
Towards High Performance and Efficient
Brain Computer Interface Character Speller:
Convolutional Neural Network based Methods

Hongchang Shan

Towards High Performance and Efficient
Brain Computer Interface Character Speller:
Convolutional Neural Network based Methods

PROEFSCHRIFT

door

Hongchang Shan
geboren te Heilongjiang, China

in 1989

v

vi

Contents

Contents v

List of Tables xi

List of Figures xv

List of Abberivations 1

1 Introduction 1
1.1 Development Trends in P300-based Brain Computer Interface Systems 2

1.1.1 High Performance P300-basedBrain Computer Interface Sys-
tems . 2

1.1.2 Efficient P300-based Brain Computer Interface Systems . . 4
1.2 Problem Statement . 6

1.2.1 Problem 1 . 7
1.2.2 Problem 2 . 8

1.3 Research Contributions . 9
1.4 Dissertation Outline . 13

2 Background 15
2.1 Machine Learning . 15
2.2 Neural Network . 17

2.2.1 Neurons . 17
2.2.2 The Architecture of a Neural Network 20
2.2.3 Learning Process of a Neural Network 21

2.3 Convolutional Neural Network . 28
2.3.1 The Convolution Operation 29
2.3.2 The Characteristics of Convolutional Neural Network 30
2.3.3 The Architecture of Convolutional Neural Network 32

2.4 P300-based Brain Computer Interface 32

vii

viii CONTENTS

2.4.1 P300 Signal . 33
2.4.2 The P300 Speller . 35
2.4.3 Performance Assessment of P300 Speller 37

2.5 Datasets . 38

3 A Simple Convolutional Neural Network for P300 Signal Detection and
Character Spelling 41
3.1 Related Work . 43
3.2 Proposed Convolutional Neural Network 46

3.2.1 Input to the Network . 46
3.2.2 Network Architecture . 47
3.2.3 Training . 49

3.3 Experimental Evaluation . 50
3.3.1 Experimental Setup . 50
3.3.2 Complexity . 50
3.3.3 P300 Signal Detection Accuracy 51
3.3.4 Character Spelling Accuracy 52
3.3.5 Information Transfer Rate 54

3.4 Conclusions . 57

4 Ensemble of Convolutional Neural Networks for P300 Signal Detection
and Character Spelling 59
4.1 Proposed Network . 61

4.1.1 Ensemble of Convolutional Neural Networks 61
4.1.2 Proposed OSLN and OTLN 61
4.1.3 Training . 63
4.1.4 P300 Signal Detection and Character Spelling using EoCNN 63

4.2 Experimental Evaluation . 64
4.2.1 Complexity . 65
4.2.2 P300 Signal Detection Accuracy 65
4.2.3 Character Spelling Accuracy 66
4.2.4 Information Transfer Rate 69

4.3 Discussions . 71
4.3.1 Analysis of Our Proposed OTLN and OSLN 71
4.3.2 Ablation Study on EoCNN 72
4.3.3 Exploration on the Importance of Extracting P300-related Fea-

tures from Raw Signals . 73
4.4 Conclusions . 74

CONTENTS ix

5 ANovel Sensor SelectionMethod based onConvolutional Neural Network
for P300 Speller 77
5.1 Related Work . 79
5.2 Our Sensor Selection Method . 80

5.2.1 Spatial Learning based Elimination Selection 80
5.2.2 Parameterized OSLN . 81
5.2.3 Ranking Function . 83

5.3 Experimental Evaluation . 84
5.3.1 Experimental Setup . 84
5.3.2 Experimental Results . 86

5.4 Discussions . 87
5.4.1 Configuration of Es in SLES 88
5.4.2 Exploring the Impact of the CNN Architecture on Sensor Se-

lection . 90
5.5 Conclusions . 94

6 An ImprovedEnsemble ofConvolutional Neural Networks for P300 Speller
with a Small Number of Sensors 97
6.1 Study on EoCNN-based P300 Speller with Different Number of Sensors 99

6.1.1 Experimental Setup . 99
6.1.2 Experimental Results . 100

6.2 Our Solution Approach . 102
6.2.1 Parameterized Ensemble Processing 102
6.2.2 Parameter Configuration for Parameterized Ensemble Process-

ing . 103
6.3 Experimental Evaluation . 105

6.3.1 Experimental Setup . 105
6.3.2 Experimental Results . 107

6.4 Conclusions . 109

7 Summary and Conclusions 111

Bibliography 115

List of Publications 122

Curriculum Vita 124

List of Tables

2.1 Number of P300s/non-P300s for each dataset. 40

3.1 CCNN architecture. 45
3.2 BN3 architecture. 45
3.3 CNN-R architecture. 46
3.4 OCLNN architecture. 48
3.5 Complexity comparison of different CNNs. 51
3.6 P300 signal detection accuracy of different CNNs on Dataset II, III-A

and III-B. 52
3.7 Spelling accuracy achieved by different methods on Dataset II. . . . 53
3.8 Spelling accuracy achieved by different methods on Dataset III-A. . 53
3.9 Spelling accuracy achieved by different methods on Dataset III-B. . 53
3.10 Spelling accuracy achieved by OCLNN when using and not using the

Batch Normalization operation on Dataset II. 55
3.11 Spelling accuracy achieved by OCLNN when using and not using the

Batch Normalization operation on Dataset III-A. 55
3.12 Spelling accuracy achieved by OCLNN when using and not using the

Batch Normalization operation on Dataset III-B. 55
3.13 The ITR of the P300 speller based on different methods on Dataset II. 56
3.14 The ITR of the P300 speller based on different methods on Dataset

III-A. 56
3.15 The ITR of the P300 speller based on different methods on Dataset

III-B. 56

4.1 OSLN architecture. 62
4.2 OTLN architecture. 62
4.3 Complexity of different CNNs. 65
4.4 P300 signal detection accuracy of different CNNs on Dataset II, III-A,

and III-B. 66

xi

xii LIST OF TABLES

4.5 Spelling accuracy achieved by different methods on Dataset II. . . . 67
4.6 Spelling accuracy achieved by different methods on Dataset III-A. . 67
4.7 Spelling accuracy achieved by different methods on Dataset III-B. . 68
4.8 The ITR of the P300 speller based on different methods on Dataset II. 69
4.9 The ITR of the P300 speller based on different methods on Dataset

III-A. 69
4.10 The ITR of the P300 speller based on different methods on Dataset

III-B. 70
4.11 Spelling accuracy achieved by OTLN, OSLN and EoCNN on Dataset

III-A. 72
4.12 Spelling accuracy achieved by EoCNN after removing a separate CNN. 74

5.1 The symbols used in Algorithm 1. 81
5.2 OSLN(S) architecture. 83
5.3 Methods compared with SLES. 85
5.4 Minimal number of sensors selected by different methods for Dataset

II. The P300 speller is implemented using the CNN-based classifier
OCLNN. 87

5.5 Minimal number of sensors selected by different methods for Dataset
III-A. The P300 speller is implemented using the CNN-based classi-
fier OCLNN. 88

5.6 Minimal number of sensors selected by different methods for Dataset
III-B. The P300 speller is implemented using the CNN-based classi-
fier OCLNN. 89

5.7 Minimal number of sensors selected by different methods for Dataset
II. The P300 speller is implemented using the CNN-based classifier
EoCNN. 90

5.8 Minimal number of sensors selected by different methods for Dataset
III-A. The P300 speller is implemented using the CNN-based classi-
fier EoCNN. 91

5.9 Minimal number of sensors selected by different methods for Dataset
III-B. The P300 speller is implemented using the CNN-based classi-
fier EoCNN. 92

5.10 Minimal number of sensors selected by different methods for Dataset
II, The P300 speller is implemented using the SVM-based classifier
ESVM [RG08]. 93

5.11 Minimal number of sensors selected by different methods for Dataset
III-A, The P300 speller is implemented using the SVM-based classi-
fier ESVM [RG08]. 94

LIST OF TABLES xiii

5.12 Minimal number of sensors selected by different methods for Dataset
III-B, The P300 speller is implemented using the SVM-based classi-
fier ESVM [RG08]. 95

5.13 Minimal number of sensors selected by SLES with different Es con-
figurations. 96

5.14 Minimal number of sensors selected by analysing different CNNs. . 96

6.1 Minimal number of sensors needed to acquire EEG signals in the
P300 speller based on different CNNs without losing the state-of-the-
art spelling accuracy of the P300 speller on Dataset II. 107

6.2 Minimal number of sensors needed to acquire EEG signals in the
P300 speller based on different CNNs without losing the state-of-the-
art spelling accuracy of the P300 speller on Dataset III-A. 108

6.3 Minimal number of sensors needed to acquire EEG signals in the
P300 speller based on different CNNs without losing the state-of-the-
art spelling accuracy of the P300 speller on Dataset III-B. 108

6.4 Minimal number of sensors needed to acquire EEG signals in the
P300 speller based on different CNNs without losing the state-of-the-
art max-ITR on Dataset II, III-A, and III-B. 109

List of Figures

1.1 Workflow of a typical BCI. 1
1.2 An example of a traditional P300-based BCI system. 5
1.3 An example of an efficient P300-based BCI system. 5

2.1 The workflow of machine learning. 17
2.2 The model of a neuron. 18
2.3 Architectural graph to model a neuron. 20
2.4 An example of a single-layer neural network. 21
2.5 An example of a multi-layer neural network with one hidden layer and

one output layer. 22
2.6 An example of cost function C with two parameters v1 and v2. . . . 24
2.7 The analogy of using gradient descent to minimize a cost function. . 25
2.8 Images of the handwritten digits. 28
2.9 Input neurons to a CNN. 31
2.10 Connecting a region of input neurons to a hidden neuron. 31
2.11 Connecting the region of input neurons to a hidden neuron in the hid-

den layer in the CNN. 32
2.12 Connecting second region of input neurons to a hidden neuron in the

hidden layer in the CNN. 33
2.13 An example of the pooling operation in the CNN. 33
2.14 An example of the architecture of a CNN used for the handwritten

digit recognition. 34
2.15 P300 signal. 35
2.16 P300 speller character matrix. 36
2.17 An example of a set of signal samples, whereFs is the signal sampling

frequency . 39

xv

xvi LIST OF FIGURES

3.1 Abstraction of the raw signals in the spatial convolution layer in cur-
rent CNNs. x denotes a signal sample in the input tensor. f denotes a
datum in a feature map. Every column in the input tensor contains a
set of C signal samples. These samples come from C sensor at a cer-
tain sampling time point. The spatial convolution operation converts
each column of spatial data (receptive field) from the input tensor into
an abstract datum in a feature map. 44

3.2 Input tensor for our proposed OCLNN. 47
3.3 Illustration of OCLNN for P300 signal detection. 48

4.1 Workflow of our EoCNN . 61
4.2 Spelling accuracy achieved by OTLN, OTLN-3l and OTLN-6l on

Dataset III-A. 73
4.3 Spelling accuracy achieved by networks in set RAW_networks and

networks in set unRAW_networks on Dataset III-A. 75

5.1 Input tensor to OSLN(S), where sj ∈ S. 82

6.1 Spelling accuracy of different P300 speller implementations when
different number of sensorsm is used to acquire EEG signals. . . . 101

6.2 max-ITR of different P300 speller implementations when different
number of sensorsm is used to acquire EEG signals. 101

7.1 Overview of how each chapter’s contributions improve the perfor-
mance and/or the efficiency of a P300 speller. 112

Chapter 1

Introduction

ABrain Computer Interface (BCI), also known as mind-machine interface, trans-
lates brain signals into computer commands, thereby building communication

between the human brain and outside devices. In this way, human-beings can use
only the brain to express their thoughts without any real movement. As a result, BCIs
become an important communication pathway for the people who lose motor ability,
such as patients with Amyotrophic Lateral Sclerosis (ALS) [SD06] or spinal-cord in-
jury. In recent years, BCIs have also been popularly developed for healthy people,
in application domains such as entertainments [GP+13], mental state monitoring
[LTK13], virtual reality [CBJ16] as well as in IoT services [LL+14].

A BCI system consists of three components, as shown in Figure 1.1. The first
component is the brain signal acquisition. In this component, the brain signals of a
subject (person) are recorded by using a brain headset equipped with a number of
sensors. The acquired brain signals are sent to the second component for brain signal
processing and translation. In this component, a hardware/software platform is used
to process and translate brain signals into computer commands. Then, in the last
component, the translated commands, i.e., the control signals, are used to control the
outside devices, e.g., a prosthesis [MPP08], a computer mouse [Spü15], a mobile
phone [CCH+10], or a robot [BFL13].

Figure 1.1: Workflow of a typical BCI.

Depending on the placement of the sensors, which are used to acquire brain sig-

1

CHAPTER 1. INTRODUCTION

nals in the brain headset, BCI systems can be categorized as invasive BCIs, semi-
invasive BCIs, and non-invasive BCIs [Wal16]. In invasive BCIs, micro-sensor arrays
are placed directly into the cortex [PHP10] to measure action potentials (APs) and lo-
cal field potentials (LFPs). In semi-invasive BCIs, sensors are placed on the exposed
surface of the brain in order to measure electrocorticography (ECoG) signals [SL11].
In non-invasive BCIs, sensors are placed on the scalp in order to acquire electroen-
cephalography (EEG) signals [GS06]. In recent decades, EEG-based BCIs attract
most of the BCI research due to their non-invasive, easy, and safe way of acquiring
brain signals. EEG-based BCIs can be divided in four main categories [FRAG+12],
namely P300-based BCIs [FD88], steady state visual evoked potential (SSVEP)-based
BCIs [Her01], event related desynchronization (ERD)-based BCIs [PN01], and slow
cortical potential-based BCIs [BKG+00]. Compared with the other categories of
EEG-based BCIs, the P300-based BCIs have the following advantages. The P300-
based BCIs are effective for almost every BCI user because the P300 signal, which is
the target signal used in the P300-based BCIs, can be evoked in the brain of almost
every human being [Els09]. In addition, the P300-based BCIs are relatively fast and
straightforward to use. Moreover, the P300 signals work outstandingly well for BCI
character spelling applications [GDS+09]. Therefore, the P300-based BCIs have at-
tracted a lot of BCI researchers. As the benchmark for a P300-based BCI [FRAG+12],
the P300 speller [FD88] has been the most-commonly investigated application of the
P300-based BCI [FRAG+12]. Thus, this dissertation takes the P300 speller as the
target BCI application.

1.1 Development Trends in P300-based Brain Computer In-
terface Systems

P300-based BCIs are still not used in human’s daily life and remain in an experimental
stage at research labs. In order to bring P300-based BCIs into practical use, currently,
there are two development trends for P300-based BCI systems, i.e., to design high per-
formance P300-based BCI systems and to design efficient P300-based BCI systems.

1.1.1 High Performance P300-based Brain Computer Interface Systems

The performance of a P300-based BCI system is the communication accuracy and
the communication speed between the human brain and a computer. For example,
for the P300 speller, the communication accuracy of such BCI system is the charac-
ter spelling accuracy. The communication speed of such system is the Information
Transfer Rate (ITR) [WRMP98]. The current performance of a P300-based BCI sys-
tem is relatively low because the P300 signals are buried in a lot of noise and thus,

2

CHAPTER 1. INTRODUCTION

the P300 signals have a very low Signal to Noise Ratio (SNR). This makes it difficult
to detect P300 signals evoked in the human’s brain, resulting in a low communication
accuracy and speed of the P300-based BCI systems. P300-based BCI systems with
such low performance are not acceptable for BCI users in their daily life. We take the
P300 speller, the most-widely used application of the P300-based BCIs, as an exam-
ple. Guy [GSB+18] explored the usability of the current P300 spellers for disabled
people with amyotrophic lateral sclerosis. This report shows that when using a cur-
rent P300 speller, half of the subjects (persons) cannot spell characters with accuracy
that is higher than 90%. To promote P300 spellers to be used in people’s daily life,
we should try our best to make the subjects spell characters with a P300 speller like
the healthy people spell characters with their mouth. This means that we should try to
make the subjects who use a P300 speller to achieve the character spelling accuracy
that is (or close to) 100%. A P300 speller with accuracy that is much lower than 100%
cannot be used in people’s daily life. In addition, Guy’s report [GSB+18] also shows
that when using the current P300 spellers, the mean number of characters correctly
spelled by the subjects is 3.6 characters per minute. However, a healthy person is able
to speak with around 120 characters per minute. Compared with 120 characters per
minute, the communication speed of the current P300 spellers, i.e., 3.6 characters per
minute, is far from what is needed to be used in people’s daily life. Therefore, in-
creasing the performance of the P300-based BCIs is a must in order to promote the
P300-based BCIs into people’s daily life.

To increase the performance of a P300-based BCI system, efforts are focused on
the signal acquisition part and on the signal processing and translation part of a BCI
system. In the signal acquisition part, researchers try to improve the recording quality
of the EEG signals such that the signals, that contain P300 evoked potentials, have less
noise. For example, Koka [KB07] has developed tripolar concentric sensors. These
sensors use advanced engineering techniques to enhance the recording capability for
brain signals. Unfortunately, the current signal recording techniques cannot provide
high enough SNR for P300 signals, thereby not guaranteeing alone very good perfor-
mance of a P300-based BCI system.

In recent years, massive efforts have been put in the signal processing and trans-
lation part of a P300-based BCI system. In order to increase the performance of the
P300-based BCI system, a lot of studies have been done in terms of devising prepro-
cessing, feature extraction, and classificationmethods for P300-based BCI systems. In
terms of preprocessing EEG signals, different signal processing techniques are used,
such as bandpass filtering [CG11], discrete-wavelet transform (DWT) [SS09], contin-
uous wavelet transform (CWT) [Bos04]. In terms of feature extraction methods for
P300-based BCIs, Rivet [RS+09] uses an unsupervised algorithm to enhance P300
evoked potentials, Kulasingham [KVDS16] uses Stacked autoencoders (SAEs) to ex-

3

CHAPTER 1. INTRODUCTION

tract P300-related features. Researchers also try to remove artifacts in order to reduce
the noise. For example, Gao [GZW10], Mennes [MWV+10], and Gwin [GG+10]
propose signal processing methods to remove the artifacts caused by the muscle con-
traction, the eye movement, and the body movement, respectively. In terms of classifi-
cation methods for P300-based BCIs, researchers have tried different classifiers, such
as Support Vector Machine (SVM) [KMG+04, RG08], Linear Discriminant Analy-
sis (LDA) [JAB+10], Fisher’s Linear Discriminants (FLD) [SS09], Stepwise Linear
Discriminant Analysis (SWLDA) [JK09], and neural networks (NN) [CG11, MG15,
LWG+18, SLS18], in order to improve the accuracy of detecting P300 signals. The
rapid development of machine learning algorithms for P300-based BCIs boosts the
performance improvement for P300-based BCI systems.

1.1.2 Efficient P300-based Brain Computer Interface Systems

P300-based BCI systems have been in an experimental stage at research labs for a long
time. Traditional P300-based BCI systems, as shown in Figure 1.2, use a complex
EEG headset which utilizes a large number of sensors for brain signal acquisition as
well as they use a cumbersome computer for signal processing and translation. Even
though such BCI systems may achieve high enough performance in some cases, such
complex systems for P300-based BCIs cannot be used in people’s daily life. This is
because it is impossible for people who wear such complex headset and need such
cumbersome computer to move freely everywhere they want. In order to bring P300-
based BCIs into practical use, in recent years, researchers have been trying to develop
efficient P300-based BCI systems. As shown in Figure 1.31, an efficient P300-based
BCI uses a wireless EEG headset for signal acquisition. This headset utilizes a small
number of sensors. In addition, such efficient BCI system uses a small mobile platform
(e.g., mobile phone) for signal processing and translation. Since nowadays people use
mobile phones almost every day and everywhere, it brings BCI users much conve-
nience to use a mobile phone to process brain signals. Therefore, in recent years, a
lot of research has been done for efficient P300-based BCI systems that use a wireless
EEG headset for signal acquisition and a mobile phone for signal processing.

Concerning the wireless EEG headset, researchers have performed investigations
to figure out the type of sensors as well as the number and the position of the sensors
placed in the headset in order to build efficient P300-based BCI systems. Regarding
the type of the sensors, traditional headsets, used in P300-based BCI systems, utilize
wet sensors that operate with specially made conductive gels. The use of gels provides
stable and high quality signal recording during a long-term use of a P300-based BCI
system. However, the gels are sticky, which makes the BCI users’ hair dirty and also

1This figure is taken from https://www.emotiv.com/.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: An example of a traditional P300-based BCI system.

Figure 1.3: An example of an efficient P300-based BCI system.

makes users not comfortable. In addition, the preparation time of placing wet sensors
on the BCI users’ scalp is quite long. To make P300-based BCIs more convenient and
user-friendly, researchers have developed dry sensors [GVF11, SRC+12, CdBV+14]
for the acquisition of EEG signals. By using dry sensors, users do not need to use the
conductive gels any more. To make the BCI users feel more comfortable, researchers
also have developed non-contact sensors [HCP02, SDC07, ONB+08] for EEG signal

5

CHAPTER 1. INTRODUCTION

acquisition. Non-contact sensors are able to record EEG signals with a certain space
between the brain skin and the headset. Unfortunately, dry sensors and non-contact
sensors may impair the performance of the P300-based BCI systems because com-
pared with wet sensors, dry sensors cannot provide the same high quality of recorded
EEG signals, and non-contact sensors provide even lower quality of recorded EEG
signals because non-contact sensors output a very small signal amplitude and they
are very sensitive to artifacts [IS16].

In addition to the development of the aforementioned types of sensors, researchers
also focus on reducing the number of sensors used in a P300-based BCI system while
keeping the performance of this system acceptable [RG08, RS+09, RCP+10, CRC+10,
CR+11, RCS+11, RCMM12, CRT+14]. These studies propose sensor selectionmeth-
ods which select an appropriate sensor subset from an initial large set of sensors while
keeping an acceptable BCI system performance. Such methods enable substantial re-
duction of the sensors needed to acquire EEG signals. The reduction of the number
of sensors in a P300-based BCI system decreases the price of the EEG headset signif-
icantly, reduces the installation time of the P300-based BCI system, and also makes
the users feel more comfortable. These advantages of the reduction of the sensors
help promoting P300-based BCIs to be used in people’s daily life.

After acquiring EEG signals from awireless EEG headset, an efficient P300-based
system uses a small mobile platform, such as a mobile phone, to process these sig-
nals. The mobile phone is an example of an embedded resource-constrained com-
puting platform. Thus, the battery and memory of such platform are limited. As
a result, the mobile phone cannot support the execution of signal processing algo-
rithms with high complexity because such complex algorithms consume too much
energy and memory where the amount of this consumption exceeds the limits of a
mobile phone. Therefore, in order to build efficient P300-based BCI systems, sig-
nal processing algorithms with low complexity and acceptable performance are in
urgent need. Such algorithms should be able to run on a mobile phone and con-
sume a small amount of energy while keeping the system performance acceptable.
In addition, in order to build energy-efficient P300-based BCI systems, techniques
developed in the embedded system field can be used. Such techniques for energy-
efficient task scheduling [LSWS16, CS16, NS17] and energy-efficient application
mapping [LSCS15, SLS16] help the mobile phone to work energy-efficiently when
used in a P300-based BCI system.

1.2 Problem Statement

The important development trends, described in Section 1.1, bring new opportunities
to develop P300-based BCI systems. However, they also come with several issues

6

CHAPTER 1. INTRODUCTION

when designing such systems. In this dissertation, we focus on several issues arisen
by the aforementioned development trends in the contexts of the performance and the
efficiency of the P300-based BCI systems. The specific problems, we address in this
dissertation, are formulated as follows.

1.2.1 Problem 1

As discussed in Section 1.1.1, the performance of the P300-based BCI systems is
very important to bring these BCIs into people’s daily life. Since the P300 speller
is the benchmark and the most-commonly investigated application of the P300-based
BCIs, we focus on how to improve the performance of the P300 speller. In order
to improve the performance of the P300 speller, previous research on P300 spellers
uses traditional machine learning methods for the detection of P300 signals and the
inference of characters in the P300 speller. The traditional machine learning meth-
ods use manually-designed signal processing techniques for feature extraction as well
as classifiers like Support Vector Machine (SVM) and Linear Discriminant Analysis
(LDA). Unfortunately, manually-designed feature extraction and traditional classifi-
cation techniques have the following problems: 1) they can only learn the features
that researchers are focusing on but lose or remove other underlying features; 2) brain
signals have subject-to-subject variability, which makes it possible that methods per-
forming well on certain subjects (with similar age or occupation) may not give a sat-
isfactory performance on others. These problems limit the potential of manually-
designed feature extraction and traditional classification techniques for further P300
detection accuracy, character spelling accuracy, and Information Transfer Rate (ITR)2
improvements for the P300 speller.

Convolutional Neural Networks (CNNs) have the advantage of automatically ex-
tracting P300-related features from raw EEG signals. Thus, they can learn not only
some features we know but also some features which are important and unknown to
us. Automatically learning from raw EEG signals has better ability to achieve good re-
sults which are invariant to different subjects (persons). Thus, CNNs are able to boost
the full potential of recognizing P300 signals, thereby overcoming the aforementioned
shortcomings of traditional machine learning methods.

Therefore, in recent years, researchers have started to design (deep) CNNs for
P300-based BCIs [CG11,MG15, LWG+18] and achieved better P300 detection, accu-
racy, character spelling accuracy, and ITR than traditional techniques. However, these
CNNs have some limitations in increasing the P300 detection accuracy, the character
spelling accuracy, and ITR for the P300 speller. These CNNs first use a spatial con-
volution layer to learn P300-related spatial features from raw signals. Then, they use

2For the detailed description of ITR please refer to Section 2.4.3.

7

CHAPTER 1. INTRODUCTION

several temporal convolution layers to learn P300-related temporal features from the
abstract temporal signals generated by the spatial convolution layer (the first layer).
In this way, the input to the temporal convolution layers is the abstract temporal sig-
nals instead of raw temporal signals. These abstract temporal signals in the feature
maps lose raw temporal information. Losing raw temporal information means losing
important temporal features because the nature of P300 signals is the positive voltage
potential in raw temporal information, see Figure 2.15 explained in Section 2.4.1, as
well as many important P300-related features are also embodied in raw temporal in-
formation [Pol07]. As a result, these CNNs cannot learn temporal features well. This
leads to issues such as: 1) these CNNs prevent further P300 detection accuracy, char-
acter spelling accuracy, and ITR improvements for the P300 speller, thereby impairing
the performance of the P300 speller; 2) these CNNs have high network complexity
to achieve competitive P300 detection accuracy, character spelling accuracy, and ITR
for the P300 speller, thereby impairing the efficiency of the P300 speller. Thus, the
first problem addressed in this dissertation is:
Problem 1: How can we design a CNN which achieves high P300 detection ac-
curacy, character spelling accuracy, and ITR for the P300 speller and has low
network complexity?

1.2.2 Problem 2

P300 spellers have been in an experimental stage at research labs for a long time. As
discussed in Section 1.1.2, P300 spellers are still not used in people’s daily life because
the efficiency of these P300-based BCI systems is low, even though these systems may
achieve high enough performance in some cases. Some reasons for this low efficiency
are: 1) Current popular EEG headsets in the BCI systems used for the P300 speller
utilize a large number of sensors to achieve high spelling accuracy. The price of
the EEG headset is significantly high when the number of sensors is large because
a lot of sensors require a complicated electrode cap and a lot of amplifier channels.
2) Utilizing a large number of sensors makes the P300 speller to consume a lot of
energy, which is unacceptable for a battery-powered mobile BCI system. Such system
utilizes a wireless EEG headset and a resource-constrained hardware platform for data
processing. A large number of sensors increases the amount of the data needed to be
recorded and processed, thereby increasing the energy consumption of the wireless
EEG headset and the hardware platform. This does not allow a mobile P300 speller
to work for a long time period on a single battery charge; 3) Utilizing a large number
of sensors strengthens the user’s discomfort and increases the installation time of the
P300 speller.

To address the aforementioned issues caused by the utilization of a large num-
ber of sensors, sensor selection methods could be used to select an appropriate sen-

8

CHAPTER 1. INTRODUCTION

sor subset from an initial large set of sensors while keeping acceptable spelling ac-
curacy. So, a good sensor selection method should enable substantial reduction of
the sensors needed to acquire brain signals. Therefore, good sensor selection meth-
ods are in urgent need for designing comfortable, cheap, and energy-efficient P300
spellers and for promoting such P300 spellers into the human’s daily life. Sensor
selection methods for the P300 speller have been studied in recent years. For exam-
ple, [RG08, RSG+09, CRC+10, CR+11] utilize a backward elimination algorithm
as a sensor selection strategy. These works propose different ranking functions to
evaluate and eliminate sensors such as the P300 signal detection accuracy, the P300
spelling accuracy [CR+11], the Ccs score [RG08], the Signal to Signal and Noise
Ratio (SSNR) [RSG+09, CRC+10, CR+11], the Area Under the Receiver Operating
Characteristic (AUC) [CRT+14]. Alternatively, [CG11] and [LWG+18] directly se-
lect the important sensors for a given user by analyzing the weights of a trained CNN.
Unfortunately, the aforementioned sensor selection methods cannot select an appro-
priate sensor subset such that they can further reduce the number of sensors used to
acquire EEG signals while keeping the spelling accuracy the same as the accuracy
achieved when the initial large sensor set is used. As a consequence, the cost, energy
consumption, and discomfort of a P300 speller are still unacceptably high when using
the aforementioned sensor selection methods to design and configure P300 spellers.
Therefore, the second problem addressed in this dissertation is:
Problem 2: How can we design a sensor selection method which is able to further
reduce the number of sensors needed to acquire EEG signals while keeping the
character spelling accuracy the same as the accuracy achieved when the initial
large sensor set is used?

1.3 Research Contributions
In this section, we summarize the research contributions of this dissertation by ad-
dressing the research problems outlined in Section 1.2.

Contribution 1: Proposing a CNN architecture which has low complexity and
achieves high P300 detection accuracy, character spelling accuracy, and ITR for
the P300 speller.

To address Problem 1 in Section 1.2.1, we propose a simple, yet effective CNN
architecture, called One Convolution Layer Neural Network (OCLNN), for the P300
speller. This CNN has only one convolution layer which is the first layer of the net-
work. This layer performs both the spatial convolution and the temporal convolution
at the same time, thereby learning very useful P300-related features from both raw
temporal information and raw spatial information. Our OCLNN exhibits very low

9

CHAPTER 1. INTRODUCTION

network complexity because it uses only one convolution layer and does not use fully-
connected layers before the output layer. We perform experiments on three benchmark
datasets and compare our results with those in previous research works that report the
best results. The comparison shows that our proposed CNN can increase the P300 sig-
nal detection accuracy with up to 14.23% and the character spelling accuracy with up
to 35.49%. The comparison also shows that our proposed CNN achieves comparable
ITR with the related BN3 method [LWG+18]. Moreover, our CNN achieves higher
ITR compared to other state-of-the-art relatedmethods [CG11,MG15, RG08, Bos04].
However, our OCLNN still has certain limitations to extract some important features
related to P300 signals. OCLNN extracts P300-related spatial and temporal features at
the same time in its single convolution layer, thereby extracting only P300-related joint
spatial-temporal features through the spatial-temporal convolution. OCLNN does not
extract P300-related separate temporal features and separate spatial features. These
separate temporal features and separate spatial features have proven to be very impor-
tant for the P300 speller [FTM+88, Pol07, PNCB11, HVE06].

Contribution 2: Proposing an ensemble of different CNNs, we have devised, for
the P300 speller.

Our OCLNN proposed in Contribution 1 has the limitation that it cannot ex-
tract separate temporal features and separate spatial features related to P300 signals.
Adding some temporal or spatial convolution layers following the first spatial-temporal
convolution layer of OCLNN is a potential method to enable OCLNN to learn P300-
related separate spatial or separate temporal features. Nevertheless, such potential
method cannot learn P300-related separate temporal or spatial features well due to
the loss of raw information. The raw information loss happens because the input to
these added temporal or spatial convolution layers for OCLNN is the abstract sig-
nals generated by the first spatial-temporal convolution layer instead of raw signals.
To address properly the aforementioned limitation of OCLNN (proposed in Contri-
bution 1) , we propose an ensemble of two novel CNNs, we have devised, together
with OCLNN in order to learn well the aforementioned P300-related separate spatial
and separate temporal features, which are not extracted by OCLNN, together with
the spatial-temporal features extracted by OCLNN. Our proposed ensemble of CNNs
is called Ensemble of Convolutional Neural Networks (EoCNN). Our proposed two
novel CNNs used in EoCNN are called One Spatial Layer Network (OSLN) and One
Temporal Layer Network (OTLN), respectively. OSLN and OTLN has only one con-
volution layer. OTLN performs the temporal convolution in the first layer to learn
P300-related separate temporal features. OSLN performs the spatial convolution in
the first layer to learn P300-related separate spatial features. In this way, the input to
OSLN and OTLN is raw signals, thus these two novel CNNs are able to learn features

10

CHAPTER 1. INTRODUCTION

from raw signals. As a consequence, OTLN and OSLN can learn well P300-realted
separate temporal features and separate spatial features, respectively. Our EoCNN
uses the ensemble of OSLN and OTLN together with OCLNN, thereby extracting
more useful P300-related features than OCLNN alone. As a result, our EoCNN can
achieve higher P300 signal detection accuracy, character spelling accuracy, and ITR
for P300 speller thanOCLNN. Experimental results on three benchmark datasets show
that our proposed EoCNN is able to increase the P300 signal detection accuracy, the
character spelling accuracy, and the ITR achieved by OCLNN with up to 4.32%, 5%,
and 6.05 bits/min, respectively. Also, our proposed EoCNN outperforms other re-
lated methods with a significant P300 signal detection accuracy improvement up to
18.55%, a significant character spelling accuracy improvement up to 38.72%, and a
significant ITR improvement up to 21.75 bits/min. In terms of network complexity,
the complexity of our EoCNN is lower than the complexity of the CNN in [MG15],
and higher than the complexity of OCLNN and the CNNs in [CG11, LWG+18].

Contribution 3: Proposing aCNN-basedmethod for sensor reduction in the P300
speller.

To address Problem 2 in Section 1.2.2, we propose a novel CNN-based sensor
selection method, called Spatial Learning based Elimination Selection (SLES). Com-
pared with the state-of-the-art sensor selection methods [RG08, RS+09, RCP+10,
CRC+10, CR+11, RCS+11, RCMM12, CRT+14], our SLES is able to further re-
duce the number of sensors needed to acquire EEG signals in the P300 speller while
keeping the character spelling accuracy the same as the accuracy achieved when an
initial large set of sensors is used. Our SLES uses a novel parameterized CNN, we
have devised, to evaluate and rank the sensors during the sensor selection process.
This method features an iterative, parameterized, backward elimination algorithm to
eliminate and select sensors. The parameter configured in this algorithm controls the
training frequency of the CNN and the number of sensors to eliminate in every itera-
tion. We perform experiments on three benchmark datasets and compare the minimal
number of sensors selected by our SLES method and other selection methods needed
to acquire brain signals while keeping the spelling accuracy the same as the accuracy
achieved when the initial large set of sensors is used. The results show that, com-
pared with the minimal number of sensors selected by other methods, our method can
reduce this number with up to 44 sensors.

Contribution 4: Proposing an improved ensemble of CNNs for the P300 speller
with a small number of sensors.

As a result of Contribution 2, our EoCNN is able to achieve higher spelling ac-

11

CHAPTER 1. INTRODUCTION

curacy and ITR compared to other state-of-the-art methods for the P300 speller. As a
result of Contribution 3, our SLES method can reduce the number of sensors needed
to acquire EEG signals in a EoCNN-based P300 speller while keeping the character
spelling accuracy and the ITR the same as the character spelling accuracy and the ITR
achieved by EoCNN when an initial large set of sensors is used in the P300 speller.
We call the character spelling accuracy and the ITR, achieved by EoCNN for the P300
speller with a large number of sensors (e.g., 64 sensors), the state-of-the-art character
spelling accuracy and ITR of the P300 speller. The experimental results mentioned
in Contribution 3 also show that in most cases, in order to preserve the state-of-
the-art character spelling accuracy and ITR, we need to use more than 16 sensors to
acquire EEG signals in the EoCNN-based P300 speller. Unfortunately, popular low-
complexity and relatively cheap (affordable) BCI systems utilize a small number of
sensors for the acquisition of EEG signals. Typically, such small number of sensors
is less than or equal to 16 sensors. For example, BCI systems such as MUSE [MUS],
EMOTIV Insight [Ins], Quick-8 [Qui], B-Alert X10 [B-A], EMOTIVEPOC+ [EMO],
andOPENBCIMark IV [Mar] utilize only 4, 5, 8, 10, 14, and 16 sensors, respectively.
Therefore, it is a challenge to achieve the state-of-the-art character spelling accuracy
and ITR of the P300 speller with popular low-complexity and relatively cheap BCI
systems that use a small number of sensors, i.e., less than or equal to 16 sensors, to
acquire EEG signals.

To address the aforementioned challenge, we perform a study on our EoCNN
(Contribution 2) as well as the three CNNs used in EoCNN, i.e., OTLN, OSLN,
and OCLNN, for the P300 speller with different number of sensors in order to find
the reason why EoCNN cannot achieve the state-of-the-art character spelling accu-
racy and ITR for a P300 speller with a small number of sensors. This study reveals
that the reason for this is that EoCNN has the problem of putting equal importance
on OSLN, OTLN, and OCLNN, when combining the outputs from these three CNNs
for the P300 speller, irrespective of the number of sensors used to acquire EEG sig-
nals. In order to solve this problem of EoCNN, we propose an improved EoCNN for
the P300 speller called PEoCNN. In PEoCNN, first, we parameterize the process of
combining the outputs from OSLN, OTLN, and OCLNN. Then, we use the Sequen-
tial Model-based Algorithm Configuration (SMAC) [HHLB11] to automatically find
and set values for the parameters depending on the number of sensors utilized in the
P300 speller. In this way, PEoCNN is able to adapt/configure the importance of us-
ing the outputs from OSLN, OTLN, and OCLNN for the P300 speller depending on
the number of sensors that are utilized. Experiments on three benchmark datasets
show that when using our PEoCNN for the P300 speller, the state-of-the-art character
spelling accuracy and ITR can be achieved in a BCI system with less than or equal to
16 sensors to acquire EEG signals.

12

CHAPTER 1. INTRODUCTION

1.4 Dissertation Outline
In this section, we give an outline of this dissertation:

Chapter 2 introduces some background information on Convolutional Neural
Networks (CNNs), the P300 signal, the P300 speller, the Information Transfer Rate
(ITR), and the datasets used in this dissertation.

Chapter 3 - 6 describe in details the contributions introduced in Section 1.3. Each
chapter is organized in a self-contained way. That is, each chapter has its specific in-
troduction, related work, proposedmethod, experimental evaluation, and conclusions.

Chapter 3 presents our proposed simple, yet effective, CNN architecture for the
P300 signal detection and P300-based character spelling. This chapter is based on the
following publication:

• Hongchang Shan, Yu Liu, and Todor Stefanov,
"A Simple Convolutional Neural Network for Accurate P300 Detection and
Character Spelling in Brain Computer Interface",
In Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI’18), pp. 1604-1610, Stockholm, Sweeden, July 13-19, 2018.

Chapter 4 presents our proposed ensemble of CNNs for the P300 signal detection
and P300-based character spelling. This chapter is based on the following publication:

• Hongchang Shan, Yu Liu, and Todor Stefanov,
"Ensemble of Convolutional Neural Networks for P300 Speller in Brain Com-
puter Interface",
In Proceedings of the 28th International Conference on Artificial Neural Net-
works (ICANN’19), pp. 376-394, Munich, Germany, September 17-19, 2019.

Chapter 5 presents our proposed sensor reduction method for the P300 speller.
This chapter is based on the following publications:

• Hongchang Shan, and Todor Stefanov,
"SLES: A Novel CNN-based Method for Sensor Reduction in P300 Speller,"
In Proceedings of the 41st Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC’19), Berlin, Germany, July
23-27, 2019.

• Hongchang Shan, and Todor Stefanov,
"A Novel Sensor Selection Method based on Convolutional Neural Network for
P300 Speller in Brain Computer Interface",
The 56th ACM/IEEE Design Automation Conference (DAC’19) WIP session,
Las Vegas, NV, USA, June 2-6, 2019.

13

CHAPTER 1. INTRODUCTION

Chapter 6 presents our proposed improved ensemble of CNNs for a P300 Speller
with a small number of sensors. This chapter is based on the following publication:

• Hongchang Shan, Yu Liu, and Todor Stefanov,
"An Empirical Study on Sensor-aware Design of Convolutional Neural Net-
works for P300 Speller in Brain Computer Interface,"
In Proceedings of "12th IEEE International Conference on Human System In-
teraction (IEEE HSI’19)", pp. 5-11, Richmond, Virginia, USA, June 25-27,
2019

Chapter 7 ends this dissertation by providing summary and conclusions regarding
the work presented in this dissertation.

14

Chapter 2

Background

In this chapter, to better understand the contributions of this dissertation, we intro-
duce some background information on machine learning, neural networks, Con-

volutional Neural Networks (CNNs), P300 signals, P300 spellers, the performance
assessment of a P300 speller, and the datasets used in this dissertation.

In this dissertation, our proposed methods for P300-based BCIs are mainly based
on CNNs. A CNN is a specific kind of a neural network. A neural network is a
specific machine learning model in the machine learning field. Thus, first, we briefly
introduce what machine learning is in Section 2.1. Then, we describe how a neural
network works in Section 2.2. After that, we introduce what a CNN is in Section 2.3.
The introductory text of each of the aforementioned sections is excerpts from well-
known books with small modifications. For example, Section 2.1 is based on [Qiu],
Section 2.2.1 and Section 2.2.2 are based on [Hay94], Section 2.2.3 and Section 2.3
are based on [Nie15].

The aim of this dissertation is to research and develop high performance and effi-
cient P300-basedBCI systems. Thus, we also introduce some background information
on P300-based BCIs in Section 2.4.

Finally, in Section 2.5, we describe the datasets used in the dissertation to assess
the performance of our proposed methods for P300-based BCIs.

2.1 Machine Learning

Machine learning is a subfield of artificial intelligence. Machine learning is the sci-
ence of getting computers to learn from data in an autonomous manner [Sam67,
M+97].

Let us take an example to show how the machine learning works and also explain
some other terminologies used in the machine learning field. Suppose that now we

15

CHAPTER 2. BACKGROUND

need to select good apples in a fruit market. How does the machine learning works to
select good apples?

First, we takes some apples from the market. We list the color, shape, and size of
each apple. The color, shape, and size are called the features that are related to apples.
Then, we mark each apple with labels. For example, the label for each apple can be
the label "good" or the label "bad". Labeled features and their corresponding labels
constitute a dataset. Typically, there are two kinds of dataset, i.e., training dataset and
test dataset. A machine learning method learns from the training dataset. The test
dataset is used to assess the performance of this machine learning method.

We use a 3-dimension vector X = [x1, x2, x3] to denote a vector constructed by
the aforementioned apple’s features, where x1, x2, and x3 denote the color, shape, and
size of an apple, respectively. HereX is called a feature vector. We use a 2-dimension
vector y = [y1, y2] to denote a vector constructed by the aforementioned labels for a
apple, where y1 denotes the label "good" and y2 denotes the label "bad". We use
D to denote a training dataset. D is shown in Equation (2.1), where F denotes that
there are in total F apples, which means there are F feature vectors in the training
dataset; X(i), i ∈ [1, F] denotes the ith feature vector in the training dataset, and
y(i), i ∈ [1, F] denotes the corresponding label for X(i).

D = {(X(1), y(1)), (X(2), y(2)), ..., (X(F), y(F))} (2.1)

For the aforementioned given training dataset D, we hope to get a computer to
automatically find a function f(X, θ) to build the mapping from the feature vector
X to the label y, where θ is a set of parameters of the function f(·). The function
f(X, θ) is called a machine learning model. By using algorithm A, we can find a set
of parameters θ∗ that is able to make the function f(X, θ∗) build the mapping from
the feature vectorX to the label y from the training datasetD. This process is called
learning or training. The algorithm A used in the learning or training process to find
θ∗ is called a learning algorithm.

After we find f(X, θ∗) from the training dataset, when we buy new apples next
time, based on the features (that constitute the feature vector) of the new apples X∗,
we can use the aforementioned trained model f(X, θ∗) to predict the labels (i.e., good
apples or bad apples) for these new apples X∗.

To summarize the aforementioned introduction to the machine learning, we show
the workflow of a machine learning method in Figure 2.1. This figure shows that the
input to a machine learning method is a feature vector X , the output of this machine
learning method is the label y. A machine learning model f(X, θ) is used in the
machine learning method. By using a learning algorithm A and the training dataset
D, the machine learning method finds a set of parameters θ∗ that makes the function

16

CHAPTER 2. BACKGROUND

f(X, θ∗) build the mapping from the feature vector X to the label y. After this, the
machine learning method gets a trained model f(X, θ∗). Then, for a new input X∗,
the trained model f(X, θ∗) can predict a label for this new input X∗.

Figure 2.1: The workflow of machine learning.

2.2 Neural Network

A neural network is a specific machine learning model used in the machine learning
method (introduced in Section 2.1). A neural network is made up of neurons . There-
fore, we first introduce what a neuron is in a neural network in Section 2.2.1. Then,
we describe how neurons constitute a neural network in Section 2.2.2. Finally, we
introduce the learning algorithm used for neural networks.

2.2.1 Neurons

In this section, we introduce how a neuron works. First, we describe the model of a
neuron in Section 2.2.1.1. Then, we introduce some functions used in the model of
the neuron in Section 2.2.1.2.

2.2.1.1 Model of a Neuron

A neuron is an information processing unit which is fundamental to the operation
of a neural network. Figure 2.2 shows the model of a neuron. We call this neuron
neuron r. In this figure, neuron r takes several signals, namely, i1, i2, ..., im as inputs
and produces a single output or. From this picture, we can see that a neuron has the
following three basic elements:

17

CHAPTER 2. BACKGROUND

1) A set of connecting links. Each of these links is characterized by a weight wrj ,
j ∈ [1,m]. An input signal ij is connected to neuron r by multiplying the weightwrj ;

2) An adder. This adder sums the input signals (i1, i2, ..., im), weighted by the
corresponding weights mentioned above;

3) An activation function. This activation function limits the amplitude of the
output signal or to some finite value. Typically, the range of the output of a neuron is
limited to [0, 1] or [−1, 1].

Figure 2.2: The model of a neuron.

Figure 2.2 shows that the model of a neuron also includes an externally applied
parameter called bias. The bias is denoted by br in this model of neuron r. The bias
br is used to increase or decrease the input of the activation function.

In mathematical terms, we can model neuron r by using Equations (2.2), (2.3) and
(2.4), where i1, i2, ..., im are the input signals to neuron r; wr1, wr2, ..., wrm are the
weights of neuron r; br is the bias; ϕ(·) is the activation function; and or is the output
of neuron r.

ur =
m∑
j=1

wrjij (2.2)

lr = ur + br (2.3)

18

CHAPTER 2. BACKGROUND

or = ϕ(lr) (2.4)

2.2.1.2 Types of Activation Functions

The aforementioned activation functions, denoted by ϕ(·), defines the output of neu-
ron r. Here, we introduce some basic activation functions:

1) Threshold Function. The threshold function is given by Equation (2.5), where
ϕ(·) denotes the activation function; and lr denotes the input to the activation function
ϕ(·), and lr is defined using Equation (2.3).

ϕ(lr) =

1 if lr ≥ 0

0 if lr < 0
(2.5)

2) Sigmoid Function. The sigmoid activation function is given by Equation (2.6),
where a is a parameter of the sigmoid function to control the output of the sigmoid
function. Note that the output of a sigmoid function is in a continuous range [0, 1]
while the output of the threshold function is ether 1 or 0.

ϕ(lr) =
1

1 + exp(−alr)
(2.6)

3) Rectified Linear Unit (ReLU) Function. The ReLU function is given by Equa-
tion (2.7). ReLU is by far the most commonly used activation function in CNNs.

ϕ(lr) = max(0, lr) (2.7)

4) Softmax Function. The Softmax function is given by Equation (2.8), where p
denotes that there are p neurons in total in a layer of a neural network. The layer of a
neural network is described in Section 2.2.2.

ϕ(lr) =
elr∑p
n=1 e

ln
(2.8)

19

CHAPTER 2. BACKGROUND

2.2.2 The Architecture of a Neural Network

Neurons constitute a neural network. In this section, we describe the architecture of a
neural network that is constructed by the neurons. For better readability, we simplify
the model of a neuron shown in Figure 2.2 with the graph shown in Figure 2.3. This
means that the graph shown in Figure 2.3 denotes neuron r with input signals i1, i2,
..., im and an output or. How neuron r works in this graph is given by Equations (2.2),
(2.3) and (2.4) (For details please see Section 2.2.1.1).

Figure 2.3: Architectural graph to model a neuron.

In a neural network, the neurons are organized in the form of layers. In the simplest
form of a neural network, we have an input layer of input signals that projects onto an
output layer of neurons. We call this neural network the single-layer neural network.
Here "single-layer" refers to the output layer of the network. We do not count the
input layer of this network because there is no computation performed in the input
layer. Figure 2.4 shows an example of a single-layer neural network. In this example,
this single-layer neural network has four input signals and has one output layer of four
neurons that produce outputs.

Typically, a neural network has more than one layer. Compared with a single-
layer neural network, a neural network with more complex architecture has several
layers of neurons. Such network is called a multi-layer neural network. In addition to
the output layer and the input signals, a multi-layer neural network has one or more
hidden layer of neurons. The function of the hidden layer of neurons is to intervene
between the external input signals and the outputs of the network. By adding one
or more hidden layers for the network, the network is enabled to extract higher-order
features related to the input signals. The ability of extracting higher-order features by

20

CHAPTER 2. BACKGROUND

Figure 2.4: An example of a single-layer neural network.

the hidden layers of neurons is particularly valuable when the size of the input layer is
large. Figure 2.5 shows an example of a multi-layer neural network with one hidden
layer and one output layer. In this example, this multi-layer neural network has 4 input
signals, one hidden layer with 4 neurons, and the output layer with 2 neurons. The
input signals are the input to the hidden layer of this network. The output signals of
this hidden layer are the input to the output layer of the network. Typically, the input
to the neurons in each layer of a multi-layer neural network is the output signals of its
preceding layer only. The neural network shown in Figure 2.5 is also called a fully-
connected neural network in the sense that every node in each layer of the network is
connected to every other node in the adjacent forward layer. Here a node denotes an
input signal or a neuron in the graph shown in this figure.

2.2.3 Learning Process of a Neural Network

As discussed in Section 2.1, when we use a neural network as a machine learning
model, we need to use a learning algorithm to find a set of parameters, i.e., the weights
and biases of all neurons in the neural network, that make this neural network be able
to map input X to label y in the training dataset. However, the learning algorithm is
not able to calculate the perfect weights and biases for a neural network. Instead, the

21

CHAPTER 2. BACKGROUND

Figure 2.5: An example of a multi-layer neural network with one hidden layer and one
output layer.

learning process of a neural network is regarded as an optimization problem, where
the learning algorithm is used to explore the space of possible sets of weights and
biases for the neural network. We use a function to evaluate a candidate solution (i.e.
a set of weights and biases for the neural network). This function is called a cost
function or a loss function. For example, we can define a cost function as given in
Equation (2.9). In this equation, X denotes the input vector in the training dataset
and X(i) is the ith input feature vector in the training dataset. y denotes the desired
output of the network and y(i) is the desired output of the networkwhen the input to the
network isX(i). fNN (·) denotes the neural network. W denotes all the weights in the
neural network. B denotes all the biases in the network. F denotes the total number of
input feature vectors. This loss function is called the Mean Squared Error (MSE) cost
function. From this cost function, we can see that C(W,B) is non-negative. When
the cost C(W,B) becomes very small, i.e., C(W,B) is close to 0, fNN (X,W,B) is
approximately equal to y. This means that the learning algorithm has found very good
weightsW and biases B such that the neural network with these weights and biases
approximately maps the input of this network X to the desired output of the network
y. In contrast, when the cost C(W,B) is large, this means that fNN (X,W,B) is not
equal to y, showing that our neural network with the weights W and the biases B

22

CHAPTER 2. BACKGROUND

cannot map well the input of this networkX to the output of the network y. Now, the
cost function that is commonly-used for a neural network is called the cross-entropy
cost function. The cross-entropy cost function is given in Equation (2.10). In this
equation, E denotes that there are E neurons in the output layer of a neural network.
y
(i)
j denotes the desired output of the jth neuron in the output layer of a neural network
when the input to the network isX(i). fNNj (X

(i),W,B) denotes the actual output of
the jth neuron in the output layer of a neural network when the input to the network
is X(i).

C(W,B) =
1

F

F∑
i=1

‖y(i) − fNN (X(i),W,B)‖2 (2.9)

C(W,B) = − 1

F

F∑
i=1

E∑
j=1

[y
(i)
j log(fNNj (X

(i),W,B)) + (1− y(i)j)log(1− fNNj (X
(i),W,B))] (2.10)

From the aforementioned description, we can see that the objective of the learning
algorithm is to minimize the cost C(W,B). More specifically, we seek to find a set
of weights W and biases B that minimize this cost as much as possible. For better
readability, we use C(v) to denote a cost function. C(v) can be a function of many
parameters such as v = v1, v2, ..., vh. Suppose C is a function of just two parameters
v1, v2. Figure 2.6 shows an example of function C with v1 and v2. Our object is to
find v1, v2 where C achieves its global minimum. For the simple function shown in
Figure 2.6, we can use calculus to try to find the minimum analytically. We could
compute derivatives and then try using them to find places where C is an extremum.
However, the cost function of a neural network can have many more parameters and
be much more complex because a neural network contains much more parameters,
i.e., the weights and biases of all neurons in the network. For example, very large
neural networks have cost functions that depend on billions of weights and biases. It
is impossible to use calculus to minimize the cost function.

To solve the aforementioned minimization problem, we can use a method, called
gradient descent. We use an analogy to explain how the gradient descent method
works to solve this minimization problem. This analogy is shown in Figure 2.7. As
shown in this figure, we can think of our cost function as a kind of a valley and imagine
a ball rolling down the slope of the valley. When the ball reaches the bottom of this
valley, this means we find the minimum of the cost function. Then, the problem comes
to how we make a rule that makes the ball roll down to the bottom of the valley. We
can use the calculus to describe the move of a ball with a small amount4v1 in the v1
direction and a small amount 4v2 in the v2 direction by using Equation (2.11). We

23

CHAPTER 2. BACKGROUND

Figure 2.6: An example of cost function C with two parameters v1 and v2.

need to find4v1 and4v2 that make4C negative (negative4C means that the ball is
rolling down into the valley). We define that4v is equal to (4v1,4v2)T as shown in
Equation (2.12), where T is the transpose operation that turns row vectors into column
vectors in a matrix. We define that the gradient of C, denoted by5C, is equal to the
vector of partial derivatives (∂C∂v1 ,

∂C
∂v2

)T , as shown in Equation (2.13). With these
definitions, Equation (2.11) can be rewritten to be Equation (2.14). In order to make
4C negative, we can make4v to be equal to −η5 C as shown in Equation (2.15),
where η is a small, positive parameter, called the learning rate. Then, by combing
Equation (2.14) and Equation (2.15),4C = −η5C · 5C = −η‖5C‖2. Because
‖5C‖2 ≥ 0 and η > 0,4C ≤ 0. This means that C will always decrease and never
increase. Thus, we use Equation (2.15) to define the rule of how to move the ball in
the gradient descent algorithm. This means that we use Equation (2.15) to compute a
value4v and then move the position of the ball v to a new position v′ by the amount
of 4v, as shown in Equation (2.16). Then we will use updated rule again to make
another movement of the ball. By keeping doing this, we can decrease C until we
reach a global (approximate) minimum of the cost function C.

4C ≈ ∂C

∂v1
4 v1 +

∂C

∂v2
4 v2 (2.11)

4v = (4v1,4v2)T (2.12)

24

CHAPTER 2. BACKGROUND

Figure 2.7: The analogy of using gradient descent to minimize a cost function.

5C = (
∂C

∂v1
,
∂C

∂v2
)T (2.13)

4C ≈ 5C · 4v (2.14)

4v = −η5 C (2.15)

v → v′ = v − η5 C (2.16)

The aforementioned discussion describes how the gradient descent method works
when the cost function C has two parameters. When C is a function of h parameters,
i.e., v1, v2, ..., vh, 5C is calculated using Equation (2.17). We repeatedly apply the
rule shown in Equation (2.18) until we reach a global (approximate) minimum of the
cost function C.

5C = (
∂C

∂v1
,
∂C

∂v2
, ...,

∂C

∂vh
)T (2.17)

25

CHAPTER 2. BACKGROUND

v → v′ = v − η5 C (2.18)

In fact, for a neural network, v is constituted by all weightsW=w1, w2, ..., wd and
all biases B=b1, b2, ..., bg. Therefore, to update the weights of a neural network, we
repeatedly apply the rule shown in Equation (2.20) to reach a global (approximate)
minimum of the cost function C. In Equation (2.20),5CW is calculated using Equa-
tion (2.19). Also, to update the biases of a neural network, we repeatedly apply the
rule shown in Equation (2.22) to reach a global (approximate) minimum of the cost
function C. In Equation (2.22),5CB is calculated using Equation (2.21).

5CW = (
∂C

∂w1
,
∂C

∂w2
, ...,

∂C

∂wd
)T (2.19)

W →W ′ =W − η5 CW (2.20)

5CB = (
∂C

∂b1
,
∂C

∂b2
, ...,

∂C

∂bg
)T (2.21)

B → B′ = B − η5 CB (2.22)

Now, researchers often use the gradient descent method with momentum, which
is called the momentum-based gradient descent method. The momentum technique
modifies the gradient descent method in two ways. Firstly, the momentum technique
introduces a notion of “velocity” for the parameters we optimize. The gradient descent
method changes the “velocity” of the parameters, not (directly) the “position” of the
parameters, and only indirectly affects the “position” of the parameters. Secondly,
the momentum technique introduces a friction term, which can gradually reduce the
“velocity” of the parameters. In mathematical terms, the momentum-based gradient
descent method replaces the updating rule for W (given in Equation (2.20) used in
the gradient descent method without momentum) with a new updating rule given in
Equation (2.23), and (2.24), where Vw denotes the aforementioned “velocity” forW ,
and µ denotes the aforementioned friction term and is called the momentum param-
eter. Also, the momentum-based gradient descent method replaces the updating rule

26

CHAPTER 2. BACKGROUND

for B (given in Equation (2.22) used in the gradient descent method without momen-
tum) with a new updating rule given in Equation (2.25), and (2.26), where Vb denotes
the aforementioned “velocity” for B.

Vw → V ′w = µVw − η5 CW (2.23)

W →W ′ =W + V ′w (2.24)

Vb → V ′b = µVb − η5 CB (2.25)

B → B′ = B + V ′b (2.26)

One problem of the learning process of a neural network is called overfitting.
Overfitting happens when a neural network learns the details and noise from the train-
ing data to the extent that it negatively impacts the performance of this neural network
on new data. This means that the noise or random fluctuations in the training data is
learned by the neural network. Unfortunately, the learned noise or random fluctua-
tions cannot apply on new data, thereby negatively impacting the generalizing ability
of the network.

In order to reduce the overfitting, one commonly-used technique, called weight
decay, is utilized. The weigh decay technique modifies the updating rule for weights
W and does not change the updating rule for biasesB in the gradient descent method.
The gradient descent methodwith weight decay replace the updating rule forW (given
in Equation (2.20) used in the gradient descent method without weight decay) with
a new updating rule given in Equation (2.27). In Equation (2.27), λ is called the
weight decay parameter; F denotes the total number of input feature vectors and η is
the learning rate. The updating rule for B used in the gradient descent method with
weight decay is the same as the updating rule for B (given in Equation (2.22)) used
in the gradient descent method without weight decay.

W →W ′ = (1− ηλ

F
)W − η5 CW (2.27)

27

CHAPTER 2. BACKGROUND

2.3 Convolutional Neural Network
Convolutional Neural Network (CNN) is a specific kind of neural network. In re-
cent years, CNNs have been the most commonly-used neural networks to recognize
images.

When using a fully-connected neural network (introduced in Section 2.2.2) to rec-
ognize images, the fully-connected neural network has the problem that it uses a large
number of parameters to recognize images. Before introducing this problem, let us
first describe how to use a neural network to recognize images. Let us take the hand-
written digit recognition as an example of image recognition. The handwritten digits
recognition is to recognize what digit (e.g., 1,3, 6,...) is for an image of a handwritten
digit (shown in Figure 2.8). From the discussion in Section 2.1 and Section 2.2.3,
we can see that when using the machine learning method to recognize a handwritten
digit, we need to develop a machine learning model. Here, we use a neural network,
denoted by fNN (X,W,B), as a machine learning model, where fNN denotes a neu-
ral network;W denotes all the weights in the neural network;B denotes all the biases
in the network. X is called a tensor and denotes the inputs to the neural network. For
example, ifX is an image with 640× 480 pixels, we callX a (640× 480) tensor. We
train this neural network fNN (·) with the training dataset that consists of handwritten
digits with their corresponding labels (e.g., 1, 3, 6). As introduced in Section 2.2.3,
the gradient descent is used to find the weightsW and biases B that make the neural
network fNN (X,W,B) build the (approximate) mapping from the handwritten digits
to the labels. Then, for a new handwritten digit, the trained neural network can predict
a label for this new handwritten digit.

Figure 2.8: Images of the handwritten digits.

Up to this point, we have known how to use a neural network to recognize images
of handwritten digits. Now let us introduce the reason of why the fully-connected
neural network has the problem of using a large number of parameters to recognize
images. In the aforementioned example of the handwritten digit recognition, the input

28

CHAPTER 2. BACKGROUND

is an image of a handwritten digit. This image is 28× 28 pixel image. This means that
the number of the input signals in the input layer of a fully-connected neural network
is 784 = 28 × 28. Suppose a simple fully-connected neural network which architec-
ture is a 2-layer network with one hidden layers and one output layer. We suppose
that each hidden layer has 10 neurons and the output layer of this neural network has
10 neurons. The number of parameters (i.e., all weights and biases) of this neural
network is (784× 10+10) + (10× 10 + 10) = 7960. Unfortunately, such simple fully-
connected neural network cannot work well to recognize handwritten digits. Suppose
a more complex fully-connected neural network which architecture is a 3-layer net-
work with two hidden layers and one output layer. Each hidden layer of this network
has 50 neurons, and the output layer still has 10 neurons. The number of parameters
of this network is 42290. From this example, we can see that with the increase of
the number of hidden neurons and hidden layers, the number of the parameters of a
fully-connected layer is dramatically increased. This means that when we design a
fully-connected neural network that can be useful for image recognition, the number
of the parameters of such network will be large. The large number of parameters dra-
matically increases the time of training such fully-connected neural network because
in the training process, the gradient descent algorithm will need quite a long time to
find a large number of parameters that make this network (approximately) maps the
handwritten digits to the labels (For details of the training process of a neural network,
please see Section 2.2.3).

To address the aforementioned problem of the fully-connected neural network,
Convolutional Neural Network is proposed to recognize images. The name "Convo-
lutional Neural Network" indicates that this neural network utilizes a mathematical
operation called convolution. We will introduce what the convolution operation is
in Section 2.3.1. Then, we introduce the characteristics of a CNN in Section 2.3.2.
Finally, we introduce the architecture of a CNN in Section 2.3.3.

2.3.1 The Convolution Operation

The convolution operation is an important operation in analytical mathematics. In this
section, we introduce the 2-dimension convolution operation because the 2-dimension
convolution operation is widely used for image recognition and also used in our pro-
posed CNN-based methods for P300-based BCIs in this dissertation.

The 2-dimension convolution operation is defined by Equation (2.28), where ⊗
denotes the convolution operation. Z,X , andK are 2-dimensionmatrices. X denotes
the input matrix to the convolution operation;Z denotes the outputs of the convolution
operation; K is called the kernel of the convolution operation. (k1, k2) is called the
kernel size. (s1, s2) is called the stride. In Equation (2.28), Z(i, j) denotes the datum
in the ith row and the jth column of the matrix Z; X(i, j) denotes the datum in the

29

CHAPTER 2. BACKGROUND

ith row and the jth column of the matrix X; and K(m,n) denotes the datum in the
mth row and the nth column of the matrixK.

Z(i, j) = (X ⊗K)(i, j)

=

k1−1∑
m=0

k2−1∑
n=0

X((i− 1)s1 + 1 +m, (j − 1)s2 + 1 + n)K(m,n)
(2.28)

2.3.2 The Characteristics of Convolutional Neural Network

A CNN has three characteristics, i.e., the receptive field, the parameter sharing, and
the pooling layers. We introduce these three characteristics in turn with the following.

1) Receptive Field. Firstly, we introduce what a receptive field in a CNN is. We
still take the handwritten digit recognition as an example to describe the receptive
field. When using a CNN to recognize the handwritten digits, the input to a CNN is a
28 × 28 pixel image. Let us take this input as a 28 × 28 square of input neurons, as
shown in Figure 2.9. In this figure, the value of each input neuron is the value of the
corresponding pixel in the image. We take a small region of the input neurons to con-
nect each hidden neuron in the first hidden layer of the CNN, as shown in Figure 2.10.
In this figure, we take a 5× 5 region, containing 25 input neurons that corresponding
to 25 input pixels, to connect to each hidden neuron in the hidden layer of the CNN.
The region, which contains several neurons in a layer and is connected to a neuron
in the next layer, is called the receptive field. Each connection which connects the
receptive field with the hidden neuron represents a weight. One hidden neuron uses
one bias. In this way, a hidden neuron is used to learn the features from a receptive
field of input neurons. We then slide the receptive field across the entire input image,
as shown in Figure 2.11 and Figure 2.12. For example, as shown in Figure 2.11, first,
the receptive field in the top-left corner is connected to the top-left hidden neuron in
the first hidden layer. Then, as shown in Figure 2.12, we slide the receptive field over
by one pixel to the right (i.e., by one input neuron) to connect to the second hidden
neuron in the first hidden layer. For each receptive field, there is a corresponding hid-
den neuron connected with this receptive field in the hidden layer. In this way, we
build a hidden layer, and this hidden layer is called a feature map.

2) Parameter Sharing. Secondly, we introduce the parameter sharing in the
CNN. Here, the parameter denotes that weights and biases used in a CNN. As de-
scribed above, each hidden neuron in the hidden layer uses one biases and some
wights that are connected to the corresponding receptive field. The parameter shar-
ing means that all the neurons in a hidden layer of a CNN use the same weights and
bias. The characteristic of parameter sharing in CNN is able to significantly reduce
the number of parameters. Thus, the parameter sharing can solve the problem in the

30

CHAPTER 2. BACKGROUND

Figure 2.9: Input neurons to a CNN.

Figure 2.10: Connecting a region of input neurons to a hidden neuron.

fully-connected neural networks, i.e., the fully-connected neural networks use a large
number of parameters when used to recognize a image.

3) Pooling Layers. Finally, we introduce the pooling layers in the CNN. Pooling
layers are often used after the convolution layers. A pooling layer converts each feature
map from the convolution layer into a condensed feature map by summarizing a region
of neurons in the feature map. Figure 2.13 shows an example of the procedure of the
pooling operation, called max-pooling. In this example, the pooling operation takes
the maximum in the region of 2 × 2 neurons as a unit in the pooling layer. A CNN
often uses more than one feature map, and the pooling is applied to each feature map,
separately. Thus, if there are 5 feature maps, the pooling layer will output 5 condensed
feature maps.

31

CHAPTER 2. BACKGROUND

Figure 2.11: Connecting the region of input neurons to a hidden neuron in the hidden
layer in the CNN.

2.3.3 The Architecture of Convolutional Neural Network

After introducing the characteristics of the CNN, we describe the architecture of a
CNN. The architecture of a CNN consists of three kinds of layers, i.e., convolution
layers, pooling layers and fully-connected layers. A convolution layer performs the
convolution operation introduced in Section 2.3.1. A pooling layer performs the pool-
ing operation described in Section 2.3.2. A fully-connected layer performs the fully-
connected operation shown in Section 2.2.2. Figure 2.14 shows an example of the
architecture of a CNN used to recognize the handwritten digits. In this example, the
input to the CNN is a 28 × 28 pixel image of a handwritten digit. The CNN has one
convolution layer, one pooling layer, and one fully-connected layer. The input to the
convolution layer is 28 × 28 input neurons. The convolution layer outputs 3 feature
maps. These three feature maps are the input to the pooling layer. The pooling layer
apply the pooling operation and outputs 3 condensed feature maps. These condensed
feature maps are the input to the fully-connected layer. This fully-connected layer
has 10 neurons that correspond to the 10 possible labels (e.g., 0, 1, 2, 3, ..., 9) of the
handwritten digits. This fully-connected layer connects each of the 10 neuron with
the condensed feature maps generated from the pooling layer.

2.4 P300-based Brain Computer Interface

In this dissertation, we focus on P300-based BCIs. The P300 signal is the target sig-
nal used in a P300-based BCI and the P300 speller is the benchmark and the most
commonly-used application of a P300-based BCI. First, we introduce some back-
ground information on the P300 signal and the P300 speller in Section 2.4.1 and Sec-

32

CHAPTER 2. BACKGROUND

Figure 2.12: Connecting second region of input neurons to a hidden neuron in the
hidden layer in the CNN.

Figure 2.13: An example of the pooling operation in the CNN.

tion 2.4.2, respectively. Then, we describe the metrics to assess the performance of
the P300 speller in Section 2.4.3.

2.4.1 P300 Signal

Chapman and Bragdon first discovered the P300 signal in 1964 [CB64]. The P300
signal is a kind of an event-related potential (ERP). The P300 signal, recorded in EEG,
occurs with a positive deflection in voltage at a latency about 300ms after a rare stim-
ulus, as shown in Figure 2.15. The P300 signal is also called P3 wave because it is the
third major positive peak in the late sensory and the late positive component [Pic92].

The P300 signal is an endogenous evoked potential because the evoking of a P300
signal does not have any relationship with the physical attributes of a stimulus, but has

33

CHAPTER 2. BACKGROUND

Figure 2.14: An example of the architecture of a CNN used for the handwritten digit
recognition.

a relationship with a subject’s (person’s) reaction to the stimulus. The P300 signal is
usually elicited using the oddball paradigm. In this paradigm, the target stimulus
appears in low probability while the non-target stimulus appears in high probability.
The subject in this paradigm is detecting a rare target stimulus among the non-target
stimuli. The P300 signal is only able to be evoked in the subject’s brain when this
subject detects the rare target stimulus.

The P300 signal is typically measured most strongly by the electrodes covering
the parietal lobe. The amplitude of a P300 signal varies with the rareness of the target
stimulus. The latency of a P300 signal varies with the difficulty of discriminating
the target stimulus from the non-target stimuli. For example, the typical latency of
a P300 signal evoked in a young healthy adult is about 300ms while the latency of
a P300 signal evoked in subjects (persons) with decreased cognitive ability is longer
than 300ms. Due to its reproducibility and ubiquity, the P300 signal is a common
choice for psychological tests in both the clinic and laboratory.

From the aforementioned description of the P300 signal, we can infer when the
subject detects a target stimulus by detecting the evoked P300 signal in the subject’s
brain signals. The detection of P300 signals from brain signals can be considered as

34

CHAPTER 2. BACKGROUND

Figure 2.15: P300 signal.

a binary classification problem. There are two classes in this classification problem:
one class corresponds to the presence of a P300 signal within a certain time period
while the second class corresponds to the absence of a P300 signal within the time
period. If we useE to denote a classifier (e.g., a CNN as introduced in Section 2.3) to
classify the P300 signal, and X to denote the subject’s brain signals within a certain
time period, the P300 signal detection process can be expressed as Equation (2.29).
In this equation, P 1 denotes the probability, predicted by this classifier, of having a
P300 signal in this time period, P 0 denotes the probability, predicted by this classifier,
of not having a P300 signal in this time period.

E(X) =

{
1 if P 1 > P 0

0 otherwise
(2.29)

2.4.2 The P300 Speller

Farwell and Donchin developed the first P300-based BCI character speller in 1988
[FD88]. The subject in the experiment is presented with a 6 by 6 character matrix
(see Figure 2.16) and he focuses his attention on a target character he wants to spell.
All rows and columns in this matrix are intensified successively and randomly but
separately. Each row or column intensification lasts for time period t1, followed by
a blank time period of the matrix t2. Two out of twelve intensifications contain the
target character, i.e., one target row and one target column. As a result, the target

35

CHAPTER 2. BACKGROUND

row/column intensification becomes a rare stimulus to the subject. A P300 signal is
then evoked by this rare stimulus. By detecting the P300 signal, we can infer which
row or column the subject is focused on. By combing the row and column positions,
we can infer the target character position. After the inference of one character, the
matrix is blank for time period t3 to inform the subject that the current character is
completed and to focus on the next character.

Figure 2.16: P300 speller character matrix.

Assume that one epoch includes 12 intensifications, in which there exist one tar-
get row intensification and one target column intensification. Then, in theory, one
epoch is sufficient to infer one target character. However, in practice, since the P300
signal has a very low Signal to Noise Ratio (SNR) and is also influenced by arti-
facts, one epoch can hardly be sufficient to infer one target character correctly. As a
result, in practice, experimenters use many epochs to help the subject spell one char-
acter. The detailed calculation for determining the position of the target character is
given in Equations (2.30), (2.31), and (2.32), where P 1

(i,j) denotes the probability of
the presence of a P300 signal in the jth intensification and the ith epoch, Sum(j)

denotes the sum of the probabilities for the jth intensification when using k epochs,
indexcol denotes the column index of the target character in the matrix in Figure 2.16,
and indexrow denotes the row index of the target character. When j ∈ [1, 6], j de-
notes a column intensification. When j ∈ [7, 12], j denotes a row intensification.
Equation (2.30) cumulates the probabilities of having a P300 signal evoked by inten-
sification j over k epochs. In Equation (2.31), we assign the index of the maximum
Sum(j) to indexcol when j ∈ [1, 6]. This equation finds the index of the column
intensification, with the maximum sum of probabilities, to have evoked a P300 sig-
nal. This index is the column position of the target character when using k epochs.

36

CHAPTER 2. BACKGROUND

In Equation (2.32), the row position of the target character when using k epochs is
calculated in the same way as in Equation (2.31). The position of the target character
in the matrix in Figure 2.16 is the coordinate formed by the target row position and
the target column position.

Sum(j) =
k∑

i=1

P 1
(i,j) (2.30)

indexcol = argmax
1≤j≤6

{Sum(j)} (2.31)

indexrow = argmax
7≤j≤12

{Sum(j)} (2.32)

2.4.3 Performance Assessment of P300 Speller

As indicated in Chapter 1, in this dissertation, we use the P300 speller as the bench-
mark application of a P300-based BCI. As the benchmark application of a P300-based
BCI, we needmetrics to assess the performance of the P300 speller. More specifically,
we need metrics to assess the communication accuracy and the communication speed
of the P300 speller. As typically done in related research works for the P300 speller,
we use the character spelling accuracy to assess the communication accuracy of the
P300 speller as well as we use the Information Transfer Rate (ITR) to assess the com-
munication speed of the P300 speller.

To calculate the character spelling accuracy of the P300 speller, we use Equa-
tion (2.33). In this equation, accchar(k) denotes the character spelling accuracy when
using k epochs for each character (see Section 2.4.2), Ntc(k) denotes the number of
correctly inferred characters when using k epochs for each character, and Sc denotes
the number of all characters.

accchar(k) =
Ntc(k)

Sc
(2.33)

In addition to using the character spelling accuracy to assess the communication
accuracy of the P300 speller, we also use the Information Transfer Rate (ITR) for
the assessment of the communication speed of the P300 speller. ITR has been the
most commonly applied metric to assess the communication speed of P300-based
BCIs [WW12, LWG16, NRS17, IKV18]. ITR has been introduced by Shannon and
Weaver [SW49]. It is calculated by Equation (2.34) [WRMP98], where accchar(k) is
calculated using Equation (2.33) andNcla is the number of classes. Here, we have 36
characters to spell (see Figure 2.16), soNcla =36. Tk denotes the time needed to spell

37

CHAPTER 2. BACKGROUND

a character when using k epochs. Tk is calculated using Equation (2.35), where t1,
t2, and t3 are the time periods described in the first paragraph of Section 2.4.2. For
more detailed explanation of Equation (2.34), please refer to [WRMP98].

ITRk =
60(accchar(k) log2(accchar(k)) + (1− accchar(k)) log2(

1−accchar(k)
Ncla−1) + log2(Ncla))

Tk
(2.34)

Tk = t3 + 12× (t1 + t2)× k 1 ≤ k ≤ 15 (2.35)

Here, we calculate the theoretical maximum ITR when the datasets described in
Section 2.5 are used in this dissertation because we want to compare the ITR achieved
by ourmethods with the theoretical maximum ITR.When using the datasets described
in Section 2.5, Ncla=36, t1=100ms, t2=75ms, and t3=2.5s (for details please refer to
Section 2.5). The theoretical maximum ITR is achieved when we use the least time
to spell a character and achieve the highest spelling accuracy. The least time to spell
a character means that we use only one epoch to spell a character. i.e., k=1. Thus, the
least time we use to spell a character is T1= 2.5s + 12 × (0.1s+0.075s) = 4.6s. The
highest spelling accuracy is 100% (i.e., accchar(1) = 1). As a result, the theoretical
maximum ITR when using the datasets described in Section 2.5 is 60 log2(36)

4.6 bits/min
= 67.43 bits/min.

2.5 Datasets
This dissertation uses three benchmark datasets, namely, BCI Competition II - Data
set IIb [Bla03] as well as BCI Competition III - Data set II Subject A and Subject
B [Bla08]. Since many methods for P300-based BCIs use these three benchmark
datasets, we can fairly compare the character spelling accuracy and ITR, introduced
in Section 2.4.3, achieved by our CNN-based P300 speller with the character spelling
accuracy and ITR achieved by other state-of-the-art methods for the P300 speller.
Here, we give a short description of the three datasets.

BCI Competition II - Data set IIb and BCI Competition III - Data set II Subject
A and Subject B are provided by the Wadsworth Center, NYS Department of Health.
They are recorded with the BCI2000 platform [SMH+04], using the P300 speller
described in Section 2.4.2. EEG signals are collected from 64 sensors at a sampling
frequency of 240Hz. One intensification lasts for time period t1=100ms, followed by
a blank time period of the matrix t2=75ms. The experiment uses 15 epochs for each
character. Each character epoch is represented by 12 sets of signal samples. One set
of signal samples, as shown in Figure 2.17, is a (N , C) matrix. In this matrix, each

38

CHAPTER 2. BACKGROUND

row hasN = Ts×Fs (Fs is the signal sampling frequency) signal samples in the time
period between 0 and Ts posterior to the beginning of each intensification, and each
column has the signals samples taken at the same time from all C sensors used in the
EEG headset. After each sequence of 15 epochs, the matrix is blank for time period
t3=2.5s to inform the subject that the current character is completed and to focus on
the next character.

Figure 2.17: An example of a set of signal samples, where Fs is the signal sampling
frequency

In BCI Competition II - Data set IIb, there is one subject with separate training
and test datasets. The training dataset has 42 characters and the test dataset has 31
characters. In each character epoch, represented by 12 sets of signal samples, 2 sets
have a P300 signal and 10 sets do not have a P300 signal. So, the training dataset has
42 × 15 × 2 = 1260 sets of signal samples labelled “P300”, and there are 42 × 15 ×
10 = 6300 sets labelled “non-P300”. The test dataset has 930 sets of signal samples
labelled “P300” and 4650 sets labelled “non-P300”.

In BCI Competition III - Data set II, there are two subjects. We call them Subject
A and Subject B. For each subject, the training dataset has 85 characters and the test
dataset has 100 characters. So, the training dataset has 2550 sets of signal samples
labelled “P300” and 12750 sets labelled “non-P300”. The test dataset has 3000 sets
of signal samples labelled “P300” and 15000 sets labelled “non-P300”.

Table 2.1 shows the number of P300s/non-P300s for each dataset. II denotes BCI
Competition II - Data set IIb, III-A denotes BCI Competition III - Data set II Subject
A, and III-B denotes BCI Competition III - Data set II Subject B.

39

CHAPTER 2. BACKGROUND

Table 2.1: Number of P300s/non-P300s for each dataset.

Dataset Train Test
P300 non-P300 P300 non-P300

II 1260 6300 930 4650
III-A 2550 12750 3000 15000
III-B 2550 12750 3000 15000

40

Chapter 3

A Simple Convolutional Neural
Network for P300 Signal Detection
and Character Spelling

Hongchang Shan, Yu Liu, and Todor Stefanov,
"A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain
Computer Interface,"
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18), pp.
1604-1610, Stockholm, Sweeden, July 13-19, 2018.

The P300 speller has been the benchmark and the most-commonly used application
of P300-based BCI systems [FRAG+12]. Previous research on the P300 signal

detection and character spelling in the P300 speller uses traditional machine learning
methods, namely manually-designed signal processing techniques for feature extrac-
tion aswell as classifiers like Support VectorMachine (SVM) and Linear Discriminant
Analysis (LDA). It focuses on enhancing P300 potentials [RS+09], extracting useful
features [Bos04], choosing the most relevant EEG sensors [CR+11], or removing ar-
tifacts caused by the muscle contraction [GZW10], the eye movement [MWV+10]
and the body movement [GG+10]. Unfortunately, manually-designed feature extrac-
tion and traditional classification techniques have the following problems: 1) they can
only learn the features that researchers focus on but lose or remove other underlying
features; 2) brain signals have subject-to-subject variability, which makes it possible
that methods performing well on certain subjects (with similar age or occupation)
may not give a satisfactory performance on others. These problems limit the poten-
tial of manually-designed feature extraction and traditional classification techniques
for further P300 signal detection and character spelling accuracy improvements.

41

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

In recent years, deep learning, especially using Convolutional Neural Networks
(CNNs), has achieved significant performance improvements in the computer vision
field [KSH12, SZ14, HZRS16]. Deep CNNs have the advantage of automatically
learning feature representations from raw data1. They can learn not only something
we know but also something important and unknown to us. Automatically learning
from raw data has better ability to achieve good results which are invariant to dif-
ferent subjects. Thus, CNNs are able to boost the full potential of recognizing BCI
signals, overcoming the aforementioned shortcomings of traditional machine learning
methods.

Therefore, in recent years, researchers have started to design (deep) CNNs for
P300-based BCIs [CG11,MG15, LWG+18] and achieved better P300 signal detection
and character spelling accuracy than traditional techniques. However, these CNNs
have some limitations in increasing the P300 signal detection and character spelling
accuracy. These CNNs first use a spatial convolution layer to learn P300-related spa-
tial features from raw signals. Then, they use several temporal convolution layers to
learn P300-related temporal features from the abstract temporal signals generated by
the spatial convolution layer (the first layer). In this way, the input to the temporal
convolution layers is the abstract temporal signals instead of raw temporal signals. In
fact, raw temporal signals are more important to learn P300-related temporal feature.
Therefore, these CNN architectures cannot learn P300-related temporal features well
and this leads to problems that: 1) they prevent further P300 signal detection and
character spelling accuracy improvements; 2) they require high network complexity
to achieve competitive accuracy, which prevents the use of these CNNs for practical
mobile-based BCIs [WWJ11, CFF16].

To solve the problems mentioned above, we propose a simple, yet efficient CNN
architecturewhich can capture feature representations from both raw temporal and raw
spatial information. The network complexity is significantly reduced while increasing
the P300 signal detection accuracy, character spelling accuracy, and the communica-
tion speed. The novel contributions of this chapter are the following:

• We propose a CNN architecture with only one convolution layer. Our CNN is
able to better learn P300-related features from both raw temporal information
and raw spatial information. Our CNN exhibits much lower network complexity
compared to other state-of-the-art CNNs [CG11,MG15, LWG+18] for the P300
speller.

• We perform experiments on three benchmark datasets and compare our results

1In this dissertation, we use “raw data, information, or signals” to denote the data that is only pre-
processed (e.g., bandpass filtering and normalization) but not abstracted by a feature extraction method
(e.g., a CNN).

42

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

with those in previous research works that report the best results. The com-
parison shows that our proposed CNN can increase the P300 signal detection
accuracy with up to 14.23% and the character spelling accuracy with up to
35.49%. The comparison also shows that our proposed CNN achieves compara-
ble communication speed with the related BN3 method [LWG+18]. Moreover,
our CNN achieves higher communication speed compared to other state-of-the-
art related methods [CG11, MG15, RG08, Bos04].

The rest of this chapter is organized as follows: Section 3.1 describes the related
work. Section 3.2 presents our proposed CNN. Section 3.3 compares the complexity,
the P300 signal detection accuracy, the character spelling accuracy, and the communi-
cation speed between the proposed CNN and other methods for P300 signal detection
and character spelling. Section 3.4 ends this chapter with conclusions.

3.1 Related Work

The general architecture of the CNNs for P300-based BCI [CG11, MG15, LWG+18]
uses the input tensor2 (N × C) shown in Figure 3.1, whereN denotes the number of
temporal signal samples and C denotes the number of sensors used for EEG signal
recording and obtaining the samples. This architecture has three stages. In the first
stage, it performs convolution along space to learn P300-related spatial features. In
the second stage, it performs convolution along time to learn P300-related temporal
features. In the final stage, it uses fully-connected layers to make accurate correlation
between learned features and a particular class.

Cecotti [CG11] is the first to propose the aforementioned architecture. Let us call
his architecture CCNN. Table 3.1 shows the detailed architecture of CCNN. The first
column in the table describes the sequence of layers. The second column describes
the operation in a layer. The third column describes the kernel size of the convolution
operation3 in the convolution layers. The last column describes the number of feature
maps/neurons in a layer.

Liu [LWG+18] improves CCNN by combining Batch Normalization [IS15] and
Droupout [SH+14] techniques (see Table 3.2). This CNN is namedBN3 in [LWG+18].
BN3 uses the Batch Normalization operation in two layers: one is in Layer 1 and the
other is in Layer 3. BN3 also employs Dropout in the fully-connected layers to reduce
overfitting4. Before the output layer, BN3 uses two fully-connected layers instead of
one for better generalization and accumulation of features.

2The notion of a tensor is introduced in the second paragraph in Section 2.3.
3The convolution operation and the notion of the kernel size are introduced in Section 2.3.1.
4The problem of overfitting is introduced in Section 2.2.3.

43

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Figure 3.1: Abstraction of the raw signals in the spatial convolution layer in current
CNNs. x denotes a signal sample in the input tensor. f denotes a datum in a feature
map. Every column in the input tensor contains a set of C signal samples. These
samples come fromC sensor at a certain sampling time point. The spatial convolution
operation converts each column of spatial data (receptive field) from the input tensor
into an abstract datum in a feature map.

Manor [MG15] proposes a deep CNN achitecture for the P300-based BCI. Let
us call his architecture CNN-R. It is shown in Table 3.3. CNN-R improves CCNN
by using a deeper and wider network architecture. It uses a smaller kernel size for
the temporal convolution operations but more layers for these temporal convolution
operations (see Layer 2 and Layer 3 in Table 3.3). It also uses two fully-connected
layers before the output layer. In addition, CNN-R uses more feature maps for the
convolution layers and more neurons for the fully-connected layers. For such com-
plex network, CNN-R uses Pooling (see Section 2.3.2) as well as Dropout to reduce
overfitting.

The problem of the aforementioned CNNs is that they learn P300-related tempo-
ral features from abstract signals instead of raw signals, which makes these CNNs not
able to learn P300-related temporal features well. P300-related temporal features are
extracted by the temporal convolution layers of these CNNs. The input to these tem-
poral convolution layers is the feature maps generated by the spatial convolution layer
(the first layer). These featuremaps are abstract temporal signals instead of raw signals
because this spatial convolution layer converts each receptive field (see Section 2.3.2)
of raw signals into an abstract datum in a feature map, as shown in Figure 3.1. These
abstract temporal signals in the feature maps lose raw temporal information. Los-
ing raw temporal information means losing important temporal features because the

44

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.1: CCNN architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 10
2 Convolution (13,1) 50
3 Fully-Connected — 100

Output Fully-Connected — 2

Table 3.2: BN3 architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Batch Norm — —

Convolution (1,C) 16
2 Convolution (20,1) 16

Batch Norm — 16
3 Fully-Connected — 128

Dropout — 128
4 Fully-Connected — 128

Dropout — 128
Output Fully-Connected — 2

nature of P300 signals is the positive voltage potential in raw temporal information
(see Figure 2.15 explained in Section 2.4.1) as well as many important P300-related
features are also embodied in raw temporal information [Pol07]. As a result, these
CNNs cannot learn P300-related temporal features well. Due to this problem, the
aforementioned CNNs have to use a deeper and wider network architecture to learn
temporal features better and achieve competitive accuracy. As a result, these CNNs
exhibit high complexity.

In contrast, our novel CNN architecture performs both spatial convolution and
temporal convolution in the first layer instead of performing only spatial convolu-
tion as in the aforementioned CNNs. Thus, the input to this convolution layer in our
CNN is raw signals. In this way, the data used to extract P300-related temporal fea-
tures is raw signals instead of the abstract signals in the aforementioned CNNs. As a
result, our CNN is able to learn P300-related feature representations from raw tem-
poral information and at the same time, it can also learn P300-related spatial features.
Therefore, our CNN learns P300-related temporal features better. By learning in this

45

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.3: CNN-R architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 96

Pooling (3,1) 96
2 Convolution (6,1) 96

Pooling (3,1) 96
3 Convolution (6,1) 96
4 Fully-Connected — 2048

Dropout — 2048
5 Fully-Connected — 4096

Dropout — 4096
Output Fully-Connected — 2

way, our CNN can achieve better P300 signal detection and character spelling accu-
racy (see Section 3.3.3 and Section 3.3.4) with only one convolution layer and without
fully-connected layers before the output layer, which reduces the network complexity
significantly (see Section 3.3.2).

3.2 Proposed Convolutional Neural Network
In this section, we introduce our novel CNN. We call it One Convolution Layer Neu-
ral Network (OCLNN). First, in Section 3.2.1, we describe the input to the network.
Then, in Section 3.2.2, we describe our proposed network architecture. Finally, in
Section 3.2.3, we explain how we train the network.

3.2.1 Input to the Network

The input to OCLNN is the input tensor (N × C) shown in Figure 3.2 and Figure 3.3,
where C denotes the number of sensors used for EEG signal recording and obtaining
the samples. N denotes the number of temporal signal samples. Here N= Ts×Fs,
where Ts denotes the time period between 0 and Ts posterior to the beginning of each
row/column intensification (see Section 2.4.2 and Section 2.5), and Fs denotes the
signal sampling frequency.

Figure 3.2 shows that a set of signal samples from the EEG signals, introduced
in Section 2.5, is preprocessed to obtain the input tensor which is used as the input
to our proposed CNN. In such set of signal samples, the temporal signal samples are

46

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Figure 3.2: Input tensor for our proposed OCLNN.

bandpass filtered between 0.1Hz and 20Hz to remove the high frequency noise. Then,
the filtered samples are normalized using Equation (3.1), (3.2), and (3.3) to have zero
mean and unit variance based on each individual pattern and for each sensor. Each
individual pattern represents N signal samples in the time period between 0 and Ts
posterior to the beginning of each intensification. Such normalization is a common
practice for preprocessing input data to CNNs. The normalization helps the CNN to
perform well for the P300 signal detection and character spelling [CG11].

x′ij =
xij − ε
δ

(3.1)

ε =
1

N

N∑
j=1

xij (3.2)

δ =

√√√√ 1

N

N∑
j=1

(xij − ε)2 (3.3)

3.2.2 Network Architecture

The architecture of OCLNN is described in Table 3.4 and illustrated in Figure 3.3.
The first column in the table describes the sequence of layers. The second column
describes the operation in a layer. The third column describes the kernel size of the
convolution operation in the convolution layer. The last column describes the number
of feature maps/neurons in a layer. We have 2 layers in total, i.e., Layer 1 and Layer
Output.

47

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Figure 3.3: Illustration of OCLNN for P300 signal detection.

Table 3.4: OCLNN architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (N /15,C) 16

Dropout — —
Output Fully-Connected — 2

In Layer 1, we segment the input tensor over the time domain into 15 parts and
perform convolution operation on each part to learn features. Therefore, the kernel
size of the convolution operation is (N /15, C) and each receptive field (see the orange
rectangle in Figure 3.3) of the input tensor is a tensor (N /15, C) of signal samples. In
the time domain, these signal samples come from a time period of Ts/15. In the space
domain, these signal samples come from all C sensors. The convolution operation
in this layer converts each receptive filed of data into an abstract datum in a feature
map. In this way, this layer learns features from both raw temporal information and
raw spatial information. The stride5 used for the convolution operation in this layer
is (N /15, C). We use the Rectified Linear Unit (ReLU) function6 as an activation
function to model a neuron’s output in this layer because a network with ReLUs is
trained much faster than with other traditional activation functions [KSH12]. In this

5The notion of the stride is introduced in Section 2.3.1.
6The Rectified Linear Unit (ReLU) function is introduced in Section 2.2.1.2.

48

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

layer, we employ Dropout [SH+14] to reduce overfitting. The Dropout rate is set to
be 0.25. This layer generates 16 feature maps.

In Layer Output, OCLNN performs the fully-connected operation. There are two
neurons in this layer. One neuron represents the class “P300” and the other neuron
represents the class “non-P300”. The fully-connected operation makes correlation
between the feature maps from Layer 1 and the two classes. We employ the Softmax
function7 as an activation function for the neurons in this layer. The output of the Soft-
max function for class “P300” and class “non-P300” is denoted by P 1

(i,j) and P
0
(i,j),

respectively. Therefore, P 1
(i,j) represents the probability of having a P300 signal and

P 0
(i,j) represents the probability of not having a P300 signal at epoch i and intensifica-

tion j. Thus, the detection of a P300 signal is defined by Equation (3.4), whereX(i,j)

is the input tensor to be classified and Eocl denotes our OCLNN. By using Equation
(3.4) to detect P300 signals, we can assess the performance of our proposed OCLNN
in terms of the P300 signal detection accuracy (see Section 3.3.1 and Section 3.3.3).

Eocl(X(i,j)) =

{
1 if P 1

(i,j) > P 0
(i,j)

0 otherwise
(3.4)

We use P 1
(i,j), the output of OCLNN for class “P300”, to calculate the position of

the target character in the P300 speller character matrix. For the detailed calculation
process please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

3.2.3 Training

The training of OCLNN is carried out by minimizing the cross-entropy cost func-
tion8. We use a Stochastic Gradient Descent (SGD) based learning algorithm, which
is a modified version of the gradient descent based learning algorithm9. For more
details on the SGD-based learning algorithm, please refer to [Bot10]. We use the
SGD-based learning algorithm with momentum10 and with weight decay11. The mo-
mentum parameter µ is set to 0.9. The weight decay parameter λ is set to 0.0005. The
learning rate12 η is fixed to 0.01. The aforementioned setup of the training parameters
follows the suggestion in [SZ14] because [SZ14] has shown that when using these
parameters to train a CNN on a training dataset, this trained CNN is able to achieve
good performance on a test dataset. For details on the training process of a neural
network please refer to Section 2.2.3.

7The Softmax function is given in Equation (2.8) introduced in Section 2.2.1.2.
8The cross-entropy cost function is given in Equation (2.10) introduced in Section 2.2.3.
9The gradient descent based learning algorithm is introduced in Section 2.2.3.

10The momentum technique is given in Equation (2.23), (2.24), (2.25), and (2.26) introduced in Sec-
tion 2.2.3.

11The weigh decay technique is given in Equation (2.27) introduced in Section 2.2.3.
12The notion of the learning rate is introduced in Equation (2.15) in Section 2.2.3.

49

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

3.3 Experimental Evaluation
First, we introduce our experimental setup in Section 3.3.1. Then, we show the per-
formance comparison between OCLNN and other related research works in terms of
complexity (see Section 3.3.2), P300 signal detection accuracy (see Section 3.3.3) and
character spelling accuracy (see Section 3.3.4). Finally, we compare the ITR of the
P300 speller based on our OCLNN and other methods (see Section 3.3.5).

3.3.1 Experimental Setup

Our OCLNN is implemented using Keras [C+15] with the Tensorflow [AA+16] back-
end. The network is trained on an NVIDIA GeForce GTX 980 Ti GPU.

We train our OCLNN using each training dataset in Dataset II, III-A and III-B,
described in Section 2.5, separately, thereby obtaining three different OCLNNs with
different parameters (i.e., different weights and biases). The number of used sensors
is 64 and the signal sampling frequency is 240 Hz (Section 2.5). Therefore, for the
input to OCLNN (see Section 3.2.1), we have C = 64 and Fs = 240 Hz. Ts = 1000ms
because we take each individual pattern to be the signal samples between 0 and 1000
ms posterior to the beginning of each intensification. Then, the number of temporal
signal samples N = Ts×Fs = 240.

We run each of the three trained OCLNNs on the corresponding test dataset in
Dataset II, III-A and III-B and calculate the P300 signal detection accuracy using
Equation (3.5), the character spelling accuracy using Equation (2.33) (introduced in
Section 2.4.3), and the Information Transfer Rate (ITR) using Equation (2.34) and
(2.35) (introduced in Section 2.4.3) for each test dataset. In Equation (3.5), accP300

denotes the P300 signal detection accuracy,Ntp denotes the number of truly classified
P300s for a test dataset, Ntn denotes the number of truly classified non-P300s for the
test dataset, andSpn denotes the number of all P300s and non-P300s in the test dataset.

accP300 =
Ntp +Ntn

Spn
(3.5)

For a fair comparison with CNN-R [MG15], we apply the bandpass filteringmeth-
ods used for our OCLNN on CNN-R because we obtain low character spelling accu-
racy for CNN-R using the original filtering method in [MG15].

3.3.2 Complexity

In this section, we compare the complexity, in terms of the number of parameters and
layers, of OCLNN with the networks CCNN [CG11], BN3 [LWG+18], and CNN-
R [MG15] briefly described in Section 3.1. The number of parameters is the number

50

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

of weights and biases for all neurons in a network. We show the complexity in Ta-
ble 3.5. The first row in the table lists the CNNs, we compare. The second row
provides the number of parameters for each CNN. The third row shows the number of
layers used in each CNN.

Table 3.5: Complexity comparison of different CNNs.

OCLNN CCNN BN3 CNN-R
Parameters 16882 37502 39489 21950818
Layers 2 4 5 6

In terms of the number of parameters, OCLNN is much smaller than the other
three CNNs. OCLNN has only 16882 parameters whereas CCNN has 37502 param-
eters13, BN3 has 39489 parameters, and CNN-R has 21950818 parameters. Thus, the
number of parameters for OCLNN is only 45%, 42%, and 0.07% of that for CCNN,
BN3, and CNN-R, respectively.

In terms of number of layers used in a CNN, OCLNN has less layers than the
other three CNNs. OCLNN has only 2 layers whereas CCNN has 4 layers, BN3 has 5
layers, and CNN-R has 6 layers. Thus, the number of layers in OCLNN is only 50%,
40%, and 33.33% of that in CCNN, BN3, and CNN-R, respectively.

3.3.3 P300 Signal Detection Accuracy

This section compares the P300 signal detection accuracies achieved by OCLNNwith
the accuracies achieved by CCNN, BN3, and CNN-R on Dataset II, III-A and III-B.

The P300 signal detection accuracy is shown in Table 3.6. The first row in the table
lists the CNNs used for comparison. The second, third, and last row show the P300
signal detection accuracy of the different CNNs on Dataset II, III-A, III-B, respec-
tively. The numbers are given in percentage (%) and calculated using Equation (3.5).
An accuracy number in bold indicates the highest accuracy along a row. “–” in the
table means that the accuracy is not reported in the reference paper describing the
corresponding CNN.

Overall, OCLNN achieves the highest accuracies among all CNNs on Dataset II,
III-A and III-B. It increases the P300 signal detection accuracies achieved by the other
CNNs by up to 14.23%. For Dataset II, OCLNN achieves 92.41% P300 signal detec-
tion accuracy. The accuracy achieved by OCLNN is 7.97% and 6.12% higher than
the accuracy achieved by BN3 and CNN-R, respectively. For Dataset III-A, OCLNN

13Cecotti [CG11] calculated the number of parameters erroneously for L2. It should be
5Ns*(13*Ns+1) instead of 5Ns*(13+1)

51

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.6: P300 signal detection accuracy of different CNNs on Dataset II, III-A and
III-B.

OCLNN CCNN BN3 CNN-R
P300 Accuracy on II 92.41 – 84.44 86.29

P300 Accuracy on III-A 84.60 70.37 75.13 73.06
P300 Accuracy on III-B 86.40 78.19 79.02 79.80

achieves 84.60% P300 signal detection accuracy. The accuracy achieved by OCLNN
is 14.23%, 9.47%, and 11.54% higher than the accuracy achieved by CCNN, BN3,
and CNN-R, respectively. For Dataset III-B, OCLNN achieves 86.40% P300 signal
detection accuracy. The accuracy achieved by OCLNN is 8.21%, 7.38%, and 6.60%
higher than the accuracy achieved by CCNN, BN3, and CNN-R, respectively.

3.3.4 Character Spelling Accuracy

This section compares the character spelling accuracies achieved by OCLNN and the
accuracies achieved by CCNN, BN3, CNN-R, and ESVM [RG08] for Dataset III-A
and III-B, as well as the character spelling accuracies achieved by OCLNN and the
accuracies achieved by CCNN, BN3, CNN-R, and Bostanov [Bos04] for Dataset II.
ESVM is the champion spellingmethod of BCI Competition III - Data set II. Bostanov
is the champion spelling method of BCI Competition II - Data set IIb.

Table 3.7, 3.8, and 3.9 show the character spelling accuracies of different methods
onDataset II, III-A and III-B, respectively. The first column in a table lists the different
methods we compare. Each row provides the character spelling accuracy of a method
calculated by Equation (2.33) for different epoch numbers k ∈ [1, 15]. An accuracy
number in bold indicates the highest accuracy along a column. “–” in a table means
that the accuracy is not reported in the reference paper describing the corresponding
method.

The goal of the aforementioned competitions (BCI Competition III and Compe-
tition II) is to compare which method is able to achieve the highest character spelling
accuracy using all epochs (i.e., k = 15). For this goal, OCLNN is able to achieve the
highest character spelling accuracy using all epochs for all three datasets in the two
competitions. For Dataset III-A and III-B, OCLNN achieves 99% and 98% spelling
accuracy for epoch number k = 15. For Dataset II, OCLNN only needs 3 epochs to
achieve 100% spelling accuracy.

We also analyse the character spelling accuracies achieved by different methods
for every epoch number k ∈ [1, 15]. Overall, in most cases, OCLNN achieves better

52

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.7: Spelling accuracy achieved by different methods on Dataset II.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100

CCNN 58.06 54.83 77.41 93.54 93.54 93.54 93.54 96.77 96.77 100 100 100 100 100 100

CNN-R 70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100

Bostanov 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 3.8: Spelling accuracy achieved by different methods on Dataset III-A.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
CCNN 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97
CNN-R 14 28 38 53 57 62 71 75 77 82 89 87 87 92 95
BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98
ESVM 16 32 52 60 72 – – – – 83 – – 94 – 97

Table 3.9: Spelling accuracy achieved by different methods on Dataset III-B.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
CCNN 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
CNN-R 36 46 66 70 77 80 86 86 88 91 94 95 95 96 96
BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95
ESVM 35 53 62 68 75 – – – – 91 – – 96 – 96

accuracies than the other methods. OCLNN increases the character spelling accura-
cies achieved by the other methods by up to 35.49%.

For Dataset II, OCLNN achieves the highest character spelling accuracies for ev-
ery epoch number k ∈ [1, 15] among all methods. Compared with the accuracies
achieved by CCNN, CNN-R, BN3, and Bostanov, our OCLNN increases the accura-
cies with up to 35.49%, 6.45%, 19.35%, and 12.90%, respectively.

For Dataset III-A, when compared with methods CCNN, CNN-R, and ESVM, our
OCLNN achieves the highest character spelling accuracies for every epoch number

53

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

k ∈ [1, 15] among all the methods. OCLNN increases the accuracies by up to 14%,
12%, 18%, and 8% compared with the accuracies achieved by CCNN, CNN-R, and
ESVM, respectively.

For Dataset III-B, when compared with methods CCNN, CNN-R, and ESVM, our
OCLNN achieves the highest character spelling accuracies for every epoch number
k ∈ [1, 15] among all the methods. OCLNN increases the accuracies by up to 13%,
15%, 16%, and 11% compared with the accuracies achieved by CCNN, CNN-R, and
ESVM, respectively.

When compared with BN3 on Dataset III-A and III-B, our OCLNN increases the
accuracies by up to 8% considering epoch numbers 1, 2, and 5 to 15 on Dataset III-A
as well as OCLNN increases the accuracies by up to 8% considering epoch num-
bers 2 to 15 on Dataset III-B. However, OCLNN decreases the accuracies for epoch
numbers 3 and 4 on Dataset III-A and for epoch number 1 on Dataset III-B. This
is because BN3 uses the Batch Normalization operation to improve the accuracies
on smaller epoch numbers [LWG+18]. However, the Batch Normalization operation
used in BN3 can only improve the accuracies on Dataset III-A and III-B. On Dataset
II, BN3 achieves much worse results on smaller epoch numbers. In OCLNN, we do
not use the Batch Normalization operation because we aim at a CNN with better po-
tential to achieve higher accuracies across different datasets obtained from different
subjects. The Batch Normalization operation is not very helpful to our OCLNN be-
cause it is more useful in deep CNNs [IS15] but our network has only 2 layers while
BN3 has 5 layers. We have done experiments to obtain the spelling accuracy achieved
by OCLNN when OCLNN uses and does not use the Batch Normalization operation.
These experimental results are shown in Table 3.10, 3.11, and 3.12, where OCLNN-
BN denotes that our OCLNN uses the Batch Normalization operation. Table 3.12
shows that when OCLNN uses the Batch Normalization operation, the spelling ac-
curacy is increased on epoch number k=1, 2, 3, 4, and 6. Unfortunately, Table 3.10
shows that when OCLNN uses the Batch Normalization operation, the spelling accu-
racy is decreased on epoch number k= 3 and 4. Table 3.11 shows that when OCLNN
uses the Batch Normalization operation, the spelling accuracy is decreased on epoch
number k= 8, 9, 11, 12, 13, and 15. These experimental results show that when used
in our OCLNN, the Batch Normalization operation impairs the accuracies on Dataset
II and III-A and only increases the accuracies on Dataset III-B. Therefore, in order to
achieve higher accuracies across all three datasets obtained from different subjects,
we abandon the Batch Normalization operation for our OCLNN.

3.3.5 Information Transfer Rate

This section compares the communication speed, i.e., Information Transfer Rate (ITR),
of the P300 speller based on our OCLNN and other methods. ITR is calculated using

54

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.10: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset II.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100
OCLNN-BN 77.42 90.32 96.77 96.77 100 100 100 100 100 100 100 100 100 100 100

Table 3.11: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset III-A.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
OCLNN-BN 23 39 56 63 73 79 82 84 88 91 93 93 93 96 98

Table 3.12: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset III-B.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
OCLNN-BN 48 64 73 80 84 88 89 93 94 96 97 97 97 98 98

Equation (2.34) and (2.35) (introduced in Section 2.4.3). The ITR of the P300 speller
based on our OCLNN and other methods for Dataset II, Dataset III-A and Dataset
III-B is shown in Table 3.13, 3.14, and 3.15, respectively. In these tables, the different
methods, we compare, are shown in the first column. The ITR for different epoch
numbers k ∈ [1, 15] is shown in each row of a table. A number in bold denotes that
the number is the highest ITR along a row. “–” in a table denotes that the ITR can-
not be calculated because the corresponding paper, describing the method, does not
provide the spelling accuracy. The ITR is shown in bits/minute.

In the context of ITR, i.e, the communication speed of the P300 speller, we com-
pare the maximum ITR achieved by each method because the maximum ITR repre-
sents the maximum communication speed achieved by a method. We call this maxi-
mum ITR max-ITR. Overall, our OCLNN achieves comparable max-ITR with BN3
and higher max-ITR than the other related methods, i.e., CCNN, CNN-R, Bostanov,
and ESVM. Our OCLNN can increase the max-ITR achieved by CCNN, CNN-R,
Bostanov, and ESVM with up to 15.7 bits/min.

For Dataset II, shown in Table 3.13, when compared with the max-ITR achieved

55

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

Table 3.13: The ITR of the P300 speller based on different methods on Dataset II.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 42.28 37.74 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

CCNN 26.58 16.65 22.09 24.73 20.74 17.85 15.67 14.92 13.45 13.2 12.12 11.2 10.41 9.72 9.12

CNN-R 36.68 33.18 30.64 26.41 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

BN3 42.28 27.06 23.65 20.4 20.74 19.07 16.74 14.92 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Bostanov 31.46 33.18 30.64 26.41 22.15 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Table 3.14: The ITR of the P300 speller based on different methods on Dataset III-A.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 5.77 9.64 13.11 12.78 13.59 13.32 12.44 11.78 11.74 10.91 10.63 10.02 9.32 8.88 8.89

CCNN 2.96 7.33 9.91 9.41 10.18 9.7 11.21 10.2 10.63 9.87 9.82 9.25 8.6 8.36 8.51

CNN-R 2.28 5.56 7.03 9.7 9.13 8.99 9.82 9.56 9.01 9.11 9.62 8.55 7.94 8.2 8.17

BN3 5.33 9.64 13.87 14.1 13.59 12.22 11.69 10.86 10 9.87 9.62 9.44 9.13 8.88 8.69

ESVM 2.96 6.96 11.65 11.82 13.28 – – – – 9.29 – – 9.13 – 8.51

Table 3.15: The ITR of the P300 speller based on different methods on Dataset III-B.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 18.32 20.26 19.62 18.45 17.15 15.68 14.32 13.82 12.71 12.06 11.3 10.44 9.71 9.27 8.69

CCNN 11.76 15.3 14.25 14.44 15.47 13.88 12.44 12.76 12.22 10.91 10.01 9.07 8.6 8.2 7.69

CNN-R 12.32 12.58 17.05 15.14 14.83 13.6 13.49 12.02 11.29 10.91 10.63 10.02 9.32 8.88 8.33

BN3 18.97 18.72 18.75 16.2 14.51 14.17 12.96 13.28 12.71 11.81 10.84 10.02 9.13 8.53 8.17

ESVM 11.76 15.78 15.43 14.44 14.2 – – – – 10.91 – – 9.51 – 8.33

byCCNN,CNN-R, andBostanov, ourOCLNNachieves the highestmax-ITR.OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and Bostanov with 15.7 bits/min,
5.6 bits/min, and 9.1 bits/min, respectively.

ForDataset III-A, shown in Table 3.14, when comparedwith themax-ITR achieved
by CCNN, CNN-R, and ESVM, our OCLNN achieves the highest max-ITR. OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and ESVM with 2.38 bits/min,
3.77 bits/min, and 0.31 bits/min, respectively.

ForDataset III-B, shown in Table 3.15, when comparedwith themax-ITR achieved
by CCNN, CNN-R and ESVM, our OCLNN achieves the highest max-ITR. OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and ESVM with 4.79 bits/min

56

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

and 3.21 bits/min, and 4.48 bits/min, respectively.
When compared with BN3, on Dataset III-B, our OCLNN increases the max-ITR

achieved by BN3 with 1.29 bits/min. On Dataset II, our OCLNN achieves the same
max-ITR with BN3. However, on Dataset III-A, our OCLNN decreases the max-ITR
achieved by BN3 with 0.51 bits/min. The reason is the following. On Dataset III-A,
BN3 achieves the max-ITR 14.1 bits/min on epoch number k = 4 (see Table 3.14). On
epoch number k = 4, our OCLNN achieves lower spelling accuracy than BN3 (see Ta-
ble 3.8). The reason for this has been explained in the last paragraph in Section 3.3.4.
Thus, our OCLNN cannot achieve the same max-ITR as BN3 does on Dataset III-A.
The discussion above shows that overall, our OCLNN achieves comparable max-ITR
with BN3. On the other hand, considering that the complexity of our OCLNN is
much lower compared to the complexity of BN3 (see Table 3.5 in Section 3.3.2), our
OCLNN could be considered better than BN3 for the P300 speller.

In Section 2.4.3, we have shown that when using Dataset II, III-A, and III-B,
the theoretically achievable maximum ITR is 67.43 bits/min. The maximum ITR
(i.e., max-ITR) achieved by our OCLNN is 42.28 bits/min, 13.59 bits/min, and 20.26
bits/min on Dataset II, III-A, and III-B, respectively. The maximum ITR achieved
by our OCLNN still cannot reach the theoretically achievable maximum ITR. Thus,
further research efforts are needed to find approaches to increase the maximum ITR
of a P300 speller in order to bring it closer to the theoretically achievable maximum
ITR.

3.4 Conclusions
In this chapter, we propose a simple CNN, called OCLNN, for P300 signal detec-
tion and character spelling in the P300 speller. Our CNN learns P300-related fea-
tures better by performing both spatial convolution and temporal convolution in the
first layer. Compared with the state-of-the-art CNNs for P300 signal detection, our
CNN has only two layers and much smaller number of parameters, which reduces
the complexity significantly. Experimental results on three datasets show that our
CNN always increases the P300 signal detection accuracy and increases the character
spelling accuracy in most cases, when compared with the state-of-the-art methods for
P300 signal detection and character spelling. In terms of the communication speed,
our OCLNN achieves comparable communication speed with BN3 and higher com-
munication speed than the other state-of-art methods.

57

CHAPTER 3. A SIMPLE CONVOLUTIONAL NEURAL NETWORK FOR P300
SIGNAL DETECTION AND CHARACTER SPELLING

58

Chapter 4

Ensemble of Convolutional Neural
Networks for P300 Signal
Detection and Character Spelling

Hongchang Shan, Yu Liu, and Todor Stefanov,
"Ensemble of Convolutional Neural Networks for P300 Speller in Brain Computer Interface,"
In Proceedings of the 28th International Conference on Artificial Neural Networks., pp., Munich,
Germany, September 17-19, 2019.

In Chapter 3, we introduce our simple, yet effective OCLNN for the P300 signal
detection and character spelling. This CNN solves the problems of the state-of-

the-art CNNs for the P300 speller in [CG11, MG15, LWG+18] by performing the
spatial convolution and temporal convolution in its first layer using raw signals. Un-
fortunately, OCLNN still has some limitations to extract some relevant and important
features related to P300 signals. OCLNN performs the spatial convolution and the
temporal convolution together, thereby realizing a joint spatial-temporal convolution
in the first layer. This spatial-temporal convolution extracts only P300-related joint
spatial-temporal features in its single convolution layer. OCLNN does not extract
P300-related separate temporal features and separate spatial features. These sepa-
rate temporal features and separate spatial features have proven to be very important
for the P300 speller [FTM+88, Pol07, PNCB11, HVE06]. Adding several tempo-
ral or spatial convolution layers following the first spatial-temporal convolution layer
of OCLNN is a potential method to enable OCLNN to learn P300-related separate
spatial or separate temporal features. Nevertheless, such method cannot learn well
P300-related separate temporal or spatial features due to the loss of raw information.
The raw information loss happens because the input to these additional temporal or

59

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

spatial convolution layers for OCLNN is the abstract signals generated by the first
spatial-temporal convolution layer instead of raw signals.

In order to solve this problem of OCLNN, we proposes a novel network, which
combines OCLNN with two other novel CNNs, we have devised, in order to learn
well the aforementioned P300-related separate spatial and separate temporal features,
which are not extracted by OCLNN, together with the spatial-temporal features ex-
tracted by OCLNN. The novel contributions of this chapter are the following:

• Each of the two novel CNNs has only one convolution layer. One of the novel
CNNs performs only the temporal convolution in its convolution layer (the first
layer) to learn P300-related separate temporal features. The other novel CNN
performs only the spatial convolution in its convolution layer (the first layer) to
learn P300-related separate spatial features. These two novel CNNs are able
to learn well P300-related separate temporal and separate spatial features be-
cause the input to each of the two novel CNNs is raw signals. In addition, we
propose a novel network which is an ensemble of these two novel CNNs and
OCLNN. This network extracts more useful P300-related features than OCLNN
alone and is able to achieve higher P300 signal detection accuracy and character
spelling accuracy than OCLNN.

• Experimental results on three benchmark datasets show that our proposed en-
semble of CNNs is able to increase the P300 signal detection accuracy, the
character spelling accuracy, and the communication speed achieved by OCLNN
with up to 4.32%, 5%, and 6.05 bits/min, respectively. Also, our proposed en-
semble of CNNs outperforms other related methods with a significant P300
signal detection accuracy improvement up to 18.55%, a significant character
spelling accuracy improvement up to 38.72%, and a significant communication
speed improvement up to 21.75 bits/min. In terms of the network complexity,
the complexity of our proposed ensemble of CNNs is lower than the complex-
ity of the CNN in [MG15], and higher than the complexity of OCLNN and the
CNNs in [CG11, LWG+18].

The rest of the chapter is organized as follows: Section 4.1 presents our proposed
network (ensemble of CNNs) for the P300 speller. Section 4.2 compares the com-
plexity, the P300 signal detection accuacy, the character spelling accuracy, and the
communication speed between our network and other related methods for the P300
speller. Section 4.3 analyzes our proposed two novel CNNs on extracting P300-related
features, performs an ablation study on our proposed network, and discusses the im-
portance of extracting P300-related features from raw signals. Section 4.4 ends this
chapter with conclusions.

60

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

4.1 Proposed Network
This section introduces our proposed network for the P300 signal detection and char-
acter spelling in the P300 speller. We call our proposed network Ensemble of Con-
volutional Neural Networks (EoCNN). EoCNN combines two novel CNNs, we have
devised, together with our proposed OCLNN presented in Chapter 3. We call these
two novel CNNs as follows: One Spatial Layer Network (OSLN) and One Temporal
Layer Network (OTLN).

4.1.1 Ensemble of Convolutional Neural Networks

The workflow of our EoCNN is shown in Figure 4.1. First, the EEG signals are pre-
processed to construct the input tensor. For the details of the construction of the input
tensor, please refer to Section 3.2.1. Then, the input tensor is sent to three different
CNNs, i.e., OSLN, OTLN, and OCLNN. OSLN and OTLN are described in Sec-
tion 4.1.2. OCLNN is our proposed simple CNN presented in Chapter 3. OSLN
extracts P300-related separate spatial features. OTLN extracts P300-related separate
temporal features. OCLNN extracts P300-related joint spatial-temporal features. Our
EoCNN uses the ensemble of the outputs from OSLN, OTLN, and OCLNN for the
P300 signal detection and character spelling in the P300 speller. The detection of P300
signals and the inference of characters by using EoCNN is introduced in Section 4.1.4.

Figure 4.1: Workflow of our EoCNN

4.1.2 Proposed OSLN and OTLN

The architectures of our proposed OSLN and OTLN are described in Table 4.1 and
Table 4.2, respectively. OSLN and OTLN are used in EoCNN (see Section 4.1.1),
where OSLN is designed to learn P300-related separate spatial features and OTLN is

61

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

designed to learn P300-related separate temporal features. Since only the convolution
layer is different between OSLN and OTLN, below we describe the architectures of
OSLN and OTLN together.

Table 4.1: OSLN architecture.

Layer Operation Kernel Feature Maps
or Neurons

1 Convolution (1,C) 16
Dropout — —

Output Fully-Connected — 2

Table 4.2: OTLN architecture.

Layer Operation Kernel Feature Maps
or Neurons

1 Convolution (N /15, 1) 16
Dropout — —

Output Fully-Connected — 2

Layer 1 of OSLN (see Table 4.1) performs the spatial convolution operation with
the kernel size (1, C). This convolution operation converts each receptive field of the
signal samples into an abstract datum in a feature map. The signal samples in each
receptive field are from all C sensors in the space domain and sampled at only one
time point in the time domain. Therefore, this convolution operation extracts P300-
related separate spatial features. We use the kernel size (1, C) in order to make this
layer to learn the spatial features from EEG signals acquired using all sensors. The
reason for using all sensors is that it is more helpful to increase the spelling accuracy
than using only part of all sensors [CG11, MG15, LWG+18, SLS18]. The input to
this layer is raw signals, so this layer learns P300-related separate spatial features from
raw signals. This layer generates 16 feature maps, which are the input to Layer Output
of OSLN.

Layer 1 of OTLN (see Table 4.2) performs the temporal convolution operation
with the kernel size (N /15, 1). The temporal convolution operation converts each
receptive field of the signal samples into an abstract datum in a feature map. The
signal samples in each receptive field are sampled within a certain time period and
are acquired from only one sensor. Therefore, this convolution operation extracts

62

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

P300-related separate temporal features. We use the kernel size (N /15, 1) because
Chapter 3 has shown that 1/15 of the temporal signal samples is a proper receptive
field for a CNN to learn P300-related temporal features. The input to this layer is raw
signals, so this layer learns P300-related separate temporal features from raw signals.
This layer generates 16 feature maps, which are the input to Layer Output of OTLN.

In both Layer 1 of OSLN and Layer 1 of OTLN, the activation function is the
Rectified Linear Unit (ReLU) function. We employ Dropout [SH+14], with a rate of
0.4, to prevent OSLN and OTLN from overfitting (introduced in Section 2.2.3).

Layer Output of OSLN (see Table 4.1) and Layer Output of OTLN (see Table 4.2)
are the same. Layer Output is a fully-connected layer with two neurons. These two
neurons represent the class “P300” (the presence of a P300 signal) and the class “non-
P300” (the absence of a P300 signal), respectively. The activation function used in this
layer is the Softmax function which outputs the predicted probability for the “P300”
class and the “non-P300” class.

OSLN and OTLN each uses only one convolution layer. OSLN uses only one
convolution layer because it does not make sense to add more spatial convolution lay-
ers for OSLN. This CNN is designed to only learn P300-related spatial features from
the EEG signals recorded with all C sensors in the first layer. If we add more spatial
convolution layers after its first spatial convolution layer to learn P300-related spatial
features, these added layers should learn spatial features from the abstract signals gen-
erated by the first spatial convolution layer. However, these abstract signals include
only the time domain and do not have the space domain because the first convolution
layer uses a receptive field including all C sensors. Thus, these abstract signals can-
not be used to extract further spatial features. OTLN also uses only one convolution
layer because one convolution layer is enough to extract useful P300-related separate
temporal features (as shown and discussed later in Section 4.3.1).

4.1.3 Training

The training process used for our EoCNN is the same as the training process used for
our OCLNN (proposed in Chapter 3). For the details of the training process, please
refer to Section 3.2.3.

4.1.4 P300 Signal Detection and Character Spelling using EoCNN

We use the outputs of the Softmax function for class "P300" and class "non-P300" in
Layer Output of OSLN, OTLN, and OCLNN to detect P300 signals and infer char-
acters. For epoch i and for intensification j we use P 1

OS(i, j) to denote the output of
the Softmax function for class "P300" in OSLN, P 0

OS(i, j) to denote the output of the
Softmax function for class "non-P300" in OSLN, P 1

OT (i, j) to denote the output of

63

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

the Softmax function for class "P300" in OTLN, P 0
OT (i, j) to denote the output of the

Softmax function for class "non-P300" in OTLN, P 1
OCL(i, j) to denote the output of

the Softmax function for class "P300" in OCLNN, P 0
OCL(i, j) to denote the output

of the Softmax function for class "non-P300" in OCLNN. Therefore, for epoch i and
for intensification j, P 1

OS(i, j) denotes the predicted probability by OSLN for class
“P300”; P 0

OS(i, j) denotes the predicted probability by OSLN for class “non-P300”;
P 1
OT (i, j) denotes the predicted probability by OTLN for class “P300”; P 0

OT (i, j) de-
notes the predicted probability by OTLN for class “non-P300”; P 1

OCL(i, j) denotes
the predicted probability by OCLNN for class “P300”; and P 0

OCL(i, j) denotes the
predicted probability by OCLNN for class “non-P300”.

We use Equation (4.1), (4.2), and (4.3) for the detection of P300 signals, where
P 1
EoC(i, j) denotes the predicted probability by EoCNN for class “P300”; P 0

EoC(i, j)
denotes the predicted probability by EoCNN for class “non-P300”; EoC denotes
our EoCNN classifier; and X(i,j) denotes the input tensor to be classified. Equa-
tion (4.1) and (4.2) show the ensemble processing of the outputs from OSLN, OTLN,
and OCLNN. Equation (4.3) shows the detection of a P300 signal. In this equation,
EoC(X(i,j)) = 1 means that EoCNN detects a P300 signal from the input tensor
X(i,j) and EoC(X(i,j)) = 0 means that EoCNN does not detect a P300 signal from
this input tensor. After using Equation (4.3) to detect P300 signals, we can assess the
performance of our proposed EoCNN in terms of the P300 signal detection accuracy
(see Section 4.2.2).

P 1
EoC(i, j) =

1

3
× (P 1

OS(i, j) + P 1
OT (i, j) + P 1

OCL(i, j)) (4.1)

P 0
EoC(i, j) =

1

3
× (P 0

OS(i, j) + P 0
OT (i, j) + P 0

OCL(i, j)) (4.2)

EoC(X(i,j)) =

{
1 if P 1

EoC(i, j) > P 0
EoC(i, j)

0 otherwise
(4.3)

We use P 1
EoC(i, j), the output of EoCNN for class “P300”, to calculate the po-

sition of the target character in the P300 speller character matrix. For the detailed
calculation process, please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

4.2 Experimental Evaluation
The experimental setup used for the evaluation, presented in this section, is the same as
the experimental setup used in Chapter 3 (for detailed description of the experimental

64

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

setup please see Section 3.3.1). We first compare the complexity of our EoCNN with
the complexity of other related CNNs for the P300 speller in Section 4.2.1. Then,
we compare the P300 signal detection accuracy achieved by our EoCNN and other
related methods in Section 4.2.2. Also, we compare the character spelling accuracy
achieved by our EoCNN and other related methods in Section 4.2.3. Finally, we com-
pare the ITR of the P300 speller based on our EoCNN and other related methods in
Section 4.2.4.

4.2.1 Complexity

In this section, we compare the complexity of EoCNN, in terms of the number of pa-
rameters (explained in Section 3.3.2) and layers, with the complexity of the networks
OCLNN (proposed and presented in Chapter 3), CCNN [CG11], BN3 [LWG+18],
and CNN-R [MG15] briefly described in Section 3.1. Concerning the complexity of
EoCNN, since EoCNN is the ensemble of OSLN, OTLN, and OCLNN, the number
of the parameters of EoCNN is calculated as the sum of the number of parameters of
OSLN, OTLN, and OCLNN, and the number of the layers used in EoCNN is calcu-
lated as the sum of the number of the layers used in OSLN, OTLN, and OCLNN. The
complexity of different CNNs is shown in Table 4.3. The first row in the table lists
the CNNs, we compare. The second row provides the number of parameters for each
CNN. The third row shows the number of layers used in each CNN. Table 4.3 shows
that the complexity of EoCNN, in terms of the number of parameters and layers, is
higher than the complexity of OCLNN, CCNN, BN3 and lower than the complexity
of CNN-R.

Table 4.3: Complexity of different CNNs.

EoCNN OCLNN CCNN BN3 CNN-R
Parameters 56598 16882 37502 39489 21950818
Layers 6 2 4 5 6

4.2.2 P300 Signal Detection Accuracy

This section compares the P300 signal detection accuracies achieved by EoCNN with
the P300 signal detection accuracies achieved by OCLNN (proposed and presented
in Chapter 3), CCNN [CG11], BN3 [LWG+18], and CNN-R [MG15] on Dataset II,
III-A and III-B.

The P300 signal detection accuracies are shown in Table 4.4. The first row in
the table lists the CNNs used for comparison. The second, third, and last row show

65

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

the P300 signal detection accuracy of the different CNNs on Dataset II, III-A, and
III-B, respectively. The numbers are given in percentage (%) and calculated using
Equation (3.5). An accuracy number in bold indicates the highest accuracy along a
row. “–” in the table means that the accuracy is not reported in the reference paper
describing the corresponding CNN.

Table 4.4: P300 signal detection accuracy of different CNNs on Dataset II, III-A, and
III-B.

EoCNN OCLNN CCNN BN3 CNN-R
P300 Accuracy on II 94.76 92.41 – 84.44 86.29

P300 Accuracy on III-A 88.92 84.60 70.37 75.13 73.06
P300 Accuracy on III-B 89.65 86.40 78.19 79.02 79.80

Overall, EoCNN achieves the highest accuracy among all CNNs on Dataset II, III-
A, and III-B. It increases the P300 signal detection accuracies achieved by the other
CNNs with up to 18.55%. Compared with OCLNN, EoCNN is able to increase the
P300 signal detection accuracy achieved by OCLNN with 2.35%, 4.32%, and 3.25%
on Dataset II, Dataset III-A, and Dataset III-B, respectively. Compared with the other
related CNNs, on Dataset II, EoCNN is able to increase the P300 signal detection
accuracy achieved by BN3 and CNN-R with 10.32% and 8.47%, respectively. On
Dataset III-A, EoCNN is able to increase the P300 signal detection accuracy achieved
by CCNN, BN3, and CNN-R with 18.55%, 13.79%, and 15.86%, respectively. On
Dataset III-B, EoCNN is able to increase the P300 signal detection accuracy achieved
by CCNN, BN3, and CNN-R with 11.46%, 10.63%, and 9.85%, respectively.

4.2.3 Character Spelling Accuracy

This section compares the character spelling accuracies achieved by our EoCNN and
the accuracies achieved by OCLNN, CCNN, BN3, CNN-R, and ESVM [RG08] for
Dataset III-A and III-B, aswell as the character spelling accuracies achieved by EoCNN
and the accuracies achieved byOCLNN, CCNN, BN3, CNN-R, and Bostanov [Bos04]
for Dataset II.

The character spelling accuracy achieved by our EoCNN and other methods on
Dataset II, Dataset III-A, and Dataset III-B is shown in Table 4.5, 4.6, and 4.7, re-
spectively. In these tables, the different methods, we compare, are shown in the first
column. The spelling accuracy for different epoch numbers k ∈ [1, 15] is shown in
each row of the table. A number in bold indicates that the accuracy achieved by the
corresponding method is the highest among all methods. “–” denotes that the corre-
sponding paper, describing the method, does not provide the accuracy number. The

66

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

accuracy numbers in these tables are given in percentage (%). Overall, the spelling
accuracy achieved by our EoCNN is higher than the spelling accuracy achieved by
other methods in most cases. Our EoCNN increases the spelling accuracy achieved
by other methods with up to 38.72%.

Table 4.5: Spelling accuracy achieved by different methods on Dataset II.

Method Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 83.87 93.55 100 100 100 100 100 100 100 100 100 100 100 100 100

CCNN 58.06 54.83 77.41 93.54 93.54 93.54 93.54 96.77 96.77 100 100 100 100 100 100

CNN-R 70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100

Bostanov 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 4.6: Spelling accuracy achieved by different methods on Dataset III-A.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99
CCNN 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97
CNN-R 14 28 38 53 57 62 71 75 77 82 89 87 87 92 95
BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
ESVM 16 32 52 60 72 – – – – 83 – – 94 – 97

Table 4.5, 4.6, and 4.7 show that, when compared with OCLNN (proposed and
presented in Chapter 3), the spelling accuracy achieved by EoCNN is higher than the
spelling accuracy achieved by OCLNN in most cases. EoCNN is able to increase
the character spelling accuracy achieved by OCLNN with up to 6.45%, 5%, 5% for
Dataset II, Dataset III-A, and Dataset III-B, respectively. However, on epoch number
k = 9 in Dataset III-A and on epoch number k = 8 in Dataset III-B, EoCNN decreases
the spelling accuracy achieved by OCLNN. The reason for this is that EoCNN puts
equal importance on OSLN, OTLN, and OCLNN in the ensemble processing of the

67

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

Table 4.7: Spelling accuracy achieved by different methods on Dataset III-B.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 51 66 74 81 84 90 91 92 95 97 98 98 98 98 99
CCNN 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
CNN-R 36 46 66 70 77 80 86 86 88 91 94 95 95 96 96
BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
ESVM 35 53 62 68 75 – – – – 91 – – 96 – 96

outputs fromOSLN, OTLN, and OCLNN. For more details of the explaination on this
reason please refer to Chapter 6.

Table 4.5, 4.6, and 4.7 also show that, when compared with other related meth-
ods, for Dataset II, our EoCNN can increase the spelling accuracy achieved by CCNN,
CNN-R, BN3, and Bostanov with up to 38.72%, 12.90%, 19.36%, and 19.35%, re-
spectively. For Dataset III-A, our EoCNN can increase the spelling accuracy achieved
by CCNN, CNN-R, BN3, and ESVM with up to 16%, 23%, 7%, and 10%, respec-
tively. For Dataset III-B, our EoCNN can increase the accuracy achieved by CCNN,
CNN-R, BN3, and ESVM with up to 16%, 20%, 8%, and 16%, respectively.

Moreover, our method is robust across different subjects. Table 4.5, 4.6, and 4.7
show that for all three subjects, our EoCNN achieves the highest spelling accuracy
among all other methods in 43 out of 45 cases.

These experimental results also give some insights on howmany epochswe should
use for the spelling of one character in the P300 speller. The first insight is from the
fact that, in Table 4.5, the spelling accuracy achieved by CCNN and BN3 on epoch
number k=2 is lower than the spelling accuracy achieved by CCNN and BN3 on epoch
number k=1. This shows that adding more epochs does not necessarily improve the
spelling accuracy for the P300 speller. Such observation is also discussed in more
details in [CG11]. The other insight is from the fact that in Dataset II, we need only 2
epochs to achieve a spelling accuracy which is higher than 90%while in Dataset III-A
and Dataset III-B, in order to achieve a spelling accuracy higher than 90%, we need
at least 10 epochs and 6 epochs, respectively. This indicates that we can use different
number of epochs for different subjects to spell characters using the P300 speller. In
this way, we can use a small number of epochs for a subject when using the P300
speller such that we can significantly decrease the time needed for a subject to spell a
character while keeping an acceptable spelling accuracy.

68

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

4.2.4 Information Transfer Rate

This section compares the Information Transfer Rate (ITR) of the P300 speller based
on our EoCNN and other methods. ITR is calculated using Equation (2.34) and (2.35)
(introduced in Section 2.4.3). The ITR of the P300 speller based on our EoCNN
and other methods for Dataset II, Dataset III-A, and Dataset III-B is shown in Ta-
ble 4.8, 4.9, and 4.10, respectively. In these tables, the different methods, we com-
pare, are shown in the first column. The ITR for different epoch numbers k ∈ [1, 15]
is shown in each row of the table. A number in bold denotes that the number is the
highest ITR along a row. “–” in a table denotes that the ITR cannot be calculated
because the corresponding method does not provide the spelling accuracy. The ITR
is shown in bits/minute.

Table 4.8: The ITR of the P300 speller based on different methods on Dataset II.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 48.33 40.25 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
CCNN 26.58 16.65 22.09 24.73 20.74 17.85 15.67 14.92 13.45 13.2 12.12 11.2 10.41 9.72 9.12
CNN-R 36.68 33.18 30.64 26.41 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
BN3 42.28 27.06 23.65 20.4 20.74 19.07 16.74 14.92 14.5 13.2 12.12 11.2 10.41 9.72 9.12

OCLNN 42.28 37.74 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
Bostanov 31.46 33.18 30.64 26.41 22.15 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Table 4.9: The ITR of the P300 speller based on different methods on Dataset III-A.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 5.77 9.64 15.03 14.44 14.51 13.88 12.96 12.02 11.29 11.35 10.84 10.67 9.71 9.48 8.89
CCNN 2.96 7.33 9.91 9.41 10.18 9.7 11.21 10.2 10.63 9.87 9.82 9.25 8.6 8.36 8.51
CNN-R 2.28 5.56 7.03 9.7 9.13 8.99 9.82 9.56 9.01 9.11 9.62 8.55 7.94 8.2 8.17
BN3 5.33 9.64 13.87 14.1 13.59 12.22 11.69 10.86 10 9.87 9.62 9.44 9.13 8.88 8.69

OCLNN 5.77 9.64 13.11 12.78 13.59 13.32 12.44 11.78 11.74 10.91 10.63 10.02 9.32 8.88 8.89
ESVM 2.96 6.96 11.65 11.82 13.28 – – – – 9.29 – – 9.13 – 8.51

We compare the max-ITR1 achieved by our EoCNN and other methods for the
P300 speller. Overall, the max-ITR achieved by our EoCNN is higher than the max-
ITR achieved by all other methods. Our EoCNN is able to increase the max-ITR
achieved by other methods with up to 21.75 bits/min.

1The notion of max-ITR is introduced in Section 3.3.5.

69

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

Table 4.10: The ITR of the P300 speller based on different methods on Dataset III-B.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN 21.61 22.4 20.52 19.23 17.15 16.64 14.9 13.55 12.97 12.31 11.55 10.67 9.92 9.27 8.89
CCNN 11.76 15.3 14.25 14.44 15.47 13.88 12.44 12.76 12.22 10.91 10.01 9.07 8.6 8.2 7.69
CNN-R 12.32 12.58 17.05 15.14 14.83 13.6 13.49 12.02 11.29 10.91 10.63 10.02 9.32 8.88 8.33
BN3 18.97 18.72 18.75 16.2 14.51 14.17 12.96 13.28 12.71 11.81 10.84 10.02 9.13 8.53 8.17

OCLNN 18.32 20.26 19.62 18.45 17.15 15.68 14.32 13.82 12.71 12.06 11.3 10.44 9.71 9.27 8.69
ESVM 11.76 15.78 15.43 14.44 14.2 – – – – 10.91 – – 9.51 – 8.33

Table 4.8, 4.9, and 4.10 show that, when compared with OCLNN (proposed and
presented in Chapter 3), the max-ITR achieved by our EoCNN is higher than the max-
ITR achieved by our OCLNN on all three datasets. Our EoCNN increases the max-
ITR achieved by our OCLNN with 6.05 bits/min, 1.44 bits/min, and 2.14 bits/min on
Dataset II, III-A, and III-B, respectively.

Table 4.8, 4.9, and 4.10 also show that, when compared with other related meth-
ods for the P300 speller, for Dataset II, the max-ITR achieved by our EoCNN is
higher than the max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3,
and Bostanov. Our EoCNN increases the max-ITR achieved by CCNN, CNN-R,
BN3, and Bostanov with 21.75 bits/min, 11.65 bits/min, 6.05 bits/min, and 15.15
bits/min, respectively. For Dataset III-A, the max-ITR achieved by our EoCNN is
higher than the max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3,
and ESVM. Our EoCNN increases the max-ITR achieved by CCNN, CNN-R, BN3,
and ESVM with 3.82 bits/min, 5.21 bits/min, 0.93 bits/min, and 1.75 bits/min, re-
spectively. For Dataset III-B, the max-ITR achieved by our EoCNN is higher than the
max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3, and ESVM. Our
EoCNN increases the max-ITR achieved by CCNN, CNN-R, BN3, and ESVM with
6.93 bits/min, 5.35 bits/min, 3.43 bits/min, and 6.62 bits/min, respectively.

Our EoCNN increases the max-ITR achieved by our OCLNN, thereby bringing
the max-ITR more closer to the theoretically achievable maximum ITR (introduced
in Section 2.4.3). Unfortunately, the complexity, in terms of the number of parame-
ters, of EoCNN is 3.35 times higher than the complexity of OCLNN (see Table 4.3).
As described in Section 1.1.2, the low complexity of a CNN-based method for P300
character spelling is an important requirement to build efficient P300 spellers that can
be used in people’s daily life. Therefore, increasing further the complexity of our
EoCNN-based P300 speller in order to further increase the max-ITR of the speller
is not a suitable way to go in terms of efficiency. Thus, further research efforts are
needed to find alternative ways to further increase the max-ITRwithout sacrificing the
efficiency of the EoCNN-based P300 speller. For example, one possible alternative

70

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

ways is to devise a better character matrix (Figure 2.16) which enables the reduction
of the time periods t1, t2, and t3 in the P300 speller experiment (see Section 2.4.2 and
Equation (2.34) and (2.35)) . However, such psychology-related research direction is
out of the scope of this thesis.

4.3 Discussions
In this section, first, we analyse our proposed OTLN and OSLN in terms of character
spelling accuracy and discuss the influence of the number of convolution layers on
extracting useful P300-related separate temporal features in Section 4.3.1. Then, we
perform an ablation study on EoCNN to show that we need to combine all three CNNs
(i.e., OSLN, OTLN, OCLNN) in EoCNN in order to achieve high spelling accuracy in
Section 4.3.2. Finally, we explore the importance of extracting P300-related features
from raw signals in Section 4.3.3.

In this section, all the experiments are performed by using the experimental setup
described in Section 3.3.1. We draw similar conclusions from the experimental results
of all datasets, i.e., Dataset III-A, Dataset III-B, and Dataset II. Thus, the experimental
results are shown using only Dataset III-A in order to present our conclusions.

4.3.1 Analysis of Our Proposed OTLN and OSLN

First, we perform experiments to show the character spelling accuracy achieved by
OTLN and OSLN, respectively. The experimental results are shown in Table 4.11.
In this table, the different CNNs, we compare, are shown in the first column. The
spelling accuracy for different epoch numbers k ∈ [1, 15] is shown in each row of the
table. A number in bold indicates that the corresponding CNN achieves the highest
accuracy compared to all other CNNs. The accuracy numbers in this table are given
in percentage (%). Table 4.11 shows that OTLN and OSLN both have good ability
to achieve high spelling accuracy when OTLN and OSLN are used independently for
P300 spelling. Thus, OTLN and OSLN are able to extract very useful P300-related
separate temporal features and P300-related separate spatial features, respectively.

Then, we analyse whether OTLN needs more convolution layers to extract P300-
related separate temporal features. In order to analyse the influence of the number
of convolution layers on OTLN, we perform experiments to compare the spelling
accuracy achieved by OTLN and other two CNNs called OTLN-3l and OTLN-6l.
OTLN-3l and OTLN-6l use 3 and 6 convolution layers, respectively. These convo-
lution layers use the same kernel size and generate the same number of feature maps
as the convolution layer used in OTLN. The spelling accuracy achieved by OTLN,
OTLN-3l and OTLN-6l is plotted in Figure 4.2. This figure shows that the spelling
accuracy achieved by OTLN-3l and OTLN is almost the same. The spelling accuracy

71

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

achieved by OTLN-6l is lower than the spelling accuracy achieved by OTLN. These
experimental results show that using one convolution layer is enough to extract useful
P300-related separate temporal features for P300 spelling. Using more convolution
layers for the extraction of separate temporal features does not help increasing the
spelling accuracy and may cause overfitting which decreases the spelling accuracy.

Table 4.11: Spelling accuracy achieved by OTLN, OSLN and EoCNN on Dataset
III-A.

Network Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OTLN 21 34 51 65 69 73 76 81 85 85 88 92 92 93 95

OSLN 24 35 55 63 69 75 78 79 80 82 89 92 94 95 96

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99

4.3.2 Ablation Study on EoCNN

We perform an ablation study on EoCNN to show that we need to combine all three
CNNs (i.e., OSLN, OTLN, OCLNN) in EoCNN in order to achieve high spelling ac-
curacy. We first remove a CNN from EoCNN. Then, we perform experiments to show
the spelling accuracy achieved by the ensemble of the two CNNs left in EoCNN. In
this way, we want to show the importance of each separate CNN in EoCNN for char-
acter spelling in the P300 speller. The experimental results are shown in Table 4.12.
In this table, “-” indicates that we remove a given CNN from EoCNN. For example,
“EoCNN-OSLN” indicates that we removeOSLN fromEoCNN. The experimental re-
sults show that after removing any of the individual CNNs from EoCNN, the spelling
accuracy achieved by the ensemble of the two CNNs left is lower compared with the
spelling accuracy achieved by EoCNNwhen none of the individual CNNs is removed.
This shows that we need to combine all three CNNs (i.e., OSLN, OTLN, OCLNN)
in EoCNN in order to achieve high spelling accuracy. The experimental results from
Table 4.12 also give us some insights. For example, in most cases, the spelling ac-
curacy achieved by EoCNN-OTLN is higher than the spelling accuracy achieved by
EoCNN-OSLN. This shows that P300-related spatial features are more important than
P300-related temporal features on increasing the spelling accuracy. This is because a
large number of sensors (i.e., 64 sensors) are used to acquire EEG signals in the P300
speller. When using a large number of sensors for the acquisition of EEG signals, we

72

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

Figure 4.2: Spelling accuracy achieved by OTLN, OTLN-3l and OTLN-6l on Dataset
III-A.

need to put more importance on extracting P300-related spatial features in order to
achieve high spelling accuracy (For more explanation, please see Chapter 6).

4.3.3 Exploration on the Importance of Extracting P300-related Fea-
tures from Raw Signals

We explore the importance of extracting P300-related temporal features from raw
signals. We consider two sets of networks. These two sets of networks are called
“RAW_networks” and “unRAW_networks”, respectively. RAW_networks include
networks EoCNN, OCLNN, EoCNN-OSLN, EoCNN-OTLN, and EoCNN-OCLNN.
All the networks in set RAW_networks extract P300-related temporal features from
only raw signals. unRAW_networks include networks CCNN, CNN-R and BN3. All
the networks in set unRAW_networks extract P300-related temporal features from
abstract signals. We perform experiments to show the spelling accuracy achieved by
each network in set RAW_networks and the spelling accuracy achieved by each net-

73

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

Table 4.12: Spelling accuracy achieved by EoCNN after removing a separate CNN.

Network Epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN-OTLN 23 39 58 67 75 81 82 86 86 91 93 96 96 97 99

EoCNN-OSLN 22 36 57 66 73 79 80 84 89 92 92 95 95 97 98

EoCNN-OCLNN 22 35 55 67 75 79 80 82 83 89 90 93 95 97 98

EoCNN 23 39 61 68 76 81 84 86 88 93 95 98 97 99 99

work in set unRAW_networks.
The experimental results are shown in Figure 4.3. In this figure, the spelling

accuracy achieved by the networks in set RAW_networks and the spelling accuracy
achieved by the networks in set unRAW_networks are plotted in different shapes and
colors. This figure shows that in most cases, the spelling accuracy achieved by the
networks in set RAW_networks is higher than the spelling accuracy achieved by the
networks in set unRAW_networks. This fact indicates that extracting P300-related
temporal features from raw signals is able to achieve higher spelling accuracy than
extracting P300-related temporal features from abstract signals.

4.4 Conclusions

In this chapter, we propose a novel and effective network, called EoCNN, for the
P300 signal detection and character spelling in the P300 speller. Our EoCNN uses
an ensemble of three different CNNs for P300 spelling. These three CNNs extract
different useful P300-related features. Experimental results on three datasets show
that our EoCNN increases the P300 signal detection accuracy, the character spelling
accuracy, and the ITR achieved by OCLNN (proposed and presented in Chapter 3)
and other related methods for the P300 speller. In addition, our EoCNN is robust
across different subjects.

Unfortunately, the complexity of our EoCNN is only lower than the complexity of
CNN-R, and higher than the complexity of OCLNN, CCNN, and BN3. Thus, when
compared to CNN-R, we should use our EoCNN for the P300 speller because our
EoCNN has lower complexity and achieves higher P300 signal detection accuracy,
character spelling accuracy, and ITR than CNN-R. When compared with OCLNN,
CCNN, and BN3, if the hardware platform used in an efficient P300-based BCI system

74

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

Figure 4.3: Spelling accuracy achieved by networks in set RAW_networks and net-
works in set unRAW_networks on Dataset III-A.

cannot support the high complexity of EoCNN, we need to choose a network among
OCLNN, CCNN, and BN3 to be used for the P300 speller. In this case, we should
use OCLNN because OCLNN is better than CCNN and BN3 for the P300 speller
(For detailed explanation on why OCLNN is better than CCNN and BN3 for the P300
speller, please see Section 3.3.5). If the hardware platform used in an efficient P300-
based BCI system can support the complexity of EoCNN, we should use EoCNN in
such P300-based BCI system because EoCNN is able to achieve higher P300 signal
detection accuracy, character spelling accuracy, and ITR than OCLNN, CCNN, and
BN3 for the P300 speller.

75

CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

76

Chapter 5

A Novel Sensor Selection Method
based on Convolutional Neural
Network for P300 Speller

Hongchang Shan, and Todor Stefanov,
"SLES: A Novel CNN-based Method for Sensor Reduction in P300 Speller,"
In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC’19), Berlin, Germany, July 23-27, 2019.

Hongchang Shan, and Todor Stefanov,
"A Novel Sensor Selection Method based on Convolutional Neural Network for P300 Speller in Brain
Computer Interface",
The 56th ACM/IEEE Design Automation Conference (DAC’19) WIP session, Las Vegas, NV, USA, June
2-6, 2019.

P300 spellers are still not used in human’s daily life and remain in an experimental
stage at research labs. Some of the reasons for this situation are : 1) Current pop-

ular EEG headsets in BCI systems, used for P300 spellers, utilize a large number of
sensors to achieve high spelling accuracy. For example, the BCI systems Brain Prod-
ucts ActiCHamp [Act], g.HIamp [g.H], and Biosemi ActiveTwo [Bio18] utilize up to
160, 256, and 280 sensors, respectively. The price of the EEG headset is significantly
high when the number of sensors is large because a lot of sensors require a compli-
cated electrode cap and a lot of amplifier channels. For example, a 280-sensor BCI
system (e.g., BioSemi ActiveTwo) costs around 87000 dollars while a 14-sensor BCI
system (e.g., EMOTIV EPOC+ [EMO]) costs 799 dollars; 2) Utilizing a large number
of sensors makes the P300 speller to consume a lot of power, which is unacceptable
for a battery-powered mobile BCI practical system. Such system utilizes a wireless
EEG headset and a resource-constrained hardware platform for data processing. A

77

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

large number of sensors increases the amount of the data needed to be recorded and
processed, thereby increasing the power consumption of the wireless BCI headset and
the hardware platform. This does not allow a mobile practical P300 speller to work
for a long time period on a single battery charge; 3) Utilizing a large number of sen-
sors strengthens the user’s discomfort and increases the installation time of the P300
speller.

To address the aforementioned problems caused by the utilization of a large num-
ber of sensors, sensor selection methods could be used to select an appropriate sen-
sor subset from an initial large set of sensors while keeping acceptable spelling ac-
curacy. So, a good sensor selection method should enable substantial reduction of
the sensors needed to acquire brain signals. Therefore, good sensor selection meth-
ods are in urgent need for designing comfortable, cheap, and power-efficient P300
spellers and for promoting such P300 spellers into the human’s daily life. Sensor
selection methods for the P300 speller have been studied in recent years. For exam-
ple, [RG08] [RSG+09] [CRC+10] [CR+11] utilize a backward elimination algorithm
as a sensor selection strategy. These works propose different ranking functions to
evaluate and eliminate sensors such as the P300 signal detection accuracy, the P300
spelling accuracy [CR+11], the Ccs score [RG08], Signal to Signal and Noise Ratio
(SSNR) [RSG+09] [CRC+10] [CR+11], Area Under the Receiver Operating Char-
acteristic (AUC) [CRT+14]. Alternatively, [CG11] and [LWG+18] directly select the
important sensors for a given user by analysing the weights of a trained neural net-
work. Unfortunately, the aforementioned sensor selection methods cannot select an
appropriate sensor subset such that they can further reduce the number of sensors used
to acquire brain signals while keeping the spelling accuracy the same as the accuracy
achieved when the initial large sensor set is used. As a consequence, the cost, power
consumption, and discomfort of a P300 speller are still unacceptably high when using
the aforementioned sensor selection methods to design and configure P300 spellers.
In order to further reduce the cost and power consumption of a P300 speller, we pro-
pose an effective sensor selection method based on a specific novel CNN, i.e., the
OSLN, we have devised and presented in Chapter 4. The novel contributions of this
chapter are the following:

• We parameterize the OSLN with the number of sensors used for the acquisition
of EEG signals. Our sensor selection method uses this parameterized CNN to
evaluate and rank the sensors during the sensor selection process. This method
features an iterative parameterized backward elimination algorithm to eliminate
and select sensors. The parameter, configured in this backward elimination al-
gorithm, controls the training frequency of the CNN and the number of sensors
to eliminate in every iteration.

78

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

• We perform experiments on three benchmark datasets and compare the min-
imal number of sensors selected by our proposed method and other selection
methods needed to acquire EEG signals while keeping the spelling accuracy
the same as the accuracy achieved when the initial large sensor set is used. The
results show that, compared with the minimal number of sensors selected by
other methods, our method can reduce this number with up to 44 sensors.

The rest of the chapter is organized as follows. Section 5.1 describes the related
work. Section 5.2 presents our proposed sensor selection method. Section 5.3 de-
scribes the experimental setup and the experimental results on the comparison of the
minimal number of sensors selected by our proposed method and other sensor selec-
tion methods to acquire brain signals for the P300 speller. Section 5.4 discusses how
the number of sensors eliminated in an iteration influences the performance of our
proposed method as well as how the CNN network architecture influences the sensor
selection process. Section 5.5 ends the chapter with conclusions.

5.1 Related Work

In this section, we describe the related works on sensor selection methods for the P300
speller in BCI.

[RG08] [CR+11] utilize a backward elimination algorithm as a sensor selection
strategy. Different ranking functions are proposed to evaluate and eliminate sensors.
These ranking functions include the P300 detection accuracy, the average spelling ac-
curacy across different epochs [CR+11], the Ccs score [RG08], Signal to Signal and
Noise Ratio (SSNR) [CR+11], and Area Under the Receiver Operating Characteristic
(AUC) [CRT+14]. In order to select a sensor subset, the backward elimination al-
gorithm either eliminates one sensor [CR+11] or a group of sensors [RG08] in each
iteration of the algorithm. Starting with a set of n sensors in an iteration, the backward
elimination algorithm removes each sensor in the current sensor set and evaluates the
resulting subsets with (n − 1) sensors using the aforementioned ranking functions.
The sensor or the group of sensors which removal maximizes the ranking score is
eliminated. In contrast to these methods, we proposes a novel ranking function (see
Section 5.2.3) based on the OSLN we have devised and presented in Chapter 4. Ex-
perimental results (see Section 5.3.2) show that our sensor selection method is able
to select a sensor subset with smaller number of sensors needed to acquire the EEG
signals while keeping the spelling accuracy the same as the accuracy achieved when
the initial large sensor set is used, compared with the sensor subset selected by the
aforementioned sensor selection methods. Therefore, our sensor selection method
can further reduce the cost and power consumption of the P300 speller.

79

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

[CG11] and [LWG+18] propose CNN-based classifiers for character spelling in
the P300 speller. By analysing the weights of the spatial convolution layer of their
trained CNNs, they determine which sensors are more important in the sensor set.
This can be a potential sensor selection method for the P300 speller. However, the
problem of such potential method is that it loses important information needed for
proper sensor selection. The aforementioned CNNs have multiple convolution layers.
The information needed for proper sensor selection is distributed over the weights of
all convolution layers. In [CG11] and [LWG+18], only the weights of the first layer
are used for analysis and sensor selection because the weights of the other convo-
lution layers can hardly be used for sensor selection (for the detailed explanation of
the reason for this please refer to Section 5.4.2). Thus, the aforementioned methods
cannot use all the information available for proper sensor selection. In contrast to
the aforementioned CNNs, our proposed OSLN has only one convolution layer and
this layer performs the spatial convolution operation. All the information needed for
sensor selection is captured by the weights of this single spatial convolution layer.
Moreover, our CNN has similar ability to extract very useful P300-related features
compared to the aforementioned CNNs (see Table 4.11 and Table 3.8). We analyse
the weights of the single spatial convolution layer in our CNN to select sensors. Thus,
our method uses all the information available for proper sensor selection compared
to the aforementioned methods. As a result, our method can select more appropriate
sensor subsets and further reduce the minimal number of sensors needed to acquire
brain signals without losing spelling accuracy. For more detailed discussion see Sec-
tion 5.4.2.

5.2 Our Sensor Selection Method

In this section, we present our novel iterative sensor selection method for the P300
speller. We call it Spatial Learning based Elimination Selection (SLES).

5.2.1 Spatial Learning based Elimination Selection

Our SLES method is described in Algorithm 1. The symbols used in Algorithm 1
and their corresponding descriptions are listed in Table 5.1. The input of SLES is
the initial sensor set S and the parameter Es. The output of SLES is a set of se-
lected sensor subsets SUB. For each iteration in Algorithm 1, SLES trainsOSLN(S)

with the input signals recorded with the sensors in sensor set S (see Line 2 in Algo-
rithm 1). OSLN(S) (described in Section 5.2.2) is the parameterized version of the
OSLN (proposed in Chapter 4) with S as a parameter. After training OSLN(S), the
ranking scores scorej for all sensors sj in sensor set S are calculated (Line 3-4) using

80

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

OSLN(S) and Equation (5.2) explained in Section 5.2.3. The sensor with the mini-
mal score is found and removed from sensor set S (Lines 6-7). This reduced sensor
set S is the selected sensor subset in this iteration (Line 8). The input parameter Es

controls the training frequency of OSLN(S) (Line 1) and the number of sensors to
eliminate after training OSLN(S) (Line 5).

Table 5.1: The symbols used in Algorithm 1.

Symbol Description

S Sensor set.

sj The jth sensor in S.

C Number of sensors in the initial sensor set.

SUB A set of selected sensor subsets.

subm A selected sensor subset withm sensors.

OSLN(S) The novel parameterized CNN given in Section 5.2.2

Es Number of sensors to eliminate in an iteration.

scorej The ranking score for sj .

sremove The sensor to remove.

5.2.2 Parameterized OSLN

In this section, we describe in details the OSLN(S) (used in Algorithm 1), which is
the parameterized version of the OSLN, proposed and presented in Chapter 4.

5.2.2.1 Input Tensor

The input toOSLN(S) is the tensor (N × |S|) shown in Figure 5.1. S is the sensor set
used in Algorithm 1. xji denotes the ith temporal signal sample in the time domain
and this signal sample is recorded with sensor sj in sensor set S in the space domain.
OSLN(S) is parameterized by S because the input tensor toOSLN(S) is constructed
by the EEG signal samples acquired using the sensors in sensor set S and S is changed
in each main iteration of Algorithm 1 (see Line 7). N denotes the number of temporal

81

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Algorithm 1: Proposed SLES algorithm.
Input: Set S = {s1, s2, ..., sj , ... sC}, Es;
Output: Set SUB = {sub1, sub2, ... , subm, ... subC−1};

1 for 1 ≤ k ≤ C/Es do
2 Train a OSLN(S) with the input signals recorded using S;
3 for sj ∈ S do
4 Calculate scorej using OSLN(S) and Equation (5.2);
5 for 1 ≤ m ≤ Es do
6 sremove = argmin

sj∈S
{scorej};

7 S ← S − sremove;
8 sub(C−Es∗(k−1)−m) ← S;

signal samples. These temporal signal samples are preprocessed in the same way as
explained in Section 3.2.1 of Chapter 3.

Figure 5.1: Input tensor to OSLN(S), where sj ∈ S.

5.2.2.2 Network Architecture

Table 5.2 shows the details of the OSLN(S) architecture. The first column shows the
name of the layers. The second column shows the operation performed in the cor-
responding layer. The third column shows the kernel size in the convolution layer.
The fourth column shows how many feature maps or neurons are utilized in the con-
volution or fully-connected layer. The difference between OSLN(S) and OSLN (see
Table 4.1 in Section 4.1.2) is Layer 1, i.e., the convolution layer. Thus, we describe

82

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

only Layer 1 of OSLN(S) in this section.

Table 5.2: OSLN(S) architecture.

Layer Operation Kernel Size Feature Maps/Neurons

1 Convolution (1,|S|) 16

Dropout — —

2 Fully-Connected — 2

In Layer 1, OSLN(S) performs a spatial convolution operation to extract the spa-
tial features related to P300 signals from the input tensor. The detailed calculation
in this convolution operation is shown in Equation (5.1), where fki denotes the ith
datum in the kth feature map. wkj denotes the jth weight of the filter and this filter
outputs abstract data for the kth feature map. The activation function we utilize in this
layer is the Rectified Linear Unit (ReLU). In this layer, we utilize Dropout in order to
prevent the network from overfitting. In this layer, we do not use bias in the convo-
lution operation, thus all the learned features are captured by the weights wkj . This
layer outputs 16 feature maps in total.

fki =
∑
sj∈S

xjiwkj (5.1)

5.2.3 Ranking Function

Our proposed novel ranking function used in SLES is given in Equation (5.2), where
scorej is the ranking score for sensor sj used in Algorithm 1. wkj are the weights
described in Equation (5.1). These weights are obtained from the trained OSLN(S),
described in Section 5.2.2.2 and used in Algorithm 1. Note that we take the absolute
value of the weights in Equation (5.2) because weights with a large negative value
also indicate that the corresponding sensors are important in sensor set S. We use
the absolute values of the weights from the spatial convolution layer (i.e., Layer 1 in
Table 5.2) of the trained OSLN(S) in the ranking function to rank the sensors in the
sensor set because [CG11] and [LWG+18] have shown that analyzing the weights of
the spatial convolution layer from trained CNNs for the P300 speller is a potential
method to determine which sensors are more important in the sensor set. For details,
please refer to [CG11] and [LWG+18].

83

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

scorej =
16∑
k=1

|wkj | (5.2)

We have proposed three CNNs with one convolution layer, i.e., OSLN, OCLNN
(proposed and presented in Chapter 3), and OTLN (proposed and presented in Sec-
tion 4.1.2 of Chapter 4). Our ranking function to rank the sensors in the sensor set is
based on the parameterized OSLN instead of a parameterized version of OCLNN as
well as instead of a parameterized version of OTLN. The reason for this is explained
in Section 5.4.2.

5.3 Experimental Evaluation
In this section, we present the experiments, we have performed, in order to compare
the minimal number of sensors selected by our method and other methods to acquire
EEG signals while keeping the spelling accuracy the same as the accuracy achieved
when the initial large sensor set is used. We first introduce our experimental setup and
then we present and analyse the obtained experimental results.

5.3.1 Experimental Setup

To perform the experiments, we use 3 different implementations of the P300 speller:
the OCLNN-based P300 speller (proposed and presented in Chapter 3), the EoCNN-
based P300 speller (proposed and presented in Chapter 4), and the SVM-based P300
speller [RG08]. We want to confirm the robustness of our SLES method by showing
that our method is effective for different P300 speller implementations.

We compare our SLES method with 12 other sensor selection methods. These
methods are summarized in Table 5.3. In this table, the first row gives the names of
the different methods. The second row describes the sensor elimination algorithms
used in the methods, where BE-1 denotes a backward elimination algorithm which
eliminates one sensor at a time; BE-4 denotes a backward elimination algorithmwhich
eliminates 4 sensors at a time; “–” denotes that the corresponding method does not use
a backward elimination algorithm. The last row indicates the ranking functions used
in the methods, where P300 denotes the P300 detection accuracy; Char denotes the
average character spelling accuracy across all epochs; AUC denotes Area Under the
Receiver Operating Characteristic [CRT+14];Ccs denotes the ranking score proposed
in [RG08]; SSNR denotes Signal to Signal and Noise Ratio [CR+11]; CCNN and
BN3 denote that the corresponding method selects sensors by analysing the weights
obtained from the trained networks CCNN [CG11] and BN3 [LWG+18], respectively.

84

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.3: Methods compared with SLES.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Algo. BE-1 BE-1 BE-1 BE-1 BE-1 BE-4 BE-4 BE-4 BE-4 BE-4 – –

Function P300 Char AUC Ccs SSNR P300 Char AUC Ccs SSNR CCNN BN3

We compare the minimal number of sensors selected by the different methods
to acquire EEG signals while keeping the spelling accuracy the same as the accu-
racy achieved when the initial large sensor set is used. We use the training dataset
of Dataset II, III-A and III-B (described in Section 2.5) as the preliminary dataset to
perform sensor selection using the different sensor selection methods to select sensor
subsets for the corresponding subject. More specifically, for our SLES method, this
preliminary dataset is used to train a OSLN(S) and calculate scorej in each iteration
of our SLES method (see Algorithm 1). For the sensor selection methods C1 , C2 ,
C3 , C4 , C5 , C6 , C7 , C8 , C9 , and C10 (see Table 5.3), this preliminary dataset is
used to calculate the P300 detection accuracy (for C1 and C6), the average character
spelling accuracy across all epochs (for C2 and C7), AUC (for C3 and C8), the Ccs

score (for C4 and C9), and the SSNR score (for C5 and C10). For the sensor selec-
tion methods C11 and C12 (see Table 5.3), this preliminary dataset is used to train
CCNN (for C11) and BN3 (for C12) in order to analyze the weights of the trained
CCNN and BN3 to select appropriate sensor subsets from the initial sensor set. Af-
ter using different sensor selection methods to select sensor subsets, we calculate the
spelling accuracy of the aforementioned OCLNN-based P300 speller, EoCNN-based
P300 speller, and SVM-based P300 speller with the selected sensor subsets. The train-
ing datasets of Dataset II, III-A and III-B are used to train the classifier used in the
aforementioned P300 speller implementations with the selected sensor subsets. Then,
the test dataset of Dataset II, III-A and III-B are used to calculate the spelling accuracy
of the aforementioned P300 speller implementations with the selected sensor subsets.
The spelling accuracy is calculated using Equation (5.3). In this equation, accmchar(k)
denotes the spelling accuracy when using the first k epochs for each character and us-
ing the EEG signals acquired with the selected sensor subset containingm number of
sensors. Nm

tc(k) denotes the number of truly predicted characters when using the first k
epochs for each character and using the EEG signals acquired with the selected sensor
subset containing m number of sensors, and Sc denotes the number of all characters
in the evaluation dataset. After the evaluation of the spelling accuracy, the minimal
number of sensors needed to acquire EEG signals for epoch k is calculated asmmin,
wheremmin is the minimalm ∈ [1, 63] which makes accmchar(k) >= acc64char(k).

85

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

accmchar(k) =
Nm

tc(k)

Sc
(5.3)

The setup for our SLES algorithm (Algorithm 1) is the following. The input to
SLES is S = {s1, s2, ..., sj , ... sC} and Es. We set C=64 because the datasets used in
the experiments are recorded with 64 sensors. We set Es=4. For detailed discussion
whyEs=4 see Section 5.4.1. SLES usesOSLN(S) as the ranking function. OSLN(S)

uses the input tensor (N × |S|). N = 240 because the signal sampling frequency is
240 Hz and we take each individual pattern to be the signal samples between 0 and
1000 ms posterior to the beginning of each intensification.

5.3.2 Experimental Results

Table 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 show the minimal number of sen-
sors selected by the different sensor selection methods to acquire EEG signals while
keeping the spelling accuracy the same as the accuracy achieved when the initial large
sensor set of all 64 sensors is used. The first column in the tables lists the different
selection methods we compare. Each row provides the minimal number of sensors
selected by a method to acquire EEG signals for different epoch numbers k ∈ [1, 15].
A number in bold indicates that the minimal number of sensors selected by the cor-
responding method is the lowest among all methods. Overall, the minimal number
of sensors selected by our SLES method is lower than the minimal number of sen-
sors selected by all other methods in most cases. SLES is able to reduce the minimal
number of sensors selected by other methods with up to 44 sensors.

For the P300 speller with our CNN-based classifiers, i.e., OCLNN and EoCNN,
(see Table 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9), in 83 out of 90 cases, the minimal number of
sensors selected by our SLES is lower than the minimal number of sensors selected by
all other methods. Our SLES is able to reduce the minimal number of sensors selected
by other methods with up to 44 sensors. The largest reduction occurs when comparing
the minimal number of sensors selected by SLES with the minimal number of sensors
selected by C8 on epoch number k = 7 for Dataset III-A using the OCLNN-based
P300 speller.

For the P300 speller with the SVM-based classifier (see Table 5.10, 5.11 and 5.12),
in 41 out of 45 cases, the minimal number of sensors selected by our SLES is lower
than theminimal number of sensors selected by all other methods. Our SLES is able to
reduce theminimal number of sensors selected by othermethodswith up to 40 sensors.
The largest reduction occurs when comparing the minimal number of sensors selected
by SLES with the minimal number of sensors selected byC12 on epoch number k = 2
for Dataset III-B.

86

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Finally, our SLES method is robust because: 1) SLES is effective in reducing the
number of sensors when the P300 speller is implemented with different classifiers.
From Table 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12, we can see that no matter
the P300 speller is implemented with CNN-based classifier or SVM-based classifier,
the minimal number of sensors selected by SLES is lower than the minimal number
of sensors selected by all other methods in most cases; 2) SLES is effective when
it is used for different subjects, i.e., no matter that SLES is used with Dataset III-A,
Dataset III-B or Dataset II, the minimal number of sensors selected by SLES is lower
than the minimal number of sensors selected by all other methods in most cases.

Table 5.4: Minimal number of sensors selected by different methods for Dataset II.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 11 11 46 15 22 11 9 3 3 3 3 4 3 3 3
C1 32 30 47 39 38 22 16 6 6 6 6 6 6 7 6
C2 17 20 55 19 34 15 12 6 5 3 4 3 6 7 7
C3 18 18 47 18 30 10 12 6 5 3 5 6 6 6 6
C4 24 27 49 17 28 8 10 7 6 7 4 3 3 5 6
C5 40 33 48 41 38 35 20 9 8 9 9 8 9 9 8
C6 48 33 49 47 32 30 28 28 20 15 10 20 10 15 15
C7 44 32 49 48 31 27 27 27 22 18 10 10 8 10 10
C8 44 36 50 38 33 32 25 25 10 10 10 10 10 17 12
C9 45 35 44 34 34 34 25 25 10 17 18 17 15 15 15
C10 48 35 49 44 40 30 33 29 21 19 20 20 20 18 17
C11 25 25 54 24 24 14 15 15 10 10 12 17 15 15 15
C12 29 27 59 25 31 22 15 18 13 13 15 18 19 21 18

5.4 Discussions

In this section, we discuss the configuration of input parameter Es in SLES (see Al-
gorithm 1). Also, we discuss the impact of different CNN architectures on selecting
sensors.

87

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.5: Minimal number of sensors selected by different methods for Dataset III-A.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 17 50 50 25 40 35 20 50 60 20 50 35 21 16 35
C1 27 64 58 59 55 64 43 58 64 29 57 49 29 29 53
C2 29 64 64 60 59 59 36 60 60 31 56 56 31 28 60
C3 28 64 64 60 64 60 55 64 64 36 64 55 39 39 46
C4 53 64 63 64 64 64 60 64 61 61 64 56 55 37 61
C5 30 64 56 64 55 64 43 63 64 31 64 57 36 33 55
C6 30 63 64 64 64 64 57 64 64 61 64 53 53 53 59
C7 44 57 64 64 64 64 62 64 64 55 64 53 59 52 51
C8 49 59 60 63 64 64 64 63 64 60 64 56 56 54 56
C9 22 64 56 55 58 64 56 56 64 34 52 48 27 36 34
C10 34 63 64 64 64 64 59 64 64 61 64 58 61 53 59
C11 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
C12 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41

5.4.1 Configuration of Es in SLES

In this section, we show how we configure the input parameter Es in SLES. We use
only the preliminary dataset of Dataset III-A and use the OCLNN-based P300 speller
implementation to show the experiments on how to tune Es because we obtain the
same Es value when we perform experiments using all datasets and using all the
aforementioned P300 speller implementations to tune Es for SLES. We divide the
preliminary dataset of Dataset III-A into two parts. The first part contains 60% of the
preliminary dataset of Dataset III-A. The second part contains the left 40% of the pre-
liminary dataset of Dataset III-A. The first part, i.e., the 60% of the preliminary dataset
of Dataset III-A, is used to train OSLN(S) (see Section 5.2.2) while running SLES
with differentEs configurations, i.e., Es=1, 2, 4, 8, 16, 32 and 64. With eachEs con-
figuration, SLES selects a set of sensor subsets for Dataset III-A. The second part, i.e.,
the left 40% of the preliminary dataset of Dataset III-A, is used to evaluate the spelling
accuracy of the aforementioned P300 speller implementation with the selected sensor
subsets. The P300 spelling accuracy is calculated using Equation (5.3). Then, we

88

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.6: Minimal number of sensors selected by different methods for Dataset III-B.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 25 17 31 27 26 21 27 32 37 32 31 29 34 29 23
C1 32 23 31 28 31 24 32 40 43 44 38 32 42 35 26
C2 28 24 52 38 36 25 35 45 41 41 31 30 42 38 31
C3 26 29 42 50 35 23 32 54 49 48 38 29 39 38 33
C4 31 25 61 40 45 24 38 57 60 57 59 55 49 47 43
C5 44 33 36 34 31 24 34 41 43 48 38 42 42 37 26
C6 50 56 55 49 48 58 48 50 50 50 48 44 51 49 45
C7 52 48 49 49 50 49 49 59 48 48 48 46 45 47 46
C8 49 49 54 52 49 54 48 59 49 49 49 44 46 44 44
C9 44 56 49 49 40 25 35 39 39 49 51 37 34 35 42
C10 49 52 55 44 50 51 46 50 52 51 49 50 51 49 50
C11 44 56 49 49 40 25 35 49 39 49 51 37 38 34 42
C12 54 61 59 55 52 27 30 42 45 63 54 48 47 34 42

calculate the minimal number of sensorsmmin for the different Es configurations as
described in Section 5.3.1. In this experiment, we divide the preliminary dataset of
Dataset III-A into two parts, i.e., one part containing 60% of the preliminary dataset of
Dataset III-A and one part containing the left 40% of this dataset because the majority
of the researchers use this ratio to split a dataset [XMYR16, VELB18, LLJ+18].

The experimental results are shown in Table 5.13. The first column in the ta-
ble lists the different configurations of Es in SLES. Each row provides the minimal
number of sensors selected by SLES for different epoch numbers k ∈ [1, 15]. A num-
ber in bold indicates that the minimal number of sensors selected by SLES with the
corresponding Es configuration is the lowest compared with the minimal number of
sensors selected by SLES with other Es configurations. From Table 5.13, we can see
that, in most cases, the minimal number of sensors selected by SLES withEs=4 is the
lowest compared to the minimal number of sensors selected by SLES with other Es

configurations. Therefore, we set Es=4 when using SLES.

89

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.7: Minimal number of sensors selected by different methods for Dataset II.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 10 16 28 19 22 9 8 3 3 3 3 4 3 3 3
C1 28 33 40 41 38 19 15 6 6 6 6 6 6 7 6
C2 15 24 48 19 34 14 12 6 5 3 4 3 6 7 7
C3 14 20 41 20 30 9 10 6 5 3 5 6 6 6 6
C4 19 29 43 21 28 7 9 7 6 8 4 3 3 5 6
C5 31 34 42 43 38 31 17 9 8 9 9 8 9 9 8
C6 43 35 44 49 33 29 25 27 20 15 10 20 10 15 15
C7 39 32 45 52 31 27 26 27 22 18 10 10 8 11 10
C8 37 36 47 40 33 30 25 25 10 10 10 10 10 17 12
C9 42 37 43 36 34 33 24 25 10 18 18 17 15 15 15
C10 43 38 45 47 40 28 32 29 21 19 20 20 20 18 15
C11 19 29 48 25 23 13 12 15 10 10 11 17 15 15 15
C12 26 31 53 28 31 18 13 18 13 13 15 18 19 19 18

5.4.2 Exploring the Impact of the CNNArchitecture on Sensor Selection

We perform experiments to explore the impact of different CNN architectures on the
sensor selection process in order to address the issue mentioned in the third paragraph
of Section 5.1 and the issue mentioned at the end of Section 5.2.3. The P300 speller
implemention used for this experiment is the CNN-based classifier OCLNN. We use
the preliminary dataset of Dataset III-A to train our OSLN, OTLN (proposed and pre-
sented in Section 4.1.2 of Chapter 4), OCLNN (proposed and presented in Chapter 3),
CCNN [CG11], and BN3 [LWG+18]. We select sensor subsets by directly analyzing
the weights of the convolution layer of OSLN, OCLNN, and OTLN, as well as se-
lect sensor subsets by directly analyzing the weights of the first convolution layer of
CCNN and BN3 (as done in [CG11] and [LWG+18]). We use the evaluation dataset
of Dataset III-A to evaluate the P300 spelling accuracy of the aforementioned P300
speller implementation with the selected sensor subsets. Then, we calculate the min-
imal number of sensors mmin selected by analysing the weights of OSLN, OCLNN,
OTLN, CCNN, and BN3. For the detailed calculation ofmmin see Section 5.3.1.

90

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.8: Minimal number of sensors selected by different methods for Dataset III-A.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 18 39 37 21 41 38 20 39 44 23 46 33 21 16 31
C1 27 51 44 55 55 60 43 46 50 30 52 46 29 29 50
C2 30 53 50 56 59 55 36 49 52 35 51 54 31 27 56
C3 30 53 50 56 64 56 55 52 53 39 59 53 39 39 41
C4 55 52 48 59 63 60 60 52 49 62 60 52 55 37 56
C5 31 54 51 59 55 60 43 50 50 36 59 55 36 33 50
C6 31 52 50 58 64 59 57 53 52 62 61 50 54 53 56
C7 44 56 52 55 62 60 61 51 53 58 60 50 59 52 48
C8 50 57 47 52 64 60 64 50 52 61 60 51 56 54 53
C9 23 55 43 51 55 58 56 45 51 40 48 42 27 36 31
C10 34 56 49 53 64 60 59 64 52 62 60 53 61 53 52
C11 26 53 42 50 58 61 56 46 52 39 51 44 26 36 36
C12 30 60 48 55 64 63 58 52 53 44 59 48 39 36 40

The experimental results are shown in Table 5.14. The first column in the table
lists the different CNNs. Each row provides theminimal number of sensors selected by
analysing the weights of the different CNNs for different epoch numbers k ∈ [1, 15].
A number in bold indicates that the minimal number of sensors selected by analysing
the weights of the corresponding CNN is the lowest, compared to the minimal number
of sensors selected by analysing the weights of other CNNs.

Table 5.14 shows that the minimal number of sensors selected by analysing the
weights of our proposed one-convolution-layer CNNs, i.e., OSLN,OCLNN, andOTLN,
is lower than the minimal number of sensors selected by analysing the weights of
CCNN and BN3. The reason is the following. CCNN and BN3 have multiple convo-
lution layers. The information needed for proper sensor selection is distributed over
the weights of all convolution layers. In CCNN and BN3, only the weights of the
first convolution layer are used for analysis and proper sensor selection because the
weights of the other convolution layers can hardly be used for proper sensor selection.
This is because the information for the importance of each sensor in the sensor set is
stored in the input neurons of the input tensor to a CNN. This input tensor is directly

91

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.9: Minimal number of sensors selected by different methods for Dataset III-B.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 25 26 28 27 23 14 16 25 30 29 33 22 30 29 23
C1 31 30 28 28 27 18 23 34 37 40 37 29 39 35 26
C2 28 32 48 38 32 20 24 38 35 39 31 27 39 38 31
C3 26 40 38 50 33 21 22 47 42 45 36 26 37 38 33
C4 31 31 57 40 42 20 25 50 53 52 56 40 40 47 43
C5 44 39 33 34 29 22 26 34 36 46 38 36 38 37 26
C6 50 60 50 49 45 42 37 45 45 49 46 38 47 49 45
C7 52 55 48 49 46 39 38 52 40 47 47 41 41 45 46
C8 49 55 51 52 48 45 37 53 42 46 45 37 41 44 44
C9 44 62 46 49 38 23 24 35 33 45 50 32 29 36 42
C10 50 60 52 44 49 41 35 44 46 48 49 41 47 49 50
C11 44 60 48 49 37 23 25 36 35 42 49 30 35 34 41
C12 54 64 56 55 45 26 28 42 41 51 52 38 40 34 42

related to the first convolution layer of CCNN and BN3 by directly connecting each
receptive field of the input neurons in the input tensor with each neuron in the first
layer of CCNN and BN3. These connections are expressed by their corresponding
weight in the first convolution layer. Thus, the weights of the first convolution layer of
CCNN and BN3 can be used for analysis and sensor selection. However, the weights
of the other convolution layers of CCNN and BN3 only express the connections of the
neurons of the first convolution layer with the neurons of the other convolution lay-
ers. We can hardly build any direct relation between the input tensor (that stores the
information for the importance of each sensor in the sensor set) with the neurons in
the other convolution layers of CCNN and BN3 by using the weights of these layers.
As a result, the weights of the other layers of CCNN and BN3 can hardly be used for
analysis and proper sensor selection. Therefore, CCNN and BN3 cannot use all the
information available for proper sensor selection. In contrast, our OSLN, OCLNN,
OTLN have only one convolution layer. All the information needed for sensor selec-
tion is captured by the weights of the single convolution layer of OSLN, OCLNN, and
OTLN. We analyse the weights of the single convolution layer in OSLN, OCLNN,

92

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.10: Minimal number of sensors selected by different methods for Dataset II,
The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 13 10 36 20 31 16 8 4 3 5 3 5 3 6 3
C1 30 32 42 38 43 28 15 8 6 9 7 10 6 8 6
C2 25 28 40 29 40 19 16 9 6 11 3 11 7 6 8
C3 21 23 38 30 34 25 13 8 7 10 6 14 7 7 7
C4 26 24 36 33 38 18 14 10 8 12 5 13 4 9 9
C5 43 29 37 40 41 36 24 11 9 13 8 12 10 16 11
C6 50 38 52 50 50 33 26 30 18 19 11 24 12 14 16
C7 47 40 55 48 49 29 29 29 16 21 13 23 11 17 13
C8 50 37 54 42 46 31 30 29 16 23 13 20 16 16 19
C9 51 35 49 39 54 39 29 31 19 25 14 19 13 19 17
C10 49 44 50 40 50 30 31 26 20 21 19 19 19 20 16
C11 28 30 56 30 36 19 17 16 9 20 16 19 16 17 12
C12 31 33 61 36 38 23 18 20 11 24 20 21 21 26 14

and OTLN to select sensors. Thus, OSLN, OCLNN, and OTLN use all the informa-
tion available for proper sensor selection compared to CCNN and BN3. As a result,
OSLN, OCLNN, and OTLN can select more appropriate sensor subsets and further
reduce the minimal number of sensors needed to acquire EEG signals without losing
spelling accuracy. The aforementioned discussion explains the issue mentioned in the
third paragraph of Section 5.1.

The experimental results in Table 5.14 also explain why in Section 5.2.3, our rank-
ing function to rank the sensors in the sensor set is based on OSLN instead of OCLNN
and OTLN. When compared with OTLN, the minimal number of sensors selected by
analyzing the weights of OSLN is lower than the minimal number of sensors selected
by analyzing the weights of OTLN. Therefore, our ranking function in SLES is based
on OSLN instead of OTLN. When compared with OCLNN, the minimal number of
sensors selected by analyzing the weights of OSLN is comparable with the minimal
number of sensors selected by analyzing the weights of OCLNN. However, the net-
work complexity of OSLN (8,722 parameters) is only 51.67% of the complexity of
OCLNN (16882 parameters). This means that the time of training the OSLN is much

93

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.11: Minimal number of sensors selected by different methods for Dataset III-
A, The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 19 44 54 38 40 42 33 56 58 39 44 27 35 21 36
C1 31 56 58 49 45 57 44 54 64 43 55 51 46 32 56
C2 32 53 57 48 44 59 47 55 64 43 50 53 47 32 55
C3 29 53 54 48 47 56 35 55 63 45 52 57 42 36 49
C4 56 50 53 44 42 55 31 54 60 56 49 51 43 37 57
C5 31 55 58 50 45 49 43 60 64 46 58 48 47 33 57
C6 35 60 61 57 54 56 52 64 64 53 62 59 57 50 62
C7 43 59 61 55 49 57 52 64 64 50 62 58 55 50 62
C8 47 54 64 57 48 54 55 62 64 59 57 52 56 49 63
C9 33 55 60 51 48 62 59 63 64 56 53 54 39 46 49
C10 33 62 62 59 53 57 57 64 64 54 61 60 59 52 55
C11 29 61 59 54 55 59 56 58 64 46 53 45 41 40 37
C12 35 64 63 56 59 61 60 59 64 51 58 47 44 46 43

smaller than the time of training the OCLNN. Thus, the speed of SLES with the rank-
ing function based on OSLN is much higher than the speed of SLES with the ranking
function based on OCLNN (see Line 2 to Line 4 in Algorithm 1). Therefore, our
ranking function in SLES is based on OSLN instead of OCLNN.

5.5 Conclusions

In this chapter, we propose a novel sensor selection method, called SLES, for reduc-
ing the number of sensors needed to acquire EEG signals for a P300 speller without
losing spelling accuracy. SLES uses an iterative parameterized backward elimination
algorithm to eliminate and select sensors and it uses our novelOSLN(S) as a ranking
function to evaluate the importance of a sensor. Our SLES is also robust across differ-
ent P300 speller implementations and different subjects. Experimental results show
that the minimal number of sensors selected by our SLES method is lower than the
minimal number of sensors selected by other methods in most cases. Therefore, our
SLES can further reduce the cost and power consumption of the P300 speller, thereby

94

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.12: Minimal number of sensors selected by different methods for Dataset III-
B, The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 18 19 34 29 17 31 39 41 22 36 24 33 33 26 27
C1 28 27 43 39 32 35 45 50 36 51 36 30 45 37 29
C2 27 25 42 38 29 31 39 54 36 49 40 30 44 30 27
C3 24 31 45 35 26 30 42 49 34 44 38 32 47 26 27
C4 23 26 59 36 27 29 44 52 35 42 37 36 39 37 30
C5 35 29 44 40 29 33 48 50 39 49 38 33 43 40 31
C6 49 58 56 51 44 40 57 61 48 59 46 42 57 51 47
C7 41 52 53 48 46 48 53 63 50 54 49 44 52 47 44
C8 40 50 53 49 47 50 49 60 47 50 41 44 51 50 46
C9 42 51 48 47 41 37 52 61 43 49 45 39 46 44 45
C10 42 54 51 52 38 43 57 61 44 55 50 46 53 50 49
C11 43 55 49 47 34 33 45 53 40 52 51 39 49 29 46
C12 52 59 56 61 46 41 51 64 49 64 56 41 60 30 46

facilitating the utilization of P300 spellers into people’s daily life.

95

CHAPTER 5. A NOVEL SENSOR SELECTION METHOD BASED ON
CONVOLUTIONAL NEURAL NETWORK FOR P300 SPELLER

Table 5.13: Minimal number of sensors selected by SLES with different Es configu-
rations.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Es=1 27 56 58 57 50 60 44 53 63 30 55 33 24 19 46
Es=2 18 45 52 34 43 46 28 48 58 26 47 30 20 16 36
Es=4 15 46 49 28 40 36 18 48 59 21 46 27 19 13 38
Es=8 19 54 49 31 41 48 26 48 57 25 46 34 20 13 37
Es=16 22 54 55 42 45 56 39 53 63 29 53 35 25 20 37
Es=32 25 59 57 47 49 58 48 54 63 32 54 37 28 23 41
Es=64 27 60 60 48 50 60 55 55 64 36 59 42 31 24 44

Table 5.14: Minimal number of sensors selected by analysing different CNNs.

Epochs
CNN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OSLN 23 60 55 49 51 60 53 55 64 31 53 46 27 32 39
OCLNN 22 60 55 49 49 60 53 53 63 32 52 46 27 33 39
OTLN 23 62 56 51 53 62 53 56 64 34 53 46 27 33 39
CCNN 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
BN3 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41

96

Chapter 6

An Improved Ensemble of
Convolutional Neural Networks
for P300 Speller with a Small
Number of Sensors

Hongchang Shan, Yu Liu, and Todor Stefanov,
"An Empirical Study on Sensor-aware Design of Convolutional Neural Networks for P300 Speller in Brain
Computer Interface,"
In Proceedings of "12th IEEE International Conference on Human System Interaction (IEEE HSI’19)", pp.
5-11, Richmond, Virginia, USA, June 25-27, 2019.

In Chapter 4, we have presented our EoCNN which achieves higher spelling ac-
curacy and ITR compared to other state-of-the-art methods for the P300 speller. In
Chapter 5, we have presented our SLES method that can reduce the number of sen-
sors needed to acquire EEG signals in our EoCNN-based P300 speller while keeping
the character spelling accuracy and the ITR the same as the character spelling accu-
racy and the ITR achieved by EoCNN when an initial large set of 64 sensors is used
in the P300 speller. We call the character spelling accuracy and the ITR, achieved
by EoCNN for the P300 speller with a large number of sensors (i.e, 64 sensors), the
state-of-the-art character spelling accuracy and ITR of the P300 speller. Table 5.7,
5.8, and 5.9 in Chapter 5 show that in most cases, in order to not lose the state-of-
the-art character spelling accuracy and ITR of the P300 speller, we need to use more
than 16 sensors to acquire EEG signals in the EoCNN-based P300 speller. Unfortu-
nately, popular low-complexity and relatively cheap (affordable) BCI systems utilize
a small number of sensors for the acquisition of EEG signals. Typically, such small

97

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

number of sensors is less than or equal to 16 sensors. For example, BCI systems such
as MUSE [MUS], EMOTIV Insight [Ins], Quick-8 [Qui], B-Alert X10 [B-A], EMO-
TIV EPOC+ [EMO], and OPEN BCI Mark IV [Mar] utilize only 4, 5, 8, 10, 14, and
16 sensors, respectively. Therefore, in this chapter, we present our research on how
to achieve the state-of-the-art character spelling accuracy and ITR of the P300 speller
with popular low-complexity and relatively cheap BCI systems that use a small num-
ber of sensors (i.e., less than or equal to 16 sensors) to acquire EEG signals. The novel
contributions of this chapter are the following.

• We perform a study on EoCNN as well as the three CNNs used in EoCNN,
i.e., OTLN, OSLN, and OCLNN, for the P300 speller with different number
of sensors in order to find the reason why EoCNN cannot achieve the state-
of-the-art character spelling accuracy and ITR for a P300 speller with a small
number of sensors. This study shows that the reason for this is that EoCNN has
the problem of putting equal importance on OSLN, OTLN, and OCLNN in the
ensemble processing of the outputs from these three CNNs (see Section 4.1.4 as
well as Equation (4.1) and (4.2)) for the P300 speller irrespective of the number
of sensors used to acquire EEG signals.

• In order to solve the problem of EoCNN, mentioned in the above contribu-
tion, we propose an improved EoCNN for the P300 speller called PEoCNN. In
PEoCNN, first, we parameterize the ensemble processing of the outputs from
OSLN, OTLN, and OCLNN. Then, we use the Sequential Model-based Algo-
rithm Configuration (SMAC) [HHLB11] to automatically find and set values
for the parameters, used in the parameterized ensemble processing of PEoCNN,
depending on the number of sensors utilized in the P300 speller. In this way,
PEoCNN is able to adopt/configure the importance of using the outputs from
OSLN, OTLN, and OCLNN for the P300 speller depending on the number of
sensors that are utilized.

• Experiments on three benchmark datasets show that, when using our PEoCNN
for the P300 speller, the state-of-the-art spelling accuracy can be achieved in
a BCI system with less than or equal to 16 sensors to acquire EEG signals in
most cases. In addition, the state-of-the-art max-ITR1 of the P300 speller can
be achieved in a BCI system with less than 16 sensors to acquire EEG signals.

The rest of this chapter is organized as follows. Section 6.1 presents our study on
the EoCNN-based P300 speller with different number of sensors in order to analyze
and find the reason why EoCNN cannot achieve the state-of-the-art spelling accuracy

1The notion of max-ITR is explained in Section 3.3.5.

98

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

and max-ITR for a P300 speller with a small number of sensors. Section 6.2 intro-
duces our approach to solve the problem of EoCNN revealed by the aforementioned
study. Section 6.3 describes the experimental evaluation of our approach to show that
by using our approach, we are able to achieve the state-of-the-art character spelling
accuracy and max-ITR of the P300 speller with less than or equal to 16 sensors to
acquire EEG signals. Section 6.4 ends this chapter with conclusions.

6.1 Study onEoCNN-basedP300 SpellerwithDifferentNum-
ber of Sensors

In this section, we perform a study on the EoCNN-based P300 speller with different
number of sensors in order to find the reason why EoCNN cannot achieve the state-
of-the-art character spelling accuracy and ITR for a P300 speller with a small number
of sensors. In this study, we perform experiments to examine the character spelling
accuracy and the max-ITR achieved by EoCNN as well as the three CNNs used in the
EoCNN, i.e., OCLNN, OTLN, and OSLN, for the P300 speller with different number
of sensors. First, we describe the experimental setup of this study in Section 6.1.1.
Then, we show and analyze the experimental results of this study in Section 6.1.2.

6.1.1 Experimental Setup

In this study, we use four implementations of the P300 speller to perform the experi-
ments: the EoCNN-based P300 speller, the OCLNN-based P300 speller, the OSLN-
based P300 speller, and the OTLN-based P300 speller. In order to examine the char-
acter spelling accuracy and the max-ITR of the aforementioned four P300 speller im-
plementations when different number of sensors are utilized to acquire EEG signals,
we perform the following two steps:

Step 1. We select different appropriate sensor subsets, containing different num-
ber of sensors, from an initial large set of sensors to acquire EEG signals for a subject
who uses a P300 speller. The subject in this study is the subject used to acquire the
EEG signals in Dataset III-A. We call this subject Subject III-A. We apply our SLES
method (proposed and presented in Chapter 5) to select different appropriate sensor
subsets from an initial large set of 64 sensors for Subject III-A. Therefore, we can use
the training dataset of Dataset III-A to apply our SLES sensor selection method. More
specifically, for our SLES method, this training dataset is used to train the OSLN(S)

and calculate scorej in each iteration of our SLES method (see Algorithm 1 in Chap-
ter 5). For the details of the setup for our SLES please refer to the last paragraph in
Section 5.3.1.

99

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

Step 2. After using our SLES method to select different sensor subsets for Sub-
ject III-A, we calculate the spelling accuracy and the max-ITR of the aforementioned
four P300 speller implementations with the selected sensor subsets using Dataset III-
A. The training dataset of Dataset III-A is used to train the CNN-based classifiers
used in the aforementioned P300 speller implementations with the selected sensor
subsets. Then, the test dataset of Dataset III-A is used to calculate the spelling ac-
curacy and max-ITR of the aforementioned P300 speller implementations with the
selected sensor subsets. The spelling accuracy accmchar(k) is calculated using Equa-
tion (5.3) in Section 5.3.1, where accmchar(k) denotes the spelling accuracy achieved
when using the first k epochs for each character and using the EEG signals acquired
with the selected sensor subset containing m sensors. The ITR ITRm

k is calculated
using Equation (6.1) and (2.35), where ITRm

k denotes the ITR achieved when us-
ing the first k epochs for each character and using the EEG signals acquired with the
selected sensor subset containing m sensors; Ncla =36 because we have 36 possible
characters to spell (see Figure 2.16); accmchar(k) is calculated using Equation (5.3);
and Tk is calculated using Equation (2.35). After the calculation of ITRm

k , we cal-
culate the max-ITRmaxITRm using Equation (6.2), wheremaxITRm denotes the
max-ITR achieved when the EEG signals are acquired with the selected sensor subset
containingm sensors.

ITRm
k =

60(accmchar(k) log2(acc
m
char(k)) + (1− accmchar(k)) log2(

1−accm
char(k)

Ncla−1) + log2(Ncla))

Tk
(6.1)

maxITRm = max
1≤k≤15

{ITRm
k } (6.2)

6.1.2 Experimental Results

The experimental results on the spelling accuracy and the max-ITR of the EoCNN-
based P300 speller, the OSLN-based P300 speller, the OTLN-based P300 speller, and
the OCLNN-based P300 speller when different number of sensors m is used to ac-
quire Subject III-A’s EEG signals are shown in Figure 6.1 and Figure 6.2, respectively.
Figure 6.1 shows that, in most cases (with respect to the number of sensors m), the
OCLNN-based P300 speller achieves higher spelling accuracy than the OTLN-based
P300 speller and the OSLN-based P300 speller. When the number of sensors used
to acquire EEG signals is between 1 and 36, the OTLN-based P300 speller achieves
higher spelling accuracy than the OSLN-based P300 speller. When the number of sen-
sors used to acquire EEG signals is between 37 and 64, the OSLN-based P300 speller
achieves higher spelling accuracy than the OTLN-based P300 speller. Figure 6.2

100

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

shows that, in most cases (with respect to the number of sensors m), the OCLNN-
based P300 speller achieves higher max-ITR than the OTLN-based P300 speller and
the OSLN-based P300 speller. When the number of sensors used to acquire EEG
signals is between 1 and 30, the OTLN-based P300 speller achieves higher max-ITR
than the OSLN-based P300 speller. When the number of sensors used to acquire EEG
signals is between 32 and 64, the OSLN-based P300 speller achieves higher max-ITR
than the OTLN-based P300 speller.

Figure 6.1: Spelling accuracy of different P300 speller implementations when differ-
ent number of sensorsm is used to acquire EEG signals.

Figure 6.2: max-ITR of different P300 speller implementations when different num-
ber of sensorsm is used to acquire EEG signals.

The aforementioned experimental results reveal that overall, the three CNNs, i.e.,
OCLNN, OSLN, and OTLN, have different importance and impact on the spelling
accuracy and the max-ITR of a P300 speller depending on the number of sensors
that are used to acquire EEG signals. This implies that when we use a CNN, which

101

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

combines the outputs of OCLNN, OSLN, and OTLN, for a P300 speller, we should
adopt/configure the importance of using the outputs fromOCLNN, OSLN, and OTLN
depending on the number of sensors that are used to acquire EEG signals. Unfortu-
nately, the EoCNN (presented and proposed in Chapter 4) has the issue of putting
equal importance on OSLN, OTLN, and OCLNN in the ensemble processing of the
outputs from these three CNNs (see Section 4.1.4 as well as Equation (4.1) and (4.2))
for the EoCNN-based P300 speller irrespective of the number of sensors used to ac-
quire EEG signals.

6.2 Our Solution Approach

In this section, in order to address the issue of EoCNN revealed in Section 6.1, we
present our solution approach on how to make EoCNN adopt/configure the impor-
tance of using the outputs from OSLN, OTLN, and OCLNN for a P300 speller de-
pending on the number of sensors used to acquire EEG signals. In our approach, first,
we parameterize the ensemble processing of EoCNN as described in Section 6.2.1.
Then, we find and set values for the parameters, that are used in the ensemble pro-
cessing of EoCNN, depending on the number of sensors used to acquire EEG signals
in the P300 speller as described in Section 6.2.2.

6.2.1 Parameterized Ensemble Processing

Our approach is based on EoCNN that is proposed and presented in Chapter 5. We use
the architecture of EoCNN, i.e., the ensemble of OTLN, OSLN, and OCLNN, for the
P300 speller (see Figure 4.1). However, the difference is in the ensemble processing
of the outputs from OTLN, OSLN, and OCLNN. That is, EoCNN puts equal impor-
tance on OSLN, OTLN, and OCLNN in the ensemble processing of the outputs from
OSLN, OTLN, and OCLNN (see Equation (4.1) in Section 4.1.4) irrespective of the
number of sensors used to acquire EEG signals. In contrast, our approach here pa-
rameterizes the ensemble processing of the outputs from OSLN, OTLN, and OCLNN
for the P300 speller in order to make this ensemble processing adaptable/configurable
to the number of sensors used to acquire EEG signals.

Our parameterized ensemble processing of the outputs from OSLN, OTLN, and
OCLNN is shown in Equation (6.3). We call EoCNN, with this parameterized en-
semble processing, PEoCNN. In Equation (6.3), for epoch i and for intensification j,
P 1
PEoC(i, j) denotes the predicted probability by PEoCNN for class “P300”; P 1

OT (i, j)
denotes the predicted probability by OTLN for class “P300”; P 1

OS(i, j) denotes the
predicted probability by OSLN for class “P300”; P 1

OCL(i, j) denotes the predicted
probability by OCLNN for class “P300”; and p1, p2, and p3 are three parameters that

102

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

weight the importance of the predicted probability by OTLN, OSLN, OCLNN, re-
spectively, for class “P300”, in order to determine the outputP 1

PEoC(i, j) of PEoCNN.
p1 ∈ [0, 1], p2 ∈ [0, 1], and p3 ∈ [0, 1]. In addition, we set the constraint p1 + p2 +
p3 = 1 to guarantee that P 1

PEoC(i, j) is in the range [0, 1] because P
1
PEoC(i, j) is the

probability predicted by PEoCNN for class “P300”.

P 1
PEoC(i, j) = p1 × P 1

OT (i, j) + p2 × P 1
OS(i, j) + p3 × P 1

OCL(i, j) (6.3)

How we select appropriate values for p1, p2, and p3, depending on the number
of sensors used in the P300 speller for acquisition of EEG signals, is described in
Section 6.2.2. After the selection of values for p1, p2, and p3, we use P 1

PEoC(i, j),
i.e., the output of PEoCNN for class “P300”, to calculate the position of the target
character in the character matrix shown in Figure 2.16. For the detailed calculation
process, please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

6.2.2 Parameter Configuration for Parameterized Ensemble Processing

As described in Section 6.2.1, in the parameterized ensemble processing of PEoCNN,
there are three parameters, i.e., p1, p2, and p3, that need to be configured (see Equa-
tion (6.3)). This section describes how we select appropriate values for these three
parameters depending on the number of sensors used for the acquisition of EEG sig-
nals in the P300 speller.

For a given number of sensorsm used to acquire EEG signals in the P300 speller,
we select a set of appropriate values for p1, p2, and p3 by looking at this selection
problem as an optimization problem. We define this optimization problem as shown
in Equation (6.4), where p is a vector of p1, p2, and p3, i.e., p = [p1, p2, p3]; Q(p)
is the cost function. We define Q(p) using Equation (6.5), where maxITRta de-
notes the theoretically achievable maximum ITR of a P300 speller; maxITRm(p)
denotes the max-ITR achieved by PEoCNN, configured with p, for the P300 speller
when the EEG signals are acquired using the given m sensors. maxITRm(p) is
calculated using Equation (6.6), where E denotes the total number of epochs used
in a P300 speller. Here, E=15 because we use 15 epochs in the P300 speller (see
Section 2.5). ITRm

k (p) denotes the ITR achieved by PEoCNN, configured with p,
when k epochs are used for the P300 speller and the EEG signals are acquired using
the given m sensors. ITRm

k (p) is calculated using Equation (6.7),where Ncla =36
because we have 36 possible characters to spell (see Figure 2.16); Tk is calculated us-
ing Equation (2.35); accmchar(k)(p) denotes the character spelling accuracy achieved
by PEoCNN, configured with p, when k epochs are used for the P300 speller and
the EEG signals are acquired using the given m sensors. accmchar(k)(p) is calculated

103

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

using Equation (6.8), where Nm
tc(k)(p) denotes the number of correctly inferred char-

acters by PEoCNN configured with p when using k epochs for each character and the
EEG signals are acquired using the given m sensors, and Sc denotes the number of
all spelled characters.

Minimize
p

Q(p)

subject to : p1 + p2 + p3 = 1, 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, and 0 ≤ p3 ≤ 1
(6.4)

Q(p) = maxITRta −maxITRm(p) (6.5)

maxITRm(p) = max
1≤k≤E

{ITRm
k (p)} (6.6)

ITRm
k (p) =

60(accmchar(k)(p) log2(acc
m
char(k)(p)) + (1− accmchar(k)(p)) log2(

1−accm
char(k)

(p)
Ncla−1) + log2(Ncla))

Tk

(6.7)

accchar(k)(p) =
Ntc(k)m(p)

Sc
(6.8)

Equation (6.4) shows that we define the selection of values for p = [p1, p2, p3]
as a single-objective optimization problem. In this optimization problem, we aim at
finding p such that the cost function Q(p) is minimized. By using this cost function,
we aim at finding appropriate p to configure PEoCNN such that for a givenm sensors
used to acquire EEG signals, the max-ITR achieved by PEoCNN, i.e.,maxITRm(p),
is the closest possible to the theoretically achievable maximum ITRmaxITRta. Typ-
ically, the ultimate goal of designing methods for the P300 speller is to increase the
max-ITR in order to bring it closer to the theoretically achievable maximum ITR (for
detailed discussion please see Section 3.3.5 and Section 4.2.4.). Thus, we define the
cost function, shown in Equation (6.5), to find appropriate p to configure PEoCNN.

We use the SequentialModel-basedAlgorithmConfiguration (SMAC) [HHLB11]
as an optimization algorithm to solve the aforementioned single-objective optimiza-
tion problem defined by Equation (6.4) because SMAC is currently one of the best-
performing and versatile optimization algorithms for parameter configuration. For
more details on SMAC please refer to [HHLB11]. In the optimization process of
SMAC, the cost function Q(p) is calculated as follows. We use a dataset to train
PEoCNN configured by p selected by SMAC. The training process of PEoCNN is
the same as the training process of EoCNN described in Section 4.1.3. Then, we run
this trained PEoCNN on another dataset to calculateQ(p) using Equation (6.5), (6.6),
(6.7), and (6.8).

104

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

6.3 Experimental Evaluation

In this section, we present the experiments, we have performed, to determine and eval-
uate the minimal number of sensors needed to acquire EEG signals in the PEoCNN-
based P300 speller and in the EoCNN-based P300 speller without losing the state-of-
the-art character spelling accuracy and max-ITR. The goal is to demonstrate that: 1)
by using our PEoCNN, we are able to achieve the state-of-the-art character spelling
accuracy and max-ITR of the P300 speller when using less than or equal to 16 sen-
sors to acquire EEG signals; 2) our solution approach, described in Section 6.2, is
effective, i.e., the PEoCNN-based P300 speller needs less number of sensors to ac-
quire EEG signals than the EoCNN-based P300 speller without losing the state-of-
the-art spelling accuracy and max-ITR. First, we describe the experimental setup in
Section 6.3.1. Then, in Section 6.3.2, we show and analyze the obtained experimen-
tal results for the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller and in the EoCNN-based P300 speller.

6.3.1 Experimental Setup

We perform the following three steps in order to compare the minimal number of
sensors needed to acquire EEG signals in the PEoCNN-based P300 speller and in
the EoCNN-based P300 speller without losing the state-of-the-art character spelling
accuracy and max-ITR.

Step 1. We select different appropriate sensor subsets, containing different num-
ber of sensors m, from an initial large set of sensors to acquire EEG signals for a
subject who uses a P300 speller. The subjects in our experiments is the subjects used
to acquire the EEG signals in Dataset II, III-A, and III-B. We call the subjects in
Dataset II, III-A, and III-B, Subject II, Subject III-A, and Subject III-B, respectively.
We apply our SLES method (proposed and presented in Chapter 5) to select differ-
ent appropriate sensor subsets from an initial large set of 64 sensors for Subject II,
Subject III-A, and Subject III-B. Therefore, we can use the training dataset of Dataset
II, III-A, and III-B to apply our SLES sensor selection method. More specifically, for
our SLESmethod, these training datasets are used to train theOSLN(S) and calculate
scorej in each iteration of our SLES method (see Algorithm 1 in Chapter 5). For the
details of the setup for our SLES please refer to the last paragraph in Section 5.3.1.

Step 2. We build two P300 speller implementations, namely the PEoCNN-based
P300 speller and the EoCNN-based P300 speller. For the PEoCNN-based P300 speller,
depending on given subset ofm sensors selected to acquire EEG signals in Step 1, we
select values for p1, p2, and p3, which are used to configure PEoCNN. As described
in Section 6.2.2, we use SMAC to select appropriate values for p1, p2, and p3. When
using SMAC, we need to calculate Q(p) which is the cost function minimized by

105

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

SMAC (see our defined optimization problem in Equation (6.4)). We use the train-
ing dataset in Dataset II, III-A, and III-B to calculate Q(p). We divide each training
dataset in Dataset II, III-A, and III-B into two parts: the first sub-dataset containing
60% of a given training dataset and the second sub-dataset containing the left 40%
of the given training dataset (for the reason of using 60% and 40% to split a dataset
please refer to Section 5.4.1.). The first sub-dataset is used to train PEoCNN config-
ured with p = [p1, p2, p3], selected by SMAC, in the PEoCNN-based P300 speller
with the selectedm sensors to acquire EEG signals. We run the trained PEoCNN on
the second sub-dataset to calculate Q(p) using Equation (6.5), (6.6), (6.7), and (6.8).

Step 3. After selecting p and configuring PEoCNN, we calculate the minimal
number of sensors needed to acquire EEG signals in the PEoCNN-based P300 speller
and in the EoCNN-based P300 speller without losing the state-of-the-art character
spelling accuracy and max-ITR. Firstly, we calculate the spelling accuracy and the
max-ITR of the PEoCNN-based P300 speller and EoCNN-based P300 speller with
the different selected sensor subsets from Step 1 using Dataset II, III-A, and III-B.
The spelling accuracy accmchar(k) is calculated using Equation (5.3) in Section 5.3.1,
where accmchar(k) denotes the spelling accuracy achieved when using the first k epochs
for each character and using the EEG signals acquired with the selected sensor sub-
set containing m sensors. The ITR ITRm

k is calculated using Equation (6.1) and
(2.35), where ITRm

k denotes the ITR achieved when using the first k epochs for
each character and using the EEG signals acquired with the selected sensor subset
containing m sensors. After the calculation of ITRm

k , we calculated the max-ITR
maxITRm using Equation (6.2), where maxITRm denotes the max-ITR achieved
when using the EEG signals acquired with the selected sensor subset containing m
sensors. Secondly, after the calculation of accmchar(k) and maxITR

m, we calculate
the minimal number of sensors needed to acquire EEG signals without losing the
state-of-the-art spelling accuracy and max-ITR of the P300 speller. We usemacc

min to
denote the minimal number of sensors needed to acquire EEG signals without losing
the state-of-the-art spelling accuracy. macc

min is calculated as the minimalm ∈ [1, 64]
which makes accmchar(k) >= accsoachar(k). Here, acc

soa
char(k) denotes the state-of-the-art

spelling accuracy of the P300 speller when using k epochs, i.e., the spelling accu-
racy achieved by EoCNN using k epochs when 64 sensors are used to acquire EEG
signals in the P300 speller. We use mitr

min to denote the minimal number of sensors
needed to acquire EEG signals without losing the max-ITR of the P300 speller. mitr

min

is calculated as the minimalm ∈ [1, 64] which makesmaxITRm >= maxITRsoa.
Here,maxITRsoa denotes the state-of-the-art max-ITR of the P300 speller, i.e., the
max-ITR achieved by EoCNN when 64 sensors are used to acquire EEG signals in
the P300 speller.

106

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

6.3.2 Experimental Results

In this section, we present the experimental results, we have obtained, for the minimal
number of sensors needed to acquire EEG signals in the PEoCNN-based P300 speller
and in the EoCNN-based P300 speller without losing the state-of-the-art spelling ac-
curacy (see Section 6.3.2.1) as well as the minimal number of sensors needed to ac-
quire EEG signals in the PEoCNN-based P300 speller and in the EoCNN-based P300
speller without losing the state-of-the-art max-ITR (see Section 6.3.2.2).

6.3.2.1 Minimal Number of Sensors Without Losing State-of-the-art Spelling
Accuracy

Table 6.1, 6.2 and 6.3 show the minimal number of sensors needed to acquire EEG
signals in the PEoCNN-based P300 speller and in the EoCNN-based P300 speller
without losing the state-of-the-art spelling accuracy for epoch k ∈ [1, 15]. The first
column in the tables lists the different CNNs used in a P300 speller for the inference of
the characters. Each row provides the minimal number of sensors needed to acquire
EEG signals used to acquire EEG signals in a P300 speller for different epoch numbers
k ∈ [1, 15]. A number in bold indicates that the minimal number of sensors needed
to acquire EEG signals in the P300 speller based on the corresponding CNN is lower
than or equal to the minimal number of sensors needed to acquire EEG signals in the
P300 speller based on the other CNN.

Table 6.1: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset II.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 10 13 20 15 17 8 8 3 3 3 3 4 3 3 3
EoCNN 10 16 28 19 22 9 8 3 3 3 3 4 3 3 3

Table 6.1, 6.2, and 6.3 show that in all 45 cases (i.e., all epoch columns in the
three tables), the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller is lower than or equal to the minimal number of sensors
needed to acquire EEG signals in the EoCNN-based P300 speller without losing the
state-of-the-art spelling accuracy. This demonstrates that our solution approach, de-
scribed in Section 6.2, is effective, i.e., the PEoCNN-based P300 speller needs less
number of sensors to acquire EEG signals than the EoCNN-based P300 speller with-
out losing the state-of-the-art spelling accuracy.

107

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

Table 6.2: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset III-A.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 12 14 14 12 19 17 11 24 29 16 30 13 13 15 18
EoCNN 18 39 37 21 41 38 20 39 44 23 46 33 21 16 31

Table 6.3: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset III-B.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 14 13 15 23 12 10 13 19 22 21 24 15 18 16 11
EoCNN 25 26 28 27 23 14 16 25 30 29 33 22 30 29 23

In addition, Table 6.1, 6.2 and 6.3 show that for 31 different epoch numbers out of
all 45 epoch numbers, the PEoCNN-based P300 speller can achieve the state-of-the-
art spelling accuracy with less than or equal to 16 sensors to acquire EEG signals. In
contrast, only for 15 different epoch numbers out of 45 epoch numbers, the EoCNN-
based P300 speller can achieve the state-of-the-art spelling accuracy with less than or
equal to 16 sensors to acquire EEG signals. When a P300 speller is configured with
different epoch numbers, the P300 speller has different spelling accuracy and commu-
nication speed: typically, a P300 speller, configured with a large epoch number, has a
high spelling accuracy but a low communication speed while a P300 speller, config-
ured with a small epoch number, has a low spelling accuracy but a high communica-
tion speed. The PEoCNN-based P300 speller has more configurations, in terms of the
epoch numbers, than the EoCNN-based P300 speller when used in a low-complexity
BCI systems with less than or equal to 16 sensors to acquire EEG signals. Thus, the
PEoCNN-based P300 speller has more options to trade off the spelling accuracy for
the communication speed and vice versa than the EoCNN-based P300 speller when
used in such low-complexity BCI systems.

108

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

6.3.2.2 Minimal Number of Sensors Without Losing State-of-the-art max-ITR

Table 6.4 shows the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller and in the EoCNN-based P300 speller without losing the
state-of-the-art max-ITR for Dataset II, III-A, and III-B. In this table, the first column
lists the different CNNs used in a P300 speller for the inference of the characters.
Each row provides the minimal number of sensors needed to acquire EEG signals in a
P300 speller without losing the state-of-the-art max-ITR for the different datasets. A
number in bold indicates that the minimal number of sensors needed to acquire EEG
signals in the P300 speller based on the corresponding CNN is lower than or equal
to the minimal number of sensors needed to acquire EEG signals in the P300 speller
based on the other CNN.

Table 6.4: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art max-ITR on
Dataset II, III-A, and III-B.

Dataset II Dataset III-A Dataset III-B
PEoCNN 10 14 13
EoCNN 10 37 26

Table 6.4 shows that for all three datasets, the minimal number of sensors needed
to acquire EEG signals in the PEoCNN-based P300 speller is less than the minimal
number of sensors needed to acquire EEG signals in the EoCNN-based P300 speller
without losing the state-of-the-art max-ITR. This demonstrates again that our solution
approach, described in Section 6.2, is effective, i.e., the PEoCNN-based P300 speller
needs less number of sensors to acquire EEG signals than the EoCNN-based P300
speller without losing the state-of-the-art max-ITR.

Moreover, Table 6.4 shows that for all three datasets, the PEoCNN-based P300
speller achieves the state-of-the-art max-ITR when using less than 16 sensors to ac-
quire EEG signals. In contrast, for only one dataset, the EoCNN-based P300 speller
achieves the state-of-the-art max-ITR when using less than 16 sensors to acquire EEG
signals. This demonstrates that by using our solution approach, described in Sec-
tion 6.2, we enhance the usability of a P300 speller, having the state-of-the-art max-
ITR, on low-complexity BCI systems across different subjects.

6.4 Conclusions
In this chapter, we present our research on how to achieve the state-of-the-art charac-
ter spelling accuracy and max-ITR of the P300 speller with popular low-complexity

109

CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

and relatively cheap BCI systems that use less than or equal to 16 sensors to acquire
EEG signals. We perform a study on the EoCNN-based P300 speller with different
number of sensors to show that EoCNN has the problem of putting equal importance
on using OSLN, OTLN, and OCLNN for the P300 speller irrespective of the number
of sensors used to acquire EEG signals. In order to solve this problem, we propose
an improved EoCNN called PEoCNN. In PEoCNN, we parameterize the ensemble
processing of the outputs from OSLN, OTLN, and OCLNN. Then, we use SMAC
to select appropriate values for the parameters depending on the number of sensors
utilized in the P300 speller. Experimental results on three benchmark datasets show
that by using our PEoCNN, we are able to achieve the state-of-the-art performance, in
terms of the character spelling accuracy and the max-ITR, of the P300 speller when
using less than or equal to 16 sensors to acquire EEG signals. Moreover, our pro-
posed PEoCNN enhances the usability of a P300 speller, having the state-of-the-art
performance, on low-complexity BCI systems across different subjects.

110

Chapter 7

Summary and Conclusions

A P300-based Brain Computer Interface (BCI) character speller, also known as P300
speller, has been an important communication pathway, under extensive research, for
people who lose motor ability, such as patients with Amyotrophic Lateral Sclerosis
(ALS) or spinal-cord injury because a P300 speller allows human-beings to directly
spell characters using eye-gazes, thereby building communication between the hu-
man brain and a computer. Unfortunately, P300 spellers are still not used in human’s
daily life and remain in an experimental stage at research labs. The reason for this
situation is that the performance and the efficiency of current P300 spellers are un-
acceptably low for BCI users in their daily life. Therefore, in this thesis, we have
focused our attention on developing high performance and efficient P300 spellers in
order to bring P300 spellers into practical use. More specifically, in order to increase
the performance of a P300 speller, we have developed methods to increase the char-
acter spelling accuracy and the Information Transfer Rate (ITR). In order to improve
the efficiency of a P300 speller, we have developed methods to reduce the number
of sensors needed to acquire EEG signals as well as to reduce the complexity of the
classifier used in a P300 speller without losing the performance.

We summarize the contributions of each chapter of this thesis in Figure 7.1 in
order to show how the proposed methods in each chapter improve the performance
and/or the efficiency of a P300 speller. In this figure, BA denotes our baseline, i.e.,
the CNN, called BN3 [LWG+18], used for a P300 speller. We select this baseline
because BN3 achieves better spelling accuracy and ITR than other state-of-the-art
methods (excluding our proposedmethods) for the P300 speller. CH3, CH4, CH5, and
CH6 denote our proposed methods in Chapter 3, Chapter 4, Chapter 5, and Chapter
6, respectively. The "Performance" axis in Figure 7.1 shows the max-ITR1 of a P300

1The notion of max-ITR is introduced in Section 3.3.5

111

CHAPTER 7. SUMMARY AND CONCLUSIONS

speller. In this axis, TA shows the theoretically achievable maximum ITR2 of a P300
speller. The "Cost" axis shows the number of sensors used to acquire EEG signals in
a P300 speller. The "Complexity" axis shows the number of parameters (i.e., weights
and biases) of a CNN used as the classifier in a P300 speller. Based on Figure 7.1, we
summarize and draw the following conclusions for each chater’s contributions:

Figure 7.1: Overview of how each chapter’s contributions improve the performance
and/or the efficiency of a P300 speller.

• Chapter 3 (CH3): In order to improve the performance and the efficiency (i.e.,
to reduce the complexity) of a P300 speller with respect to BA, in Chapter 3, we
have proposed a simple, yet effective CNN architecture, called One Convolution Layer
Neural Network (OCLNN), for the P300 speller. This CNN has only one convolution
layer which is the first layer of the network. This layer performs both a spatial con-
volution and a temporal convolution at the same time, thereby learning very useful
P300-related features from both raw temporal information and raw spatial informa-
tion. Our OCLNN exhibits very low network complexity because it uses only one

2The theoretically achievable maximum ITR is discussed in Section 2.4.3

112

CHAPTER 7. SUMMARY AND CONCLUSIONS

convolution layer and does not use fully-connected layers before the output layer. Fig-
ure 7.1 shows that, compared to the baseline BA, by using our OCLNN (see CH3 in
Figure 7.1), we have improved the performance, in terms of the spelling accuracy and
the ITR, of the P300 speller, as well as we have improved significantly the efficiency,
i.e., the complexity of the CNN used in the P300 speller is reduced.

• Chapter 4 (CH4): The ITR achieved by our OCLNN (see CH3 in Figure 7.1)
still cannot reach the theoretically achievable maximum ITR (see TA in Figure 7.1).
Therefore, to increase the ITR of a P300 speller in order to bring it closer to the the-
oretically achievable maximum ITR, in Chapter 4, we have proposed an ensemble
of CNNs for the P300 speller. Our proposed ensemble of CNNs is called Ensem-
ble of Convolutional Neural Networks (EoCNN). EoCNN uses two novel CNNs, we
have devised, called One Spatial Layer Network (OSLN) and One Temporal Layer
Network (OTLN), respectively. OSLN and OTLN both have only one convolution
layer. OTLN performs a temporal convolution in the first layer to learn P300-related
separate temporal features. OSLN performs a spatial convolution in the first layer to
learn P300-related separate spatial features. Our EoCNN uses the ensemble of OSLN
and OTLN together with OCLNN (proposed in Chapter 3), thereby extracting more
useful P300-related features than OCLNN alone. As a result, see CH4 in Figure 7.1,
our EoCNN achieves higher character spelling accuracy and ITR than OCLNN (see
CH3 in Figure 7.1) and other state-of-art methods (see BA in Figure 7.1) for the P300
speller. However, the complexity of our EoCNN is higher than the complexity of
OCLNN. Thus, compared to OCLNN, by using our EoCNN, we have improved the
performance, in terms of the spelling accuracy and the ITR, of the P300 speller but
we have impaired the efficiency, i.e., the complexity of the CNN used in our EoCNN-
based P300 speller has been increased.

• Chapter 5 (CH5): In order to improve the efficiency of our EoCNN-based
P300 speller, in Chapter 5, we have proposed a sensor reduction method, called Spa-
tial Learning based Elimination Selection (SLES), to reduce the number of sensors
used to acquire EEG signals in the EoCNN-based P300 speller without losing the
state-of-the-art spelling accuracy and ITR. Here, the state-of-the-art spelling accu-
racy and ITR denote the accuracy and ITR achieved by EoCNN when a large number
of sensors (e.g., 64 sensors) is used to acquire EEG signals (see CH4 in Figure 7.1).
Our SLES uses a novel parametrized CNN, we have devised, to evaluate and rank
the sensors during the sensor selection process. This method features an iterative,
parametrized, backward elimination algorithm to eliminate and select sensors. The
parameter configured in this algorithm controls the training frequency of the CNN and
the number of sensors to eliminate in every iteration. Our SLES method significantly
reduces the number of sensors used in the EoCNN-based P300 speller without los-
ing the state-of-the-art spelling accuracy and ITR (see CH5 in Figure 7.1). Thus, by

113

CHAPTER 7. SUMMARY AND CONCLUSIONS

using our SLES method, we have improved the efficiency, i.e., we have reduced sig-
nificantly the number of sensors needed to acquire EEG signals in the EoCNN-based
P300 speller without losing the state-of-the-art performance in terms of the spelling
accuracy and ITR.
•Chapter 6 (CH6): Although the number of sensors needed to acquire EEG sig-

nals in the EoCNN-based P300 speller is significantly reduced by our SLES method
(see CH5 in Figure 7.1), we still need to use more than 16 sensors to acquire EEG
signals in the EoCNN-based P300 speller in most cases in order to preserve the state-
of-the-art spelling accuracy and ITR. Unfortunately, popular low-complexity and rel-
atively cheap (affordable) BCI systems utilize a small number of sensors for the ac-
quisition of EEG signals. Typically, such small number of sensors is less than or
equal to 16 sensors. Therefore, in Chapter 6, we have performed research on how to
achieve the state-of-the-art spelling accuracy and ITR of the P300 speller with less
than or equal to 16 sensors to acquire EEG signals. We have performed a study on
the EoCNN-based P300 speller with different number of sensors, which reveals that
EoCNN has the problem of putting equal importance on OSLN, OTLN, and OCLNN
when combining the outputs from OSLN, OTLN, and OCLNN irrespective of the
number of sensors used to acquire EEG signals. To solve this problem, we have pro-
posed an improved EoCNN for the P300 speller called PEoCNN. In PEoCNN, first, we
parameterize the process of combining the outputs from OSLN, OTLN, and OCLNN.
Then, we use the Sequential Model-based Algorithm Configuration (SMAC) to auto-
matically find and set values for the parameters depending on the number of sensors
used in the P300 speller. In this way, PEoCNN adapts/configures the importance of
using the outputs from OSLN, OTLN, and OCLNN for the P300 speller depending on
the number of sensors used to acquire EEG signals. As a result, see CH6 in Figure 7.1,
the PEoCNN-based P300 speller can be used in popular low-complexity BCI systems
with less than 16 sensors to acquire EEG signals without losing the state-of-the-art
spelling accuracy and ITR. Thus, compared to EoCNN (see CH5 in Figure 7.1), by
using our PEoCNN, we have improved the efficiency, i.e., we have further reduced the
number of sensors needed to acquire EEG signals in the P300 speller without losing
the state-of-the-art performance in terms of the spelling accuracy and the ITR.

114

Bibliography

[AA+16] Martín Abadi, Ashish Agarwal, et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[Act] Brain Products ActiCHamp Webpage. https://www.brainproducts.com/
productdetails.php?id=42. Accessed: 2019-02-16.

[B-A] B-Alert X10 Webpage. https://www.advancedbrainmonitoring.com/
xseries/x10/. Accessed: 2019-05-17.

[BFL13] Luzheng Bi, Xin-An Fan, and Yili Liu. Eeg-based brain-controlled mobile
robots: a survey. IEEE transactions on human-machine systems, 43(2):161–
176, 2013.

[Bio18] Biosemi. Biosemi webpage, 2018. https://www.biosemi.com/products.
htm, Last accessed on 2018-09-03.

[BKG+00] Niels Birbaumer, Andrea Kubler, Nimr Ghanayim, Thilo Hinterberger, Jouri
Perelmouter, Jochen Kaiser, Iver Iversen, Boris Kotchoubey, Nicola Neumann,
and Herta Flor. The thought translation device (ttd) for completely paralyzed
patients. IEEETransactions on rehabilitation Engineering, 8(2):190–193, 2000.

[Bla03] B Blankertz. BCI competition II webpage. http://www.bbci.de/competition/ii/,
2003.

[Bla08] B Blankertz. BCI competition III webpage. http://www.bbci.de/competition/iii/,
2008.

[Bos04] Vladimir Bostanov. BCI competition 2003-data sets Ib and IIb: feature ex-
traction from event-related brain potentials with the continuous wavelet trans-
form and the t-value scalogram. IEEE Transactions on Biomedical Engineering,
51(6):1057–1061, 2004.

[Bot10] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[C+15] François Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

[CB64] Robert M Chapman and Henry R Bragdon. Evoked responses to numerical and
non-numerical visual stimuli while problem solving. Nature, 203(4950):1155,
1964.

115

BIBLIOGRAPHY

[CBJ16] Jinsung Chun, Byeonguk Bae, and Sungho Jo. Bci based hybrid interface for
3d object control in virtual reality. In 2016 4th International Winter Conference
on Brain-Computer Interface (BCI), pages 1–4. IEEE, 2016.

[CCH+10] Andrew Campbell, Tanzeem Choudhury, Shaohan Hu, Hong Lu, Matthew K
Mukerjee, Mashfiqui Rabbi, and Rajeev DS Raizada. Neurophone: brain-
mobile phone interface using a wireless eeg headset. In Proceedings of the
second ACM SIGCOMM workshop on Networking, systems, and applications
on mobile handhelds, pages 3–8. ACM, 2010.

[CdBV+14] Yun-Hsuan Chen, Maaike de Beeck, Luc Vanderheyden, Evelien Carrette, Vo-
jkan Mihajlović, Kris Vanstreels, Bernard Grundlehner, Stefanie Gadeyne, Paul
Boon, and Chris Van Hoof. Soft, comfortable polymer dry electrodes for high
quality ecg and eeg recording. Sensors, 14(12):23758–23780, 2014.

[CFF16] Tsan-Yu Chen, Chih-Wei Feng, and Wai-Chi Fang. Development of a reliable
SSVEP-based BCI mobile dialing system. In Consumer Electronics (ICCE),
2016 IEEE International Conference on, pages 269–272. IEEE, 2016.

[CG11] Hubert Cecotti and Axel Graser. Convolutional neural networks for P300 de-
tection with application to brain-computer interfaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(3):433–445, 2011.

[CR+11] Hubert Cecotti, Bertrand Rivet, et al. A robust sensor-selection method for P300
brain–computer interfaces. Journal of Neural Engineering, 8(1):016001, 2011.

[CRC+10] Hubert Cecotti, Bertrand Rivet, Marco Congedo, Christian Jutten, Olivier
Bertrand, Emmanuel Maby, and Jérémie Mattout. Suboptimal sensor subset
evaluation in a P300 brain-computer interface. In Signal Processing Confer-
ence, 2010 18th European, pages 924–928. IEEE, 2010.

[CRT+14] KA Colwell, DB Ryan, CS Throckmorton, EW Sellers, and LM Collins. Chan-
nel selection methods for the P300 speller. Journal of neuroscience methods,
232:6–15, 2014.

[CS16] Emanuele Cannella and Todor P Stefanov. Energy efficient semi-partitioned
scheduling for embedded multiprocessor streaming systems. Design Automa-
tion for Embedded Systems, 20(3):239–266, 2016.

[Els09] JA Elshout. Review of brain-computer interfaces based on the p300 evoked
potential. Master’s thesis, 2009.

[EMO] EMOTIV EPOC+ Webpage. https://www.emotiv.com/epoc/. Accessed:
2019-02-16.

[FD88] Lawrence Ashley Farwell and Emanuel Donchin. Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain potentials. Elec-
troencephalography and Clinical Neurophysiology, 70(6):510–523, 1988.

[FRAG+12] Reza Fazel-Rezai, Brendan Z Allison, Christoph Guger, EricW Sellers, Sonja C
Kleih, and Andrea Kübler. P300 brain computer interface: current challenges
and emerging trends. Frontiers in neuroengineering, 5:14, 2012.

116

BIBLIOGRAPHY

[FTM+88] Steven F Faux, Michael W Torello, Robert WMcCarley, Martha E Shenton, and
Frank H Duffy. P300 in schizophrenia: confirmation and statistical validation of
temporal region deficit in P300 topography. Biological psychiatry, 23(8):776–
790, 1988.

[GDS+09] Christoph Guger, Shahab Daban, Eric Sellers, Clemens Holzner, Gunther
Krausz, Roberta Carabalona, Furio Gramatica, and Guenter Edlinger. How
many people are able to control a p300-based brain–computer interface (bci)?
Neuroscience letters, 462(1):94–98, 2009.

[GG+10] Joseph TGwin, Klaus Gramann, et al. Removal of movement artifact from high-
density EEG recorded duringwalking and running. Journal of Neurophysiology,
103(6):3526–3534, 2010.

[g.H] g.HIamp Webpage. http://www.gtec.at/Products/
Hardware-and-Accessories/g.HIamp-Specs-Features. Accessed:
2019-02-16.

[GP+13] Stephen William Gilroy, Julie Porteous, et al. A brain-computer interface to
a plan-based narrative. In International Joint Conference on Artificial Intelli-
gence, pages 1997–2005, 2013.

[GS06] Alan Gevins and Michael E Smith. Electroencephalography (eeg) in neuroer-
gonomics. Neuroergonomics: The brain at work, pages 15–31, 2006.

[GSB+18] Violaine Guy, Marie-Helene Soriani, Mariane Bruno, Theodore Papadopoulo,
Claude Desnuelle, and Maureen Clerc. Brain computer interface with the p300
speller: Usability for disabled people with amyotrophic lateral sclerosis. Annals
of physical and rehabilitation medicine, 61(1):5–11, 2018.

[GVF11] Cristian Grozea, Catalin D Voinescu, and Siamac Fazli. Bristle-sensors—low-
cost flexible passive dry eeg electrodes for neurofeedback and bci applications.
Journal of neural engineering, 8(2):025008, 2011.

[GZW10] Junfeng Gao, Chongxun Zheng, and Pei Wang. Online removal of muscle arti-
fact from electroencephalogram signals based on canonical correlation analysis.
Clinical EEG and Neuroscience, 41(1):53–59, 2010.

[Hay94] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[HCP02] CJ Harland, TD Clark, and RJ Prance. Remote detection of human electroen-
cephalograms using ultrahigh input impedance electric potential sensors. Ap-
plied Physics Letters, 81(17):3284–3286, 2002.

[Her01] Christoph S Herrmann. Human eeg responses to 1–100 hz flicker: resonance
phenomena in visual cortex and their potential correlation to cognitive phenom-
ena. Experimental brain research, 137(3-4):346–353, 2001.

[HHLB11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Proc. of LION-5, page 507–523,
2011.

117

BIBLIOGRAPHY

[HVE06] Ulrich Hoffmann, Jean-Marc Vesin, and Touradj Ebrahimi. Spatial filters for
the classification of event-related potentials. Technical report, 2006.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[IKV18] Anti Ingel, Ilya Kuzovkin, and Raul Vicente. Direct information transfer rate
optimisation for ssvep-based bci. Journal of neural engineering, 16(1):016016,
2018.

[Ins] EMOTIV Insight Webpage. https://www.emotiv.com/insight/. Ac-
cessed: 2019-05-17.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning, pages 448–456, 2015.

[IS16] Changkyun Im and Jong-Mo Seo. A review of electrodes for the electrical brain
signal recording. Biomedical Engineering Letters, 6(3):104–112, 2016.

[JAB+10] Jing Jin, Brendan Z Allison, Clemens Brunner, Bei Wang, Xingyu Wang, Jian-
hua Zhang, Christa Neuper, and Gert Pfurtscheller. P300 chinese input sys-
tem based on bayesian lda. Biomedizinische Technik/Biomedical Engineering,
55(1):5–18, 2010.

[JK09] Garett D Johnson and Dean J Krusienski. Ensemble swlda classifiers for the
p300 speller. In International Conference on Human-Computer Interaction,
pages 551–557. Springer, 2009.

[KB07] Kanthaiah Koka and Walter G Besio. Improvement of spatial selectivity and
decrease of mutual information of tri-polar concentric ring electrodes. Journal
of neuroscience methods, 165(2):216–222, 2007.

[KMG+04] Matthias Kaper, Peter Meinicke, Ulf Grossekathoefer, Thomas Lingner, and
Helge Ritter. Bci competition 2003-data set iib: support vector machines for
the p300 speller paradigm. IEEE Transactions on biomedical Engineering,
51(6):1073–1076, 2004.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[KVDS16] JP Kulasingham, V Vibujithan, and AC De Silva. Deep belief networks and
stacked autoencoders for the p300 guilty knowledge test. In 2016 IEEE EMBS
Conference on Biomedical Engineering and Sciences (IECBES), pages 127–
132. IEEE, 2016.

[LL+14] Chin-Teng Lin, Bor-Shyh Lin, et al. Brain computer interface-based smart living
environmental auto-adjustment control system in UPnP home networking. IEEE
Systems Journal, 8(2):363–370, 2014.

118

BIBLIOGRAPHY

[LLJ+18] Lingyu Liang, Luojun Lin, Lianwen Jin, Duorui Xie, and Mengru Li. Scut-
fbp5500: A diverse benchmark dataset for multi-paradigm facial beauty predic-
tion. In 2018 24th International Conference on Pattern Recognition (ICPR),
pages 1598–1603. IEEE, 2018.

[LSCS15] Di Liu, Jelena Spasic, Gang Chen, and Todor Stefanov. Energy-efficient map-
ping of real-time streaming applications on cluster heterogeneous mpsocs. In
2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia
(ESTIMedia), pages 1–10. IEEE, 2015.

[LSWS16] Di Liu, Jelena Spasic, Peng Wang, and Todor Stefanov. Energy-efficient
scheduling of real-time tasks on heterogeneous multicores using task splitting.
In 2016 IEEE 22nd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 149–158. IEEE, 2016.

[LTK13] Chin-Teng Lin, Shu-Fang Tsai, and Li-Wei Ko. EEG-based learning system
for online motion sickness level estimation in a dynamic vehicle environment.
IEEE Transactions on Neural Networks and Learning Systems, 24(10):1689–
1700, 2013.

[LWG16] Ke Lin, Yijun Wang, and Xiaorong Gao. Time-frequency joint coding method
for boosting information transfer rate in an ssvep based bci system. In 2016
38th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 5873–5876. IEEE, 2016.

[LWG+18] Mingfei Liu, Wei Wu, Zhenghui Gu, Zhuliang Yu, FeiFei Qi, and Yuanqing Li.
Deep learning based on batch normalization for P300 signal detection. Neuro-
computing, 275:288–297, 2018.

[M+97] Tom M Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45(37):870–877, 1997.

[Mar] OPEN BCI Mark IV Webpage. https://shop.openbci.com/
collections/frontpage/products/ultracortex-mark-iv. Accessed:
2019-05-17.

[MG15] Ran Manor and Amir B Geva. Convolutional neural network for multi-category
rapid serial visual presentation BCI. Frontiers in Computational Neuroscience,
9, 2015.

[MPP08] Gernot R Muller-Putz and Gert Pfurtscheller. Control of an electrical prosthe-
sis with an ssvep-based bci. IEEE Transactions on Biomedical Engineering,
55(1):361–364, 2008.

[MUS] MUSEWebpage. https://choosemuse.com/muse/. Accessed: 2019-05-17.

[MWV+10] Maarten Mennes, Heidi Wouters, Bart Vanrumste, Lieven Lagae, and Peter
Stiers. Validation of ICA as a tool to remove eye movement artifacts from
EEG/ERP. Psychophysiology, 47(6):1142–1150, 2010.

[Nie15] Michael A Nielsen. Neural networks and deep learning, volume 25. Determi-
nation press San Francisco, CA, USA:, 2015.

119

BIBLIOGRAPHY

[NRS17] Sebastian Nagel, Wolfgang Rosenstiel, and Martin Spüler. Random visual
evoked potentials (rvep) for brain-computer interface (bci) control. compare,
250(250ms):250ms, 2017.

[NS17] Sobhan Niknam and Todor Stefanov. Energy-efficient scheduling of throughput-
constrained streaming applications by periodic mode switching. In 2017 Inter-
national Conference on EmbeddedComputer Systems: Architectures, Modeling,
and Simulation (SAMOS), pages 203–212. IEEE, 2017.

[ONB+08] Martin Oehler, Peter Neumann, Matthias Becker, Gabriel Curio, and Meinhard
Schilling. Extraction of ssvep signals of a capacitive eeg helmet for human
machine interface. In 2008 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 4495–4498. IEEE, 2008.

[PHP10] Konstantinos J Panoulas, Leontios J Hadjileontiadis, and Stavros M Panas.
Brain-computer interface (bci): Types, processing perspectives and applica-
tions. In Multimedia Services in Intelligent Environments, pages 299–321.
Springer, 2010.

[Pic92] TerenceW Picton. The p300 wave of the human event-related potential. Journal
of clinical neurophysiology, 9(4):456–479, 1992.

[PN01] Gert Pfurtscheller and Christa Neuper. Motor imagery and direct brain-
computer communication. Proceedings of the IEEE, 89(7):1123–1134, 2001.

[PNCB11] Gabriel Pires, Urbano Nunes, and Miguel Castelo-Branco. Statistical spatial
filtering for a P300-based BCI: tests in able-bodied, and patients with cere-
bral palsy and amyotrophic lateral sclerosis. Journal of neuroscience methods,
195(2):270–281, 2011.

[Pol07] John Polich. Updating P300: an integrative theory of P3a and P3b. Clinical
Neurophysiology, 118(10):2128–2148, 2007.

[Qiu] Xipeng Qiu. Neural networks and deep learning. https://nndl.github.
io/. Accessed: 2019-07-29.

[Qui] Quick-8 Webpage. https://www.cognionics.net/products. Accessed:
2019-05-17.

[RCMM12] Bertrand Rivet, Hubert Cecotti, Emmanuel Maby, and Jérémie Mattout. Im-
pact of spatial filters during sensor selection in a visual p300 brain-computer
interface. Brain topography, 25(1):55–63, 2012.

[RCP+10] Bertrand Rivet, Hubert Cecotti, Ronald Phlypo, Olivier Bertrand, Emmanuel
Maby, and Jérémie Mattout. Eeg sensor selection by sparse spatial filtering
in p300 speller brain-computer interface. In 2010 Annual International Con-
ference of the IEEE Engineering in Medicine and Biology, pages 5379–5382.
IEEE, 2010.

120

BIBLIOGRAPHY

[RCS+11] Bertrand Rivet, Hubert Cecotti, Antoine Souloumiac, Emmanuel Maby, and
Jérémie Mattout. Theoretical analysis of xdawn algorithm: application to an
efficient sensor selection in a p300 bci. In 2011 19th European Signal Process-
ing Conference, pages 1382–1386. IEEE, 2011.

[RG08] Alain Rakotomamonjy and Vincent Guigue. BCI competition III: dataset II-
ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical
Engineering, 55(3):1147–1154, 2008.

[RS+09] Bertrand Rivet, Antoine Souloumiac, et al. xDAWN algorithm to enhance
evoked potentials: application to brain–computer interface. IEEE Transactions
on Biomedical Engineering, 56(8):2035–2043, 2009.

[RSG+09] Bertrand Rivet, Antoine Souloumiac, Guillaume Gibert, Virginie Attina, and
Olivier Bertrand. Sensor selection for P300 speller brain computer interface. In
ESANN, 2009.

[Sam67] Arthur L Samuel. Some studies in machine learning using the game of checkers.
ii—recent progress. IBM Journal of research and development, 11(6):601–617,
1967.

[SD06] Eric W Sellers and Emanuel Donchin. A P300-based brain–computer interface:
initial tests by ALS patients. Clinical Neurophysiology, 117(3):538–548, 2006.

[SDC07] Thomas J Sullivan, Stephen R Deiss, and Gert Cauwenberghs. A low-noise,
non-contact eeg/ecg sensor. In 2007 IEEE Biomedical Circuits and Systems
Conference, pages 154–157. IEEE, 2007.

[SH+14] Nitish Srivastava, Geoffrey E Hinton, et al. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[SL11] Gerwin Schalk and Eric C Leuthardt. Brain-computer interfaces using electro-
corticographic signals. IEEE reviews in biomedical engineering, 4:140–154,
2011.

[SLS16] Jelena Spasic, Di Liu, and Todor Stefanov. Energy-efficient mapping of real-
time applications on heterogeneous mpsocs using task replication. In 2016 In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), pages 1–10. IEEE, 2016.

[SLS18] Hongchang Shan, Yu Liu, and Todor Stefanov. A simple convolutional neural
network for accurate P300 detection and character spelling in brain computer
interface. In Proceedings of 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), pages 1604–1610, 2018.

[SMH+04] Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and
Jonathan RWolpaw. Bci2000: a general-purpose brain-computer interface (bci)
system. IEEE Transactions on biomedical engineering, 51(6):1034–1043, 2004.

121

[Spü15] Martin Spüler. A brain-computer interface (bci) system to use arbitrary win-
dows applications by directly controlling mouse and keyboard. In 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society (EMBC), pages 1087–1090. IEEE, 2015.

[SRC+12] Pietro Salvo, Robrecht Raedt, Evelien Carrette, David Schaubroeck, Jan Van-
fleteren, and Ludwig Cardon. A 3d printed dry electrode for ecg/eeg recording.
Sensors and Actuators A: Physical, 174:96–102, 2012.

[SS09] Mathew Salvaris and Francisco Sepulveda. Wavelets and ensemble of flds for
p300 classification. In 2009 4th International IEEE/EMBS Conference on Neu-
ral Engineering, pages 339–342. IEEE, 2009.

[SW49] Claude E Shannon and Warren Weaver. The mathematical theory of communi-
cation (urbana, il, 1949.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[VELB18] AdamVanEtten, Dave Lindenbaum, and ToddMBacastow. Spacenet: A remote
sensing dataset and challenge series. arXiv preprint arXiv:1807.01232, 2018.

[Wal16] Stephan Waldert. Invasive vs. non-invasive neuronal signals for brain-machine
interfaces: will one prevail? Frontiers in neuroscience, 10:295, 2016.

[WRMP98] Jonathan R Wolpaw, Herbert Ramoser, Dennis J McFarland, and Gert
Pfurtscheller. Eeg-based communication: improved accuracy by response veri-
fication. IEEE transactions on Rehabilitation Engineering, 6(3):326–333, 1998.

[WW12] Jonathan Wolpaw and Elizabeth Winter Wolpaw. Brain-computer interfaces:
principles and practice. OUP USA, 2012.

[WWJ11] Yu-Te Wang, Yijun Wang, and Tzyy-Ping Jung. A cell-phone-based brain–
computer interface for communication in daily life. Journal of Neural Engi-
neering, 8(2):025018, 2011.

[XMYR16] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5288–5296, 2016.

List of Publications

1. Hongchang Shan, Yu Liu, and Todor Stefanov,
"A Simple Convolutional Neural Network for Accurate P300 Detection and
Character Spelling in Brain Computer Interface",
In Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI’18), pp. 1604-1610, Stockholm, Sweeden, July 13-19, 2018.

2. Hongchang Shan, and Todor Stefanov,
"SLES: A Novel CNN-based Method for Sensor Reduction in P300 Speller,"
In Proceedings of the 41st Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC’19), Berlin, Germany, July
23-27, 2019.

3. Hongchang Shan, and Todor Stefanov,
"A Novel Sensor Selection Method based on Convolutional Neural Network for
P300 Speller in Brain Computer Interface",
The 56th ACM/IEEE Design Automation Conference (DAC’19) WIP session,
Las Vegas, NV, USA, June 2-6, 2019.

4. Hongchang Shan, Yu Liu, and Todor Stefanov,
"Ensemble of Convolutional Neural Networks for P300 Speller in Brain Com-
puter Interface",
In Proceedings of the 28th International Conference on Artificial Neural Net-
works (ICANN’19), pp. 376-394, Munich, Germany, September 17-19, 2019.

5. Hongchang Shan, Yu Liu, and Todor Stefanov,
"An Empirical Study on Sensor-aware Design of Convolutional Neural Net-
works for P300 Speller in Brain Computer Interface,"
In Proceedings of "12th IEEE International Conference on Human System In-
teraction (IEEE HSI’19)", pp. 5-11, Richmond, Virginia, USA, June 25-27,
2019

123

Curriculum Vitae

Hongchang Shan was born on October 11, 1989 in Heilongjiang, China. He obtained
his B.Eng degree in Automation Science and Technology fromXi’an Jiaotong Univer-
sity, China in 2012. He joined the Leiden Embedded Research Center (LERC), part
of the Leiden Institute of Advanced Computer Science (LIACS) at Leiden University,
as a Ph.D. candidate in November, 2015. In LERC, he has been working, towards his
Ph.D degree, as a research assistant. His research work, which resulted in this thesis,
was funded by the scholarship from China. Besides his work as a researcher, he was
involved as a teaching assistant in the Digital Technique, Computer Architecture, and
Embedded Systems and Software courses.

125

