalisation of the ghost-gluon vertex in the
Landau gauge [221], the vertex renormalisation constant for this vertex is chosen the
same as that in MS,

Z̃MM
1 = Z̃MS

1 , (296)

which is equal to one in the Landau gauge.
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The above renormalisation conditions lead to the following relations for the
coupling constant and gauge parameter in the two schemes:

aMM(µ2) = aMS(µ2)
1[

1 + ΠMS(−µ2)
][

1 + Π̃MS(−µ2)
]2 , (297)

ξMS(µ2) = ξMM(µ2)
1

1 + ΠMS(−µ2)
. (298)

eq. (297) allows one to convert a value of αMS
s to αMM

s . For example, αMS
s (M2

Z) = 0.118
leads to αMM

s (M2
Z) = 1.096 αMS

s (M2
Z) for QCD in the Landau gauge with n f = 5

quark flavours. The general expansion of eq. (297) is given in [2].
The scale dependence of the coupling constant in eq. (297) in this scheme is given

by

βMM = µ2 daMM

dµ2 =
∂aMM

∂aMS
βMS +

∂aMM

∂ξMS
γMS

3 ξMS, (299)

where we have used the beta function and gluon field anomalous dimension in MS,

βMS = µ2 daMS

dµ2 , (300)

γMS
3 ξMS = µ2 dξMS

dµ2 . (301)

Note that the right-hand side of eq. (297), and hence that of eq. (299), is naturally
given in terms of aMS and ξMS. One has to convert them into aMM and ξMM by
inverting the series of eq. (297) and by using eq. (298).2

Having results for the four-loop self-energies in the MS scheme at hand (see
section 4.2), one can obtain the five-loop beta function in the MiniMOM scheme
from the five-loop beta function [4, 40] and the four-loop gluon field anomalous
dimension in the MS scheme. The result for SU(3) in the Landau gauge (ξMM = 0)
reads

β MM = −
4

∑
l=0

(
aMM)l+2

β MM
l + O

((
aMM)7

)
, (302)

with

β MM
0 = 11− 2

3
nf ,

β MM
1 = 102− 38

3
nf ,

2 In ref. [153], the results are presented in ξMS instead of ξMM. In contrast, in ref. [217] the conversion from
ξMS to ξMM was performed. The results become the same in the Landau gauge ξMS = ξMM = 0. The
same is true for the “M̃OMh” scheme of ref. [139].
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β MM
2 =

(
28965

8
− 3861

8
ζ3

)
+ nf

(
−7715

12
+

175
12

ζ3

)
+ nf

2
(

989
54

+
8
9

ζ3

)
,

β MM
3 =

(
1380469

8
− 625317

16
ζ3 −

772695
32

ζ5

)
+ nf

(
−970819

24
+

516881
72

ζ3

+
1027375

144
ζ5

)
+ nf

2
(

736541
324

− 6547
27

ζ3 −
9280

27
ζ5

)
+ nf

3
(
−800

27
+

16
9

ζ3

)
,

β MM
4 =

(
3248220045

256
− 1064190195

512
ζ3 −

4922799165
512

ζ5 −
7696161

64
ζ3

2

+
21619456551

4096
ζ7

)
+ nf

(
−115659378547

31104
+

10327103555
20736

ζ3 +
18219328375

6912
ζ5

+
82869

32
ζ3

2 − 24870449471
18432

ζ7

)
+ nf

2
(

833934985
2592

− 13019053
1296

ζ3 −
65264845

324
ζ5

+
59531

36
ζ3

2 +
26952037

432
ζ7

)
+ nf

3
(
−3249767

324
− 129869

162
ζ3 +

299875
54

ζ5

− 2240
27

ζ3
2
)
+ nf

4
(

2617
27

+
304
27

ζ3 −
1760

27
ζ5

)
. (303)

Due to its length, we do not show the result with a generic group and arbitrary
covariant linear gauge here. Instead, we refer the readers to ref. [2]. Our result
agrees with the result given in ref. [217] up to four loops. As is well known, the
first coefficient β MM

0 is scheme independent. The next coefficient β MM
1 has a gauge

dependence and the universal value is obtained only in the Landau gauge. The last
coefficient β MM

4 is the new result. In the MS scheme, some of higher values of the
zeta function (e.g., ζ2

3, ζ6 and ζ7 at five loops) do not occur, for a discussion of this
issue see refs. [105, 203, 204]. In contrast, one cannot expect their absence in the
MiniMOM scheme. Indeed eq. (303) includes terms with ζ2

3 and ζ7, and for ξMM 6= 0
also ζ6 occurs.

The numerical values of the above beta function for three to five quark flavours
are

β̃MM(n f = 3) = 1 + 0.5658842421αMM
s + 0.9419859046(αMM

s )2

+ 2.304494526(αMM
s )3 + 6.647485913(αMM

s )4,

β̃MM(n f = 4) = 1 + 0.4901972247αMM
s + 0.6452147391(αMM

s )2

+ 1.638457168(αMM
s )3 + 3.466865543(αMM

s )4,

β̃MM(n f = 5) = 1 + 0.4013472477αMM
s + 0.3288519562(αMM

s )2

+ 1.026892491(αMM
s )3 + 0.8417657296(αMM

s )4,

(304)
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where β̃ ≡ β(a)/(−β0a2) has been re-expanded in powers of αs = 4πa. These values
may be compared with those in the MS scheme [4, 40] reading

β̃MS(n f = 3) = 1 + 0.5658842421αMS
s + 0.4530135791(αMS

s )2

+ 0.6769674420(αMS
s )3 + 0.5809276379(αMS

s )4,

β̃MS(n f = 4) = 1 + 0.4901972247αMS
s + 0.3087903795(αMS

s )2

+ 0.4859007965(αMS
s )3 + 0.2806008338(αMS

s )4,

β̃MS(n f = 5) = 1 + 0.4013472477αMS
s + 0.1494273313(αMS

s )2

+ 0.3172233974(αMS
s )3 + 0.08092104151(αMS

s )4.

(305)

Obviously, the MiniMOM coefficients in eqs. (304) are (much) larger than their MS
counterparts in eqs. (305) starting from the second order; moreover, they exhibit a
definite growth with the order that is absent in the MS case. One may expect that
this behaviour, and the larger value of α MM

s , is more than compensated by smaller
expansion coefficients for observables, leading to a better overall convergence in
MOM-like schemes. However, this issue has been studied up to four loops in some
detail for the R-ratio in electron-positron annihilation, without arriving at such a
clear-cut conclusion [219].

6.6 chapter conclusions

We have presented five methods to improve the performance of the R∗-operation
when applied to five-loop diagrams: (1) extraction of propagator insertions, (2)
delayed Feynman rule substitution, (3) efficient rules to make diagrams logarithmic,
(4) a canonical form algorithm suitable for Feynman diagrams, and (5) an efficient
tensor reduction routine.

Next, we have defined the background field, which makes it convenient to extract
the five-loop beta function. Using the background field propagator, we have com-
puted the five-loop (next-to-next-to-next-to-next-to-leading order, N4LO) coefficient
β4 of the renormalisation-group beta function in MS-like schemes for Yang-Mills
theory with a simple compact Lie group and one set of nf spin-1/2 fermions. This
computation confirms and extends the QCD and QED results first obtained, re-
spectively, in ref. [40] – where also some direct phenomenological applications to αs
determinations and Higgs-boson decay have already been discussed – and ref. [213].
It also agrees with the high-nf partial results of refs. [128, 214]. We have verified
our result and method by confirming the transversality of the background field
propagator.

We have illustrated the size of the resulting N4LO corrections to the scale depend-
ence of the coupling constant for αs-values relevant to MS, the default scheme for
higher-order calculations and analyses in perturbative QCD. For physical values
of nf , the N4LO corrections to the beta function are much smaller than the N3LO
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contributions and amount to 1% or less, even for αs-values as large as 0.4. More
generally, there is no evidence of any increase of the coefficients indicative of a
non-convergent perturbative expansion for the beta functions of QCD and SU(N)
gauge theories.

The computations make extensive use of Forcer, as described in chapter 3, and
the R∗-operation described in chapter 5.

Using the four-loop propagators and vertices computed in chapter 4, we have
determined the five-loop beta function in the MiniMOM scheme of ref. [153], i.e., we
have extended the result of refs. [153, 217] by one order in the coupling constant αs.

A Form file with our result for the coefficient β4 and its lower-order counterparts
can be obtained from the preprint server arXiv in the source of [4]. The beta function
in the MiniMOM scheme with full gauge dependence and for generic colour group
is provided as an ancillary file on arXiv of [2].

6.6.1 Findings and main conclusion

The main contribution of this chapter is the computation of the five-loop beta
function for Yang-Mills theory with fermions. For this computation both the Forcer

program (the answer to RQ2) and the new generalised R∗ method with its computer
code (the answer to RQ3) were critical. Our computation took six days on a 32-core
machine. The QCD result we verified from [40] took 1.5 years on 20 workstations
with 8 cores.

Our main conclusion therefore reads as follows: we have succeeded to compute the
five-loop beta function in six days, verifying the existing QCD result and extending
it to a generic Yang-Mills theory with fermions.

6.6.2 Future work

As of this moment we envisage two future projects. First, we have seen that the beta
function in the MiniMOM scheme appears to have a higher-order structure which is
quite different from that in the MS scheme, thus inviting further studies especially
for the physical case of QCD in four dimensions.

Second, the beta function could be extended to six loops. However, this will be a
tremendous challenge for at least three reasons: (1) a five-loop Forcer equivalent
has to be built, (2) substituting the Feynman rules will create billions of terms, and
(3) the number of counterterms will become enormous.
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7
C O N C L U S I O N S

In this chapter we start by answering the three research questions in sec. 7.1. Using
these answers, we address the problem statement in 7.2. Finally, we provide an
outlook in sec. 7.3.

7.1 answers to the research questions

RQ1: To what extent can the number of arithmetic operations of large multivari-
ate polynomials be reduced?

In chapter 2 we consider various algorithms to improve expression simplification. We
find that the state space of Horner schemes is flat, which makes it a good candidate
for Stochastic Hill Climbing [11]. We show that for relevant polynomials derived
from scattering experiments there is a speed gain of about a factor ten compared
to MCTS methods to find a near-optimal solution. Since evaluations are slow, this
means less time has to be spent in creating an expression suitable for Monte Carlo
integration. The quality of the solution is often more than an order of magnitude
better than the input.

RQ2: How can we construct a program that can compute four-loop massless
propagator integrals more efficiently?

In chapter 3 we constructed the Forcer program, which uses parametric integration-
by-parts (IBP) reductions to reduce four-loop massless propagator integrals. We
have demonstrated that Forcer is much faster than its competitors, and is able
to compute the four-loop beta function in only 3 minutes [1, 9]. In chapter 4 we
have computed physically relevant processes at four loops using Forcer [5, 8, 115].
The three most important calculations are (1) the finite pieces of the propagators
and three-vertices with one vanishing momentum [2], (2) the computation of the
non-singlet splitting function to N = 16 [115], and (3) the reconstruction of the
large-nc leading to a new term in the cusp anomalous dimension [115, 116].

RQ3: To what extent can we compute the poles of five-loop diagrams using only
four-loop diagrams more efficiently?

In chapter 5 we have generalised the R∗-operation to be applicable to Feynman
diagrams with arbitrary numerator structure [3]. This allows for the computation
of the poles of a much broader class of integrals. The R∗-method will generate
many counterterms, but we describe how to exploit symmetries between them to
reduce their number. After more optimisations described in 6, we have computed
the five-loop beta function for Yang-Mills theory with fermions [4]. This confirms
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the QCD result from [40] and is an important ingredient for future calculations. Our
calculation took six days on one 32-core machine. The computation in [40] took 1.5
years on 20 machines with 8 cores.

7.2 answer to the problem statement

Now that we have addressed the research questions, we are able to answer the
problem statement.

Problem statement: In what way can we improve the performance of QFT
calculations with respect to obtaining more precise predictions?

In answering RQ1, we have sped up Monte Carlo integration by improving the
input expressions. Since more samples can be made, the precision of the result is in-
creased. Our code is used in pySecDec [222], and by the GRACE collaboration [223].

In answering RQ2, and RQ3 we have developed methods to drastically improve
calculations of physical observables at four and five loops. Especially the com-
putation of splitting functions and the five-loop beta function, are valuable basic
ingredients in many other calculations.

Based on our findings, we may conclude that we have improved the performance
of QFT calculations in three different regions. Since all our methods can be applied
in practice to compare theory to experiment in colliders, we may conclude that we
have improved the precision of predictions.

7.3 future research

Below we provide four areas for future research, viz. (A) expression simplification, (B)
IBP reductions, (C) Mellin moment computations, and (D) Higgs decay calculations.

(a) expression simplification We have shown that applying Horner’s rule
and removal of common subexpressions leads to much smaller polynomials. Poly-
nomials could be simplified even further if algebraic structures are recognised. An
example is identifying squares:

2ab + b2 + 2ac + 2bc + c2 → (a + b + c)2 − a2 . (306)

Recognising which terms to combine into a square in order to maximally reduce the
expression is difficult (especially if numerical stability has to be taken into account
as well). A first option is to see if Monte Carlo Tree Search [67] can be applied to
find the best way to complete the squares. The action in each state could be the
selection of a monomial that should be included in the square. A challenge is to find
heuristics to guide the random playout, such that fewer samples are required.

A second option is to train a neural network to identify which monomials should
be used to complete a square. The input of the network could be the exponent array
of the polynomial. The output layer could yield a binary value for each monomial
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that determines whether it is included in the square or not. One of the challenges of
a neural network is to keep the number of weights down, so that the network can be
trained faster. For images, convolutional neural networks are successful, since they
exploit the idea that parts of images can form a pattern by themselves [224, 225].
Presumably, something similar can be realised for expressions, but it is not obvious
which monomials of the expression form a substructure that is analogous to a
subrectangle in an image.

(b) ibp reductions We have shown that parametric integration-by-parts reduc-
tion rules can provide faster reductions than Laporta methods. At the moment the
reduction rules require some manual intervention. If an algorithm could be devised
that automatically finds high-quality reduction rules, it would mean a revolution in
the field.

Currently, we are working on studying and implementing some ideas from Boolean
Satisfiability problems, by defining constraints on terms that should be removed
from the system. Our latest effort can reduce some hard systems, but it may require
more than 500 gigabytes of disk space before a solution is found.

Additionally, it is worthwhile to study which IBP equations actually contribute to
the final reduction rule. Since most equations drop out in our experience, skipping
these equations from the start may save a large amount of time.

(c) mellin moments We have computed four-loop Mellin moments of splitting
functions. A major challenge is that the complexity of the integrals scales linearly
with the Mellin moment N. This makes it very time consuming to compute higher
Mellin moments. The OPE method yields better scaling and may allow us to compute
more Mellin moments. The hard part is that operators have to be constructed, which
is especially difficult for the gluon. We expect new results soon [115].

Using the R∗-operation, splitting functions may be computed at five loops as well.
One difficult point for the optical theorem method is that the harmonic projection
creates many terms. If this operation could be postponed until after expensive
operations in the R∗-routines, similar to the delayed Feynman rules, the computation
could be performed much faster.

(d) higgs decay Using the R∗-operation and Forcer, we may be able to com-
pute the Higgs decay to gluons, H → gg, to five loops. The challenge is that the
process consists of quartically divergent diagrams. As a result, the diagrams have to
be Taylor expanded to the fourth order, which creates many terms and high-tensor
subgraphs. One way to speed up the program is to choose a convenient infrared
rearrangement (IRR) that places the line with the worst IR-divergence between the
external lines. As a result, fewer subdiagrams will be created. Alternatively, we
could add a mass to that line, which reduces the number of counterterms even
further. Since the mass is only on one line, the massive part can be factorised out as
a one-loop bubble.

We hope the computation will be completed within a few months of this writing.
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A P P E N D I C E S

Below we present three appendices. In appendix A we present a proof for the
cutvertex rule for scalar diagrams (see section 5.3.2), and in appendix B for tensor
diagrams (see section 5.3.2). Finally, we provide an IR subgraph search algorithm
(see section 5.4.1) in appendix C.
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AC U T V E RT E X R U L E F O R S C A L A R D I A G R A M S

The cutvertex rule states that

∆(γ1γ2) = ∆(γ1)∆(γ2) . (307)

This statement can be proven by induction. We start by proving that the statement
holds true for the trivial case, where both γ1 and γ2 contain no subdivergences. This
can be proven as follows:

∆(γ1γ2) = −KR̄(γ1γ2)

= −K
(
γ1γ2 + ∆(γ1)γ2 + ∆(γ2)γ1

)
= −K

(
(γ1 + ∆(γ1))(γ2 + ∆(γ2))− ∆(γ1)∆(γ2)

)
= −K

(
R(γ1)R(γ2)− ∆(γ1)∆(γ2)

)
= K

(
∆(γ1)∆(γ2)

)
= ∆(γ1)∆(γ2) .

(308)

Now we can prove inductively that the same holds for the general case, where we
assume that both γ1 and γ2 have subdivergences. That is, we show that

∆(G1G2) = ∆(G1)∆(G2) (309)

holds, assuming the induction hypothesis ∆(γ1γ2) = ∆(γ1)∆(γ2) where γ1 and γ2
are subgraphs of G1 and G2 respectively. Let us start with the definition:

∆(G1G2) = −KR̄(G1G2)

= −K ∑
S∈W̄(G1G2)

∆(S) ∗ G1G2/S . (310)

We will now use the fact that we can write

W̄(G1G2) = W(G1)×W(G2) \ {{G1}, {G2}} (311)

with × denoting the Cartesian product of two sets. This in turn implies

∆(G1G2) = −K
[

∑
S1∈W(G1)

∑
S2∈W(G2)

∆(S1S2) ∗ G1G2/S1/S2 − ∆(G1)∆(G2)

]
(312)

Assuming the induction hypothesis ∆(S1S2) = ∆(S1)∆(S2) we then get

∆(G1G2) = −K
[

R(G1)R(G2)− ∆(G1)∆(G2)

]
= ∆(G1)∆(G2) . (313)
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B

BC U T V E RT E X R U L E F O R T E N S O R D I A G R A M S

If weakly non-overlapping (no common edges) subgraphs γ1 and γ2 contain contrac-
ted Lorentz indices, one has in general

K
(
∆(γ1)∆(γ2)

)
6= ∆(γ1)∆(γ2) . (314)

This means that the proof for the factorisation of the counterterm operation ∆ given
in appendix A breaks down. As a result, it is rather difficult to derive a corresponding
generalised “cut-vertex rule” for the case of contracted tensor subgraphs that does
not result in a change of renormalisation scheme. However, when one is interested
only in computing the poles of a factorised Feynman graph G1G2 via the use of the
identity

KG = −K δRG , (315)

we will show that the following cutvertex rule still holds:

∆(G1G2)→ ∆(G1)∆(G2) . (316)

We can actually prove this statement rather easily by noting that the R-operation
computed with eq. (316) results in the following replacement:

R(G1G2)→ R(G1)R(G2) . (317)

We can now write

δR(G1G2) = R(G1G2)− G1G2 = R(G1)R(G2)− G1G2 + ξ , (318)

where ξ denotes the “error” one makes by computing with eq. (316). From this it
follows that

ξ = R(G1G2)− R(G1)R(G2) . (319)

Given that ξ is manifestly finite, we obtain:

Kξ = 0⇒ KδR(G1G2) = KR(G1)R(G2)− KG1G2 . (320)

This completes the proof that the poles of a factorised graph can be computed by
consistently applying eq. (316), even though the UV counterterm is in a different
renormalisation scheme.
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CI R S U B G R A P H S E A R C H

One question that remains is how to find all IR subgraphs. Since the IR graphs could
be disconnected, it is not as straightforward as for the UV. Below we describe a
method to find the complete IR spinney at once.

In section 5.1 the contracted IR subgraph γ̃ was defined by contracting the remain-
ing graph (or quotient) graph γ̄ = G \ γ′ to a point in G, i.e.,

γ̃ = G/γ̄ . (321)

In fact this observation generalizes further to the case of IR spinneys S′:

S̃ = G/S̄, S̄ = G \ S′, S̃ = ∏
i

γ̃i . (322)

The different γ̃i are then only connected through cut-vertices in S̃. This dual
description of contracted IR spinneys offers the possibility for an alternative IR search
procedure by searching instead for valid remaining graphs. An easy identification of
valid remaining graphs can be obtained from the contracted massless vacuum graph
Gc of the graph G itself, which is defined by contracting in G all the external lines in
a single vertex and contracting all massive lines into points.

All valid remaining graphs can then be identified with all spinneys of Gc, which
include the formerly external lines. More precisely, we have the relation:

W ′(G) = {S̃} = {Gc/S|S ∈W(Gc) , lE(G) ⊂ S , ω̃(Gc/S) ≥ 0 } , (323)

where lE(G) is the set of external lines of G. This allows one to construct a simple
algorithm to find all IR spinneys by finding and combining 1PI subgraphs, similar
to the construction of the UV spinney. A further advantage of this method is
that disconnected IR subgraphs, such as the example we gave in eq.(124), are
automatically included in this alternative search method.

It is instructive to see how this works in an example. Consider the following graph
and its associated contracted vacuum graph:

G = ⇒ Gc = . (324)
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Here we have indicated the contracted external lines in Gc with a thicker line. An
example for a UV spinney in Gc and its associated IR spinney (in this case consisting
of a single IR subgraph) is given by

S = ⇒ S̃ = Gc/S = . (325)

Here we used dashed lines to indicate those lines not contained in the spinney
S. These dashed lines become the IR spinney after shrinking the disconnected
components of S to points in Gc.
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S U M M A RY

One of the primary goals of physics is to understand what the fundamental prop-
erties of Nature are. A highly successful tool to achieve this is Quantum Field
Theory (QFT), which describes the interactions of indivisible particles. Built on the
QFT framework, the Standard Model is the current best theory of the fundamental
structure of Nature. Physics beyond the Standard Model will likely only lead to
small deviations of the outcome of collisions in particle accelerators. Thus, very
accurate predictions have to be made to detect new physics. This thesis will study
the computational problems that arise when trying to improve precision.

In chapter 1 we define the research questions and the problem statement.

Problem statement: In what way can we improve the performance of QFT
calculations with respect to obtaining more precise predictions?

We focus on three computational and combinatorial problems of QFT calculations
that we deemed the most urgent ones: (1) slowness of Monte Carlo integrations,
(2) slowness in the computation of massless propagator integrals, and (3) slowness
when computing the poles of Feynman diagrams.

problem 1 Monte Carlo methods are frequently used in QFT calculations. After
the integrals are rewritten to a suitable polynomial representation, they are sampled
millions of times. Some of these polynomials have more than a hundred thousand
terms, making evaluation very slow. Thus, the first research question is as follows.

Research question 1: To what extent can the number of arithmetic operations
of large multivariate polynomials be reduced?

In chapter 2 we investigate ways to simplify expressions, using Horner schemes
and Common Subexpression Elimination (CSEE). Our approach applies Monte Carlo
Tree Search (MCTS), a search procedure that has been successful in AI. We use it
to find near-optimal Horner schemes. Although MCTS finds good solutions, this
approach gives rise to two further challenges. (1) MCTS (with UCT) introduces a
constant, Cp that governs the balance between exploration and exploitation. This
constant has to be tuned manually. (2) There should be more guided exploration at
the bottom of the tree, since the current approach reduces the quality of the solution
towards the end of the expression. To address both issues, we investigate NMCS
(Nested Monte Carlo Search), but find that NMCS is computationally infeasible
for our problem. Then, we modify the UCT formula by introducing a dynamic
exploration-exploitation parameter T that decreases linearly with the iteration num-
ber. Consequently, we provide a performance analysis. We observe that a variable
Cp solves the two problems: it yields more exploration at the bottom and as a result
the tuning problem has been simplified. The region in Cp for which good values are
found is increased by more than a tenfold.
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Next, we consider Stochastic Local Search methods, since these methods do not
have the problem of performing little optimisation in the order of the final variables.
We investigate the state space properties of Horner schemes and find that the domain
is relatively flat and contains only a few local minima. As a result, the Horner space
is appropriate to be explored by Stochastic Hill Climbing (SHC), which has only two
parameters: the number of iterations (computation time) and the neighbourhood
structure. We find a suitable neighbourhood structure, leaving only the allowed
computation time as a parameter. We perform a range of experiments. The results
obtained by SHC are similar or better than those obtained by MCTS, which means
that the number of operations is at least an order of magnitude smaller than the
input. Furthermore, we show that SHC obtains the good results at least 10 times
faster. Since the evaluation time of Monte Carlo integrators is proportional to the
number of operations, their performance is improved.

problem 2 Most integrals that can be computed analytically, are calculated by
using Integration by Parts (IBP) identities to express integrals into simpler ones. This
method is generally quite slow and often requires months of computation time on a
cluster. Hence, our second research question reads as follows.

Research question 2: How can we construct a program that can compute
four-loop massless propagator integrals more efficiently?

In chapter 3, we explain the construction of Forcer, a Form program for the
reduction of four-loop massless propagator-type integrals to master integrals. The
resulting program performs parametric IBP reductions similar to the three-loop
Mincer program. We show how one can solve many systems of IBP identities
parametrically in a computer-assisted manner. Next, we discuss the structure of the
Forcer program, which involves recognizing reduction actions for each topology,
applying symmetries, and transitioning between topologies after edges have been
removed. This part is entirely precomputed and automatically generated. We give
examples of recent applications of Forcer, and study the performance of the pro-
gram. We show that the four-loop beta function can be computed in three minutes
on a 32-core machine. Finally, we demonstrate how to use the Forcer package and
sketch how to prepare physical diagrams for evaluation by Forcer.

In chapter 4 we have computed the self-energies and a set of three-particle vertex
functions for massless QCD at the four-loop level in the MS renormalisation scheme,
using the Forcer program. The vertex functions are evaluated at points where one
of the momenta vanishes. Analytical results are obtained for a generic gauge group
and with the full gauge dependence, which was made possible by extensive use of
the Forcer program for massless four-loop propagator integrals. The bare results in
dimensional regularisation are provided in terms of master integrals and rational
coefficients; the latter are exact in any space-time dimension. Our results can be
used for further precision investigations of the perturbative behaviour of the theory
in schemes other than MS.
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Additionally, we compute Mellin moments of four-loop splitting functions and
coefficient functions. These are used as basic ingredients for collision processes, such
as Higgs production. We compute Mellin moments N = 2, 4, 6 for the non-singlet
case and N = 2, 4 for the singlet case. Furthermore, we calculate N = 1, 3, 5 of
vector-axial interference F3. By computing to N = 40 and beyond, we reconstruct
the all-N n2

f contribution to the four-loop non-singlet splitting function and the n3
f

contribution to the four-loop singlet splitting function. Using the OPE method, we
calculate up to N = 16 for the non-singlet splitting function. For the large-nc limit,
we compute up to N = 19. This allows for an all-N reconstruction and yields a new
term to the four-loop planar cusp anomalous dimension.

problem 3 For five-loop calculations in QCD, so far only the poles of integrals
have been computed, as the finite pieces are too difficult. One way to compute the
poles is with the R∗-operation, which is complicated and quite slow. Hence, we
formulate our third research question as follows.

Research question 3: To what extent can we compute the poles of five-loop
diagrams using only four-loop diagrams more efficiently?

In chapter 5 we extend the R∗-operation to Feynman graphs with arbitrary nu-
merators, including tensors. We also provide a novel way of defining infrared
counterterms which closely resembles the definition of its ultraviolet counterpart.
We further express both infrared and ultraviolet counterterms in terms of scaleless
vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries,
integrand and integral relations, which the counterterms of scaleless vacuum graphs
satisfy, we can vastly reduce their number and complexity. A Form implementation
of this method was used to compute the poles in the dimensional regulator of all
top-level propagator graphs at five loops in four dimensional φ3 theory.

In chapter 6 we compute the five-loop corrections to the scale dependence of
the renormalised coupling constant (the beta function) for QCD, its generalisation
to non-Abelian gauge theories with a simple compact Lie group, and for QED. Our
analytical result, obtained using the background field method, infrared rearrange-
ment via the new diagram-by-diagram implementation of the R∗-operation and
the Forcer program for massless four-loop propagators, confirms the QCD and
QED results obtained by only one group before. The numerical size of the five-loop
corrections is briefly discussed in the standard MS scheme for QCD with n f flavours
and for pure SU(N) Yang-Mills theory. Their effect in QCD is much smaller than
the four-loop contributions, even at rather low scales. Additionally, we derive the
five-loop beta function in a relatively common alternative, the minimal momentum
subtraction (MiniMOM) scheme using the propagators and vertices computed in
chapter 4. The computation of the five-loop beta function took six days on a 32-core
machine.
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conclusion Finally, in chapter 7 we again consider the problem statement and
research questions. Based on our findings, we may conclude that we have improved
the performance of QFT calculations in three different regions. Since all our methods
can be applied in practice to compare theory to experiment in colliders, we conclude
that we have improved the precision of predictions.
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S A M E N VAT T I N G

Een van de hoofddoelen van natuurkunde is begrijpen wat de fundamentele eigen-
schappen van de natuur zijn. Een zeer succesvol raamwerk hiervoor is Quantum
Veldentheorie (QFT), dat de interacties tussen ondeelbare deeltjes beschrijft. Het
Standaard Model, gebouwd op QFT, is de beste theorie over de fundamentele struc-
tuur van de natuur. Natuurkunde buiten het Standaard Model leidt waarschijnlijk
tot zeer kleine afwijkingen van de uitkomst van botsingsexperimenten in deeltjesver-
snellers. Vandaar dat zeer precieze voorspellingen nodig zijn om nieuwe fysica te
detecteren. Deze thesis zal de computationele problemen bestuderen die ontstaan
bij het verbeteren van precisie.

In hoofdstuk 1 definiëren we de onderzoeksvragen en de probleemstelling.

Probleemstelling: Op welke manier kunnen we de prestaties van QFT-
berekeningen met betrekking tot het verkrijgen van preciezere voorspel-
lingen verbeteren?

We richten ons op drie computationele en combinatorische problemen van QFT-
berekeningen die wij het urgentst achten: (1) traagheid van Monte Carlo-integraties,
(2) traagheid van het berekenen van massaloze propagatorintegralen en (3) traagheid
van het berekenen van de polen van Feynman-diagrammen.

probleem 1 Monte Carlo-methodes worden vaak gebruikt in QFT-berekeningen.
Nadat de integralen omgeschreven zijn in een geschikte polynomiale representatie,
worden ze miljoenen keren geëvalueerd. Sommige van deze polynomen hebben
meer dan honderdduizend termen, waardoor de evaluaties erg traag zijn. Dus, de
eerste onderzoeksvraag luidt als volgt.

Onderzoeksvraag 1: Tot hoever kan het aantal operaties van grote multi-
variabele polynomen gereduceerd worden?

In hoofdstuk 2 onderzoeken we manieren om uitdrukkingen te vereenvoudigen
met behulp van Horner-schema’s en verwijdering van vaker voorkomende subuit-
drukkingen (CSEE). Onze methode gebruikt Monte Carlo Boom Zoeken (MCTS),
een zoekprocedure die heel succesvol is in kunstmatige intelligentie. We gebruiken
MCTS om bijna-optimale Horner-schema’s te vinden. Ondanks het feit dat MCTS
goede oplossingen vindt, heeft deze benadering twee uitdagingen. (1) MCTS (met
UCT) introduceert een constante, Cp, die de balans tussen exploratie en exploitatie
regelt. Deze constante moet handmatig afgestemd worden. (2) Er moet meer ge-
richte exploratie aan het einde van de boom zijn, aangezien de huidige methode
de kwaliteit van de oplossingen negatief beı̈nvloedt. Om beide problemen aan te
pakken, bestuderen we Genest Monte Carlo Zoeken (NMCS), maar we zien dat
NMC computationeel onhaalbaar is voor ons probleem. Vervolgens passen we de
UCT-formule aan door de introductie van een dynamische exploratie-exploitatie
parameter T, die lineair afneemt met het iteratienummer. Daarna meten we het
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effect op de prestaties. We zien dat een variabele Cp de twee problemen oplost: er is
meer exploratie aan het eind van de boom en het afstemmingsprobleem versimpelt.
Het gebied in Cp waarin goede waarden gevonden worden, is met meer dan een
factor tien vergroot.

Vervolgens bestuderen we Stochatische Lokale Zoekmethodes, aangezien deze
methodes het probleem van te weinig optimalisatie voor de laatste variabelen in het
schema helemaal niet hebben. We onderzoeken de faseruimte-eigenschappen van
Horner-schema’s en zien dat het domein relatief plat is en dat er slechts enkele lokale
minima zijn. Als gevolg kan Stochastisch Heuvel Klimmen (SHC) de Horner-ruimte
goed verkennen. SHC heeft slechts twee parameters: het aantal iteraties (rekentijd)
en de burenstructuur. We vinden een geschikte burenstructuur, waardoor alleen de
totale rekentijd als parameter overblijft. Hierna doen we een reeks experimenten. De
resultaten die we met SHC behalen zijn gelijkwaardig of beter dan die van MCTS,
wat inhoudt dat het totale aantal operaties met meer dan een orde van grootte kleiner
is dan het origineel. Bovendien behaalt SHC de resultaten zeker tien keer sneller.
Aangezien de evaluatietijd van Monte Carlo integrators proportioneel met het aantal
operaties is, hebben we de prestaties verbeterd.

probleem 2 De meeste integralen die analytisch berekend worden, worden uit-
gerekend met de hulp van Partiële Integratie (IBP) identiteiten die integralen in
simpelere varianten uitdrukken. Deze methode is erg langzaam in het algemeen en
vergt soms maanden rekentijd op een cluster. Dus, onze tweede onderzoeksvraag
luidt als volgt.

Onderzoeksvraag 2: Hoe kunnen we een programma construeren dat
vier-lus massaloze propagatorintegralen efficiënter berekent?

In hoofdstuk 3 presenteren we de constructie van Forcer, een Form-programma
voor de reductie van vier-lus massaloze propagator-type integralen tot master in-
tegralen. Het resulterende programma voert parametrische IBP-reducties uit, net
zoals het drie-lus programma Mincer. We demonstreren hoe men veel systemen
van IBP-identiteiten parametrisch kan oplossen in een computer-geassisteerde ma-
nier. Vervolgens bespreken we de structuur van het Forcer-programma, zoals het
herkennen van reductie-acties voor iedere topologie, het toepassen van symmetrieën,
en de overgang tussen topologieën als er een lijn verwijderd wordt. Dit gedeelte is
volledig vooraf uitgerekend en automatisch gegenereerd. We geven voorbeelden van
recente toepassingen van Forcer en bestuderen de prestaties van het programma.
We laten zien dat de vier-lus beta-functie in drie minuten berekend kan worden op
een 32-kernen machine. Tot slot demonstreren we hoe het Forcer-pakket gebruikt
kan worden en schetsen we hoe fysische diagrammen klaargemaakt kunnen worden
voor evaluatie door Forcer.

In hoofdstuk 4 berekenen we zelfenergieën en een verzameling van drie-deeltjes-
vertexfuncties voor massaloze QCD op vier lussen in het MS renormalisatieschema
met het Forcer programma. De vertexfuncties worden geëvalueerd op het punt
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waar een van de momenta verdwijnt. We presenteren analytische resultaten voor een
generieke ijkgroep met volledige ijkafhankelijkheid. De ongerenormaliseerde resulta-
ten in dimensionele regularisatie worden gegeven in termen van masterintegralen en
rationale coefficiënten, welke exact zijn in de ruimte-tijd-dimensie. Onze resultaten
kunnen gebruikt worden voor verder precisie-onderzoek naar het storingsgedrag
van de theorie in andere schema’s dan MS.

Daarnaast hebben we ook Mellin-momenten van vier-lus splitsingsfuncties en
coefficiëntfuncties uitgerekend. Deze worden gebruikt als basisingrediënt voor
botsingsprocessen, zoals Higgs-productie. We berekenen Mellin momenten N =
2, 4, 6 voor het niet-singlet geval en N = 2, 4 voor het singlet-geval. Bovendien
berekenenen we N = 1, 3, 5 voor de vector-axiaal-interferentieterm F3. Doordat
we verder dan N = 40 hebben uitgerekend, kunnen we de alle-N n2

f -bijdrage aan

de vier-lus niet-singlet splitsingsfunctie en de n3
f -bijdrage aan de vier-lus singlet

splitsingsfunctie reconstrueren. Met behulp van de OPE-methode, berekenen we
tot en met N = 16 voor de niet-singlet splitsingsfunctie uit. In de grote-nc-limiet
berekenen we tot en met N = 19. Dit stelt ons in staat om een alle-N-reconstructie
te maken, die een nieuwe term oplevert in de vier-loop planaire spits anomale
dimensie.

probleem 3 Voor vijf-lus berekeningen in QCD zijn tot nu toe alleen de polen
van objecten berekend, omdat het bemachtigen van de eindige termen te moeilijk
is. Een manier om polen te berekenen is met de R∗-operatie, die gecompliceerd en
traag is. Dus, onze derde onderzoeksvraag luidt als volgt.

Onderzoeksvraag 3: In hoeverre kunnen we de polen van vijf-lus dia-
grammen efficiënter uitrekenen met alleen maar vier-lus diagrammen?

In hoofdstuk 5 breiden we de R∗-operatie uit tot Feynman-diagrammen met wille-
keurige tellers, inclusief tensoren. We geven ook een nieuwe manier om infrarood-
contratermen te definiëren die lijkt op de definitie van zijn ultraviolette tegenhanger.
Verder drukken we zowel infrarode als ultraviolette contratermen uit in termen
van schaalloze vacuümdiagrammen met logaritmische graad van divergentie. Door
symmetrieën en integrand- en integraalrelaties uit te buiten, kunnen we het aantal
contratermen en hun complexiteit terugbrengen. Een Form-implementatie van deze
methode is gebruikt bij de berekening van de polen in de dimensionele regulator van
alle top-niveau propagatordiagrammen op vijf lussen in vierdimensionale φ3-theorie.

In hoofdstuk 6 rekenen we de vijf-lus correctie van de schaalafhankelijkheid
van de gerenormaliseerde koppelingsconstante uit (de beta functie) voor QCD, zijn
generalisatie tot niet-Abelse ijktheorieën met een simpele compacte Lie-groep, en
voor QED. Onze analytische resultaten, bemachtigd met de achtergrondveldmethode,
infrarode verwisseling via de nieuwe diagram-per-diagram-implementatie van de
R∗-operatie en het Forcer-programma voor massaloze vier-lus propagatoren, be-
vestigen de QCD en QED resultaten die slechts door één andere groep uitgerekend
zin. We bekijken de numerieke grootte van de vijf-lus correcties in het standaard
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MS-schema voor QCD met n f quarksmaken en voor pure SU(N) Yang-Mills-theorie.
Het effect in QCD is veel kleiner dan de vier-lus bijdrage, zelfs voor lage schalen.
Verder leiden we de vijf-lus betafunctie af in een relatief vaak voorkomend alternatief
schema, het minimale momentum subtractieschema (MiniMOM) met behulp van
de propagatoren en vertices berekend in hoofdstuk 4. De berekening van de vijf-lus
betafunctie kostte zes dagen op een 32-kernen machine.

conclusie Tot slot staan we opnieuw stil bij de probleemstelling en onderzoeks-
vragen in hoofdstuk 7. Gebaseerd op onze vondsten, concluderen we dat we de
prestaties van QFT-berekeningen hebben verbeterd in drie verschillende gebieden.
Aangezien al onze methodes in de praktijk toegepast kunnen worden om theorie
te vergelijken met het experiment in deeltjesversnellers, concluderen we dat we de
precisie van voorspellingen verbeterd hebben.
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21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Auto-

matic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An

Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and

Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models

to Study the Role of Human Awareness and Control in Behavioural Choices, with
Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media

208



28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on
epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems - Mar-
kets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for

Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one

example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and

Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification

and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction beha-

vior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational

inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Interaction

Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style

Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing

Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual

Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From

Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation

networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic

Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks

using Argumentation
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