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Preface

Space: The Final Frontier

Humankind has been fascinated by the stars, and planets of our solar system, probably
since before our species developed complex language. Many cultures have considered
them to be ancestors, spirits of nature, and deities guiding our life and influencing our
world. As humankind developed, people chose to see their heroes in the constellations,
and these curious objects in the sky sometimes even were considered gods. Knowing
what these gods wanted or liked could help a society prosper, or could doom it. Even
more were we intrigued by the Sun, our neighboring planets, the Moon.

Technology has always been critical in our quest to understand our environment,
and our world. Today, we are dependent upon the availability and correct functioning
of our technology. It has enabled us to transform nature, but also to damage it and
most likely change it for generations. And we are using technology even in our attempts
to repair some of that same damage we inflict through it. Without technology, modern
societies and our every day life would be unthinkable.

Humans are curious, and using our technology, we began exploring space just
recently, considering the timescale of human existence. We operate vast telescopes on
the ground and in space, which help us answer the most fundamental questions about
how we came to be and where we are going. A few decades ago, we began launching
satellites into space, which we today use for science, commerce, and education. Two
superpowers conducted a great race to the Moon just a few decades ago, arrived there,
took pictures, and then returned home. Today, this race is being rerun with more
participants, resulting maybe in an extension to Mars, or better and more productively,
to the Galilean Moons of Jupiter.

Satellites allow us to communicate with any point on the surface of the Earth
in real-time, and with Mars with more than 10 minutes delay. Weather forecasts,
communication services, flight information, and geolocation systems today are possible
only due to information transmitted, or relayed by satellites. In many aspects, our
modern life would be unimaginable without them.

We have outgrown our homeworld and its limited pool of resource already in many
aspects, and most likely we even have to go to space to survive, like a young bird
leaving its nest. Within the next few generations, we will reach out into space, begin
to understand whatever we may find there, and utilize the vast resources which we
may find within our solar system for the benefit of all. To design, construct, test,
and operate the spacecraft that we will require we depend upon modern computer
technology and electronics.

Electronics and semiconductor technology are indispensable in spacecraft design,
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and microprocessors can be found in all major satellite subsystems. Spacecraft and
computers represent the peak of our technology, the application of all our skills in
engineering, and the result of all the combined interdisciplinary scientific knowledge
we have as a species. The reliability of these components is mission critical; and
directly or indirectly, lives depend upon them, even in unmanned spaceflight. Scientists
and engineers therefore seek to invent, develop, and utilize computer designs which
can guarantee sufficient robustness and reliability for a space mission. The topic of
this thesis is to enable the use of modern computer technology manufactured in fine
technology nodes, which at the time of writing can not be used aboard spacecraft in
a reliable manner.



Chapter 1

Introduction

Brief Abstract

Modern semiconductor technology has enabled the development of miniaturized satel-
lites, which are cheap to launch, low-cost platforms for a broad variety of scientific and
commercial instruments. Especially very small satellites (<100kg) can enable space
missions which previously were technically infeasible, impractical or simply uneconom-
ical. However, as discussed in Chapter 2, they suffer from low reliability. Especially the
smallest such satellites are typically not considered suitable for critical and complex
multi-phased missions, as well as for high-priority science missions for solar-system
exploration and astronomical applications [1]. The on-board computer (OBC) and
related electronics constitute a significant part of such spacecraft, and in related work,
e.g., |2], were responsible for a majority of post-deployment failures, which are further
discussed also in Chapter 3.

Indeed, the modern embedded and mobile-market semiconductors used aboard
nanosatellites lack the fault tolerance (FT) capabilities of computer-architectures for
larger spacecraft. Due to budget, energy, mass, and volume restrictions in miniatur-
ized satellites, existing FT solutions developed for such larger spacecraft can not be
adopted. Today, there exist no fault-tolerant computer architectures that could be
used aboard nanosatellites powered by embedded and mobile-market semiconductors,
without breaking the fundamental concept of a cheap, simple, energy-efficient, and
light satellite that can be manufactured en-mass and launched at low cost [3].

To overcome this limitation, in this thesis, we develop a new approach to achieve
fault tolerance for miniaturized satellite computers based upon modern semiconduc-
tors. The method we use to approach this challenge is to first consider protective
measures proposed by science as theoretical concepts, as well as measures that are
in use today in the space industry and other industries in Chapters 2, 3, and 4. We
consider how these can be utilized to systematically protect each component of a
spacecraft’s OBC, as well as the software run on it.

A high-level schematic of the components making up a satellite on-board computer
is depicted in Figure 1. For each OBC component indicated in this figure, we develop
fault tolerance measures that can be used to protect them and describe them in the
different chapters of this thesis. To assure that these concepts are effective, we de-
velop them specifically considering the application constraints and requirements of a

3
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Figure 1: A high-level component model of an OBC, and the other subsystems within a
satellite interacts with.

satellite operating in the space environment. Based on these concepts, we propose the
hypothesis that fault tolerance can be achieved through hardware-software co-design,
for which we produce a theoretical design in the form of a three-stage fault tolerance
architecture.

We show that by systematically protecting critical key-component of the OBC
using software measures, synergies between different fault tolerance measures can be
achieved. These synergies enable us to protect the system as a whole more effectively,
efficiently and in a way that is economical and feasible even for small-scale professional
CubeSat developers and academic teams working on scientific spacecraft and instru-
ments with a limited project budget. We test our hypothesis through fault-injection
and provide statistics on the results, and implement a proof-of-concept for this system
architecture in a reconfigurable logic device (FPGA).

Our ultimate objective is to allow a suitable miniaturized satellite design to re-
liably achieve a minimum of 2 years of on-orbit operation. At the time of writing,
miniaturized satellite computer components do not include sophisticated fault toler-
ance capabilities, and may fail at any point in time during a space mission. In contrast
to large spacecraft, they therefore can not be designed to achieve a specific mission
lifetime, but designs function as long as no critical faults occur. Therefore, these mis-
sions are kept brief, as is further discussed in Chapters 2 and 3, thus implying risk
acceptance instead of risk mitigation and risk handling.

We realize fault tolerance in software and assure an on-board computer’s long-term
robustness by exploiting partial FPGA-reconfiguration (see Chapter 5) and mixed crit-
icality aspects (see Chapter 6), and develop a multiprocessor System-on-Chip (MP-
SoC) architecture through hardware-software co-design (see Chapter 4). Hence, this
computer architecture also provides spacecraft designers with the capabilities neces-
sary to achieve a given mission lifetime by adjusting our architecture’s parameters,
such as the necessary level of replication of software run on the system, provisioning
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of spares, scrubbing periods, and error correction coding strength.

The MPSoC requires no custom-written IP-cores (library logic) and can be as-
sembled from well tested commercial-off-the-shelf (COTS) components, and powerful
embedded and mobile-market processor cores, yielding a non-proprietary, and open
system architecture. The resulting computer architecture consists only of conventional
consumer-grade hardware, commodity processor cores, standard parts, and openly
available standard library IP.

In the final chapter of this thesis, we provide a proof-of-concept implementation
of this MPSoC for three FPGAs, the Xilinx Kintex Ultrascale+ KU3P (the smallest
of its class), KU11P, and the Xilinx Kintex Ultrascale KU60. Our implementation for
KUS3P requires only 1.94W total power consumption, which is well within the power
budget range achievable aboard 2U CubeSats. To our understanding, this is the first
scalable and COTS-based, widely reproducible OBC solution which can offer strong
fault tolerance even for 2U CubeSats.

1.1 Problem Statement

Hardware-based fault tolerance measures for large satellites are effective for older,
large-feature-size technology nodes which have fallen out of use in the mobile-market
and the IT industry decades ago [4]. Modern mobile-market COTS processors depend
upon manufacturing in low-feature size technology nodes, and can not be manufac-
tured anymore using old technology nodes. Traditional hardware-implemented fault
tolerance techniques diminish in effectiveness and efficiency with shrinking feature
size [5]. This has left a protective gap due to a lack of fault-tolerant solutions, and
the reliability of such miniaturized satellites is insufficient for critical missions, which
is further discussed in Chapter 3.

Countless novel academic fault tolerance concepts have been proposed over the
years, which, in theory, could be used to protect modern computer systems. But at
the time of writing, there is a significant gap between fault tolerance research, and its
applications to spacecraft of all classes, as discussed as part of related work in Chapters
4, 6, and 8. Many of the concepts mentioned there have low technological maturity
and do not meet practical application constraints for a use within a real computer
system, regardless of the intended operating environment [1]. Software-implemented
fault tolerance concepts have thus until today been ignored by the space industry
due to lacking maturity, perceived complexity, doubts about their effectiveness and
testability [1].

In this thesis we therefore explore how fault tolerance can be achieved for computer
systems manufactured in state-of-the-art technology nodes with low power-usage, and
small feature-size through scientific means. We do this in collaboration with the
European Space Agency, supported by a Networking Partnership Program grant. In
this thesis we address the following problem:

RQO Can a fault tolerance computer architecture be achieved with modern embedded
and mobile-market technology, without breaking the mass, size, complexity, and
budget constraints of miniaturized satellite applications?
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1.2 Research Questions

To show that it is indeed possible to address the problem stated in RQO in an affirma-
tive way, we develop a fault-tolerant system architecture which can do exactly that.
Systematically for each component in a satellite’s on-board computer, we develop spe-
cific measures to address challenges regarding fault tolerance. These components are
also depicted in Figure 1. However, we do not try to apply fault tolerance everywhere
in the system as, as this would inflate system complexity and fault potential. Instead,
we place fault tolerance measures strategically within the system to handle and cover
faults where these can be addressed best at a system level.

In this thesis, we investigate the following research questions throughout the dif-
ferent chapters:

RQ1 Considering the design constraints of nanosatellites, can a fault-tolerant com-
puter architecture be achieved with COTS components?
(Chapter 4)

RQ2 How can the correct functionality of a CubeSat’s FPGA-based on-board com-
puter be assured and verified, and its lifetime extended?
(Chapter 5)

RQ3 Can a satellite computer architecture enable novel functionality for a satellite
computer, that improves satellite computing beyond just offering better fault
tolerance and an increased lifetime?

(Chapter 6)

RQ4 Can commercial memories be retrofitted with error detection and correction in
software, to substitute for hardware measures, and to what extent?
(Chapter 7)

RQ5 How can its software-implemented fault tolerance measures of a hardware- soft-
ware hybrid architecture be tested and validated?
(Chapter 8)

RQ6 Can such a computer architecture be practically implemented within the size,
energy, and budget constraints of nanosatellite applications?
(Chapters 9 & 10)

These questions are discussed in this thesis. To do so, we develop a fault-tolerant
computer architecture for irradiated environments which can offer protection for on-
board computer systems based upon modern semiconductors. Through implementa-
tion, testing via fault-injection, and the construction of a proof-of-concept implemen-
tation on FPGA, we show that this approach is technically feasible with contemporary
technology.

The key contribution of this thesis is a computing concept that can allow future
critical commercial and high-priority science missions to be done at low cost, to enable
REAL progress in satellite miniaturization to take us as a species to the stars. My
hope is that this thesis is the beginning of something new and significant, and in
the coming years I plan to advance this technology from its current proof-of-concept
state to maturity. To do so, radiation testing, long-term testing, as well as on-orbit
demonstration aboard a CubeSat will be necessary.
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Figure 2: Chapter guide for this thesis.

1.3 Thesis Organization

A brief outline of the subsequent chapters follows, with a visual chapter guide depicted
in Figure 2.

Chapter 2: A Brief Introduction to Spaceflight and Fault
Tolerance

The research upon which this thesis is based is interdisciplinary. It relies upon con-
cepts and results from several different fields, including computer engineering, nuclear
science, electrical engineering, physics and astronomy, as well as space engineering. In
this chapter, we provide a brief introduction to our application, its design constraints,
as well as fault-tolerant computer architecture. We further provide an overview over
the current status of small satellite space missions, as well as a review on satellite
failures in the past and at the time of writing. This chapter therefore serves also as
motivation and legitimization for our research, including mission success and failure
statistics, which underline the lack of reliability of very small satellites today.

Chapter 3: The Space Environment

A satellite’s on-board computer has to cope with unique challenges, requiring a general
understanding of the physical effects of a spacecraft’s operating environment. Hence,
for the understanding of the fault profile and application constraints for this thesis, in
this chapter we provide an in-depth discussion of the space environment and its effects.
We discuss the physical design restrictions aboard spacecraft, and operational consid-
erations. Most importantly we discuss the impact of radiation on semiconductors, and
how it can be mitigated.
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Chapter 4: A Fault Tolerance Architecture for Modern
Semiconductors

In this chapter, we describe a non-intrusive, integral, flexible, hardware-software-
hybrid approach which enable the use of modern MPSoCs for spaceflight meeting
real-world constraints. Neither traditional hardware- nor software-based FT solutions
can offer the functionality necessary to guarantee fault tolerance for state-of-the-art
SoCs used in miniaturized satellite OBCs. We achieve fault-detection, isolation and
recovery through the use of a co-designed fault tolerance architecture consisting of
multiple interlinked protective measures. In combination, they form a fault tolerance
architecture which can guarantee strong fault coverage even during space missions
with a long duration, for which we provide an early proof-of-concept implementation.
The research in this chapter was published in the proceedings of the IEEFE Asian Test
Symposium (ATS) [Fuchs9|.

Chapter 5: MPSoC Management and Reconfiguration

In this chapter, we present the concept and proof-of-concept implementation of a
subsystem for autonomous chip-level debugging within a CubeSat via JTAG [6]. This
concept provides all the necessary functionality needed to implement Stage 2 of the
fault tolerance architecture described in Chapter 4. In our multi-stage fault tolerance
architecture, remote debugging is one of several tasks this subsystem performs: It is
now used to control the coarse-grain lockstep implemented within an MPSoC, and
referred to as supervisor in remainder of this thesis. It interacts with an on-chip
configuration controller to control partial reconfiguration and error scrubbing for the
FPGA'’s fabric via the internal configuration access port (Xilinx’s ICAP). An early
version of this chapter was presented in the proceedings of the International Conference
on Architecture of Computing Systems (ARCS) [Fuchsll], and an extended paper
[Fuchs10] was published in the proceedings of the ESA /CNES Small Satellites, System
& Services Symposium (4S5).

Chapter 6: Mixed Criticality and Resource Pooling

In this chapter, we discuss Stage 3 of our multi-stage fault tolerance architecture,
and the advantages it offers not just for miniaturized satellites, but for spacecraft of
all weight classes. Our architecture allows a satellite to dynamically adjust the fault
tolerance level, compute performance, and energy consumption to meet the vary-
ing performance requirements to a satellite computer during long and multi-phased
space missions. The operator of a spacecraft can prioritize between processing per-
formance, functionality, fault coverage, and energy consumption. The system can be
autonomously adapted to the OBC’s thread assignment to retain a functional system
core by sacrificing performance or availability of less critical applications. This allows
an OBC to to more efficiently handle accumulating permanent faults and to age grace-
fully. The research in this chapter was published [Fuchs7] in the proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
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Chapter 7: Reliable Data Storage for Miniaturized Satellites

Reliable operation of an OBC can only be guaranteed if the integrity of the OBC’s
operating system, applications, as well as payload data can be safeguarded. Chapter
7 is therefore dedicated to discussing fault tolerance for the various volatile and non-
volatile memories used aboard miniaturized satellites and within our architecture. The
research presented in this chapter was published as finalist paper [Fuchs15] in the pro-
ceedings of the ATAA /USU Conference on Small Satellites (SmallSat). It was awarded
second place and a research grant in the Annual Frank J. Redd Student Competition.
We describe the implementation of FTRFS, a fault-tolerant radiation-robust filesys-
tem for space use. It was published [Fuchs18] in the proceedings of the International
Conference on Architecture of Computing Systems (ARCS). Furthermore, a protective
concept for flash memory and phase change memory is described in the second part of
this chapter. It was published [Fuchs16| in the proceedings of the International Space
System Engineering Conference Data Systems In Aerospace (DASIA).

Chapter 8: Validating Software-Implemented Fault Tolerance

In this chapter, we test and validate the software-mechanisms that are the foundation
of our fault tolerance architecture by injecting faults into an RTEMS implementation
of Stage 1. Traditional computer architectures for space applications are validated
using system-level testing. This is viable for systems relying on hardware measures,
but unsuitable for testing software due to a lack of test coverage and the expanded
test-space. For testing software-based FT measures, a realistic test-setup is considered
good practice and required to deliver representative fault-injection results. Therefore,
a fault-injection campaign was conducted using system emulation through QEMU
into a representative ARMv7a-SoC matching our architecture target, ARM’s Cortex-
A53, and into a RISC-V-based SystemC-model. Our results show that our lockstep
implementation is effective and efficient, and we provide a direct comparison to related
work. An early version of this chapter was published in the proceedings of the IEEFE
Asian Test Symposium (ATS) [Fuchsb].

Chapter 9: Combining Hardware and Software Fault Tolerance

As optimal platform for our architecture, we developed a compartmentalized MPSoC
design for FPGA, where Stage 2’s partial reconfiguration functionality can be utilized
to recover defective parts of the MPSoC. This architecture is designed to satisfy the
high performance requirements of current and future scientific and commercial space
missions at very low cost, while offering the strong fault coverage guarantees necessary
for missions with a long duration. We describe the topology of our multiprocessor
System-on-Chip (MPSoC), and show how it can be assembled in its entirety from only
well tested COTS components with commodity processor cores. The MPSoC can be
implemented using only COTS hardware and extensively validated library IP, requiring
no custom logic or space-proprietary processor cores. The research in this chapter was
published [Fuchs6| in the proceedings of the IEEE Conference on Radiation and Its
Effects on Components and Systems (RADECS).
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Chapter 10: On-Board Computer Integration and MPSoC
Implementation

In the final research chapter of this thesis, we discuss practical implementation results
for our MPSoC design. We provide detailed resource utilization results for this MPSoC
for 3 different FPGAs: Xilinx Kintex Ultrascale+ KU3P (the smallest of its class),
KU11P, and the Xilinx Kintex Ultrascale KU60, for which we are collaborating within
the Xilinx Radiation Testing Consortium to achieve a suitable device-test platform
for radiation testing in the future. We provide statistics on power consumption, and
show that even between two FPGA generations power consumption can be reduced
drastically through the use of more modern and efficient technology nodes. This serves
as proof-of-concept for our architecture. This chapter is based on two publications
[Fuchsl,Fuchs2| in the proceedings of to the IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) and the AIAA/USU
Conference on Small Satellites (SmallSat).
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12 2.1. SPACECRAFT AND SATELLITE MINIATURIZATION

2.1 Spacecraft and Satellite Miniaturization

In this section, a brief introduction into the different kinds of satellites and satellite
miniaturization itself is given, to provide general understanding for readers who are
not familiar with this field. This section is meant as to give sufficient background
information on the application for the research discussed in this thesis.

Satellites can be differentiated by mass in several classes.When thinking of space
stations, satellites, and deep-space probes, we usually imagine large structures float-
ing in space, weighing multiple tons, powered by vast solar panel arrays, radioisotope
thermoelectric generators, or fission reactors [7]. Certainly, many early scientific, com-
mercial, and military satellites were very large spacecraft. These are sometimes de-
signed to operate for several decades in space. However, today, modern semiconductor
technology, more efficient battery and photovoltaics, novel propulsion technologies,
and robust lightweight materials enable the construction of much smaller, lighter, and
cheaper spacecraft.

Spacecraft with a wet mass! of less than 500kg are therefore referred to as “minia-
turized satellites”, and can be constructed dramatically faster than large satellites. In
Table 1, an overview over satellite classes and capabilities is given.

At the time of writing, several companies have achieved commercial success by
operating large groups of miniaturized satellites in orbit. They have been successfully
used to providing real-time earth observation data and help in disaster recovery [§],
and in safety- and life-critical services [9] such as airplane traffic tracking and maritime
shipping [10]. A broad variety of biological and chemical experiments [11] has been
carried out using CubeSat platforms, which are also rather popular for testing and
validating novel technologies in space [12,13]. Several pico- and nanosatellite-based
space-observatories [14,15] have been launched, and nanosatellites were deployed by
the Hayabusa 2 space probe at the asteroid 162173 Ryugu [16]. In 2018, 2 inter-
planetary CubeSats traveled to the planet Mars as part of the MarCO mission [17],

IThe mass of the spacecraft including payload and all consumables such as propellant.

Weight Minia- Build as Classical Propulsion Mission
Class Max Min | turized | CubeSat | Tech Usable | Available Lengths
Large - 1t No Absurd Yes Yes Decades
Medium 1t | 500kg No Absurd Yes Yes Decades
Small 500kg | 100kg Yes Limiting Most Yes 10 years
Micro 100kg 10kg Yes Common Little Yes years
Nano 10kg 1kg Yes Standard No Yes 1 year
Picro 1kg 100g Yes Standard No Limited months
Femto 100g - Yes Inefficient No No -

Table 1: Satellites can be classified in a variety of ways, with each type of spacecraft having
different capabilities, technological limitations, and the capability to achieve different mission
durations. In principle, almost any satellite could be manufactured to be a CubeSat, but only
for some this makes sense due to the constraints of this form factor standard.
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providing real-time telemetry during the arrival-phase of NASA’s InSight Mars Lander.
Several miniaturized satellite constellations for technology demonstration, and Earth
observation, and positioning, and data relay purposes have been developed [18-21]
and launched [8,22,23]. At the time of writing, scientists and engineers have even
begun to develop CubeSat-based interferometers and composite space telescopes [13]
that could outperform even the largest conventional space-observatories, and there are
plan to use Nanosatellites even for gravitational-wave measurement [15].

2.1.1 Large Satellites based on Traditional Design Principles

Satellites with a wet mass above 500kg are at this point in time constructed in large
projects with vast budgets quasi artisanally. Most “big-space” applications rely upon
such satellites. Satellites of 500kg — 1000k are usually classified as medium-sized satel-
lites, heavier spacecraft are designated as a large satellites. Development of such satel-
lites is challenging, system architectures are complex, resulting in long development
times, and the need to utilize well tested, proven technology, that is available over a
very long period of time. This technology is usually space industry proprietary. Tech-
nology readiness, design maturity, and space heritage of a technology through prior
use aboard other spacecraft are essential, and often seen a prerequisite for considering
a technology for use within this satellite class.

Construction of these satellites in practice often takes many years [24], sometimes
even decades [25]. To provide an example, the James Webb Space Telescope (JWST)
is designed to have a wet mass of approximately 6620kg. It is a multinational project
involving hundreds of stakeholders, and has been in construction for more than 25
years at the time of writing, and its precise date of completion and launch has not
been announced yet. The cost of the electronics used aboard such a spacecraft is
small compared to the funds required to meet legal requirements, for salaries, tooling,
testing, management, certification, insurance, and launch. Spacecraft testing also
requires access to specialized facilities [26,27] including:

e thermal/vacuum chambers to analyze the behavior of the spacecraft in a space-
like environment at high or low temperatures (often 173K and 373K) [28],

e radiation testing facilities using radiogenic sources or particle accelerator to sim-
ulate the radiation environment a satellite’s components have to operate in, and
to verify their correct behavior and, if available, effectiveness of fault tolerance
measures, and

e a broad variety of other heavy machinery, e.g., to perform mechanical stress and
vibration tests.

Most modern major launch vehicles can carry much heavier and bulkier loads than
just one satellite [29,30]. Often a substantial amount of volume and mass remains
available which in the early days of spaceflight remained vacant to not endanger the
primary payload [31]. To reduce costs, organizations often either sell this excess ca-
pacity, or hand the entire launch process over to a “launch broker”, which then can
combine multiple satellite launches into one “ride-share” launch [29]. An example of
a ride-share launch with multiple satellites of various classes is depicted in Figure
3. The main spacecraft launched on a launch vehicle is then referred to as “primary
payload”, with other, often smaller satellites becoming “secondary payloads”. Today
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Figure 3: A ride-share satellite launch with the Earth observation SmallSat DubaiSat-2 (top
center) being the primary payload. Secondary payloads were 4 microsatellites (top left and
right, 2 bottom center) and 26 other nanosatellites which are located in the blue deployer
boxes. The CubeSat First-MOVE (see Section 2.1.4) is located in the top right deployer.

Image copyright: C. Olthoff at al., Yasny Launch Base, Russian Federation, usage and reprint permissions granted.

even small start-up companies, and universities can bring their spacecraft into orbit
at comparably low cost.

2.1.2 Small Satellites

SmallSats, or Minisatellites, weigh between 500 and 100kg, and traditionally were
used for brief science and commercial missions. Historically, SmallSat missions used
to be shorter than those realized with large satellites [32]. They can be constructed
and launched at drastically lower cost, and in general also more quickly. The term
SmallSat is colloquially also used to refer to all satellites lighter than 500kg in this
field. Due to technological evolution in recent decades, the capabilities of the SmallSats
have increased, and today they increasingly much replace larger satellites.

2.1.3 Microsatellites

MicroSats between 100kg and 10kg are today widely used for a variety of low cost
commercial and novel scientific missions. The upper and lower boundaries between
Nanosatellites, MicroSats, and SmallSats are fluent. MicroSats with a wet mass ap-
proaching 100kg differ little from lighter SmallSats, and usually carry fewer or lighter
payloads and lighter components (e.g., smaller batteries, lighter and smaller solar cell
array structures, ...) [33]. Light MicroSats become similar to a Nanosatellite and may
even utilize Nanosatellite form factor standards, while larger ones can offer very similar
capabilities to SmallSats. Many missions that a few decades ago required SmallSats
can today be performed by MicroSats, which can be manufactured more rapidly and
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launched at lower cost. Compare also [34] for a market assessment for a corporate
view on this increasing down-scaling trend.

2.1.4 Nanosatellites and CubeSats

Nanosatellites weigh between 1 and 10kg and became popular for educational projects,
especially due to the CubeSat standard. The CubeSat standard was originally intended
to cheaply launch student projects into space at the beginning of the 215 century [35].
Today, it has become the standard form factor for Micro-, Nano-, and Picosatel-
lites, and an example of a CubeSat is depicted in Figure 5. It requires a satellite to
conform to certain design restrictions, e.g., banning the use of explosive substances
within the satellite, and otherwise implies a stackable standard form-factor consisting
of 10x10x10cm CubeSat units (U) and a maximum of 1.33 kg per 1U. CubeSats are
designed to fit a standardized CubeSat deployer. Figure 4 depicts such a deployer
consisting of a spring, and electric latch, which once the latch is released allows Cube-
Sats to be safely be deployed by pushing them out of the box. This enables even
heavy 12U or 24U designs (3x2x2 or 4x2x3U stacked) to be launched at reduced cost,
and allows testing requirements to be reduced for launch qualification, as the failure
of a CubeSat during launch will not interfere with the deployment of other satellites
aboard the same launcher.

At the time of creation of the CubeSat standard, nanosatellites were intended to
perform only simple and short missions in Low Earth Orbit (LEO), e.g., student edu-
cation, or on-orbit concept validation. They rely on cheap commodity technologies and
COTS components, such as lithium-polymer based batteries, and solar-cells intended
for ground use. However, due to the rapidly increasing performance of embedded

Figure 4: A 3U-CubeSat deployer holding First-MOVE (right), and two other 1U CubeSats.

Image copyright: C. Olthoff at al., Yasny Launch Base, Russian Federation, usage and reprint permissions granted.
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Figure 5: The 1U-CubeSat First-MOVE.

and mobile-market hardware since the early 2000s, the capabilities of nanosatellites
have evolved considerably. At the time of writing, a diverse ecosystem of ready-to-use
CubeSat components has developed. A variety of commercial companies of varying
technical capabilities provide a customizable solutions of mixed quality, with ample
launch opportunities into different orbits being available for 1-12U CubeSats.

The CubeSat First-MOVE (depicted in Figure 5) was one of these educational
projects [36]. In 2013, I joined a research group developing this satellite at Technical
University Munich, Germany, as a master student. Like many other first-generation
educational CubeSats, First-MOVE was designed, constructed, and tested primarily
by university students at the PhD, Master, and Bachelor levels. Planning of the First-
MOVE mission began in 2006, a time when modern smartphones had just arrived in
the consumer market, and construction in earnest began around 2010. It was launched
into LEO on November 215, 2013, and its malfunction, which is further described in
Section 2.2, was the origin of the author’s research on satellite fault tolerance.

2.1.5 Picosatellites and PocketQubes

PicoSats range in weight from between 0.1 to 1kg, and are today used for education or
very brief proof-of-concepts. The PocketQube form factor and many 1U CubeSats fall
into this category, and the electrical architecture of such PicoSats is often similar or
even identical to that of light Nanosatellites. The main difference is lower mechanical
complexity, and a further constrained power budget due to reduced solar cell surface
(often ranging around or below 5W). In practice, this implies limitations especially
for transceivers and payload, which are the main power consumers aboard modern
miniaturized spacecraft.
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2.1.6 Femtosatellites

FemtoSats are the smallest miniaturized satellite form factor and weigh less than 0.1kg.
The concept of FemtoSats was theoretical until recently without allowing productive
satellite designs that can take a productive role in a space mission. However, in the
2010s, first proof-of-concepts and practical applications have emerged [37]. FemtoSats
usually consist of a single PCB using wireless energy harvesting or carrying a single
solar cell on one side of the PCB, and electronics on the other [38]. With the emergence
of more advanced energy harvesting and battery technologies in the future and an
increasing level of semiconductor miniaturization, the basic character of FemtoSats
could therefore change. Future FemtoSats will therefore find new niche use-cases, for
which these lightest, cheapest, and expendable spacecraft will be optimal.

2.2 Early CubeSat Reliability and Motivation

Miniaturized satellite design is driven by the principle of designing a “good enough”
spacecraft to do a job. Most Nanosatellites utilize COTS microcontrollers and appli-
cation processor SoCs, FPGAs, and combinations thereof [39-41]. These components
can offer one to two orders of magnitude more processing performance, are equipped
with up to three orders of magnitude more memory, and an abundance of non-volatile
storage capacity in comparison to classical space-proprietary components intended for
larger satellites, while requiring less energy. Therefore, even a 5kg CubeSats can sup-
port a broad variety of commercial payloads and sophisticated scientific instruments,
if these can be be fit into a smaller satellite chassis.

However, miniaturized satellites suffer from lower reliability, which discourages
their use in long or critical missions, and for high-priority science. Most nanosatellites
launched in the first two decades of the 21st Century (until the time of writing) still
experience failure within the first months of their missions [39]. As depicted in Figure
6, even in late 2018 satellite malfunctions and early mission failures are widespread.
The First-MOVE CubeSat is also representative in this regard, and we will use it as
a case study to showcase the problems that still plaque this field.

First-MOVE: A Case Study

As a stereotypical late first-generation CubeSat, First-MOVE’s design consisted of
several microcontrollers. Its OBC was driven by a ARM926 based ATMEL micropro-
cessor, utilized SDRAM, MRAM and NAND-flash memory, and is overall similar to
a contemporary embedded device or smartphone. This fragile system architecture is
representative for an entire generation of CubeSats built at that time.

At the time First-MOVE was designed little information was available on which
components were expected to perform well in space, and which were likely to fail early
on. During the actual construction phase, considerable information on these aspects
became available continuously, and so its OBC was adjusted and retrofitted several
times. E.g., the introduction MRAM was a retrofit to the original NAND-flash based
design, as commercial MRAM was discovered to perform well aboard several earlier
first-generation CubeSats. Further information on this First-MOVE’s OBC is available
in [Fuchs17].

First-MOVE successfully conducted its mission in LEO for two months after launch.
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Towards the end of the mission, the OBC began to experience random reboots, which
gradually increased over time. As of early 2014, the satellite could no longer be
commandeered, and the mission was declared over. Both the funding organization
(the german space agency DLR) and the CubeSat community considered the satellite
performance and lifetime positive, and as the overall survival rates for CubeSat at
that time were very low.

Subsequently, a team of three researchers, one of them being the author of this the-
sis, conducted a formal review of the First-MOVE project [Fuchs17]. This showed that
if First-MOVE’s system architecture had been fault-tolerant, the satellite could poten-
tially have been recovered to a safe state. Otherwise, only minor organization issues
related to the special setting of academic environments, which is a widespread prob-

@ Full Mission Success
10.06 % Partial Mission Success
@ Early Failure
@® Dead on Arrival

No Data/Unknown

Documented Launches

Industry:
Individual 59
Constellation 435
Professionals 234
University 223
Total 951

(a) CubeSat Mission Success

28.8%

8.5%
31.6%

40.7%
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Figure 6: CubeSat Mission success and failure for the time span 2000 to 2018. Bottom 3
charts show only data for individual CubeSats without satellites in constellations and swarms
due to data quality reasons. It is reasonable to assume that developers of unsuccessful
CubeSat missions also choose to not share information about the status of their satellites.

Image Credit: Charts produced through the CubeSat Database by Swartwout M. [42]. Military and other sensitive missions

are often not publicly documented.
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lem in academic satellite and instrumentation projects. A majority of first-generation
Nanosatellite failures back then [43] could be attributed to design issues and manu-
facturing flaws due to developer inexperience (e.g., negative power budgets or dys-
functional communication channels) [39]. At the time of writing, failures caused by
inexperience and design flaws have reduced drastically due to project professionaliza-
tion and an increased staff of full-time developers in small-scale professional projects
and academia.

2.3 Nanosatellites Today and Legitimization

Development on a second satellite, MOVE-II, began in late 2014 and the finished
flight model is depicted in Figure 7. Since work on First-MOVE began in 2006,
miniaturized satellite development has professionalized and fewer satellites fail due to
practical design problems. Instead, the main source of failure aboard CubeSats today
are environmental effects encountered in the space environment: radiation, thermal
stress, and launch issues [2].

Mission result data shows that technological limitations are the main limiting factor
regarding miniaturized satellite reliability at the end of 2018. Figure 6 shows that
even experienced, traditional space industry actors who design such satellites “by the
book” with quasi-infinite budgets struggle to reach 30% mission success. This lack of
reliability and brief mission lifetimes curtails miniaturized satellite usage for critical
and long-term space missions, as well as for high-priority science missions for solar
system exploration, deep-space probes, and space observatories. During development

Figure 7: The MOVE-II CubeSat, which was part of the author’s master thesis research
and the design challenges faced during development initiated the research in this thesis.

Image copyright: Langer et al., MOVE-IT Team.
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of MOVE-II, it became clear to us as spacecraft designers that there were simply no
fault-tolerant OBC solutions that could be used to achieve a more reliable satellite
design within the constraints of a CubeSat.

Fault-tolerant computer design for spacecraft still relies upon radiation tolerant
special purpose hardware These designs primarily rely upon proprietary fault-tolerant
chip designs manufactured in technology nodes with a large feature size (radiation-
hardening by design — RHBD) [44] and specialized manufacturing techniques and
materials (radiation-hardening by manufacturing and process —- RHBM/RHBP) [45].
Often, both of these techniques are combined and a RHBD chip design is manufac-
tured in a RHBD process based with much more coarse feature size than commercial
technology. Due to the lower energy efficiency and larger size of and greater distance
between transistors, as well as less refined electrical properties, these components also
require more energy, and offer less compute power compared to consumer hardware
due to decreased clock frequencies and smaller memory sizes.

The use of traditional RHBM/RHBD components at the time of writing is limited
to the civilian and military atmospheric aerospace industries, laboratory instrumenta-
tion for very large particle experiments run by well funded organizations (e.g., parti-
cle accelerators, radiation-testing sites) and traditional space-industry applications in
long-term projects where cost considerations are not of primary concern. Especially
in nanosatellites, the energy consumption, physical size, and cost of these components
are prohibitive, making their use technically impossible and usually uneconomical.
Therefore, nanosatellite computing has historically taken two paths: very simple on-
board computers (OBCs) based on one single or few microcontrollers and very complex
custom-tailored systems. This approach works to a certain extent, as there are a hand-
ful of COTS microcontrollers which are designed and manufactured in a way so that
they unexpectedly turned out to be radiation hard (radiation-hard by serendipity —
RHBS) [46].

At the time of writing, sophisticated fault tolerance capabilities are still absent
in Nanosatellites. Instead CubeSat designers try to mitigate faults at the system
level using custom mitigation circuitry [47], and thereby achieve “workarounds” to still
somehow handle faults encountered in the space environment. The practical effect of
this lack of viable fault tolerance techniques and the use of workarounds is reflected in
the mission success statistics for miniaturized satellites depicted in Figure 6. However,
a few CubeSats have also operated successfully in space for a decade or longer [48]. In
practice, this shows that there is no hard technological limitation that would prevent
the use of COTS technology in satellite missions with a much longer duration.

Many issues in other fields of spacecraft design can be overcome through engineering-
based solutions. Such solutions work well, e.g., for addressing resonance issues, assur-
ing a suitable thermal design and heat-distribution, and for deployable mechanical
structures. Engineers therefore attempted to solve the lack of reliability of CubeSats
similarly, by constructing custom fault tolerance computer design through component-
level redundancy with commodity components. Practical flight results showed that
such designs are fragile due to high complexity [39,49], and tend to perform worse
than much simpler designs without fault tolerance capabilities.

Today, nanosatellite designers have to forego fault tolerance in the hope of mini-
mizing failure potential and thereby meeting satellite lifetime requirements for a given
space missions by chance [50]. Designers are aware that such satellites may fail at any
given point in time during a mission.
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Figure 8: The launch of MOVE-IT aboard SpaceX SSO-A: SmallSat Express on December
3', 2018 from Vandenberg Air Force Base, USA.

Image source: SpaceX SSO-A press material for public use.

MOVE-II was launched into LEO on December 3™, 2018 with Space-X “SSO-A:
SmallSat Express” (depicted in 8), where it operates successfully until at the time of
writing this thesis. It utilizes only a few basic fault tolerance techniques that were
available in commodity embedded components and COTS CubeSat subsystems. Its
overall system architecture is still not fault-tolerant. Risk acceptance at this level is a
viable approach only for educational, and uncritical, low-priority missions with brief
duration. To construct future, more reliable miniaturized satellites, a robust, fault
tolerance on-board computer architecture is needed. However, such an architecture
do not exist yet, and with the research in this thesis I intend to change that.

2.4 Fault-Tolerant Computer Architecture

Fault tolerance in the most abstract sense, implies the capability of a system to over-
come and gracefully handle failures. It is crucial for satellite computer design and
a practical necessity to assure reliable operation of a satellite computer during space
missions with an extended duration. As described in the previous section, the lack
of such functionality within contemporary miniaturized satellites has become a major
constraint to increase adoption of these spacecraft.

Fault-tolerant computer architecture, which is discussed briefly in this section,
covers only a small part the entire field of fault tolerance and reliability engineering.
Among others, systems can be designed to tolerate human error [51] and external at-
tacks, which would require the discussion of aspects of psychology and human interface
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design. In the remainder of this section, we discuss fault tolerance modes, measures,
and testing from the perspective of computer architecture for spaceflight applications
to provide the necessary background for this thesis. A more complete look on the dif-
ferent aspects and sub-fields of fault tolerance are available in literature, e.g., in [52].

Considering fault-tolerant computer architecture, the faults we must protect a
system from depend on the application, the environment it operates in, as well as
practical operating conditions (e.g., temperature and system load). Besides that,
faults can occur due to technological wear and aging, and sometimes by chance. Many
protective measures can be used to achieve fault tolerance for computer systems [53,54].
Often, the practical purpose for the application of these techniques is often not fault
tolerance itself, but the need to increase scalability [55,56], manufacturing yield [57,58],
higher clock frequencies and data throughput [59-61].

Different industries apply different fault tolerance techniques due to a variety of
practical reasons, and today often maintain their own, proprietary implementations
to tackle their domain-specific challenges. For proprietary fault tolerance implemen-
tations in different industrial applications, there is usually no immediate incentive to
share and generalize such fault tolerance techniques by themselves, unless they can be
patented, commercialized, and thereby protected [62]. This gap in turn is covered by
scientists and researchers in industry and academia.

Today there is an entire field of science that tries to generalize application specific
fault tolerance techniques, to produce new fault tolerance concepts through recom-
bination. Unfortunately, this recombination is often done without considering the
original application and its boundary conditions. As we show in Chapters 4 and 6,
academic research and publications covering this topic are kept very abstract and
do not consider a specific real-world application anymore. This works well for cer-
tain fields of science and even some fault tolerance topics?. However, for practical
applications to system-architecture this is not the case, as generic solutions without
proper boundary conditions and a realistic fault profile, can usually not be applied
anymore to a real system. Today, academic fault tolerance research has produced a
vast amount of publications and generated many theoretical concepts. But, only a
handful of fault tolerance concepts envisioned by academic fault tolerance research
have been implemented and tested in practice, and most have been ignored entirely
by the industry. One could argue that this is the way science works, but knowingly
publishing invalid and research without validation can also be seen as dishonest and
only hinders publication of actually valuable research.

The path to validate such concepts is long, time-consuming, costly, and requires
large amounts of engineering work [64-66]. The obtained validation results are often
not considered publishable by academics, as they require a high degree of labor just
to achieve one brief paper, while multiple theoretical journal publications could be
produced in their stead. Industrial users are aware of such research [67], but are often
skeptical. In the space industry, for example, concerns regarding validity, testability,
verifyability and a perceived general lack of maturity of academic research has caused
an entire industry to conservatively use very old technology [1].

When designing fault-tolerant systems, we must consider an application’s operating
environment, its fault profile, and system design constraints [68]. Generic fault tol-

2E.g.: erasure codes and performance overhead calculations to achieve quality of service under
faults [63] can largely be discussed without a specific application in mind, as long as key parameters
match.
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erance concepts can serve as building blocks to design a comprehensive fault-tolerant
architecture, assuming they are validated in a realistic manner.

2.4.1 Terminology and Fault Tolerance Objectives

Today, scientists and engineers use the terms ECC, EDAC, FDIR, and error correction
almost interchangeably, while reliability, redundancy, fault tolerance, and robustness
are surrounded by a shroud of marketing. In practice, error detection and correction
(EDAC), fault-detection, isolation, and recovery (FDIR), redundancy, and failover all
are distinct tools. They can be applied to achieve different kinds of fault tolerance,
e.g., computational correctness, continuous non-stop operation, failover, and simple
error correction.

Error detection and correction (EDAC) implementations usually utilize one or
multiple erasure codes [69] to implement error correction coding (ECC), which allows
errors in stored and transmitted data to be corrected. EDAC is efficient only for
protecting the integrity of frequently access data, and may do so passively in the
background without requiring a computer system to actively handle a fault in software.
These limitations can be mitigated only in combination with other design measures
such as error scrubbing and by generating error syndromes to notify the system about
a fault [70].

FDIR instead assures that a fault-induced error is not just detected and corrected,
but also that side-effects are isolated and resolved (e.g. discussed in [71] for space
applications). In contrast, in case EDAC logic encounters errors when decoding data,
it may inform the system about the result through an ECC syndrome and corrects
data passing through. FDIR does not necessarily imply computation correctness,
usually utilizes fault tolerance measures to achieve error detection and correction, but
otherwise implies only that a fault is corrected and the system is restored to a working
state.

Fail-over, in contrast, can be implemented as one-shot measure, e.g., with simple
redundancy as discussed in [72], by falling from a primary to a secondary system in-
stance and do not have to assess correctness, but only need be capable to detect faults.
One of the most common applications for this approach is RAID1 with 2 memories
or disks [72], but similar applications exist for avionics and network architecture in
spaceflight and atmospheric aerospace applications [73].

2.4.2 Fault Detection and Correctness

To facilitate fault detection, we can exploit algorithmic measures as well as result
comparison achieved through component replication (spatial redundancy) or repeat-
execution (temporal redundancy). With algorithmic approaches detected errors can
be reconstructed using parity data (informational redundancy) information, or by uti-
lizing an alternative result generated through spatial or temporal redundancy. We
refer to this type or error correction as forward error correction (FEC) [74]. Alterna-
tively, backwards error correction (BEC) can be achieved with temporal redundancy
and algorithmic measures, and implies message retransmission or re-execution of a
failed operations [75].
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Algorithmic Fault Detection and Informational Redundancy

The algorithmic approach exploits an inherent property of a system to detect faults.
It can only be used if there is an inherent property in a system or protected data that
can be used to judge the occurrence of a fault [76,77]. Fault detection then does not
imply the ability of the system to determine a correct result, but only the ability to
asses if the protected data or system is faulty.

Algorithmic fault detection often exploits informational redundancy, but it may
also use other inherent mathematical properties of data or logic-design properties of
a system [77]. To a limited extent, algorithmic fault-detection can also be used to
protect a program’s data and control flow, e.g., by computing or modifying checksums
for each executed instruction passing through a CPU’s pipeline [78]. However, this
requires a non-standard processor pipeline [79], a custom compiler toolchain [80], and
therefore is feasible only for embedded software with a very specific structure.
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Figure 9: An example of algorithmic redundancy where extra algorithmic information is
indicated separately as ECC. This extra information could also be an inherent property of
the input data, instead of separate.

Spatial Redundancy

When utilizing spatial redundancy, we can realize fault-detection by comparing the
output of multiple redundantly implemented system modules or equivalent but differ-
ently implemented variants of a subsystem run in parallel. Spatial redundancy can be
implemented at all scales: for individual transistors and circuits, sets of logic, logic
blocks, IP-cores, IP-core groups, ICs, components, to even an entire computer. At
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Figure 10: An example of spatial redundancy with 3 replicated modules in a TMR setup.
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different scales spatial redundancy will offer different protective properties and dif-
ferent a level of scalability. A simple implementation of spatial redundancy requires
replication of the actually protected modules as depicted in Figure 10.

We refer to systems consisting of N modules collectively as NMR systems. With 2
redundant modules, we can detect faults through supervision or in conjunction with a
watchdog, to which we refer to as dual modular redundancy (DMR). We can determine
correctness through a simple majority vote, for which at least 3 modules are needed
(triple modular redundancy — TMR). These systems can be scaled up to realize 2k + 1
redundancy, as an odd-number of modules is needed to avoid a draw during voting.
With more than 3 modules, more sophisticated voting concepts can be realized which
then do no longer require a centralized and guaranteed-correct voting oracle [81] or
allow a distributed majority decision [82]. An NMR systems can also be outfitted with
spare modules to handle multiple subsequent transient faults or permanent faults.

Temporal Redundancy

Temporal redundancy implies re-execution of an operation multiple times in sequence,
and example of which is depicted in Figure 11. Like in spatial redundancy, this is often
done in 2k+1 setups to assure error correction. This favors checkpoint implementation
in software and the use of software diversity [83]. It is suitable for protecting appli-
cations where failed results can be discarded, individual operations can be repeated,
or where an application as a whole can be restarted in a side-effect free manner. For
most control systems and software running on general purpose computers, however,
this is not the case.

The use of temporal redundancy introduces a degree non-determinism to an ap-
plications application, which can conflict with a requirements for real-time guaran-
tees [84]. Thus, temporal redundancy concepts usually can only be applied to real-
time systems unless the protected software implements a very specific structure [85].
Protection of applications at the scale of an operating systems, and programs with
a complex program state or structure may incur a high performance overhead [86].
Due to the time-dependent nature of temporal redundancy, this form of redundancy
is vulnerable to faults occurring in bursts or groups [87].

Task Schedule:
N Frame 1 N Frame 2 N Frame 3 N

Figure 11: Task schedule of a temporal redundancy where every scheduled task (T,) is
executed 3 times with majority voting.

Fault Detection Granularity

The granularity and frequency for performing voting in spatial and temporal redun-
dancy, as well as erasure coding parameters should be chosen based on the expected
fault model and environmental conditions.
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Most systems implementing spatial redundancy in use today implement instruction
or clock-cycle bound lockstep for processor cores or larger system components [54].
This allows rapid error detection and correction without requiring the software or
software to actively participate in fault handling [88]. Usually, the voter logic is
combined with state-synchronization logic, to assure that all modules in a redundant
set utilize the same input data. For more sophisticated computer designs, the level
of complexity necessary to realize voting and state synchronization in hardware is
non-trivial. Thus, such systems are limited to low clock frequencies than conventional
designs [54].

As with temporal redundancy, we can also utilize software to realize lockstep func-
tionality in spatial redundancy using checkpoints triggered through scheduling [89],
or an external signal [90]. As we show in this thesis, lockstep-concepts implemented
in software can enable more powerful dynamic, and runtime-configurable voting in
conjunction with spatial redundancy to achieve FEC.

2.4.3 Effect Isolation

To achieve side-effect-freeness, the effect induced by a faults must be isolated, so
they can not propagate within the rest of the system at large. However, the scope
and way in which fault isolation can be implemented depends on the fault-detection
measure, on the protected component, the high-level system architecture, as well as on
the specific application scenario. For pure software-based measures utilizing temporal
redundancy, this can be achieved by buffering results [91] and outputting a correct
result after correctness has been assured.

Not all fault-tolerant systems require fault-isolation. The emission of incorrect data
due to a fault can also be mitigated through a system architecture and instruction-
set means [92], topological measures [93], or network-side [94]. Hence, a computer
operating in such an environment does not have to be equipped with fault-isolation
properties, as the overall system setup can already guarantee fault isolation.

2.4.4 Fault Recovery

In conjunction with or subsequent to effect isolation, the effects of a fault induced into
a system should be resolved to prevent bit-rot and voter degradation due to transient
faults [95]. It also reduces the need for over-provisioning redundant instances and
parity data. For data storage, this can be achieved through parity in RAID- [72] or
RAIF-like [96] systems, which can again be combined well with erasure coding [97]. It
can make a system more robust especially if it has to operate for extended periods of
time, or without maintenance.

Fault-recovery capabilities, thus, are not necessary for all applications, and may
sometimes even be undesirable. For applications where maintenance can be performed
frequently and the failure probability is low, simpler failover implementations can be
of advantage since they are simpler, and therefore have a reduced failure potential.
Examples include atmospheric aerospace applications for civilian use [98] or marine
shipping [99]. This can allow a component to be implemented with lower complexity,
thereby reducing overall failure potential, cost, and weight.

Depending on application requirements and if service interruption is acceptable,
hot, cold, or warm [100] stand-by can be used to achieve failover [101]. Hot redundancy
requires at least one redundant module executing in parallel to the primary module, to
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allow the system to switch to failover without service interruption. Warm redundancy
just implies a second module to be in standby mode, e.g., so it can rapidly take over
operation by loading a correct application state. With cold redundancy, a redundant
module is kept available but inactive, and has to be brought up when needed. This can
allow energy saving and reduce wear in redundant module, but implies a time delay
until regular operation can resume. In this thesis, we utilize warm standby when
migrating applications from a permanently failed processor core to a new location.

Fault Recovery with Temporal Redundancy

In systems utilizing temporal redundancy to achieve backwards error correction, the
generated incorrect application state of a failed operation has to be reverted. As
temporal redundancy implementations usually require operations to be isolated or
self-contained already, no further steps beyond discarding faulty data are necessary.
By design, changes in the operating system state due to faults in temporal redundancy
protected software will in practice be detected and subsequently not propagated.

Fault Recovery with Informational Redundancy

With informational redundancy, data containing a fault should be corrected and re-
written. In most memory-access based EDAC implementations, this step has to be
performed independently from error correct, e.g., in software by an ECC syndrome or
in hardware suitable error scrubber logic. In case of non-correctable erasure coding
errors, or if backward error correction is used, data or a messages have to be retrans-
mitted or rewritten. In memory-access based EDAC systems, non-correctable ECC
errors can only be resolved with more redundancy and additional parity information,
or through replacement and blacklisting.

Composite erasure coding systems combine multiple layers of erasure codes, to
achieve the advantages of multiple different types of codes or parameter configurations
[102]. These enable us to achieve overall stronger protection and mitigate weaknesses
of individual erasure codes, e.g., symbol based block-codes are vulnerable to single
bit-rot degrading their performance [103]. We describe the practical implementation
of a composite erasure coding system combined with RAID-like features in Chapter 7.

Fault Recovery with Spatial Redundancy

In systems exploiting spatial redundancy, a fault may cause a failure of a redundant
module, resulting in redundant system to become degraded.

To recover from transient faults, a failed module can be recovered using data from
another module [104]. For voters replicating processor cores or larger system struc-
tures, this can be done with or without performing a reboot. For some cases, just
copying the application or software state from a healthy module is insufficient, requir-
ing a reboot to recover from a transient fault.

Conventional semiconductors affected by permanent faults can become dysfunc-
tional, or may ceasing to function completely. To allow a system to tolerate ad-
ditional, subsequent faults, additional spare modules are needed. We refer to this
measure as over-provisioning. In practice, this can lead to large and very complex
voter designs with high energy usage and large logic footprint [54]. With ASICs, the
need for over-provisioning can only be alleviated through hardened manufacturing,
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which is expensive [44]. This approach today is widely used in spaceflight applications
to reduce the impact of transient and permanent faults. By design, such systems still
become defunct once no further spare resources are available and a fault has occurred
in system with only two intact modules.

Programmable logic devices such as FPGAs allow more refined permanent fault
handling: permanent faults in the FPGA fabric can be mitigated by utilizing a config-
uration variant where no functionality-critical logic is placed in defective regions [105].
This can be used to restore a redundant module to a functional state. In practice,
this approach can be exploited to allow a system to age gracefully by adapting to
accumulating permanent faults over time, instead of failing spontaneously.

2.4.5 Fault Tolerance in the Real-World

Individual fault tolerance measures can be combined, allowing a vast amount of pos-
sible combinations. However, not all possible combinations are effective and efficient
for protecting a system operating in a specific application environment and threat
profile [106]. Certain combinations can even reduce reliability, or cause an increased
failure potential [107]. However, if done right, fault tolerance measures deployed sys-
tematically in appropriate locations across a system [108], can allow for certain a
defense-in-depth effect [109,110].

Many fault-tolerant systems in use today are meant to isolate and recover from
faults within the bounds of what their design constraints specified. However, this
means that most fault-tolerant systems are not actually tolerant to faults, but that
they are systems that can not fail so long as faults adhere to the specifications and
“obey the rules set by the designer.” In practical system design, these systems are then
instead often treated not as robust and reliable, but as infallible systems that always
work correctly and do not malfunction [111].

Validating Fault Tolerance Measures

To assess the effectiveness and strength of a fault tolerance architecture for a specific
application, it must be validated in a realistic setup with a representative fault pro-
file [112]. Such a profile is not just a statistical distribution over time, but should
consider the impact of all relevant expected fault types (transient, intermittent, and
permanent).

A variety of different test methods are available to analyze fault tolerance measures
implemented at different scales and levels in hardware, in software, and both [52]|. His-
torically, these methods included fault injection into hardware and software at different
scales [65,66], circuit simulation [64], mathematical correctness-proofs [113], statisti-
cal modeling [114], and even prototype experimentation for technology validation in a
representative environment [115]. However, mathematical and logical proofs for mod-
ern processor based computer systems are non-trivial [116] and have been done only
for individual algorithms, simple software, protocol state machines, and for simple
circuits [113], but not for complex, OS-scale applications.

However, properly testing and validating software- and hardware-implemented
fault tolerance measures is not trivial, requiring considerable time and development
effort. Due to these challenges practical applications in industry tend to rely upon just
a few widely used standard measures and combinations thereof, and disregard science.
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Applied Fault Tolerance

Memory-access based EDAC through ECC is widely used in critical and always-on
applications [117] due to its scalability, simplicity and low cost [118]. Due to tech-
nology scaling effects, technological reasons, and for the sake of yield enhancement, it
has also become increasingly popular in consumer products [119]. All popular conven-
tional high-speed interface and connector standards such as USB3 [120], SATA [121],
Ethernet [122], and PClexpress [123] rely upon powerful erasure coding systems to
achieve high clock frequencies on serial channels [124]. Traditionally, ECC has been
applied widely to protect non-volatile data storage solutions (e.g., nvRAM, memory
cards) [125]. However, to increase yield in microfabrication, ECC has become com-
mon also to protect on-chip memories with a short data lifetime such as BlockRAM,
caches, registers and the various scratchpad memories [126]. Designing systems for
high-performance computing or critical applications without it would be impossible
without erasure coding.

Today, most space-borne systems rely strongly upon spatial redundancy [54]. Most
such systems rely upon hardware-voting, and only since the turn of the century has
there been an increasing drive to realize FDIR functionality in software [127,128]
and using network topology and functionality [94]. This is an ongoing development,
and this thesis should be read in context of this shift from traditional hardware to
software and co-designed fault tolerance concepts [129]. Software-implemented fault
tolerance concepts, however, have existed since the emergence of mainframes [130].
Even for space applications, they identified as promising already in the early days of
microcomputers [131], but it was considered technically infeasible and inefficient until
recently.

Technological Evolution and Heritage

The high stakes involved in operating critical systems in different fields, encourages
the use of old and less efficient, but well understood architectures instead of more mod-
ern, and more powerful ones [54]. Hence, different industries progressed in developing
fault tolerance concepts at different paces. While some innovated rapidly to achieve
functional systems (e.g., the industrial and high-performance computing market, and
the new space industry), others try to maintain a balance between old and new (e.g.,
automotive and medical embedded applications). Some chose to remain very conser-
vative, preferring to re-use decades old concepts at extreme cost over using cheaper
but more novel designs (e.g., the traditional space industry [54,104,132]).
Ultimately, however, all of industries are pressed hard to innovate, as technology
progresses. An illustration of this need to innovate is the beginning adoption of the
CAN bus standard [55], which was widely used by the automotive industry. The
traditional space industry has just begun to adopt this standard few years ago and
will benefit from its advantages over older standards considerably, though the interface
and protocol are is currently being replaced in automotive industry by Flexray [56]
and the use of high-speed computer network standards such as Ethernet [73].
However, the risky but fast-paced transfer of cutting edge technology from the
embedded- and mobile market to spaceflight has resulted in the emergence of an en-
tirely different, “new space industry”. Relevant industrial players try hard to utilize
modern technology which can enable innovative space mission concepts that were com-
pletely unrealistic and often unimaginable just a few years ago. To do so, this industry
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accepts an increased level of risk for failure. At the time of writing, the reduced cost of
this engineering approach and the thereby produced designed spacecraft designs has
succeeded and left a mark on the industry as a whole.



Chapter 3

The Space Environment

Physical Fault Profile and Operational Considerations

A satellite’s on-board computer has to cope with unique challenges which on the ground
are only encountered in irradiated environments such in proximity of a nuclear reactor.
Hence, for the understanding of the fault profile and application constraints for this
thesis, in this chapter we provide an in-depth discussion of our operating environment
and its effects on a satellite’s on-board computer. We discuss the physical design
restrictions aboard spacecraft, and operational considerations. Most importantly we
discuss the impact of radiation on semiconductors, and how it can be mitigated.
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3.1 The Impact of the Space Environment on
Electronics

Space is a challenging environment for electronics to operate in, and its fault profile
differs from that of most ground-based applications. A system engineer and computer
architect has to consider many different design challenges and a very special fault
profile. Only then is it possible to develop a reliable computerized system suitable for
operation in this environment for an extended period of time.

3.1.1 Radiation Effects

Radiation is the main cause of faults in electronics aboard a satellite due to defects
caused by electro-static discharge effects (ESD) [133] and directly inflicted particle-
damage. About 20% of all anomalies [134] aboard satellites can be attributed directly
to high-energy particles, with the share of faults radiation-induced faults in electronics-
heavy subsystems increasing drastically. This makes sense considering that the semi-
conductors used in electronics-heavy and computerized subsystems are more vulner-
able to radiation-induced faults than, e.g., deployable structural elements (DE/STR)
or a solar cell, whose performance will degrade slowly over time due to radiation.

A satellites on-board computer (OBC), communication transceivers (COM), and
the electrical power system (EPS!), as well as its attitude determination and control
or orbit control system (ADCS/AOCS) all consist of microntroller- or processor SoCs
with a varying set of peripheral electronics attached. A majority of all faults aboard
CubeSats can be traced back to the failure of these architecturally similar subsystems
[2] even directly after launch. Statistics from [2] are depicted in Figure 12. The low

1Responsible for battery charging and health control, as well as power management and distribu-
tion across a spacecraft.

t=0days t =30 days t =90 days

ADCS
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44% 36%

Figure 12: Failures sources aboard CubeSat in 2016 after deployment, and after 30 and
90 days from [2]. Upon deployment, 61% of failures can be traced to strongly computerized
subsystems. From a computer architecture perspective, all these subsystems are based on
the same kind of components: non-fault-tolerant microcontrollers and mobile-market SoCs.
After 90 days, 86% of all failures of CubeSat can be attributed to failures in the indicated
subsystems. The base of data used by Langer et al. only serves as tentative indicator, as not
all CubeSat and especially commercial operators choose to share this information.

Image Credit: Langer et al. [2].
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Figure 13: A visualization of the three main natural sources of radiation affecting space-
crafts.

number of satellite failures due to payload (PL), or ADCS malfunctions in Figure
12 can be attributed to the fact that the failure of this subsystem seldom causes a
satellite be lost entirely. Instead ADCS or AOCS failure will prevent certain mission
objectives from being accomplished, the effects of which fail in the early failure and
partial mission success categories as defined in Swartwout’s CubeSat Database [42].
See also Figure 6.

Highly charged particles originate from a variety of different sources, which are
depicted in Figure 13. They travel spinning around the Earth’s magnetic field-lines
in the Van Allen belts, are ejected by the Sun during Solar Particle Events, or arrive
as Cosmic Rays from beyond our solar system. Galactic cosmic rays from beyond our
solar system are mostly protons [5,135], whereas various other high-energy particles
are ejected by the Sun during solar particle events (proton storm). The radiation envi-
ronment near the Earth, as well as in the rest of the solar system changes dynamically
over time. We refer to this as space weather.

Depending on the orbit of the spacecraft and the occurrence of solar particle events,
an OBC will be penetrated by a mixture of high-energy protons, electrons and heavy
ions. In LEO, the residual atmosphere and Earth’s magnetic field provide some protec-
tion from radiation, but this absorption effect diminishes quickly with altitude. Hence,
microelectronics are exposed to a mix of highly charged particles, with flux density
depending on solar activity and the spacecraft’s attitude.

These particles can corrupt logical operations, induce bit-flips within data-storage
cells (Single Event Upset — SEU) and connecting circuitry, or induce a latch-up. They
can also cause displacement damage (DD), molecular changes in a chip substrate’s
crystalline structure which can cause its electrical properties to change, potentially
causing permanent malfunctions. The particle flux will be increased while transiting
the South Atlantic Anomaly (SAA), which is also depicted in Figure 13 [136]. Earth’s
magnetic field experiences a local, height-dependent dip within the SAA, due to the
offset of the spin axis from the magnetic axis. In this region, a satellite and its
electronics will experience an increase of proton flux of up to 10 times (energies > 30
MeV) [5]. This flux increase results in a rapid growth of bit errors and other upsets in
a satellite’s OBC.

Radiation challenges OBC fault coverage constantly throughout a mission and
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Figure 14: The impact of radiation on a semiconductor varies depending on the used
manufacturing technology. Manufacturing in fine technology nodes such as FinFET reduce
the overall likelihood to experience radiation faults that affect critical logic due to shrinking
geometry and therefore a reduced footprint of vulnerable logic. COTS Techniques such as
FD-Sol furthermore increase SEE performance. Therefore a combination of small feature size
manufacturing and robust COTS manufacturing in conjunction with software measures can
offer strong fault tolerance capacity.

Image Credit: [138], Boeing/US-DTRA, for public use.

affects all of an OBC’s components. The impact of radiation on different microfabri-
cation processes, substrates, and memory technologies varies, as depicted in Figure 14.
In general, electronics with a large feature size are more resilient to radiation-induced
single event effects (SEEs) than those manufactured in finer production nodes. Chips
with a small feature size are more susceptible to multi-bit upsets (MBU), that can
propagate within circuits corrupting larger circuits or memory cells. Radiation events
can also cause Single Event Functional Interrupts (SEFIs). These can affect sets of
circuits, individual interfaces, or even entire chips. The cumulative effect of charge
trapping in the oxide of electronic devices (total ionizing dose — TID) further impacts
the lifetime of an OBC. Other types of radiation-induced faults, the destructive ones
being the most relevant, are well described in [137].

As depicted in Figure 14, the robustness of a semiconductors in regards to dif-
ferent types of radiation-induced faults varies as well. Devices manufactured in old
technology nodes with a coarse feature size show low TID (yellow line) and latch-up
performance (blue), are robust to SEEs (green). Non-fault-tolerant semiconductors
manufactured with old technology nodes are thus robust to SEE, while TID and latch-
up performance has to be increased through radiation hardening. CubeSat developers
attempt to apply this same approach at the system level with modern semiconductors
in the range well below the 50nm scale. However, SEE performance worsens with
shrinking feature size, and drops below an acceptable level with modern technology
nodes developed after the early 2000s. For comparison, commercial chip manufac-
turing using 130 nm technology nodes began in 2001, whereas at the time of writing
smartphones-SoCs are manufactured with technology nodes between 16nm and 7nm.
CubeSats seek to apply the latter kind of technology due to their much superior per-
formance, lower cost, excellent availability, mature development tools, and reduced
energy consumption.
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Figure 15: Modern manufacturing techniques such as FD-Sol show much better perfor-
mance under radiation than traditionally processes. Originally, these were developed to
reduce feature size and energy consumption to achieve increase semiconductor packing den-
sity. Regarding radiation, the reduced footprint and inherent isolating properties of these
technology nodes implies a reduced likelihood for a particle to induce an effect. With FD-Sol
specifically, the changed structural properties of thereby manufactured chips further reduce
the impact of SEEs due to the introduced an isolating layer of oxide.

Image Credit: Alles et al. [141].

In general, the effects of SEEs and SEFIs can be both transient and permanent,
while DD is always permanent [5]. In case permanent effects are induced, or faults
occur in memory, radiation induced faults accumulate over time. The accumulative
nature of permanent faults implies accelerated and often spontaneous ageing, which
must be handled efficiently throughout the entire mission.

The increased impact of SEE on finer feature size chips also invalidates the naive
approach of achieving better protection by adding more circuit-level protection. This
prevents the continued application of traditional RHBD /RHBM concepts [104,132] to
modern, high-performance embedded and mobile-market SoCs. The energy threshold
above which SEEs induce transient faults in chips manufactured in fine technology
nodes decreases, and the ratio of events inducing multi-bit upsets (MBU) or permanent
faults increases.

Radiation tests with FinFET [139] and Fully Depleted Silicon On Insulator (FD-
Sol) [140] based technology nodes also show improved SEE performance, contrary to
projections based on technology scaling. As depicted in Figure 15, transistors in these
technology nodes have a much reduced footprint as compared to bulk manufacturing.
The smaller feature size there reduces the likelihood for a charged particle to interact
with sensitive chip regions, which results in fewer but more severe upsets in such
semiconductors [141]. FD-Sol introduces an additional layer of isolating oxide, which
helps reduce reduce the impact of radiation effects on such a semiconductor. Hence,
chips manufactured in certain new technology nodes, such as recent generation FPGAs
[142] show better than expected TID [143] and latch-up performance [144], while also
showing different SEE performance: fewer non-masked events with more severe impact.

In practice, radiation induced faults may corrupt computations of a computer,
corrupt register contents, data stored in caches, main memory, and non-volatile mem-
ory. Memory mainly suffers from bit-rot and malfunctions in controller logic, and for
volatile memory, these can well be compensated for using error correcting codes (ECC)
combined with error scrubbing. Non-volatile memory also requires more powerful era-
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Figure 16: The functional principles and structure of two of the currently most promising
inherently radiation immune memories: PCM (a), and MRAM. Radiation immunity of these
cells is based on that these memories do not store information as a charge, in contrast to
radiation-susceptible DRAM, SRAM, or Flash.

Image Credit: (a) Hayat et al. [145] (b) Fert et al. [146].

sure coding systems, the basic notions of which also exist in latest-generation COTS
flash memory based devices for ground use, as there galactic cosmic rays have become
relevant sources for faults due to technology node scaling.

Functional interrupts can cause individual processor cores or other sub-units of
a semiconductor to fail temporarily or permanently. Data can also be corrupted in
transit, e.g. while being transferred or due to upsets in peripheral interface controllers.
Hence, from a developer’s perspective, to-be executed software and data can only be
considered fault-free if it resides exclusively in radiation-hard memory and radiation-
hard processing logic throughout. As this is not the case with all but trivial processing
logic, no part of an OS can be relied upon to be fault-free, and concepts requiring such
an entity do not offer effective fault coverage in the space environment.

The memory cells of certain novel memory technologies (e.g., MRAM [147], and
ReRAM [148], and PCM [149]) have been shown to be inherently immune. This is due
to the data storage mechanism in these non-charge based memories [150,151]. The
memory cells of commercial MRAM and PCM ICs are largely immune to radiation-
induced faults, and their structure and operating principle is depicted in Figure 16.
However, connecting circuitry and controller logic of these parts if still vulnerable to
radiation, and incorrect addressed memory can very well cause data corruption during
read and write operations.

Flash memory, one of the most widely used charge-based memory technologies,
has been shown to be rather susceptible to radiation effects [153]. Each flash memory
cell contains a single field effect transistor with an additional floating gate, which
is depicted in in Figure 17. Voltage applied between source and drain generates an
electric field with a conductive channel through which electrons can flow into the
floating gate. The state of a cell is thus dependent on whether or not a specific
threshold voltage is exceeded (programmed, Figure 17b) or not (erased, Figure 17a).

Radiation can induce a variety of effects in charge-based memory such as flash [153].
In Figures 17c and 17d, we depict two opposing effects induced by particles with a
positive and negative charge [154]. In Figure 17c a cell in erased state is hit by a
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negatively charged particle. Such a particle can cause a storage cell to change its state
by depositing electrons in the floating gate as it passes through the structure. Figure
17d depicts the inverse effect with a positively charged particle, which changes the net
charge of the floating gate. The particle event may cause the charge in the floating
gate to rise or drop one rise above or drop below a volatile threshold of the cell and
thereby change the value represented by the storage cell.

Particles may also alter the structural integrity of different parts of the memory
cell, e.g., draining the gate, or causing permanent damage [153]. Due to a shifting
voltage threshold in floating gate cells caused by the total ionizing dose, flash memories
become more susceptible to data degradation due to leakage. Modern multi-level
cell flash memories manufactured in fine technology nodes are more prone to SEUs
causing shifts in the threshold voltage profile of one or more storage cells [153]. Flash
cells can also store more than a bit of data, and then also become susceptible to
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Figure 17: The structure of a Flash memory cell in erased (a) and programmed state (b),
inspired by a figure from Zandwijk et al. [152]. Data is stored as charge in a floating gate
attached to a controlling field effect transistor. Radiation can induce a variety of different
effects in charge-based memory [153], and in Figures (c) and (d) we depict two opposing
effects induced by particles with a positive and negative charge [154].
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MBUs: radiation may cause a state change across multiple voltage levels [155]. The
semiconductor’s temperature and particle events can also influence the leakage current
of a these memory cells, thereby reducing the charge stored within the floating gate
over time [156]. The radiation-induced effects depicted in Figure 17 are representative
for the entire class of charge-based memories, even though other memory technologies
store data as charge in electrically different ways [157].

Physical shielding using aluminum and other materials can reduce certain radiation
effects [158]. The necessary shielding strength depends on the physical properties
of the material used for shielding [159]. This approach has been used extensively
in classical space applications in the early time of spaceflight. However, the level
of shielding needed to protect modern semiconductors from radiation effects would
require a miniaturized spacecraft to dedicate an unreasonable additional mass and
volume to shielding [159]. For very large satellites, the use of strong shielding is still
a viable (but costly and inefficient) option [160].

Weak shielding can introduce scattering effects, while offering nearly no added
protection [161]. These can occur due to interaction of a highly charged particle with
shielding material, which can cause a shower of charged secondary particles. This
secondary particle radiation takes the shape of a cone from between the point of impact
of the original particle and the underlying semiconductor [161]. Particle scattering
can therefore cause multiple particles with lower charge to penetrate a semiconductor,
instead of just one. Hence, very thin shielding such as aluminium-RF-cages commonly
found in consumer electronics offer usually no radiation protection [159].

3.1.2 Design Constraints for Space Electronics

The success of a satellite missions depends on designer’s ability to develop a system
that can withstand operation in the space environment, and can cope with the design
constraints that are in place aboard a satellite. In the remainder of this section, we
therefore provide a brief overview of satellite design constraints.

Solar cells are the main power source aboard modern spacecraft in the inner regions
of the solar system [7]. A spacecraft’s orbit, location and orientation (attitude) relative
to the Sun, and the solar array’s temperature all influence the efficiency of its solar
array. Miniaturized satellite’s have small solar arrays with varying output, and their
OBCs are limited to a few Watts of power-budget (power consumption averaged over
time).

Operation in the space environment outside planetary atmospheres means that
a satellite will operate in vacuum [162]. In turn, this implies the absence of the
heat-transfer medium necessary for thermal convection, and hence also air cooling.
Depending on the specific chip design implemented within a semiconductor, this can
cause a chip and its packages to exhibit different or even anomalous thermal proper-
ties, potentially causing hot-spots and impact performance and lifetime [163]. Heat
generated within a spacecraft therefore has to be transferred to the exterior and is
then emitted as infrared radiation. A variety of engineering measures are available to
help create a stable spacecraft-internal temperature environment [164].

Operation in vacuum and the low temperatures encountered in the space environ-
ment, can cause rapid material aging. The extreme temperature deltas when operating
in a planetary orbit in direct sunlight and darkness can furthermore cause out-gassing,
e.g., of chemical softeners present in materials such as plastics [165]. Gassed-out chem-
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icals may interact with other components of a spacecraft, especially sensors, and may
cause folded solar cell arrays to stick together, fold incorrectly, and fail to deploy from
stowage [166]. This effect is a major problem for spacecraft equipped with optical
payloads, e.g. astronomical observatories: out-gassed chemicals may then accumulate
over time on sensors, mirrors, and lenses, and degrade an instruments performance. In
large spacecraft projects, components are therefore often baked at high temperatures
or exposed hot-cold cycles to reduce this effect in space as much as possible.

Upon launch, satellites have to withstand considerable physical stress and may
experience vibration-induced resonance effects [167]. To a certain extent, these can be
simulated through mechanical means (shakers) and acoustics on the ground, and then
mitigated through engineering and a wise choice of materials. To design computer sys-
tems to better cope with launch stress and the extreme temperature changes that may
be encountered in the space environment, electronics can be packaged in more suitable
materials than the usual plastic packages used on the ground. However, electronics
in ceramics and metal-based packages are at the time of writing significantly more
expensive than conventional consumer parts, and usually non-options for CubeSat ap-
plications. Specialized materials can also be used in the different layers of a PCB, and
can help optimize electrical, structural, and thermal properties, which today is also
used aboard miniaturized spacecraft, e.g., aboard the MOVE-II CubeSat.

3.2 Technology Readiness and Standardization

Satellite missions can last from several months up to many decades, and therefore
satellite designers may encounter hard technological barriers such as data retention
[168]. Examples include, but are not limited to, issues with using electronics storage
technologies due to limited data retention periods, solar cell degradation, and material
degradation due to long-term thermal stress and out-gassing.

Traditional space companies and organizations are very cautious when consider-
ing new technology with little or no space heritage. Often, they modify and adapt
existing, foreign industry standards to their own needs instead of reusing them, and
develop their own standards [169]. Several sets of space related quality and design
standards exist, which are administered by committees consisting of space agencies,
governmental bodies, military and major industrial actors. Some of these standard
libraries are published, while others remain proprietary (e.g., ARINC) or are even
kept confidential (military standards). Currently, the most relevant publicly available
and widely adopted standards are published by the Consultative Committee for Space
Data Systems (CCSDS), the European Cooperation on Space Standardization (ECSS),
and the NASA Technical Standards Program. Standards popular in the IT-industry
in general do influence avionics design (e.g., Ethernet/IEEE 802.3 is today the tech-
nological base for AFDX [94], but adoption of this technology has taken more than
30 years), but mostly indirectly due to a technological lag between IT-industry and
space-avionics that ranges from between 10 to 40 years [170].

Avionics (thus, Aerospace and Spaceflight electronics) development relies not just
upon specialized and tested components. Instead, technological maturity has to be
proven in practice to demonstrate that a component or technology is ready for ap-
plication in the space environment. Thereby, the quality and heritage of a solution
are assessed based on a standardized set of indicators resulting in a classification in
technological readiness levels (TRLs) [171], see Figure 18. For some types of chips the
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Figure 18: Technology readiness levels and the requirements to qualify a component for a

certain level.
Image Credit: NASA, public domain.

global space industry may have annual demands for only several hundred or thousands
of chips, resulting in extreme per-device development costs compared to common IT
industry production quantities of millions of units. Due to limited alternatives and
their requirement to rely upon proven and validated hardware, the space industry
and their customers must afford high hardware costs and accept long development
cycles [169]. The TRL required for a component may vary per usage scenario and
subsystem, the highest level is thus not necessarily required and TRL9 components
may even be replaced with less expensive or maybe more modern components with a
lower level.

In this thesis, we propose an architecture which incorporates a set of theoretical
fault tolerance concepts, which exist at TRL1. Based on these concepts, we formulate
a conclusive architecture for our application, which initially exists at TRL2. We
then proceed to conduct fault-injection experiments with a proof-of-concept of the
architecture (TRL3), and produce a practical implementation based on development-
board components in a bread-board setup (TRL4).
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3.3 Operational Constraints for Satellite Computers

In contrast to most earth-bound computing, it is not possible to physically access a
spacecraft in orbit [172] to diagnose or resolve faults. However, this does not mean
that they can not be repaired, refueled, upgraded, or otherwise serviced during a
mission. In fact, most spacecraft are designed to be service friendly, as this makes
them easier to assemble and test on the ground. This is especially important as
testing of a spacecraft as a whole and its individual subsystems is a complex and
costly undertaking. Component-level as well as testing of a full avionics system makes
up a significant share of the time needed for the design and construction process.

Hands-on maintenance or diagnostics on-orbit are uncommon today, and servicing
missions have been conducted only on a few occasions. All of these spacecraft were
large satellites and space-stations in LEO with outstanding significance to science,
society, or driven by national interests. Prominent examples include the Hubble Space
Telescope [173] and several space stations [172,174,175], where servicing was required
to resolve faults. For most modern non-agency and non-governmental satellites, and
especially smaller and cheaper spacecraft, hands on maintenance is not feasible, and
usually also not economical [173]. Hence, an on-board computer has to operate and
handle faults autonomously over the entire duration of a spacecraft’s mission, which
may last for several decades.

Diagnostics of computerized systems therefore have to be conducted remotely
and in a scripted manner locally aboard a satellite. Considering the journey of
Cassini/Huygens depicted in Figure 19, this implies differences in link behavior and
communication bandwidth during a mission. Even in earth orbit, a satellite’s teleme-
try and telecommand (TMTC) link is lossy, and offers very low bandwidth compared
to ground-based communication (in the low kbps range). As depicted in Table 2,
signal travel times in LEO and Geostationary Earth Orbit (GEO) still allow widely
used network communication protocols for ground use to be utilized, if aspects such
as Doppler-Shift are compensated for [178§].

All CubeSats launched until 2018 operated in a LEO [17], and most utilize a com-
bination of UHF and VHF frequency bands to realize their commandeering channel.
LEO communication windows between a ground station and a satellite are limited
to between 5 and 20 minutes in ideal weather conditions, and reduced by equipment
dampening, environmental effects, and atmospheric conditions [179]. Only part of
this communication window allows actual communication with a spacecraft due to
link-quality issues. The actual duration varies depending on the satellite’s orbit and
the environment the ground station operates in: buildings, natural obstacles and fad-
ing signal quality with declining elevation angle when approaching the horizon all
affect a link’s signal-to-noise ratio [180]. For comparison, while commandeering the
FirstMOVE CubeSat, actual link availability during communication windows never
exceeded 12 minutes.

LEO-link availability can be increased through the use of satellite-relays (e.g.,
TDRS [181]) and ground-station networks [182]. However, these are currently largely
unavailable to miniaturized satellites due to economical considerations on the opera-
tor’s side and form-factor and cost constraints for miniaturized satellites. In practice,
this curtails remote debugging capabilities of spacecraft. It prevents the direct re-use
of, e.g., all low-level testing protocols which are today widely used on the ground appli-
cation such as JTAG or ICE, and prevents remote-debugging using standard debugging



3.3. OPERATIONAL CONSTRAINTS FOR SATELLITE COMPUTERS

42

Second Venus Swingby
24.06.1999

Deep Space
Manouver

15.10.1997

Jupiter Swin
30.12.2000

/

\
Lunch Ho\mﬂ Venus Swingby
v
1st to w?“_ Venus Swingby

First Venus Swingby 2nd /\m:cw Swingby to Saturn
26.04.1998 <_m\mu<ﬁ: and Jupiter

/

Figure 19: The flight path of Cassini/Huygens with different mission phases indicated in color. Cassini’s mission ended after almost 20 years
after a “Grand Finale” with several close flybys of Jupiter and its moons, when it burned up in Saturn’s atmosphere on September 15", 2017.

Self-redrawn image based on [176] and [177], Image Credit: NASA /JPL, for Public Use
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tools.

When communicating with spacecraft orbiting other planets in our solar system,
signal travel times and thus link latency grow rapidly. With space probes traveling
beyond the Earth/Moon system, the available link rates decrease sharply and often
only few hundred bps can be achieved. Unidirectional signal travel times to neighbor-
ing planets make real-time bi-direction communication concepts as used on the Earth
technically impossible. At the time of writing, the mars rover Curiosity can achieve a
data rate of between 500 bps up to a theoretical maximum of 32 kbps and round-trip
times of at least 8 minutes under ideal circumstances [183]. The TMTC link of the
Voyager probes [184] can achieve a maximum of 160 bps at the edge of the solar system
via the Deep-Space Network [185] with signal travel times approaching a duration of
a day.

As depicted in Figure 19, a spacecraft may have to travel within our solar system
for years, before actually arriving at its destination, where it can then begin to perform
its actual mission. During such missions, the performance requirements to a satellite
computer can vary. In Figure 20, we depict a simplified version of the orbit/work
schedule of NASA’s Enceladus Life Finder (ELF) probe, which will conduct science
on Saturn’s sixth largest moon. Travel to the Saturn system will take years, but once

Communication | Distance from Earth | Signal Travel Time
Endpoint Min. Max. Min. Max.
LEO 400 km 2,000 km 3 ms 18 ms
GEO 35,786 km - | ~250 ms -
Moon 356,400 km | 406,700 km 24s 2.7s
Mercury 0.62 AU 1.39 AU 5 min 12 min
Venus 0.28 AU 1.72 AU 2 min 14 min
Mars 0.53 AU 2.52 AU 4 min 21 min
Jupiter 4.21 AU 6.21 AU 35 min 52 min
Saturn 8.54 AU 10.54 AU 1:11 h 1:28 h
Uranus 18.23 AU 20.23 AU 2:32 h 2:48 h
Neptune 29.06 AU 31.06 AU 4:02 h 4:18 h
Voyager 2 ~121 AU - | ~16:50 h -
Voyager 1 ~147 AU - | ~20:22 h -

Table 2: Unidirectional signal travel times for radio communication in vacuum between
a ground station and a spacecraft at a particular location in the solar system. Distances
between the Earth and different planets in the solar system vary due to celestial mechanics.
In practice, the signal latency even for LEO communication is drastically larger than the
theoretical signal travel speeds indicated here due to latency in the signal processing chain.
Data for the Voyager probes based on https://voyager.jpl.nasa.gov/mission/status,
accurate as of September 2019.
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Figure 20: NASA’s Enceladus Life Finder (ELF) is scheduled to make ten flybys of Saturn’s moon Enceladus to investigate that its environmental
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ELF has entered orbit around Enceladus, it will have to handle a variety of different
tasks with very different system requirements (indicated in color). We utilize this
satellite’s mission operations schedule to highlight how requirements to a satellite’s
on-board computer can shift during a mission.

During the yellow-outlined communication phases, reliability of the satellite com-
puter is crucial, as communication windows are brief and the available link-rate is
low. Any lost communication time could directly impact the satellite’s mission and
subsequently executed tasks. Ideally, during this time a satellite’s computer should
offer increased fault tolerance capabilities at the expense of other system parameters,
if such capabilities were available.

The red- and purple highlighted orbit segments indicate times when ELF will
perform maneuvers through its propulsion subsystem and adjust the orientation of it’s
solar panel array. When performing maneuvers, precise timing and therefore the ability
for real-time operations are crucial, while overall compute performance requirements
will be comparably low. Finally, in the green-market science phase, performance is
critical, and during this phase, spending extra energy to increase the satellite’s overall
compute and data-storage capacity may allow the spacecraft to conduct more and
better science within its brief mission. With the computer architectures used aboard
spacecraft today, little adaptivity is possible. However, future satellite computers
based on modern mobile-market and embedded computer architectures could very well
support such functionality if fault tolerance capabilities can be adjusted at runtime.
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Chapter 4

A Fault Tolerance Architecture
for Modern Semiconductors

Stage 1 & Architecture Overview

In this chapter, we describe a non-intrusive, integral, flexible, hardware-software-hybrid
approach which enables the use of modern multiprocessor system-on-chips (MPSoCs)
for spaceflight without violating application constraints. We introduce a co-designed
system architecture utilizing three interlinked fault tolerance measures. To drive this
architecture, we propose a coarse-grain thread-level lockstep implemented in software,
and describe our implementation in detail in this chapter. We provide benchmark
results for the lockstep, which allows very pessimistic worst-case performance overhead
measurements. The technological feasibility of this architecture is demonstrated through
implementation of a basic proof-of-feasibility MPSoC implementation.
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4.1 Introduction

Modern embedded technology is a driving force in satellite miniaturization, contribut-
ing to a massive boom in satellite launches and a rapidly evolving new space industry.
Micro- and nanosatellites (100-1kg) have become increasingly popular platforms for
a variety of commercial and scientific applications, due to an excellent balance of
performance and cost. However, this class of spacecraft suffers from low reliability,
discouraging its use in long, complex, or high-priority missions. The OBC related elec-
tronics constitute a much larger share of a miniaturized satellite than they do in larger
satellites. Thus, per component, they must deliver better performance and consume
less energy. Therefore, due to cost considerations, miniaturized satellite OBCs are
generally based upon processors manufactured in fine-feature-size technology nodes,
such as those used in mobile embedded devices.

Traditional hardware-based fault tolerance (FT) concepts for general-purpose com-
puting, however, are ineffective for modern, highly scaled systems-on-chip (SoCs),
becoming a prime source of malfunctions aboard miniaturized satellites [2|. Larger
satellites, too, are limited by the constraints of traditional ways to achieve fault tol-
erance for space applications, as these prevent larger satellites from harnessing the
benefits of modern processor designs, and multiprocessor-SoCs (MPSoCs). Also, these
hardware-based FT-measures can not handle varying performance requirements dur-
ing multi-phased missions and mega-constellations [187]. Software-based FT measures
rapidly evolved due to efforts of the scientific community, and are effective for modern
embedded hardware. However, these advances have largely been ignored by the space
industry, as well as closely related fields such as atmospheric aerospace, as they were
researched only in theory, but rarely meant for implementation. While many of these
concepts include innovative ideas, major implementation obstacles and fundamental
issues remain unaddressed. Often, prior research makes impractical assumptions to-
wards the platform or application environment, ignores fault detection, recovery from
failover, or other real-world constraints. Many concepts also attempt to uphold safety
and availability, e.g., for atmospheric aerospace use, but not computational correctness.
To the best of our knowledge, no integral and practical solution to utilizing modern
MPSoC-based systems within high-priority space missions has been developed to date.

There is a wide gap between academic research towards novel FT concepts and their
practical application in spacecraft OBCs. Satellite computers for control purposes are
still largely based upon architectures developed decades ago, while theoretical research
has not achieved the level of maturity necessary to bridge this gap. Thus, neither
traditional hardware- nor software-based F'T solutions could offer all the functionality
necessary to improve the reliability of state-of-the-art embedded SoCs in miniaturized
satellite OBCs. Other concepts promise excellent FT guarantees in theory, but require
complex architectures that often do not address the specific challenges of computers
flying in space. Innovations are especially needed in general-purpose computing, as
OBCs must execute a broad variety of applications efficiently.

This approach was developed for a 4-year European Space Agency (ESA) project
with two industrial partners. Due to the interdisciplinary nature of this project, other
aspects of this approach and its hardware implementation are described further in
Chapters 5 — 10.

In the next section, we discuss related work, and how the design constraints and
challenges outlined in Chapter 3 are up until the time of writing are addressed in fault-
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tolerant OBC design. Section 4.3 contains a brief overview of the multi-stage approach,
its limitations, terminology, as well as the application model and requirements. Each
stage is described in the subsequent sections, with the supervision concept explained in
Section 4.4.4. Section 4.7 then introduces briefly an MPSoC architecture specifically
designed as a platform for this FT concept. Performance and checkpoint reliability
are discussed in Section 4.8, followed by conclusions.

4.2 Related Work

Radiation challenges OBC fault coverage constantly and throughout a mission and
affects all of an OBC’s components depicted in Figure 21. Traditionally, FT is enabled
through circuit-, RTL-, core-, and OBC-level voting, which is costly to develop, difficult
to validate, maintain, and slow to evolve [88,104,132,188-190]. Software takes no active
part in fault-mitigation, as faults are suppressed at the circuit level, preventing the
effective assessment of a processor’s health. Circuit- and RTL-voting are effective for
microcontrollers and very small SoCs, while core-level voting requires logic unavailable
in COTS systems. Modern embedded COTS MPSoCs consume very little energy. But
to achieve FT using hardware-side measures, arrays of synchronized high-frequency
voters or core-lockstep in hardware are necessary. As voting and core-level lockstep at
GigaHertz clock rates are non-trivial, it has been implemented only at considerably
lower frequencies with non-COTS hardware [88,190-192].

In general, hardware-voting based MPSoC designs are static and non-adaptive,
as the entire design’s fault coverage properties are highly chip-specific [193]. All
these components are single-vendor solutions, often with walled-garden ecosystems
with vendor lock-in. FT MPSoCs for space use contain retrofitted TMRed single-core
processors, e.g., [104], or are unique, experimental solutions for specific satellite mis-
sions [194,195]. In contrast to these solutions, modern MPSoCs also allow considerably
more software design freedom due to the available compute resources, thereby reducing
the required development time and complexity. For scientific instrumentation and low-
priority CubeSat missions, COTS-based MPSoCs and FPGA-SoC-hybrids have been
utilized, but these are not suitable for critical satellite control applications within
miniaturized satellites [196]. Ground-based FT applications do not consider the spe-
cific threat-scenario and application environment, physical constraints, and thermal
design constraints [5,197]. Instead, we propose to use software-side functionality to
assure F'T for conventional, non-fault-tolerant processor cores.

First concepts involving coarse-grain lockstep are promising [198-200], but do not
address the specific challenges to FT in space [201]. FT using thread-level very-long-
instruction word architectures [202,203| has also been explored, though the approach
still requires pipeline-level voters in hardware. Most implement checkpoint & rollback
or restart, which makes them unsuitable for spacecraft command & control applica-
tions [204], others ignore fault-detection [205,206], or require external, infallible fault
detection entities with deep knowledge about application-intrinsics [207] but no con-
cept of how this could be obtained. Often, faults are assumed to be isolated, side-effect
free and local to an application [208] and/or transient [199,200,205], which voids their
effectiveness for space applications. Many prior concepts entail high performance-
[209], resource-overhead [210,211], or impose severe design constraints on applications
and the OS [198,199]. To be effective in the space environment, an FT approach must
be based upon forward-error-correction and the implementation complexity must be
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Figure 21: A component-level view of a satellite OBC. The multi-stage fault tolerance archi-
tecture proposed in this chapter covers faults affecting MPSoC, semiconductor infrastructure,
logic as well as software (yellow). Volatile memory (blue) and non-volatile memory (gray)
can well be protected using error correction coding and is described in Chapter 7.

low, and must be suitable for general-purpose computing and impose little or no
constraints on the application software. Changes to the OS infrastructure must be
platform portable, code-wise localized, and individually verifiable.

[199, 200, 208] implement voting through OS invasive measures, can not handle
multi-threaded applications and consider the OS and stored program code to be fault-
free. [201] requires no modifications to the application software whatsoever, but can
only assure availability in a networked application architecture. An acceptance of
these constraints does not allow for adequate FT in a space mission scenario, and thus
we propose that application and OS instance must be able to fail arbitrarily without
impacting the residual system. In this case, fault propagation between application
instances also becomes a non-issue. Considerable research has been directed towards
FT real-time scheduling and mixed critical software-FT systems, though only at a
theoretical level [212-214]|. As a consequence, no implementable, software-driven FT
concept for modern embedded- and mobile-market MPSoCs in space exists, creat-
ing a gap between the described prior research on software- and hardware-FT based
implementations.
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4.3 Fault Tolerance through Software

This approach consists of three fault-mitigation stages:

Stage 1 is implemented entirely in software and provides fault-detection through
coarse-grain lockstep to enable self-testing, and can be implemented in
COTS MPSoCs.

Stage 2 improves medium-term reliability through FPGA reconfiguration, and en-
ables long-term fault coverage using alternative configuration variants. It
utilizes Stage 1’s fault detection capabilities.

Stage 3 extends the lifetime of a degraded OBC by utilizing mixed criticality to as-
sure fault coverage for high-criticality threads. It enables the OBC to auto-
matically sacrifice performance or fault coverage of lower-criticality threads
in favor of higher-critical applications, thereby maintaining a stable core
system.

The presented concept is flexible and the individual stages are modular, as Stage 2
or 3 can be omitted depending on the OBC and mission. Our approach is designed
for generic COTS MPSoCs, as these are readily available in a variety of performance
classes at low cost. In the architecture described in Section 4.7, we place processor
cores within isolated compartments. We consider it an ideal platform for our approach.
In MPSoCs without a compartments, compartment can be substituted for processor
core, and the differences in fault coverage are discussed in Section 4.7.

Terminology

Fault detection in our approach is based upon sets of compartments running two or
more lockstepped copies of application threads. We refer to such a group of lockstepped
threads as a thread group. Timing-compatible thread groups can be combined and
executed on the same set of compartments, and are then referred to as a compartment
group.

The relation between these is visualized in Figure 22. A thread group can realize
a varying level of replication to achieve majority voting (thread 0 in the figure), error
detection (thread 1), or even individual execution. One compartment may be host to

Compartment 0 Compartment 1 Compartment 2
_______ P ———— e ——————y
gjgﬁ;% : Thread 0 Thread 0 Thread 0 :
| I iread
Thread 2 Thread 1 Thread 1 | rea
| Group 1
I |
I Thread 3 I
| Compartment Group 1 |

Figure 22: Schematic illustration of the relation between compartments running applications
as threads, thread groups, replication, and timing-compatible compartment groups.
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multiple thread groups threads may be unassigned from it, or newly assigned to it at
runtime using conventional thread and process management functionality of the OS.

A compartment group periodically executes a checkpoint routine, which computes
checksums for all active threads and compares them with the other compartments
in the group (siblings), thereby enabling a majority decision or error detection. The
time between checkpoints (the checkpoint frequency) is defined by the threads in a
compartment group and can be modified at runtime. All lockstep-relevant information
is stored in state memory, a compartment-dedicated memory segment which is read-
only accessible by compartments.

Application Requirements

The OS only has to support interrupts, wake-up timers, and a multi-threading capa-
ble scheduler. To the best of our knowledge, such functionality is available in most
widely-used RT- and general-purpose OS implementations. Virtual memory support
is required to enable performance-efficient multi-threading. Furthermore virtual mem-
ory simplifies thread-management, context switching, and thread isolation, benefiting
overall fault tolerance.

The only requirement for applications is interruptable at application-defined points
in time, during which checkpoints can be executed. As there is no efficient, uniform
approach to assess the health of threads, we rely upon applications assessing their
own health-state. A thread can provide four callback routines to the OS, which are
executed during compartment initialization and by the checkpoint handler:

e an initialization routine, to be executed on all compartments at bootup;
e a checksum callback, used to generate a checksum for comparison with siblings,

e a expose state callback, exposing all thread-state relevant data to synchronize a
sibling with a compartment group; This data can either be placed directly in the
compartment’s state memory, or as a reference to structures in main memory.

e and an update state callback, which is executed on a compartment that needs to
synchronize its state to a compartment group.
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Figure 23: High-level time diagram for the execution of application provided callback func-
tions during the operation on an on-board computer.
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Figure 23 depicts where and how these callbacks are used during the regular op-
eration of the lockstep. Some of the callbacks may be omitted, e.g., for applications
not requiring bootstrapping or with an already exposed state. The checksum compu-
tation and state synchronization callbacks are intentionally placed within the domain
of the application developer. This enables decisions about an application state to be
taken by the entity with the best knowledge of the individual thread and the means
to determine which data is relevant to the system and application state, and must be
preserved.

Threads can be executed in an arbitrary order within a lockstep cycle as long
as their state is equivalent during the next checkpoint. However, interrupting an
active application at a random point in time is usually undesirable. We avoid thread-
synchronization issues [198] by enabling the application developer to define comparison
points where the application will yield control to the checkpoint handler. If an appli-
cation requires real-time scheduling, the tightness of the RT guarantees depends upon
the time required to execute these callbacks. Communication between thread-groups
and compartment-groups is of course possible and will remain reliable, as long as the
receiving application is aware that it will receive multiple message replicas. To pre-
vent faults from propagating through IPC channels, a thread can compare the received
messages.

Limitations

This approach guarantees system state consistency and control flow correctness after
each checkpoint, and for all past checkpoint periods. It also assures computational
correctness before the last checkpoint, but can not actively prevent faults from oc-
curring during the ongoing checkpoint cycle. Thus, if one compartment experiences a
fault, incorrect results may be propagated outside the system, even though the dam-
age caused to the OBC will be corrected during the next checkpoint, and system state
consistency will be asserted. This limitation is inherent to coarse-grain lock-stepping
concepts, but could be elevated at the thread-level somewhat using finer-grain event
hooking, e.g., system-call hooking [199]. However, this workaround requires in-depth
modifications to the OS kernel and development toolchain, is thus non-portable and
difficult to maintain, while still not solving the underlying conceptional limitation.

Related research, however, does show that a solution at the system-design level
is much better suited to prevent fault-propagation of transient faults between check-
points using simple I/O voting [201]. Traditional hardware-FT approaches used in
space computing are strong for assuring non-propagation of faults across interfaces
using hardware-side voting, but can not protect the control-flow and system-state
consistency efficiently. While the system state and system-level fault tolerance are
assured by Stage 1, and long-term system resilience are safeguarded in Stages 2 and 3,
we can utilize simple I/O voting to prevent fault-propagation for compartment groups.
Performing I/0 voting on interface is already a common practice in satellite comput-
ing, as considerable effort is put into providing interface redundancy aboard larger
satellites. Small satellites, especially CubeSats, usually can not spare the additional
energy, space and mass required for interface replication. For such spacecraft, 1/O
voting can be implemented on-chip using library IP cores.
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4.4 Stage 1: Short-Term Fault Mitigation

Stage 1 offers software-controlled, thread-level, distributed majority voting and fine-
grain fault logging within any COTS MPSoC with three or more processor cores. The
objective of Stage 1 is to detect and correct faults at each checkpoint to assure compu-
tational correctness, control-flow consistency, and a consistent system state after each
checkpoint. To do so, Stage 1 requires a processor guaranteeing sequential consistency.

Instead of exerting direct control over the MPSoC, a supervisor can assure FT
indirectly, as fault coverage and control are distributed and enforced by the compart-
ments themselves. In consequence, the supervisor does not require any knowledge
about the executed application threads, an individual compartment’s state, or other
OBC intrinsics. The thread group assignment within an MPSoC can be reconfigured
freely at runtime to implement different voting configurations. Thus, the described
approach can exploit parallelization to improve reliability, throughput, or minimize
power consumption, thereby allowing the system to adapt to multi-phased missions
with varying performance requirements.

4.4.1 Thread-Based Self-Testing

The program flow of this stage is depicted in Figure 24 and described subsequently.
It can be implemented within an existing scheduler and an interrupt service rou-
tine (ISR). A practical example for compartment fault handling and recovery, and an
overview over how the supervisor interacts with the system are provided at the end of
this section.

Bootup & Initialization

After bootup, a compartment first executes basic self-test functionality to assure in-
tegrity of compartment-local IP-cores and memory. Each thread’s initialization routine
is executed on all compartments to allow faster state-update in case a new thread-group
is added to a compartment. When being assigned to a compartment, a thread will
register its desired checkpoint frequency and its checksum, expose/update callback
routines. After the threads have been initialized, each compartment will set a periodic
timer to initiate checkpoints. As depicted in Figure 24, a compartment will execute its
first checkpoint immediately after the MPSoC has been fully rebooted, to assure that
application and OS initialization were successful. If only this individual compartment
was rebooted, it can thus return to the spare compartment pool to replace a faulty
core in the future.

Checkpoint Start

A checkpoint is triggered by a timer interrupt or externally by the supervisor. A thread
can delay a checkpoint until it has reached a viable state for checksum comparison by
disabling interrupts, thereby deferring interrupt processing. The checkpoint ISR saves
the existing system state, loads the actual checkpoint handler, performs a context
switch to kernel mode, and invokes the checkpoint handler.
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Checksum Computation

The checkpoint handler invokes each active thread’s checksum callback scheduled for
checking. As not all threads in a compartment group require the same checking fre-
quencies, not all active threads will be validated during each checkpoint. This check-
sum callback returns a representation of the application thread’s internal state as
checksum or hash generated from thread-private variables and other internal applica-
tion state. The checksum format is compile-time defined, and must be chosen based
on FT needs. The algorithm used to generate this checksum is up to the applica-
tion developer. Each checksum is stored in the compartment’s local state memory and
thereby exposed to the other compartments. If no checkpoint routine can be provided,
a checksum is computed by the checkpoint handler for an application-defined memory
range. This memory range can be utilized by the application to deposit state-relevant
data passively, e.g., through linker scripts or pre-processor macros. A non-continuously
running application can also deposit its results in state memory or return a checksum
upon exit.

Prior concepts required deep modifications to the OS to allow a proprietary central
health-management entity to retrieve this information directly [198,205], or utilized no
application-internal information [200,201,211]. Instead, this approach enables us to
utilize application-intrinsics to assess the health-state of the system, without requiring
any knowledge on the applications. The time required to generate checksums can be
minimized by adapting the application code, e.g., by retaining computational by-
products which would usually be discarded.

Checksum Comparison

Once all checksum callbacks have been executed, a compartment will monitor its group
members’ state memory segments until another compartment is ready for comparison.
It will do so until it has compared its checksums with all siblings, or the system
designer’s compartment-group deadline expired. Compartments will usually begin
comparing its checksums with siblings immediately or wait only briefly, as delays are
mainly induced due to varying memory latency or malfunctions. If it detects a check-
sum mismatch or a sibling violated the deadline, the compartment will stop comparing
checksums and report disagreement with that compartment to the supervisor.

Thread Disagreement & State Propagation

If a compartment detected a checksum mismatch, it executes the expose state callback
routine of all threads in the affected compartment group. This callback can be omitted
if all state-relevant data is already in state memory, e.g., for non-continuous running
applications. The checkpoint routine will adjust the checkpoint’s timer if a new thread
group was added to the compartment group, and return control to the scheduler.

State Update and Thread Execution

The scheduler will check three conditions during regular operation: if any thread-group
is active, the compartment was newly added to a compartment group, or requires an
update. Idle compartments sleep until the next checkpoint and can be woken up by the
supervisor to reduce energy consumption and fault-potential. In case a compartment
must update a thread-group’s state from a sibling, the relevant update callback will be
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executed for each thread. Compartments that have detected disagreement with one
of their siblings will delay execution for a compartment-group-wide grace period, to
allow a sibling to retrieve a state-copy from state memory. Once a compartment has
updated its state using a sibling’s data, application processing continues. The other
compartment group members will also wake up after the grace period and continue
executing threads. This concludes the lockstep cycle.

4.4.2 A Practical Example

Figure 25 depicts a quad-core MPSoC with a single compartment group and three
members. A fault has occurred during the second lockstep cycle on compartment Co,
which is subsequently replaced with the idle compartment C3. C3 must retrieve a
copy of the state of its threads T, and T}, from another valid sibling. The replaced
compartment, Cs, can subsequently be tested for permanent defects by the OS and
the supervisor.

4.4.3 Checkpoint-Frequency & Real-Time Capabilities

The level of fault coverage is mainly dependent on the checkpoint frequency. During a
checkpoint, the computationally most costly operations are the application checksum
callbacks, the expose/update callbacks and a new compartment’s update callback.
Each of these operations involves a context switch and may imply a varying level of
data being read or written. Thus, the performance overhead and fault tolerance capa-
bilities are mainly based upon actual applications checked, as this actual checkpoint
handler code is rather trivial. In general, a higher checkpoint frequency implies more
time will be spent in checkpoints, finer grained fault-detection are possible, thus better
fault coverage.

Reboot

N N N N N

Figure 25: Compartment initialization and a complete Stage 1 lockstep cycle.
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In our implementation, interrupts are deferred during a checkpoint, thus applica-
tions are not serviced and will not process I/O, thereby affecting the level of real-time
capabilities the MPSoC can offer. However, though this can be worked around us-
ing a more elaborate interrupt handling concept, e.g., using interrupt prioritization
or filtering. Real-time capabilities are thus directly dependent on the MPSoC, and
application implementation characteristics, with the OS infrastructure playing a mi-
nor role. For complex applications with a large state, a lower checkpoint frequency,
however, also implies a larger difference in state. Hence, more data must be copied
between compartments to achieve thread-synchronization requiring additional time.
Thus, a larger state also requires more time for execution, potentially more complex
data structures, thereby implying longer expose- and update-callback.

Overall, the performance of OBCs executing less complex applications with little
state will improve with lower checking frequencies. For such OBCs, more checkpoints
imply more computational overhead. With more complex applications, there is con-
siderable optimization potential to find a sweet-spot between checkpoint frequency
and application-state size. However, performance is strongly dependent assuring that
high-quality callback-routines are provided by the application developer.

4.4.4 Supervision

The supervisor is connected to the MPSoC through a multiplexed bus-interface, where
each line signals agreement with another compartment. Fine grained disagreement
reporting does not significantly improve fault coverage and constrains scalability of
the MPSoC. As depicted in Figure 26, the supervisor only reacts to disagreement
between compartments, otherwise remaining passive. It maintains a fault-counter
for each compartment, and acts as a system-reset inducing watchdog timer for the
MPSoC. To resolve transient faults within a compartment, it increments the fault
counter and induces a state update through a low-level debug interface. After repeated
faults, the supervisor will replace the compartment by adjusting the thread-mapping
of a spare compartment, activating it, and rebooting the faulty compartment. In
case a system developer indicated threshold is exceeded, the disagreeing compartment
is assumed permanently defunct and not re-used as a spare. Stage 1 alone can not
reclaim defective compartments beyond programmatically avoiding the use of defective
peripherals, memory pages or processor functionality. Thus, Stage 2 will attempt to
repair compartments to prevent resource exhaustion.

In contrast to existing FT solutions, faults can be reported by each compartment
individually, because fault detection is decentralized. As this functionality is imple-
mented at the kernel level, we can utilize the OS’s powerful logging and diagnostics
facilities, instead of relying upon the supervisor to provide a minimal useful level of log-
ging. Diagnostics can thus be enriched with application-level information. Thereby,
defect assessment accuracy can be improved compared to prior FT-approaches, en-
abling more sophisticated debugging without requiring live-interaction.

Our lockstep is effective with very low checkpoint frequencies, requiring few checks
in second intervals. Hence the supervisor is no performance bottleneck for the sys-
tem as a whole. Therefore, high-performance MPSoCs can be well supervised using
pre-existing discrete COTS supervisors. COTS MPSoCs will utilize an external su-
pervisor, while ASIC, FPGA and FPGA-SoC-hybrid based MPSoCs can implement
this functionality in reconfigurable logic. An off-chip supervisor can be used for ac-
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Figure 26: A compartment’s and supervisor’s program-flow and their interactions. Stage 1,
2 and 3 logic are indicated in white, blue and yellow respectively.

tive compartment health-management and FPGA reconfiguration, enabling the use of
FPGA reconfiguration. See Chapter 10 for further details the supervisor interface.

4.5 Stage 2: MPSoC Reconfiguration & Repair

The previous stage can compensate faults as long as healthy compartments are avail-
able to replace defective compartments. In all existing hardware-side FT implementa-
tions, resource exhaustion is mitigated through over-provisioning (adding more spares).
Over-provisioning of compartments naturally is inefficient and curtails system scala-
bility, but is certain due to the static, unchangeable nature of existing ASIC based
solutions. This will inevitably result in resource exhaustion, and has not been solved
in prior work.

Stage 2 is designed to perform active compartment health management and test,
repair, validate and recover faulty compartments, thereby tackling this fundamental
limitation. In FPGA-based systems transient faults can corrupt the stored configura-
tion of programmed logic, thus induce permanent effects within the running configu-
ration [215,216]. However, even if a logic cell is damaged permanently the residual
highly-redundant FPGA fabric will remain intact and can be re-purposed [217]. It
could be repaired with differently routed, functionally equivalent configurations.

The main issue preventing prior research from utilizing FPGA reconfiguration to
increase F'T of general purpose computing architectures is a lack of non-invasive, flex-
ible circuit level fault detection. As efficient fault-detection for configurable logic is an
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unresolved issue, Stage 2 relies upon fault-detection by Stage 1.

The functionality of Stage 2 is depicted in Figure 27. The supervisor will first
attempt to recover a compartment using partial reconfiguration. Afterwards, the su-
pervisor validates the relevant partitions to detect permanent damage to the FPGA
(well described in, e.g., [218]), and executes self-test functionality on the compartment
to detect faults in the compartment’s main memory segment and peripherals. If unsuc-
cessful, the supervisor will repeat this procedure with differently routed configuration
variants, potentially avoiding or repurposing permanently defective logic.

Assuming a MPSoC architecture outfitted with compartments (see Section 4.7)
is used, compartments are topologically isolated. Thus, reconfiguration of just one
compartment will not impact the other compartments and allow the OBC to recover
a compartment in the background. If reprogramming was unsuccessful or fabric-level
faults persist, the supervisor will repeat the previous step with differently routed
configuration variants. Partially defective logic cells can be re-purposed, while other
cells can be avoided entirely, if no other usage is possible. Other elements of the FPGA
fabric can be treated equivalently. The supervisor can also attempt full reconfiguration
implying a full reboot of all compartments.

Stage 2 can also test different on-chip memories, the processor cores, and peripheral
controllers through external interconnect access ports (e.g., an AXI-bridge). If the
OBC is implemented on an ASIC or with a COTS MPSoC, a widely available low-
level debug and testing interface such as JTAG can be utilized for the same purpose.
Further details on reconfiguration and error scrubbing with a microcontroller-based

Scrubbing & Lockstep & Software
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Compartment Failure

Reconfiguration
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D Full FPGA
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Test & Boot
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Figure 27: The objective of Stage 2 is to recover defective compartments and other logic
through partial and full FPGA reconfiguration. If this is unsuccessful as well and no further
spare processing capacity is available to handle future faults, Stage 3 is activated to find a
more resource conserving application schedule, replenishing the spare resource pool.
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proof-of-concept implementation for a nanosatellite are available in Chapter 5.

If a defunct compartment can not be repaired through automated reconfiguration,
additional diagnostic information can be used for further analysis. The operator can
utilize this information to conduct fault analysis on the ground, to craft a suitable
replacement configuration to avoid these areas. Of course, this implies extreme de-
velopment effort but for many higher-priority space missions, the loss of a spacecraft
may be more costly than the engineering costs for saving the mission.

4.6 Stage 3: Applied Mixed Criticality

Stage 3 utilizes thread-level mixed criticality to extend an OBC'’s lifetime once the
previous stages have depleted all spare resources. Its primary objective is to au-
tonomously maintain system stability of an aged or degraded OBC at short notice to
avert loss-of-mission and loss-of-subsystem, even if an OBC approaches the end of its
lifetime. The operator can then define a more resource conserving satellite operations
schedule, sacrifice link capacity, or on-board storage space. Thus, dependability for
high-criticality threads can be maintained by reducing compute performance, through-
put, or increasing latency of lower-criticality applications.

The criticality of applications executed on an OBC can be differentiated by the im-
portance of the controlled subsystem or relevance for commandeering the spacecraft.
Performance degradation or even a loss of lower-criticality tasks aboard a satellite
is in general preferable to a loss of system stability for key applications. As thread
groups can be added and removed from compartment groups, and multiple compart-
ment groups can coexist in the same MPSoC, individual threads can also be migrated
between compartment groups [206]. Furthermore, the checkpoint frequency of a com-
partment group can be reduced to increase a compartment’s computational capacity,
or it can cease servicing low-priority interfaces.

The supervision logic is extended to reallocate thread-groups across the system
based upon the thread’s priority. Hence, if Stage 2 failed to reconfigure the OBC,
the supervisor can generate new compartment-group assignments for threads with
high priority and will attempt to retain existing assignments. Eventually, all healthy
compartments will be saturated with threads, and no further assignments will be
possible. Then, it can either allocate more mappings, providing lower-priority threads
with less processing time to maintain availability, reduce the checking frequency, or
leave them inactive. The OBC developer can decide at design time, which applications
would benefit most from continuous operation with reduced performance or reliability,
and which can be forgone.

In practice a satellite operator can use this functionality also to dynamically adjust
the performance of the MPSoC mid mission. This is achieved by adapting the dis-
tribution of applications across compartments, the level of replication of application
threads, and the processing time allocated to individual application threads. The three
properties, thus, are in competition to each other, as depicted in Figure 28. This ca-
pability is analogous to the powersaving capabilities present in today’s mobile devices
and consumer desktop computers, where performance and energy consumption objec-
tive compete. An optimal combination of these objectives exists only in theory, but in
practice would be very costly to obtain. For practical use, a set of “good enough but
non-optimal” can be achieved as at runtime autonomously using heuristics. Further
information on Stage 3 including dynamic thread-mapping, as well as performance,
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Figure 28: Our architecture allows the system properties of fault tolerance, performance,
and energy consumption of an OBC to be adjusted at runtime. The spacecraft operator can
prioritize one of these objectives, e.g., to achieve minimum energy consumption by sacrificing
processing speed, while maintaining a given level of fault tolerance.

energy and robustness optimization at run-time is available in Chapter 6.

In Figure 29, initially two compartment groups are executed on one MPSoC with 6
compartments. The first group consists of T, and T} executed on Cy — Cy, to perform
highly-critical platform management and control tasks. The second group performs
payload data handling tasks and is initially run on C3 — Cs, and runs its lockstep at
half the frequency as the higher critical group mentioned before. It consists of two
threads, with T, acting as payload subsystem driver task of medium criticality, and a
computationally expensive low-criticality application Ty performing data compression.
In the first checkpoint cycle, a fault occurs on Cj5 which is detected after this group
executes its first checkpoint. No spare processing capacity is left to replace the failed
core with directly. C5, however, still has sufficient spare capacity to accommodate
T., but not T,. T, is migrated to a separate, new compartment group and executed
on compartments 2 — 4, thereby maintaining strong FT. The lower-criticality task Ty
remains degraded. Therefore, Ty will continue to run in DMR mode on the intact
cores C3 and Cy, which only allows fault-detection in the future.

4.7 Platform Architecture

Our multi-stage FT-approach is in principle platform independent and can be im-
plemented within any multi-threading capable OS supporting interrupts and timers.
For most COTS-MPSoC based nanosatellites in a LEO orbit, stage 1-3 alone offer
sufficient fault coverage. Aboard such spacecraft, MPSoC interfaces are either unpro-
tected or protected programmatically and outside the MPSoC (e.g., using EDAC chips
or by resolving SEFTs through power cycling). Aboard larger, more critical spacecraft
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such faults can not be accepted, and OBC interfaces are usually implemented re-
dundantly at great effort. This redundancy is inherent to our approach with due to
the compartment-based architecture, and we developed an MPSoC platform capable
of surviving the loss of peripheral devices and permanent, non-resolvable defects in
interfaces.

4.7.1 MPSoC Architecture Concept

This MPSoC can be implemented in full using library IP available with standard
industry FPGA or ASIC design tools without custom FT components. We have im-
plemented our MPSoC prototype with Xilinx Vivado standard IP, AXI Interconnects,
for low-tier ARM Cortex-A processor cores to be provided by one of our industrial
partners. For common space applications, size-optimized cores such as the Cortex-A32,
-A35 and A5 offer an excellent balance between performance, universal platform sup-
port and logic utilization. The architecture minimizes shared logic, compartmentalizes
compartments, and offers a clearly defined access channel between compartments for
sharing checkpoint-results and application-state. We are aware that most miniaturized
satellites do not require such a high degree of fault coverage, and often can not afford
the added hardware complexity and development effort.

The MPSOC depicted in Figure 30 follows a compartmentalized architecture. The
software run on the individual processor cores is strongly isolated from each other. It
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is meant to be implemented within an FPGA to counter resource exhaustion when
mitigating faults in Stage 1. It utilizes simple redundancy to compensate for SEFIs,
but does not contain radiation-hard or FT processor cores or custom logic. Each
compartment is equipped with a processor core, an interrupt controller (IRQ in the
figure), a dedicated on-chip memory slice used as state memory, and several peripheral
interfaces through the local interconnect. Compartments are connected through an
I/0 memory management unit (IOMMU) and a global interconnect to main- and non-
volatile memory. They can not access the local interconnect of other compartments to
prevent interference and minimize shared logic. This compartmentalized architecture
benefits from partial reconfiguration, as compartments can be placed strategically on
an FPGA’s fabric along partition borders. Our approach and this architecture support
multi-FPGA and -ASIC MPSoCs without adaptation, thereby improving scalability
and resilience against FPGA-level SEFIs.

The ECC-protected dual-port state memory in each compartment holds the current
compartment-status, thread assignments, as well as the checksums and state informa-
tion. One interface is connected to the compartment’s local interconnect, while the
second port is read-only accessible via the global interconnect. The state memory
is inherently redundant, as threads are executed on at least two compartments. The
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Figure 30: A simplified representation of the presented MPSoC with memory controllers
highlighted in yellow, scrubbers in green, and interconnect in blue. A dedicated interface on
each compartment allows supervisor access.
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shared main memory is redundant to safeguard from SEFIs affecting the compartment-
shared interface. Both instances are ECC protected and connected to the global in-
terconnect. The main memory is split into several segments: each compartment has
write-access to its own segment, and can read the global shared code segment. ECC-
fault syndrome interrupts for main memory are handled by the supervisor. We perform
error-scrubbing on these memories to avoid accumulating bit-flips due to transient and
permanent faults. The scrubbing frequency should be set depending on the actually
used memory technology, production node and mission parameters. Non-volatile mem-
ory is implemented redundantly as well. Our prototype is designed to utilize radiation
immune MRAM and PCM [197] and we realize advanced FT for these memories as
described in Chapter 7. Each compartment’s main memory segment, state memory,
and non-volatile memory are mapped to the same compartment-local address ranges.
At the thread-level, the address-space in each compartment is thus identical, making
application and OS code location independent and allowing compartments to share
binaries. Further implementation details are available in Section 4.10.

4.7.2 Feasibility

We developed an early MPSoC design based on the this architecture utilizing exclu-
sively library-IP. Instead of ARM cores, this quad-core demonstration design includes
Xilinx MicroBlaze processor cores, as these are more available to the general public.
It targets standard FPGA development boards and is equipped with a single shared
DDR4 main memory controller, and 2MB on-chip BRAM program memory. This re-
duced design was implemented successfully using the Xilinx Vivado Design Suite and
Stage 1 was implemented using FreeRTOS and using the Xilinx SDK toolchain.
Each compartment is outfitted with data and instruction caches, an interrupt con-
troller, a UART interface, state memory and an additional local memory for storing
compartment-private information, and a GPIO controller to signal agreement between
compartments. All compartment-local memories are equipped with ECC, as this in-
creases logic size of the relevant memory controllers, and includes two additional in-
terrupts for each connected memory. We could achieved full timing closure at 250MHz
core frequency on VCU118 and KCU116 development kits, though the clock frequency

Resource Utilization | Available | Utilization %
LUT 68,705 | 1,182,240 5.81%
LUTRAM 9,235 591,840 1.56%
FF 92,536 | 2,364,480 3.91%
BRAM 810 2,160 37.48%
DSP 27 6,840 0.40%
10 163 832 19.59%
BUFG 17 1,800 0.94%
MMCM 6 30 20.00%

Table 3: Resource utilization of the quad-core demonstration MPSoC on a Xilinx VCU118
development board. The on-chip program memory and DDR4 memory controller dispropor-
tionately inflate BRAM utilization.
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Figure 31: Logic placement of the demo-MPSoC on a VCU118 development board running 4
Compartments: green, red, yellow, pink; Global Interconnect: white; Xilinx DDR4 controller:
blue; Program Memory: teal.

was selected to achieve a simple design, not an efficient or fast one. If additional time
was invested into timing optimization and clocking, the clock speed can be drastically
increased. Additional information regarding the compartment and SoC layout are
available in Chapters 9 and 10.

Fabric utilization based upon the Xilinx Virtex VCU118 Development Kit is de-
picted in Figure 31. Due to the use of on-chip program memory and the DDR4 memory
controller, BRAM utilization is inflated compared to the MPSoC described previously.
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Resource utilization is indicated in Table 3, with more details given in Section 4.10.
Stage 2 and 3 do not require additional FPGA logic.

This design’s very low logic usage shows that the architecture itself can be scaled to
8 and more compartments comfortably, and most current-generation FPGAs offer an
abundance of unused resources for Stage 2. With current-generation FPGA platforms,
Stage 2 will thus not only be able to recover defective compartments using spare
resources, but could even place multiple compartments as cold or hot spares. The
Microblaze cores utilized here for demonstration purposes can directly be replaced
with more powerful processor cores, assuming the necessary peripheral IP is added as
well (e.g., an ARM GIC instead of the MicroBlaze Interrupt Controller).

4.8 Discussions

The reliability of each individual compartment’s voting decision can be weak, and an
individual compartment can report false (dis)agreement with its siblings. Our ap-
proach takes into account that any software or hardware component associated within
a compartment can fail arbitrarily. Such failure is mitigated through a distributed de-
cision, which is taken based on each compartment’s perspective of its siblings. Thus,
this approach does not require the checksum logic to compute correctly, and we as-
sume that faults may occur at any time during the lifetime of a compartment. As
compartment groups usually consist of three or more compartments, the likelihood
of false-disagreements or non-reported disagreement is insignificant. To mask such a
fault, multiple faults would have to coincide in a majority of compartments within the
same compartment group during a single checking period and induce the same fault.
The probability for such an event is extremely low, except at very high radiation levels.
Even in such situations, such faults would be detected after the subsequent checkpoint
with near certainty.

Prior research proves the conceptual effectiveness of thread-based FT [88,200] and
software-based FT combined with simple I/O voting [201]. Also, the detailed FT
capabilities of a platform utilizing our approach are influenced by the actually used
FPGA, ASIC or COTS-MPSoC design. These imply mainly design decisions and a
varying acceptance of single-points-of-failure. Schedulability, timing conformity, and
deadlock-avoidance have been extensively researched in literature, e.g., in [210]. Thus,
what remains to be shown is the runtime performance overhead induced by the pre-
sented approach, as the main objective of our research is to enable the efficient use
of high-performance mobile-market COTS MPSoCs within satellite computers. To
achieve worst-case performance estimations, we developed a naive, unoptimized im-
plementation of the Stage 1 of our approach, as the others do not affect the runtime
performance of the MPSoC. This naive implementation shows a median-best perfor-
mance degradation of 9% and median-worst degradation of 26% on compartments
with a single processor core. Further information on the conducted tests is available
in Section 4.10, as well as performance measurements for 6 different application scenar-
ios modeled after the NASA /James Webb Space Telescope’s Mid-Infrared Instrument
(MIRI) [219].

As prior thread-level FT implementations [199, 200, 208| are based upon funda-
mentally different concepts, only address transient faults within a very limited scope,
and are deeply embedded into proprietary OS, their fault coverage and performance
can not be directly compared. However, the measured performance overhead does fall



68 4.9. CONCLUSIONS

within the same range as measured in [199], and we also observe comparable average-
case performance. To put these measurements into context, even a 50% slowdown
on modern MPSoCs will offer a factor-of-5 performance increase over state-of-the-
art radiation-hardened processor designs, thereby showing a favorable cost-vs-benefit
trade-off.

4.9 Conclusions

In this chapter, we presented the first practical and integral multi-stage approach
to fault-tolerant (FT) general purpose computing for spaceflight use. The approach
explicitly does not utilize radiation-hardened or hardware-F'T processor cores and uti-
lizes no central MPSoC-internal voting logic. It can thus be implemented within COTS
MPSoCs or alternatively entirely with non-FT, standard library IP-cores available in
FPGA or ASIC design software. In contrast to prior research, the presented approach
considers the full and realistic fault-model for space computing, and operates within
real-world constraints. The approach does not require failure-free components within
an MPSoC or in the OS, and does not leave conceptual gaps, e.g., regarding fault
detection and recovery. It is not based upon traditional radiation-hardened processor
cores and does not achieve fault tolerance through hardware-measures.

We showed that our approach is programmatically simple and requires little cus-
tom code, which can also be implemented in most pre-existing multi-threading capable
OS. Faults can be detected and mitigated using application provided routines, enabling
decisions about an application’s integrity to be taken by the application developers
themselves. As a consequence, the system designer no longer must struggle to assess
the health of each individual application’s state, and instead can focus on determining
an optimal solution to problems at hand. It allows flexible fault-detection, mitigation
and recovery within COTS MPSoCs, laying the foundations for FT computing aboard
miniaturized satellites, and helping to bridge the gap between theoretical embedded
research and practical implementation in the space industry. While remaining flex-
ible, and inducing only a minimal performance overhead, the presented multi-stage
approach offers time-bounded real-time guarantees.

The approach can be well complemented with several other reliability-improving
measures which were integrated into the outlined reference MPSoC architecture. Pre-
liminary benchmark results of an unoptimized implementation show a low performance
overhead, suggesting a beyond factor-of-5 performance increase over state-of-the-art
radiation-hardened processors for space use. Our approach allows the host platform to
scale vertically (more powerful processor cores and more interfaces per compartment)
as well as horizontally (more compartments), with virtually any modern processor
core. Thereby, we aim to increase acceptance for software-side FT approaches in the
space industry, building trust in hybrid hardware-software architectures. Thus, our
approach is the first integral, real-world solution to enable the fault-tolerant appli-
cation with modern MPSoC designs for critical satellite control applications, thereby
enabling the use of such SoCs in future high-priority space missions.
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4.10 Annex: Worst-Case Performance Estimation

To achieve worst-case performance estimations, we developed an unoptimized imple-
mentation of the first stage of our approach in C to be run in user-space. The provided
benchmark results were generated based on code derived off a special CCD readout
program used for space-based astronomical instrumentation. The application was ex-
ecuted with a varying amount of data processing runs in a compartment group at the
indicated checking frequencies, and without protection for reference.

4.10.1 Implementation Outline

This implementation was written in approximately 800 lines of user-space C-code in-
cluding benchmark facilities. It utilizes system calls and the POSIX threading library
to simulate compartments and thread management. Thread-management at this level
is computationally much more expensive than if performed bare-metal or in kernel-
code. A bare-metal implementation within an operating system reduces this perfor-
mance overhead drastically. This implementation therefore allows very pessimistic
benchmarking, which can yield a baseline for the lockstep’s performance cost. The
implementation also serves as an excellent simulator to validate the correctness of the
described logic, and allows better debugging than on the actual MPSoC implementa-
tion.

4.10.2 Test Application

Synthetic, widely used benchmark suites are unsuitable to benchmark OS-level func-
tionality. Thus, we derived a demo-application off an astronomical instrumentation
application. We chose to utilize the background scenario of scientific computing, as
devices for scientific instrumentation are usually better documented. The program
flow of our demo application is based on the NASA /James Webb Space Telescope’s
Mid-Infrared Instrument (MIRI) described in [219]. This program continuously reads
three 16-bit 1024x1024 false-color sensor arrays, stores, and processes the results. It
averages multiple captured frames to optimize the instruments exposure time and
avoid pixel saturation, or to capture faint astronomical sources [219].

4.10.3 Methodology and Test Setup

The setup simulates an MPSoC three compartments executing the described demo
application, and measures performance of the application executing within a com-
partment. For each plot in Figure 32, 100 measurements were taken of the real-time
necessary to process 600 1-Megapixel frames with subsequent processing runs. Data
heavy modes indicate a high amount of post-processing runs, whereas compute-heavy
modes indicate lower per-thread workload.

e Very Compute Heavy: 60000 Postprocessing Runs
e Compute Heavy: 75000 Postprocessing Runs
e Balanced Compute Heavy: 90000 Postprocessing Runs

e Balanced Data Heavy: 105000 Postprocessing Runs
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e Data Heavy: 135000 Postprocessing Runs

e Very Data Heavy: 150000 Postprocessing Runs

Benchmark results were generated on a Intel Core 17-2600K Sandy Bridge-based
system with a host kernel’s scheduling frequency of 1kHz (CONFIG_HZ_1000). Hyper-
Threading and SpeedStep was disable to avoid interference between threads. Binaries
were compiled with GCC 6.3.1 (20161221) without compiler optimization (-00).

4.10.4 Results

This naive implementation of our approach at the application level on Linux shows
median-best performance degradation of 9% and median-worst degradation of 26%,
which are also indicated in Figure 32a and e in bold. Across all test runs, we measured
on average 80% worst-case and 95% best-case performance compared to the unpro-
tected reference runtime. The violin plots — shadows around the box-plots — indicate
the distribution of the measurements to depict the accumulation of the individual
measurements.

As expected, the performance varies depending on workload, with data-heavy tasks
a-c showing better performance. This too was expected as Stage 1’s code consists
mainly of integer operations, binary comparisons, load/stores, and jumps. Better
performance can be expected in a more optimized implementation at the kernel level
due to a reduced computational cost of operations that in userland require system
calls. To put these measurements into context, even a 50% performance degradation
on modern MPSoCs will offer a factor-of-5 performance increase over state-of-the-art
radiation-hardened processor designs.

Assuming an average performance degradation between 10% and 20% at such ex-
treme checking frequencies, our approach can thus allow a modern MPSoC to perform
better than comparable state-of-the-art hardware-voting based processor solutions,
while requiring no proprietary processor design, offering full software-control at a
fraction of the development effort and costs. And in contrast to existing hardware-
based fault tolerance solutions, our architecture does not struggle against feature-size
reduction, but scales up with technology and benefits from more modern production
nodes.

The lockstep was run with very high checkpoint frequencies (20hz, 2.5hz and
1.25hz) which during normal operation will most likely never be used. For most LEO
applications, we expect that checkpoints would be run only every 5 to 10 seconds. Fur-
thermore, system calls and thread-management on high-performance mobile-market
processor cores can be much less costly than when run on desktop hardware. Real-
istically, this would implying very little performance cost ranging from 0.5% to 2%
overhead.
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Figure 32: Performance measurements of 6000 runs for processing 100 1024x1024 pixel CCD
frames with different checkpoint frequencies and workloads.
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In this chapter, we describe the functionality of the second fault-mitigation stage of
our architecture and address RQ2. Stage 2’s functionality was originally developed as
a saving-subsystem for the MOVE-II CubeSat and was meant to perform autonomous
chip-level debugging only. Within the system architecture described in this thesis, it
now fulfills the role of the FPGA’s supervisor, but the concept itself predates the archi-
tecture described in the previous chapter. In the context of this thesis, remote debug-
ging is one among several tasks this component performs: it controls the coarse-grain
lockstep of Stage 1, conducts FPGA configuration management, and handles thread-
allocation within the system for Stage 3. It safequards the integrity of the FPGA-
fabric, may repair defective processor cores through partial reconfiguration, and can
offload tasks to the configuration controller implemented within the FPGA. Thereby,
it can increase the long-term fault coverage of the system as a whole.
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5.1 Introduction

Nano- and microsatellites have evolved from purely educational projects to fit a diverse
range of commercial and scientific use-cases. This class of satellites can do so by com-
bining rapid development, reduced design complexity, low manpower requirements,
and minimal cost through a reliance on commercial off-the-shelf components (COTS).
Modern embedded technology enables a high level of compute performance at the cost
of little energy. Miniaturized satellite development has begun to rely upon conven-
tional application processor architectures as well as FPGAs. Hence these satellites can
nowadays offer an abundance of storage capacity and compute performance [220].

CubeSats have proven to be both versatile and efficient for various use cases. They
have also become platforms for an increasing variety of scientific payloads and com-
mercial applications [32]. However, such missions require an increased level of depend-
ability in all subsystems compared to educational vessels, especially to enable their use
within critical missions and for such with prolonged lifetime requirements. Currently,
miniaturized satellites are plagued by low dependability, and will be requiring failure
tolerance and reliability enhancing measures in the future. Due to the limited bud-
get, mass and volume restrictions within miniaturized satellite projects, such measures
usually must be achieved using means beyond replication and redundancy.

Data storage and processing applications can be protected using architectural and
software side approaches, combining them into hybrid solutions. However, even utiliz-
ing such hybrid concepts, component level failure tolerance remains limited using only
COTS hardware. Acceptance of eventual failure of an on-board computer (OBC) due
to issues beyond the control of the deployed flight software without a viable recovery
strategy in place is a tolerable approach for educational satellites. However, especially
when deployed in larger quantities (e.g., constellations), failure diagnostics and recov-
ery measures that do not require the active cooperation of an OBC or its operating
system should be available.

In contrast to larger vessels, the use of chip-level debug functionality aboard minia-
turized satellites has up until now largely been restricted to the development and test-
ing phases. During system development and testing on the ground, low-level debug
interfaces are usually used for diagnostics, debugging and failure analysis, providing
chip-level access to satellite hardware. However, such functionality often lays dor-
mant once the satellite has been deployed or is not even activated in a satellite OBC’s
flight model. Thus, debugging functionality has rarely been utilized in-orbit aboard
CubeSats, as the necessary protocols could not be implemented over the unreliable
low-bandwidth links without major effort.

Few nanosatellite projects possess the manpower and time to implement sophisti-
cated failover functionality and testing effort until a very late phase during develop-
ment when facing non-trivial bugs. Many CubeSat developers also are unaware of the
challenges of hardware development, and therefore ignore low-level debug functional-
ity in satellite design altogether. In contrast to debugging capabilities, flight software
reprogramming functionality is usually desired aboard nanosatellites. Hence, several
CubeSats were equipped with simple proprietary update solutions [221-223]. Even
though the capabilities of these concepts were limited with little re-use potential, they
underlined the importance of software-independent chip-level debug functionality such
as JTAG [6].

Hence, began exploring how a miniaturized satellite’s saving subsystem could be
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outfitted with chip-level debugging capabilities in late 2014, and developed a concise
concept in early 2015 and implemented the prototype described in this chapter in
late 2015. We designed this subsystem to enable extensive debugging and analysis
support for the MOVE-IT CubeSat [Fuchsl3|, as prior experiences in the field and
especially in the FirsstMOVE predecessor CubeSat showed that this functionality is
critical [Fuchs17]. It is designed to support testing, verification, and debugging on
the ground as well during a space mission. It offers scripting support through the
use of STAPL [224] bytecode which is then translated into JTAG operations using a
STAPL virtual machine, thereby offering near universal test-target support. Hence,
the subsystem’s software can remain static at run-time and does not need to be changed
throughout a space mission. The multi-stage fault tolerance architecture described
in Chapter 4 is a direct evolution of the concept described in this chapter. In the
remainder of this thesis, this saving subsystem also takes on the role of the MPSoC’s
supervisor, integrating most of the usage concepts described in Section 5.4.

In the next section, we will analyze how and why debugging at chip level can
help improve dependability. We outline why this functionality up until now is largely
unavailable aboard miniaturized satellites, and what functionality is required to im-
plement such a saving subsystem. Section 5.3 then contains a description of our work
and offers insight into several key aspects of the developed concept. Afterwards, use
cases beyond mid-mission debugging are presented in Section 5.4. We discuss plans
for future work and present our conclusions in the final two sections.

5.2 Debugging and Reliability

Testing and error diagnostics are critical tasks during hardware development, and thus
also when developing nanosatellites. While larger spacecrafts’” OBCs have extensive
debugging support, CubeSats usually offer no equivalent functionality and, if at all, re-
sort to creative ad-hoc testing solutions. Most such solutions can not deliver equivalent
functionality to the comprehensive set of testing and debugging features often encoun-
tered within COTS hardware or aboard larger spacecrafts. Besides functionality, the
reliability and universal usability of these solutions is often insufficient, resulting in few
CubeSats fielding any form of software-independent mid-mission capable fault analysis
functionality. In consequence, few CubeSats nowadays offer sufficient fault detection,
isolation and recovery functionality (FDIR) to reliably detect and recover from hard-
or software malfunctions.

Most system-on-chip architectures, FPGAs, and many other ICs provide JTAG test
access ports (TAPs) [6]. Originally developed for circuit testing, JTAG nowadays is the
de-facto standard chip-level debugging interface and is widely used in electronics for
larger satellites. Hence, JTAG is an ideal interface for sophisticated fault detection,
isolation and recovery in case of component failure. In addition, it can be utilized
to update an OBC’s software, firmware, as well as to control and reconfigure the
programmable logic of an FPGA. We argue that chip-level debugging is currently not
widely used because there are no readily available CubeSat-compatible solutions that
can be adapted to a wide variety of different designs.

The properties of the communication bands utilized for commandeering aboard
contemporary CubeSats (usually UHF and VHF, see Chapter 3), the constrained up-
and downlink availability, and the low bandwidth make mid-mission debugging chal-
lenging. As discussed in Chapter 3, these restrictions result in constrained data rates
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around tens of kbps, even if strong error correction is utilized. As ground station
networks and satellite relay systems at the time of writing are not accessible to ordi-
nary nanosatellites, debugging and error diagnostics must be conducted fully remotely.
JTAG requires bi-directional real-time communication and is sensitive to timing is-
sues, aspects which are not suitable for satellite links in general and especially the
links available aboard miniaturized satellites. Hence, the chip-level debugging must
be decoupled from the satellite link, so that live-interaction during debug sessions only
happens locally within the spacecraft.

STAPL scripts can be executed autonomously and perform all timing-critical oper-
ations locally within the space segment. Thereby, we can terminate the timing-critical
aspects of chip-level debugging while minimizing link congestion. The saving subsys-
tem described in this chapter can, thus, efficiently operate even via a lossy, unreliable
very-low-bandwidth communication channel. It can operate even in environments with
elevated radiation levels, requires little PCB space, low power and entails minimal cost.

5.3 Implementation Details

The main objective of the research described in this chapter is to improve overall
reliability and survivability of a spacecraft. Hardware complexity has been a major
issue in CubeSat projects, often resulting in oversimplified systems due to lack of
experience and sometimes even in overly complex systems due to uncontrolled feature
creep. Due to the absence of sophisticated FDIR functionality, even minor hardware
and software may cause a CubeSat to become unrecoverable.

In the remainder of this section, we will discuss the MOVE-II CubeSat specific
implementing of our saving subsystem using an Microchip/Atmel SAM7SE MCU.
However, it should be noted that besides the hardware choices outlined in this chapter,
there are numerous other MCUs which could be utilize instead. Originally, the this
saving subsystem was intended to integrate into an existing Spartan 6 LX45 FPGA
on MOVE-ITI’s transceiver module. However, due to the densely populated transceiver
board and insufficient FPGA resources on the LX45, a microcontroller (MCU) based
implementation was developed instead.

In the context of this thesis, we instead chose to utilize a radiation-robust TI
MSP430FR MCU, as we describe further in Chapters 9 and 10. A SAMT7SE offers
considerably more performance than an MSP430FR MCU. However, the tasks this
saving subsystem is meant to perform within the architecture described in Chapter
4 require little performance, and MSP430FR MCUs have been shown to perform
exceptionally well under radiation [225].

5.3.1 Hardware Requirements

The saving subsystem can be implemented with comparably basic hardware, however,
we must also consider assuring integrity of the subsystem itself. MRAM [150] and
phase-change memory (PCM) [226] both are ideal technologies for holding saving sub-
system’s code and stack segments, as their storage cells are radiation immune. At the
time of this writing, no affordable highly-reliable nanosatellite-compatible hardware
that could be used to implement the presented saving subsystem is available. Thus,
we have to resort to utilizing COTS MCUs and minimize fault potential. This MCU
must provide the following functionality:
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e an external memory interface to attach a parallel magnetoresistive RAM (MRAM
[150]) to contain the saving subsystem’s code, or an MCU with internal MRAM.
However, we are unaware of the existence of COTS MCUs equipped with suffi-
cient MRAM.

e A second memory interface will be needed to access flash memory to store larger
chunks of data such as FPGA configurations operating system updates. Once
PCM or STT-MRAM with larger capacities [227] becomes widely available, the
saving subsystem could also be implemented using just one large memory IC.

e The saving subsystem does not require a real-time clock, as we intended the
saving subsystem to be as static and stateless as possible. However, we still must
assure precise timing for certain operations requiring at least a counter/timer.

e We also must be able to interface with at least one JTAG chain which we can
best achieve using a set of general-purpose I/O pins. The capability to access
additional JTAG chains enables more advanced usage scenarios.

The program code of the saving subsystem resides in a write-protected MRAM
region, whereas the stack segment will be kept within a separate writable region.
Thus, faults in the running system’s state can be resolved through a reboot in many
cases. In consequence, it can then resolve or remove leftover information from the
(corrupted) previous system state and thereby recover to a consistent system state.
The saving subsystem’s (runtime-static) firmware, in turn, can be protected from
corruption through erasure coding as described in Chapter 7. Redundancies for MCU
and memories can be added as necessary, and are omitted from this chapter for the
sake of briefness.

5.3.2 STAPL Scripts and Commandeering Interface

The subsystem offers extensive scripting support through the use of the STAPL script-
ing language, which is then translated into JTAG operations using a STAPL virtual
machine [6,224]. Hence, the saving subsystem’s program code can remain static at
run-time requiring no modification to the virtual machine’s code. As the STAPL
scripting language is Turing-complete!, it can be utilized to implement arbitrary se-
quences of JTAG operations in the form of STAPL scripts, achieving code separation
and time triggered execution. By using STAPL scripts, we can thus avoid timing crit-
ical aspects of chip-level debugging aboard the satellite while minimizing link conges-
tion. Thereby, the saving subsystem can be efficiently operated even over a unreliable
very-low-bandwidth communication channel, which would otherwise make chip-level
debugging infeasible.

We chose to utilize the STAPL bytecode format [224] to minimize script- and code-
size while retaining flexibility. These scripts as well as all relevant program code and
state information must reside within radiation tolerant MRAM. Even though STAPL
bytecode is more compact than the text based equivalent, experiments have shown
that more complex scripts can still become as large as 50kB.

Due to the limited memory capacity in MRAM, only few scripts can be uploaded
to and stored permanently within the STAPL machine. For the sake of simplicity, we

Lin our context it most importantly supports recursion and jumps
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Figure 33: A visualization of the saving subsystem’s program flow and commandeering
protocol we developed around the Altera JAM player.

utilize a compile-time space distribution, creating a fixed number of identically sized
script slots. Each slot can only hold one script, even if the script does not utilize entire
entire capacity of a slot. The original implementation of this saving subsystem utilized
2MB of MRAM, and we implemented 10 x 50kB sized slots leaving 1.5MB of MRAM
for the stack and code segments.

In the current implementation, slot allocation is managed at the ground segment
by the satellite operator and we currently support only equally sized slots. A poten-
tial future optimization would be to utilize differently sized slots (e.g., 5x 10kB slots,
5x50kB slots, 2x 100kB slots), to achieve better resource utilization. We implemented
static slot management to minimize code-complexity and failure potential.

Slots are identified by a CRC16 checksum used as reference for commandeering,
and also for integrity checking of an individual script. This checksum is uploaded with
each new script, and verified once the transfer of all script-parts has been concluded.

An additional identifier beyond this checksum is unnecessary. The low number of
scripts minimizes the chance of checksum-collisions due to the birthday paradox [22§],
Operators can avoid collisions altogether through padding scripts on the ground.

Scripts are directly committed to a slot and then checked for integrity to mini-
mize data duplication and resource usage. Hence, we can assure that only uniquely
identified, correctly and completely uploaded scripts will be executed.
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5.3.3 Transfer of Large Scripts and Data Housekeeping

The maximum frame size supported by the communication modules of most nanosatel-
lites is considerably smaller than the script size, hence the saving subsystem supports
multipart transfers for scripts and other data. A multipart script transfer initialization
packet contains the intended slot ID to be overwritten, the expected script checksum
and size, as well as the chunk size. The initialization packet also provides a null
terminated array of checksums for each to be expected chunk.

For each active multipart transfer, the saving subsystem retains a list of missing
frames. It notifies the ground station in case the final missing chunk has been received,
or upon command. For slots, this information is stored within the slot header. Later
packets indicate the chunk-offset, to facilitate simple retransmission.

FPGA configuration variants and software updates for the OBC can be as large
as several megabytes. Hence, they must be stored in dedicated heap memory and
multipart transfers of such data is conducted akin to multi-part scripts. We decided
to perform allocation and data management on the ground, instead of implementing
dynamic heap memory management. Again, this implementation decision was made
to minimize software complexity and failure potential. As all operations executed by
the saving subsystem must be pre-planned by the operator, more advanced allocation
mechanisms do not result in operational advantages.

We utilize flash memory to store larger data volumes outside of the script-slots as
neither PCM nor larger MRAM chips are currently widely available. As this data is
not executed, we can utilize flash memory and store the data using erasure coding in
software. However, in STAPL scripts all payload-data is usually encoded inline and
cannot be omitted without modifications to the scripting language syntax.

For this purpose, we extended the STAPL syntax to also support references to
external data. We replace inline data with a reference to data in flash, which can then
be uploaded independently. Therefore, the STAPL Bytecode player was modified to
make it capable of side-loading auxiliary data.

The results of scripts, e.g., kernel dumps, system state information and other di-
agnostics data, are thus also held in flash memory until they can be transmitted to
the ground station. Script execution can be triggered in bulk, hence outgoing packets
are being stored in a FIFO queue for transmission. A more detailed representation of
the saving subsystem’s program flow is provided in Figure 33.

To safeguard against data corruption due to space radiation effects (single- and
multi-event upsets), coarse symbol level Reed-Solomon erasure coding [229] will be
applied when writing to flash memory [230]. As flash memory with comparably low
density is utilized, no additional layers of erasure coding are necessary but could be
implemented, see Chapter 7. Reasons for utilizing higher-density flash memory may
be the requirement for storing more partial reconfiguration partition variants to cover
the increased number of permanent faults that can be expected in space missions with
longer duration, or to provide feature-diversity as described in Section 5.4.3.

5.3.4 Integration into an On-Board Computer

Our current saving subsystem implementation consists of an ARM7TDMI MCU with
an OBC-independent communication channel toward the CubeSats transceiver or sav-
ing subsystem as depicted in Figure 34. We chose to utilize an interrupt-driven bi-
directional SPI-based interface to implement this channel due to its flexibility and
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simplicity. Also, this interface is less prone to implementation issues than I12C, how-
ever there are many other alternatives and the saving subsystem’s concept does not
foresee a specific interface. The saving subsystem is attached to a single four pinned
JTAG chain, containing all to be debugged JTAG enabled devices. Due to abundantly
available GPIO pins, additional JTAG chains could be attached with ease once the
software has been adapted.

The Microchip/Atmel SAMTSE MCU is able to boot from memory attached to its
external interface, has excellent toolchain support, documentation and minimal energy
consumption. Attached to the external memory interface are an Everspin 2MB MRAM
memory chip as well as 16MB of NAND Flash. The MRAM chip is connected to the
16-bit memory interface and used to store the program code, scripts, and also serves
as main memory. The use of the SAM7SE’s internal memories is avoided whenever
possible since radiation hardness cannot be achieved here. Only the MRAM address
ranges used as main memory and for STAPL scripts and the stack segment are writable
by software, all the rest of the memory is set read-only through the ARM7TDMTI’s
MPU.

COM/Redwave OBC
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MRAM Module Flash Module
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Figure 34: A component-level view of the saving subsystem.
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Since the MCU reads its output data from different external memories at differ-
ent clock rates (MRAM and flash), JTAG clock frequency is dynamically adapted.
However, the JTAG clock speed is capped by the maximum support frequency of the
debugging target. Dynamic clocking and the use of lower JTAG frequencies are com-
mon. Therefore, the duration of one clock cycle is variable, resulting in drastically
varying clock speeds especially if access to flash memory is necessary.

Figure 35 shows the hardware setup used to port the saving subsystem from
the original proof-of-concept implementation to embedded hardware. It includes a
SAM7SES512 MCU and two external memories:

e 16MB SDRAM to simulate the MRAM, and
e 256MB flash memory.

All components and interfaces besides the SDRAM correspond to the originally in-
tended design of the saving subsystem. The commandeering interface has been suc-
cessfully tested with several self-contained scripts as well as such referencing external
data. The saving subsystem currently implements the commandeering API depicted
in Figure 33 directly. In a future version of this implementation, we plan to replace
the SAM7SE512 MCU with a radiation-robust MSP430FR microcontroller, to reduce
failure potential, and as this saving subsystem has very low performance requirements.

Figure 35: A saving subsystem demonstration setup utilizing the SAM7SE (green PCB)
and external NAND-flash and external SDRAM. In this picture, the system was interfaced
with a Xilinx Spartan 6 FPGA (red PCB to the left) and validated the FPGA configuration.
Due to the concepts simplicity and flexibility, the saving subsystem can be implemented in
full just a micro-controller development board.
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5.4 Use Cases beyond Debugging

While the presented subsystem was developed primarily for FDIR reasons, there are
several additional use-cases that were considered during design. The saving subsystem
could be extended with additional functionality or may even be used outside of its
originally intended usage scenario aboard a spacecraft. Hence, we dedicate this section
to discuss other use cases for this saving subsystem beyond traditional LEO CubeSat
applications.

The main limitation of the saving subsystem within a CubeSat application scenario
is storage capacity and buffer size to return data via a satellite link. However, these
limitations mainly affect the following capabilities:

e size and number of slots available within the saving subsystem,
e storage space for referenced data such as FPGA configurations and
e to-be-returned information and logs, and finally the

e total size of FPGA configurations.

For ground applications and even aboard vessels only slightly larger than 1U Cube-
Sats, these restrictions can easily be lifted.

5.4.1 Watchdog Integration

The saving subsystem can be interfaced with a watchdog to achieve extended func-
tionality. This watchdog could notify the saving subsystem about malfunctions within
other components of the OBC. The saving subsystem could then begin recovery mea-
sures, enabling considerably better fault-recovery and logging possibilities than the
usual reset triggered by CubeSat watchdogs. Instead of directly rebooting the OBC
into a (presumably) safe mode, the saving subsystem can first collect relevant log in-
formation (i.e. retrieve register contents and a stack-trace). Once this information has
been stored, it can then be directly reported to the ground station. Also, this func-
tionality could be adapted, e.g., to take into account known permanent faults that
may have occurred in a previous mission phase.

We have not yet implemented this functionality, as the described logic first would
have to be written as STAPL script and is highly hardware and software dependent.
To avoid the saving subsystem’s return-buffer from being flooded with crash-logs in
case of frequent or repeated crashes, additional logic must be implemented. A simple
mitigation method would be a message queue implemented as a ring buffer. Then only
a fixed number of diagnostics messages would be retained at any given time, assuring
that only the most recent logs are retained and transmitted to the ground.

As watchdog functionality is usually rather simple, it could also be provided by the
saving subsystem itself. Integrated watchdog functionality would only require minimal
additional code and could be combined more efficiently with the script-driven state
machine. However, such functionality is usually considered critical and malfunctions
of the watchdog code within the saving subsystem could cripple the rest of the OBC.
Hence, watchdog functionality should only be integrated if a suitable interface setup
can be achieved, as described see Chapter 10).
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5.4.2 FPGA Management and Validation

Radiation tests of several COTS FPGAs such as Xilinx’ Spartan 6 FPGA family
have yielded promising results. Recent radiation testing activities have shown the
Spartan 6 devices to be outright latch-up immune and largely unaffected by event
effects [231-233]. While these devices are not truly radiation-hard, they can offer
a sufficient level of reliability to be used aboard spacecraft if scrubbing and other
software-driven dependability measures are applied.

In contrast to using a discrete processor or a classical SOC design, an FPGA based
Soft-SOC could provide drastically improved OBC flexibility. As an FPGA can be
programmed with largely arbitrary logic, a broad variety of interfaces and processor
architectures can be utilized. Such interface logic thus no longer has to be implemented
in hardware using separate controller ICs, and can directly be attached to the FPGA.
System parameters can be modified and interface assignment can be changed even
mid-mission. Also, permanent faults in reconfigurable logic could be worked around
by deploying a similar configuration avoid the use of a certain FPGA area. Hence, one
of the main drivers for the saving subsystem’s design was to control an FPGA and
take full advantage of programmable logic devices.

As depicted in Figure 36, the saving subsystem can not only control and repro-
gram an FPGA, it can also be used to implement more advanced usage scenarios: A
continuous read-verify-repair cycle could be scripted and executed in a timed manner
to enable scrubbing and reduce the impact of transient errors [234]. As most radia-
tion effects within FPGAs are transients, thus temporary errors, their impact on the
system can be reduced even if radiation-soft SRAM FPGAs were used.

While access to the running configuration of an FPGA is comparably well docu-
mented, access to attached configuration memory requires slightly more effort:

Initialization Fault Classification
d R
Power-On Try Alternative Permanent and Recovety
Configuration Fault
Fault
v Persists
Debug Subsystem Transient Test Running Reconfigure
Initialization Fault Configuration FPGA
A
\ 4
Process -Xilinx SEM Log Faults
STAPL Scripts Soft-SOC P Location/Time
Self-Reporting y
Y
Initialize FPGA : Read Running Compare FPGA
Configuration g TR > Configuration > Configuration
y

Fault Detection

Figure 36: The saving subsystem can also be adapted for radiation testing and FPGA
integrity assurance in space. In this case, the saving subsystem can implement all functionality
necessary for MPSoC supervision as described in Chapters 4 and 6.
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e In case the running configuration is still functional, the saving subsystem can
access such memory via the system bus through a separate JTAG bridge.our
Such bridges are standard IP-cores and readily available for many platforms (e.g.,
AMBA/AHB, AXI, ...) and often are even foreseen in the platform specification
for system debugging (i.e. GRLIB). In Chapter 10 we realize this functionality
through an SPI2AXI bridge.

e For simple interfaces such as SPI, a multi-master setup with both the FPGA
and the saving subsystem driving configuration memory can be realized. Again,
we utilize such a setup in Chapter 10.

e Otherwise, a separate FPGA configuration must be uploaded to function as a
JTAG bridge.

On some FPGA platforms, the second approach is being performed using nested con-
figurations (nested bit-files). An FPGA configuration implementing a JTAG to SPI
interface is used to transfer the actual configuration bit file into the configuration
memory. Even though this interface requires minimal logic and usually covers only
few slices on an FPGA, the total size of an FPGA configuration is still determined
by the size of the FPGA. Compression can be used to reduce this dead-space, thus
the JAM player foresees ACA [224] compression. However, the saving subsystem then
still has to store multiple bit-files.

5.4.3 Flexible OBC Provisioning for Advanced Missions

The saving subsystem can also reconfigure an OBC with several different FPGA con-
figurations for reasons beyond FDIR. More complex space missions consist of several
different phases with varying duration and requirements towards the OBC as depicted
in color in Figure 37. Using traditional discrete processing components or write-once
anti-fuse FPGAs, the properties of a system are static and can not be modified later
on. An n + 1-voting circuit can deliver a fixed amount of compute performance and a
certain level of dependability. Thus, if the OBC must be able to handle an increased
compute burden or provide stronger integrity assurance guarantees for a certain mis-
sion phase, the system design as a whole has to be adapted.

To fulfill varying requirements, systems engineers usually resort to over-provisioning
to assure system performance and failover capabilities. Thus, if additional compute
performance was required for a voted SOC setup, system properties such as clock fre-
quency and the number of processing cores being part of the voter could be increased.
If this is insufficient, then a second, identical setup would have to be added to allow
the system to scale with these requirements. Of course, the resulting system’s efficient
will thereby be reduced.

Additional compute resources or redundancy thus remain unused throughout most
of a mission, increasing overall power consumption and system complexity. Dynamic
FPGA configuration management based on mission phase requirements could dras-
tically improve overall performance and reliability of an OBC design. As shown in
Figure 37, the saving subsystem could provision different SOC variants with a varying
number of processing cores and TMR strength depending. Provisioning could be con-
ducted automatically based on the requirements of different mission phases. Thereby,
instead of over-provisioning, an OBC design could be adapted to deliver a near-optimal
level of performance, reliability, latency and power saving for each mission phase.
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As an example, a regular TMRed system consisting of three active cores and one
spare could be slit into two independent DMRed SOC pairs using a different SoftSoC
configuration. As shown in the figure as well, during some phases of the mission, not
all interfaces to other subsystems of the spacecraft are necessary. A separate FPGA
configuration could be deployed which does not drive these interfaces to help conserve
energy. Hence, the same chip on an unaltered OBC board could fulfill its role in a
considerably more efficient way, resulting in efficiency improvements in all regards.

5.4.4 Radiation Testing and Profiling

There are also use cases for this concept on the ground, e.g., to substitute for equipment
usually used for radiation testing and profiling of programmable logic or processor
designs. To improve the quality of results on a device’s behavior undergoing radiation
testing, the subject device or FPGA should be continuously probed to log the type of
radiation-induced errors when they occur. A post-mortem analysis hereby would only
reduce the quality of information obtained and may even mask errors.

As outlined in Section 5.4.2, the saving subsystem can maintain a configuration
scrubbing and reprogramming cycle. While the necessary hardware to do so has been
developed in the past already, the saving subsystem allows improved flexibility while
reducing the need for support equipment. To do so, the saving subsystem must be
implemented using radiation hardened components, and the simple design and low
performance requirements allow the use of primitive electrical components.

Instead of counteracting the effects of radiation events, the saving subsystem can
log upsets within the running configuration of the subject device. Later on, this infor-
mation can be forwarded to perform forensic analysis and look up which region of the
configuration was affected and in what way. If combined with watchdog functionality
as outlined in Section 5.4.1, the setup can also help assess the severity and impact
of event upsets and can help to map critical logic. The saving subsystem can auto-
matically determine information about which of the most recent upsets could trigger
system failure within, e.g., Soft-SOC configurations. Of course, the saving subsystem
can also make use of more advanced integrity control functionality and can therefore
improve logging. It can directly utilize other information sources such as crash logs,
information about software-handled errors, and faults detected by specialized IP (e.g.,
Xilinx Soft Error Mitigation [235]).

The saving subsystem can also perform scrubbing on an FPGA configuration, which
allows further classification into transient and permanent errors, refining testing re-
sults. Hence, fault analysis can then be conducted using high-quality information and
the results obtained can also be fed-back into the testing cycle, see Figure 36. This
information could ultimately also be introduced into an FPGA design’s testbench and
can help simulate the impact of changes to design based on realistic information with-
out performing additional radiation tests. Analysis suites such as SETA [236] could
further help automate this process and may be used to obtain additional information
from saving subsystem traces. The saving subsystem can thus drastically improve the
quality of radiation testing results when working with FPGAs and can substitute a
major part of the otherwise required testing infrastructure.
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5.5 Discussions

Development of the saving subsystem currently is in the prototype stage and a suc-
cessful proof-of-concept has been implemented. Therefore the next step is to integrate
it with other components of a CubeSat on-board Computer. The protocol to interface
with the communication module via SPI has to be implemented and tested thoroughly.
Once the API has been adapted to this protocol, a custom hardware prototype with
the respective memories can be implemented.

Also, the saving subsystem is currently based upon a set of development boards
meant for rapid prototyping. It therefore must be condensed to a CubeSat compatible
form factor. Testing in this case also requires a broad variety of STAPL scripts to
be developed to assure code coverage during testing. These additional scripts will
then also be utilized to support development of other subsystems and testing of the
attached OBC. Performance measurements, including power consumption under load,
execution speed of different debugging operations must be performed as well.

There are also several extensions to the current saving subsystem implementation
that should be added, such as support for multiple JTAG chains. The current im-
plementation relies on using only one JTAG chain for all devices connected to the
debugger, subjecting it to the risk of failure. In case one of the JTAG chain members
malfunctions and can not transport the test data signal, the chain is rendered useless
and debug operations can not be performed. Support for more than one JTAG chain
would allow access to, e.g., a SoftSOC to be implemented in parallel to controlling
the FPGA itself. The to-be-executed script could then also select the correct JTAG
chain, requiring only minimal modifications to the STAPL logic. This also opens up
additional usage scenarios especially when combined with FPGA/SOC hybrids such
as Xilinx’s Zynq family and the more powerful FPGAs utilized to realize the proof-of-
concept MPSoC described in Chapters 9 and 10.

5.6 Conclusions

In this chapter we presented a subsystem enabling autonomous chip-level debugging
for nanosatellite OBCs. Until now, chip-level debug functionality had not been read-
ily available aboard miniaturized satellites. If at all present aboard CubeSats, such
functionality had largely been restricted to the development and testing phases. We
are convinced that the low survivability of many earlier CubeSats can be attributed,
among other causes, to low per system dependability and a lack of FDIR functional-
ity. Hence, we developed this concept to provide a readily usable CubeSat compatible
mid-mission FDIR solution for the nanosatellite audience.
We developed two prototype implementations up until now:

1. an initial proof-of-concept based upon a Raspberry-Pi to demonstrate the general
feasibility of the saving subsystem and to determine requirements for further
development.

2. An embedded implementation for an ARM7TDMI MCU in preparation to mi-
grating the design to CubeSat compatible form factor.

The saving subsystem can be integrated into most CubeSat architectures requiring
only a JTAG interface towards to-be-controlled devices. It is based upon a minimal set
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of components to retain simplicity, utilizing smart technological choices and erasure
coding where necessary to achieve dependability using affordable COTS hardware. The
presented design utilizes the STAPL scripting language and therefore can support a
wide variety of devices. Due to its flexibility, several other use cases beyond debugging
are imaginable, both in space and on the ground. The setup has been implemented
successfully and thoroughly tested by controlling several ARM SoCs as well as FPGAs.
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Mixed Criticality and Resource
Pooling

Stage 3

In this chapter, we discuss the third and final stage of our fault tolerance architecture.
Stage 8 enables satellites of all weight classes to more efficiently handle accumulating
permanent faults, and to age gracefully instead entering a degenerate state, thereby
answering RQ3. We show how this functionality in conjunction with mized criticality
properties of a satellite’s on-board computer can be exploited to improve robustness and
efficiency. By modifying the application mapping within the MPSoC and adjusting
thread-replication at runtime, the system can dynamically trade compute performance
for functionality, robustness, and energy consumption at runtime. Considering our
architecture as a whole, the the mechanisms discussed in this chapter exist in software
and utilize extensively architectural properties of our MPSoC.
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6.1 Introduction

Satellite miniaturization has enabled a broad variety of scientific and commercial space
missions, which previously were technically infeasible, impractical or simply uneco-
nomical. However, very small satellites such as nanosatellites and sometimes even
microsatellites (<100kg) are currently not considered suitable for critical and complex
multi-phased missions, as well as high-priority science applications, due to their low
reliability. On-board computer (OBC) and related electronics constitute a large part
of such a spacecraft’s mass, yet these components lack often even basic fault tolerance
(FT) functionality. Due to budget, energy, mass and volume restrictions, existing
FT solutions originally developed for larger spacecraft can in general not be adopted.
Nanosatellite OBCs also have to cope with drastically varying workload throughout
a mission, which traditional FT solutions can not handle efficiently. Therefore, we
developed a novel F'T approach offering strong fault coverage, which was implemented
fully using only a single FPGA with commodity processor designs, and library IP.

This architecture can protect generic applications with an arbitrary structure, can
adapt to varying performance requirements in longer multi-phased missions, and can
adapt to a shrinking pool of processing capacity similar to a biological system, ef-
ficiently handling aging effects and accumulating permanent faults. As major parts
of our approach are implemented in or directly controlled by software, a spacecraft
operator can configure the OBC to deliver the desired combination of performance,
robustness, functionality, or to meet a specific power budget. To offer strong fault
detection, isolation and recovery (FDIR), we combine software-side fault detection
and mitigation and configuration scrubbing with various other FT measures across
the embedded stack, enabling strong, low-cost FT with commodity hardware, while
exploiting FPGA reconfiguration to mitigate permanent faults.

The next two sections contain background information, and a discussion of related
work. In Section 6.4 a brief overview over the three stages of our approach is provided.
Our proof-of-concept OBC-design is described in Section 6.5, with the functionality
of each FT-stage outlined in the subsequent sections. How this approach can improve
efficiency of OBC in spacecraft of all weight classes, spare resource utilization and
fault coverage, is discussed in Section 6.6. Section 6.7, introduces performance profiles
allowing a system-on-chips (SoC) to trade compute performance for energy efficiency,
robustness, and functionality at runtime. Our approach provides advantages to space-
craft of all weight classes, and can be implemented also within distributed systems,
for which further applications and improvements are discussed in Section 6.8.

6.2 Background

Tasks which would be handled by multiple dedicated payload and subsystem process-
ing systems aboard a larger satellite, are usually handled by just one COTS-based
command & data handling system in nanosatellites. These utilize mobile-market and
embedded SoCs with one or more cores (MPSoCs), SDSoCs [40], or FPGAs [237]. Due
to manufacturing in fine technology nodes, such chips offer superior efficiency and per-
formance as compared to space-grade OBC designs, but are also non-FT!. These SoCs
consist mostly of extensively tested and optimized standard logic, reused, supported,

1Exceptions to this rule received uncommonly abundant funding, are technology demonstration
for F'T concepts, or custom failover designs.



CHAPTER 6 91

and evolved continuously by several industries and used daily by countless develop-
ers. In contrast, most radiation-hard-by-design (RHBD) processors cores, and SoCs
manufactured in more robust manufacturing processed (RHBM) are crafted almost
artisanally at high cost by few designers with little commercial stimulus for optimiza-
tion. Their cost, energy consumption and mass often exceed such a spacecraft’s global
power budget, total mass, and almost always its overall project budget. Therefore, we
developed a hybrid FT-approach based upon only COTS components, library IP, and
existing software, instead of artisanal processor designs and proprietary instruction
set architectures.

Existing hardware voting based FT solutions are design-time static and can tolerate
a fixed number of failures within a voter setup, which can not be changed at runtime.
Critical biological systems instead consist of independent, cooperating cells or clusters
of similar functionality with a high degree of inherent redundancy and self-healing
capabilities. Damage to a single cell is compensated by the remaining cells, and a
complete breakdown of functionality occurs only due severe damage to the system
at a broader scale. Our approach combines various FT techniques to mimic such
behavior at the logic and SoC level, through FPGA reconfiguration and software-
controlled thread migration within a globally share pool of processor cores, enabling
graceful aging. The replication level, hence fault coverage capabilities, and various
other parameters can be adjusted at runtime, while spare capacity can be reused to
run background and lower-criticality applications instead of remaining idle.

In small feature-size chips, the energy threshold above which highly charged par-
ticles can induce faults in digital logic (single event effects - SEE) decreases, while
the ratio of events inducing multi-bit upsets (MBU), and the likelihood of permanent
faults in logic and memory increases. Increased fault coverage of hardware-FT based
concepts on such chips through additional FT-circuitry therefore implies diminishing
returns, preventing an application of traditional RHBD/RHBM concepts [104, 132]
to mobile-market SoCs. Total ionizing dose, however, becomes less of a problem with
finer technology nodes, and recent generation FPGAs also show decent latch-up perfor-
mance [142,143]. FPGAs have drastically improved FDIR potential [238] despite being
more vulnerable to transients, as radiation-induced upsets in the running configuration
can be corrected via reconfiguration with alternative configuration variants [105].

6.3 Related Work

Fine-grained, non-invasive, and scalable fault detection in FPGA fabric is challeng-
ing, and subject of ongoing research [239,240], and often is simply ignored in sci-
entific publications [241]. Most FPGA-based FT-concepts rely on error scrubbing,
which has scalability limitations for complex logic [239,242], unless special-purpose
offline testing is utilized [243]. In the future, memory-based reconfigurable logic de-
vices (MRLDs) [244] may allow programmed logic to be protected like conventional
memory, and thus would drastically simplify fault detection. If manufactured using
phase/polarity-change memory instead of charge-based technologies, MRLDs could
further increase robustness, but the memory technologies themselves are only emerg-
ing at the time of writing. In this chapter, we thus present an approach to general-
purpose FT computing that compensates for faults across the embedded stack and
through partial FPGA reconfiguration. We realize fine-grained fault detection at the
software level, and perform scrubbing only as an auxiliary measure in the background
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to increase robustness of our SRAM-based FPGA platform.

Hardware voting today is used exclusively for protecting simpler FT processor
cores at the microcontroller level [88,104], and for accelerators [245] supporting appli-
cation code with tightly constrained program structure. Hence, the application of this
hardware-centered approach has become a technical dead-end for protecting widely
used application processor designs intended for general-purpose computing, while ac-
celerators by themselves would only assure FT for computation and data offloaded
to such a device. In our research, however, we seek to deliver strong fault coverage
for general purpose computing, and aim to efficiently protect even larger and more
complex modern application processors, such as those widely used in mobile market
and embedded devices.

Mobile market processors can run at gigahertz clock rates, for which hardware-side
voting or instruction-level lockstep are non-trivial, hence, hardware voting approaches
have been implemented only at lower clock rates [88,191,192]. For comparison, today’s
highly optimized COTS library IP achieves clock speeds comparable to traditional FT-
processor designs on ASIC even on an FPGA, without requiring manual fine-tuning.
We instead utilize software-driven coarse-grain lockstep to achieve fault detection, and
maintain consistency between cores, requiring no vast arrays of synchronized voters,
while utilizing COTS IP.

Thread migration has been shown to be a powerful tool for assuring F'T, but prior
research ignores fault detection, and imposed tight constraints on an application’s
type and structure (e.g., video streaming and image processing [241]). However, to
implement sophisticated and efficient thread migration, fault-detection must be facil-
itated at the OS or application-level without falling back to design space exploration.
Coarse-grain lockstep of weakly coupled cores can do just that, and in the past has
already been used for high availability, non-stop service, and error resilience con-
cepts. However, in prior research, faults are usually assumed to be isolated, side effect
free and local to an individual application thread [208] or transient [199,205], and
entail high performance [209] or resource overhead [210,211]. More advanced proof-
of-concepts [198,199], however, attempt to address these limitations, and even show a
modest performance overhead between 3% and 25%, but utilize checkpoint & rollback
or restart mechanisms [199], which make them unsuitable for spacecraft command &
control applications.

6.4 System Overview & Requirements

Coarse-grain lockstep is one among several measures used in our hybrid FT approach
to facilitate forward-error-correction (FEC) and deliver strong fault coverage. Our
approach consists of three fault mitigation stages:

Stage 1 utilizes coarse-grain lockstep for fault detection. It generate a distributed
majority decision between processor cores.

Stage 1 utilizes time-triggered checkpoints to autonomously resolved faults
corrupting the state of applications. It facilitates re-synchronization and
thread migration in case of repeated faults, enabling strong short-term
fault coverage.

Stage 2 assures the integrity of programmed logic by interfacing with Stage 1 and
functionality such as Xilinx SEM. Its objective is to assure and recover
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the integrity of processor cores and their immediate peripheral IP through

FPGA reconfiguration, thereby counteracting resource exhaustion.

Stage 3 handles resource exhaustion and re-allocates processing time within the sys-
tem to maintain stability of critical applications and functionality

in a degraded system.

These Stages form a closed loop and implements FDIR in several steps as depicted
in Figure 38. Additional information on Stage 1’s thread-level coarse-grain lockstep,

beyond what is briefly described in Section 6.5.1 are available in Chapters 4.

Stages 1 and 3 can be implemented separately on a generic MPSoC in low-end
nanosatellites (e.g., 1U CubeSats). Then, they would provide a level of system-level
robustness which otherwise would be only be achievable through proprietary hardware-
FT solutions, without requiring the use of an FPGA.

For larger spacecraft, we complement this functionality with a compartmentalized
MPSoC architecture for FPGA as outlined in the next section. It allows the system to
recover defective compartments through reconfiguration, and enables it better handle

permanent faults.
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Figure 38: Stage 1 (white) implements a continuous checking loop, which facilitates fault
coverage through thread-level synchronization and migration between compartments. Stage 2
(blue) can recover faulty compartments using reconfiguration. In case of resource exhaustion,
Stage 3 (yellow) adapts the thread allocation to best utilize the remaining processing capacity.



94 6.5. SYSTEM ARCHITECTURE REVIEW

6.5 System Architecture Review

Figure 39 depicts a simplified version of our MPSoC design. It follows a multi-core-like
architecture with each compartment containing a processor core, local interconnect,
and peripheral IP-cores and interfaces. A debug bridge allows supervisor access to each
compartment, e.g., to perform introspection for testing purposes or to trigger a reset.
The only globally shared resources are a set of redundant main memory controllers and
non-volatile (nv) data storage. Code in nv-memory can be shared between compart-
ments, while widely used DDR and SDRAM controllers are too large to instantiate
for each compartment, and would require an excessive number of I/O-pins. Hence,
our MPSoC architecture consists of isolated SoC-compartments accessing shared main
memory and operating system code, in contrast to the conventional MPSoC designs,
where cores share most infrastructure and peripherals.

Each compartment’s checkpoint-related information is stored in a dedicated on-chip
dual-port BRAM memory (validation memory) and exposed to other compartments,
to allow low-latency information exchange between compartments without requiring
inter-compartment cache-coherence or access to main memory. Validation memory is
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Figure 39: A high-level topology diagram of our compartmentalized MPSoC architecture
with memory controllers highlighted in yellow, and interconnect-logic in blue. A debug-bridge
on each compartment allows supervisor access. Access to each compartment’s validation
memory is possible read-only through the global interconnect.
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writable through the compartment-local interconnect, and is read-only accessible by
other compartments.

The address space layout on each compartment, including mapping of peripherals
and interfaces within the address space are identical. Each compartment can access
its own main memory address segment, which is mapped to the same address range
on all compartments. Additionally, main memory in its entirety (all memory seg-
ments) is read-only accessible system wide, to simplify state synchronization between
compartments.

During a checkpoint, the state of all threads mapped to a compartment is com-
pared and synchronized with its siblings. To do so, the checkpoint handler executes an
application-provided callback function for all pending threads, producing checksums
generated from thread-private data structures. Checksums are stored in the compart-
ment’s local validation memory and thereby exposed to the other compartments, and
then compared with the other compartments in the system. In case of disagreement,
the compartment signals disagreement with that sibling and executes synchronization
callbacks for all affected threads. If necessary, it then also executes relevant update
callbacks and then resumes application execution. An more detailed description of
these mechanisms as well as benchmark results for an astronomical application are
described in Chapter 4.

6.5.1 Stage 1: Short-Term Fault Mitigation

The objective of Stage 1 is to detect and correct faults within a compartment, and
assure a consistent system state through checkpoint-based FEC. It is implemented as
sets of compartments running two or more copies of application threads (siblings) in
lock step. Checkpoints interrupt execution, facilitating the lockstep and enforcing syn-
chronization, allowing thread assignment within the system to be adjusted if required,
as depicted in Figure 38.

This approach enables us to utilize application intrinsics to assess the health state
of the system without requiring in-depth knowledge about the application code. The
supervisor just reads out the results of the compartments’ decentralized consistency
decision. Threads can be scheduled and executed in an arbitrary order between two
checkpoints, as long as their state is equivalent upon the next checkpoint.

We avoid thread synchronization issues due to invasive lockstep mechanisms [198|
by merely reusing existing OS functionality without breaking existing ABI contracts.
Therefore, we can continue relying upon pre-existing synchronization mechanics such
as POSIX cancellation points? and their bare-metal equivalents (e.g., in RTEMS
RTEMS NO PREEMPT or the POSIX API). Stage 1 can even deliver real-time
guarantees, and the tightness of the RT guarantees depends upon the time required to
execute application callbacks. In our RTEMS/POSIX-based implementation, we uti-
lize priority-based, preemptive scheduling with timeslicing, allowing threads to delay
checkpoints until they reach a viable state for checksum comparison.

Checkpoints are time triggered, but can also be induced by the supervisor through
an interrupt, e.g., to signal that new threads have been assigned. Thus, the OS only
has to support interrupts, timers, and a multi-threading capable scheduler. To the best
of our knowledge, such functionality is available in all widely used RT- and general
purpose OS implementations.

2E.g., sleep, yield, pause, for further details, see IEEE Std 1003.1-2017 p517
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A fault resolved during a checkpoint may cause the affected compartment to emit
incorrect data through I/O interfaces, an inherent limitation to coarse-grain lock-
step [199]. For many very small nanosatellite missions this is acceptable, as the use of
COTS components requires incorrect I/O to be sanitized anyway. In contrast, larger
spacecraft already utilize interface replications or even voting, usually requiring consid-
erable effort at the interface level to facilitate this replication. Our approach combined
with the previously described MPSoC architecture inherently provides interface-level
replications by design, no longer requiring extra measures to be taken. Additional
protection is therefore only needed for space applications where non-propagation of
incorrect I/O is required but interface replication is undesirable, i.e., due to PCB-space
constraints aboard CubeSats or unchangeable subsystem requirements. For packet-
based interfaces such as Spacewire, AFDX, CAN, or Ethernet, no hardware-side solu-
tion is necessary, as data duplication can be managed more efficiently at OSI layer 24-.
This approach today is widely used as part of real-time capable FT-networking [94].
Other interfaces like 12C and SPI allow a simple majority decision per I/O line, which
can be implemented on-chip through FIFO buffers, as the remaining on-compartment
interfaces have low pin count and run at relatively low clock frequencies.

6.5.2 Stage 2: Tile Repair & Recovery

Stage 1 can not reclaim defective compartments, eventually resulting in resource ex-
haustion. Therefore, in Stage 2, we recover defective compartments through recon-
figuration to counter transients in FPGA fabric. To do so, the supervisor will first
attempt to recover a compartment using partial reconfiguration. Afterwards, the su-
pervisor validates the relevant partitions to detect permanent damage to the FPGA
(well described in, e.g., [218]), and executes self-test functionality on the compartment
to detect faults in the compartment’s main memory segment and peripherals. If unsuc-
cessful, the supervisor can repeat this procedure with differently routed configuration
variants, potentially avoiding or repurposing permanently defective logic.

As compartments are placed along partition borders in our MPSoC architecture,
compartments can be recovered in the background without interrupting the rest of the
system. The supervisor can also attempt full reconfiguration implying a full reboot
of all compartments. Further details on reconfiguration and error scrubbing with a
microcontroller-based proof-of-concept implementation for a nanosatellite are available
in Chapter 5. If both partial- and full-reconfiguration are unsuccessful and all spare
resources have been exhausted, Stage 3 is utilized to assure a stable system core to
enable operator intervention.

6.5.3 Stage 3: Applied Mixed Criticality

Stage 3 autonomously maintains system stability of an aged or degraded OBC. When
considering a miniaturized satellite’s OBC, we can differentiate individual applications
or parts of flight software by criticality. At the very least, we will find software essential
to a satellite’s operation, e.g., platform control and commandeering, as well as other
applications of various levels of lower criticality. If the previous stages no longer
have enough spare processing capacity or compartments to compensate the loss of a
compartment, this stage utilizes thread-level mixed criticality to assure stability of core
OBC functions. To do so, it can sacrifice lower criticality tasks in favor of providing
compute resources to reach the desired replication level for critical threads.
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Dependability for higher-criticality threads can efficiently be maintained by re-
ducing compute performance or reliability of lower-criticality applications. Lower-
criticality tasks may be executed less frequently or on fewer compartments, thereby
reducing functionality or fault coverage for these tasks, retaining resources for higher-
criticality threads. This decision is taken autonomously, and the operator can then
define a more resource conserving satellite operation schedule at a spacecraft level,
e.g., sacrifice link capacity, or on-board storage space, to make best use of the OBC
in its degraded state.

6.6 Spare Resource Pooling

This FT approach enables FT even for very small satellites, but provides benefits for
spacecraft of all weight classes. To increase fault coverage in traditional hardware
voting FT systems, additional cores and spares must be provisioned, while compute
performance can be increased by utilizing higher-performance processor cores and
adding more hardware voting instances. This is done at design time, requiring over-
provisioning, and can not be changed throughout a mission. Cores are hardwired to
a specific instance, therefore, an instance will degrade once its spares are exhausted,
even if idle spares were available elsewhere.

In contrast, our approach is not based on hardwired voting instances, as appli-
cations are mapped to a global pool of compartments with a given replication level.
Our approach does utilize spare resources too, but spare compartments and conven-
tional compartments are identical. Hence, spare compartments do not have to remain
idle, and unused processor capacity becomes a spare resource that can be re-purposed.
Thus, the fault coverage capabilities of the system are no longer dependent on the
distribution and location of permanent faults within the system, increasing overall
robustness.

As applications can be migrated between compartments, low criticality threads and
background tasks can be assigned to utilize free spare capacity. These lower-criticality
threads can be de-scheduled in favor of higher-criticality applications, if needed. Spare
capacity can also be used to increase F'T for threads, which usually would be executed
without majority voting or separately due to resource constraints. We can distribute
a defective compartment’s workload to other compartments, to best take advantage
of the remaining system resources.

The best target compartments and to-be-evicted threads are not determined ad-
hoc, but before a fault actually occurs, to reduce the time spent in a checkpoint.
We can maintain one replacement strategy for every compartment, due to the low
compartment and thread counts common in space applications today3. Subsequent
to a fault, these strategies are recomputed to consider the now reduced processing
capacity of the system. As thread assignments are not controlled by the supervisor, but
only adjusted, threads may exit, fork or create new child threads. Therefore, an update
to adjust these strategies to the currently running threads is also triggered based on
the fault counter of Stage 2. Even if a fault occurs immediately after the current

3The main application for our architecture is platform control. ManyCore-systems with hundreds
of cores would allow too many combinations, but they will not be applied to satellite platform control
in the foreseeable future. For dedicated payload data processing, this may be different, but our interest
in this thesis is mainly platform control and unified satellite data handling aboard miniaturized
satellites.
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checkpoint, these strategies will only be needed at the next checkpoint. Therefore,
this is a background operation which can be handled by the supervisor, allowing the
OBC to resume processing immediately.

Figure 40 depicts a six compartment MPSoC running four applications of differ-
ent criticality. A fault has occurred in compartment 3, which has been marked as
permanently defective, and there are multiple recovery solutions:

e Affected threads could be relocated to a compartment running lower-criticality ap-
plications, replacing them as depicted in Figure 40a. For example, the threads
previously run on compartment 3 can be migrated to compartment 6, replacing
lower criticality thread-copies previously run there. This requires compartment 6 to
copy the state of its newly assigned threads from compartment 1 or 2, at the cost
of executing the lower-criticality applications redundantly instead of with majority
voting.

e Instead of entirely de-scheduling one instance of each lower criticality threads, the
clock frequency on two compartments could be increased, allowing one of each high-
criticality thread to be migrated. In Figure 40b, this is depicted by moving the
threads from the failed compartment to compartments 5 and 6 without de-scheduling
instances of the low criticality threads. This is possible as coarse-grain lockstep only
requires an equivalent state between siblings upon reaching a checkpoint and no
cycle-accurate synchronization. Most modern embedded and mobile-market cores
support frequency scaling.

e Another possibility would be to instead increase the clock frequency of just one
compartment, if sufficient additional processing capacity can be made available that
way.

e Finally, in contrast to increasing the clock frequencies of individual compartments,
compartment 4-6’s schedulers could also assign less processing time to the lower-
criticality tasks as shown in Figure 40c. Due to timing implications for real-time
applications, this may only be possible for sporadic tasks, and background appli-
cations, which do not require a fixed amount of processing time. Also, to guaran-
tee equivalent work is conducted for the medium and lower-criticality threads, the
schedulers on 3 instead of just 2 compartments would require adjustment, wasting
processing capacity in Tile 4 and 6. However, during this idle time, Tile 4 could be
deactivated to reduce energy consumption.

The ideal recovery strategy depends on the current performance requirements towards
the OBC. Additional thoughts on this aspect are discussed, e.g., in [241], where dif-
ferent replacement strategies are described at a more mathematical level for video
streaming applications. In the next section, we therefore discuss a heuristic approach
to find near-best solutions to calculate this decision autonomously and rapidly, con-
sidering different performance requirements.

6.7 Adapting to Varying Mission Requirements

The approach described in the previous sections allows an OBC to meet a desired power
budget, maximize fault coverage, processing power, or even functionality. Hence,
the spacecraft can better fulfill its scientific or commercial mission, and increase the
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(a) Migration by low-criticality thread pruning.
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(b) Migration through clock-speed increase.
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(¢) Migration through processing time reduction.

Figure 40: A hexa-core MPSoC running 4 threads of mixed criticality (Essential, High,
Medium, and Low), where compartment 3 (yellow) suffered a hard fault. To retain major-
ity voting for the higher criticality threads, different recovery strategies can be facilitated
through, without directly requiring spares.
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spacecraft’s lifetime. Theoretically, all we need to do is find the ideal set of thread
mappings which fulfill our desired trade-off between processing capacity, FT, and
minimal energy consumption. These three performance objectives can be visualized
as depicted in Figure 41, and viable mappings can be found in the inner area outlined
in red.

These three objectives oppose each other, and fully dynamic performance opti-
mization at runtime is non-trivial and costly. Prior publications in computer science
(e.g., [241, 246])approaches such issues with computationally expensive optimization
algorithms to find the ideal solution, or design space exploration to find a large set of
near-best and chose the optimal solution either at runtime [241] or design time [246].
The latter defeats the purpose of run-time flexibility and adjustment. While design
space exploration at runtime is infeasible due to the limited processing capacity of a
supervisor, unless tight constraints are placed upon applications regarding structure
and functionality [241]. In practice, however, we do not have to find the singular “best
possible" solution when recovering from a fault, instead we just need a “good enough"
solutions yielded by a heuristic algorithm [247]. Once the system has been stabilized,
ample time will be available to further optimize the thread mapping and usually this
is done by the operator or flight software. The code of this algorithm is depicted in
Algorithm Listing 1.

To facilitate a heuristic approach, we first reduce these three competing objectives
to a set of performance profiles, examples of which are given in Table 42. In each

Fault Coverage

Area of Set of
Suitable Thread OptimealOThread
Mappings Mappings

/[ / \
ya y d——a \
ya y i \
ya y \

Speed
and | y Power
Functionality Saving

Figure 41: An MPSoC utilizing the presented approach can trade speed, energy efficiency,
and fault coverage at run-time. We utilize performance profiles for each objective to facilitate
a heuristic solution, which is located somewhere within the red highlighted area. This is an
approximation of one or multiple “ideal /optimal” thread-mappings, which can be computed
only with more processing time, through design-space exploration solution space (brute force).
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profile, criticality classes (essential - low) are assigned one or multiple execution modes:
separate execution with de-scheduling allowed, separate, redundant, majority voting,
or with more cores, e.g., to enable Byzantine voting (referred to as NMR, TMR,
DMR, separate, and de-schedule in Table 42). Duplicate assignments allow threads to
be mapped in either mode, to enable mode reduction in case of resource constraints.
For example, when running in the robustness profile, essential applications are always
assigned the desired number of cores, while high-criticality applications are at least
TMRed (depending on available resources). Other applications are preferably executed
TMRed, but may be executed also DMR to retain fault detection, in case of resource
exhaustion, instead of entirely de-scheduling lower criticality threads. Depending on
mission requirements, the operator can then select the most suitable performance
profile from a set of pre-generated at runtime, or could draft a new one.

To map threads, we build a new mapping for a task using the strongest desired
execution mode. We evaluate if this exceeds the available power budget (energy profile)
or processing capacity. If so, we begin reducing the execution mode of tasks beginning
with the last mapped and therefore lowest-criticality thread. If successful, we append
the mapped thread to a list and proceed with the next thread. To minimize the amount
of de-scheduled and mode reduced threads, we can sort threads of same criticality
based on required processing capacity. Thereby, computationally expensive threads
are reduced in execution mode first, freeing up larger amounts of processing resources.

If not all threads could be mapped, we can de-schedule lower-threads exceeding
the compute capacity, energy constraints, or allocate less processing time to specific
applications system. Once no further mode or processing time reductions are possible
due to real-time guarantees, we cease mapping new threads to uphold fault tolerance
guarantees for this reduced core system. As final step, we traverse the list from the
start and increasing execution mode to undoing mode reductions for as many threads
as possible. The supervisor itself only has to execute the latter part of this algorithm
and perform mode and processor time reduction, or de-schedule the lowest criticality
threads. It does not have to actually generate all these mappings as it does not enforce

Mode Performance | Power Saving | Robustness | Functionality
NMR E- - - E- - - EHML E- - -
TMR EHML EHML EHML EHML
DMR -HML - -ML -HML EHML
Separate - - - L - - -L - - ML EHML
Deschedule o N S _HML

Figure 42: Performance profiles with threads of different criticality levels (Essential, High,
Medium, Low) being assigned different replication levels to enable fault detection or different
voting configuration through thread replication. Arrows indicate the strategy used for choos-
ing mappings. E.g., In the Power Saving profile, all threads are first mapped in their highest
desired replication level, and then reduced beginning with the lowest priority threads until
the system’s thread mapping allows a given energy consumption threshold to be surpassed.
In the Performance or Robustness profiles, we instead attempt to achieve the highest level of
thread-replication that is possible with the given available processor compartments. In the
Functionality profile, we wish to retain a stable setup for essential application, even if this
requires lower criticality threads to be de-scheduled.
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ALGORITHM 1: Pseudo-Code of the Thread-Allocation Heuristics

10
11
12

13

14
15

16

17
18
19

20

21
22

23

24
25

Input: T;: List of Threads, P: performance profile, C': Set healthy Cores
Output: M: List of mapped thread-groups

1 for T; from Ty to T,, do

else

// Attempt to create a mapping for the thread
replication_level = getDesiredReplication(P, T5)
thread group = makeGroup(T;, replication level, C)
thread mapping = getTargetCores(thread group, C)

if isValid(thread mapping) then
L AppendGroup(M, thread group, targets)

// Failure, try to map with lower replication
lowest _replication = getLowestAllowedReplication(P, T;)

while replication_level is not lowest_replication do

// reduce replication level and retry

replication level = getLowerReplication(P, T;)
thread group = makeGroup(7;, replication _level, C')
thread mapping = getTargetCores(thread group, C)

if isValid(thread_mapping) then

AppendGroup(M, thread group, thread mapping)
goto line 1 // break out of nested loop and continue

/* Insufficient compute capacity available in the system. E.g., too many
compartments failed. Attept to reduce the replication level of an early
mapped higher priority application to free compute capacity.

for M; from M; to M, do

*/

t = getThread(M;)
others replication = getCurrentReplication(P, t)
lowest_replication = getLowestAllowedReplication(P, t)

while others_replication is not lowest_replication do

// Reduce replication for next higher priority group and retry
tryReduceReplication(P, M, M;, others replication, C)
thread mapping = getTargetCores(thread group, C)

if isValid(thread_mapping) then

AppendGroup(M, thread group, targets)
break

| // Can not reduce mapping, try to reduce earlier mapped thread

// Too-few compute resources, de-schedule and try to map next thread
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thread assignment in the system and only intervenes if necessary.

This algorithm also provides all mechanisms necessary to minimize the amount of
active processor cores, and as threads can be concentrated to as few compartments
as possible, maximizing the number of clock-gated cores. Individual tasks could also
signal preference for reduced processing instead of a mode reduction as the approach
itself is computationally inexpensive.

6.8 Discussions

We implemented the MPSoC architecture described in Section 6.5 using Xilinx Kintex
and Virtex FPGAs as well as the Zynq SDSoC platform [40], as these are relevant
for our target missions. However, for larger satellite platforms, this approach and
architecture could very well be implemented on ASIC, and we see this as a “big-
space" variant of our approach. An ASIC implementation would have lower energy
consumption, and allow higher clock rates due to tighter timing and shorter paths,
and be less susceptible to transient faults. If manufactured in an inherently radiation
hardened technology such as FD-Sol [144], the system as a whole would be considerably
more resistant to transient faults. Stage 2 would then be reduced to testing and
validate compartments, while no longer being able to recover faulty compartments
containing defective logic, but strong fault coverage of SEEs would be improved due
to RHBM.

Overall, an FPGA implementation offers stronger FDIR capabilities, better cover-
age for permanent faults, and high flexibility at low cost, while the ASIC variant could
offer better system performance and radiation tolerance due to RHBM. Custom ASIC
development of course is expensive and time-consuming, thus, the resulting implemen-
tation would not be a viable solution for most miniaturized satellite applications, and
therefore not in the scope of this technology development project.

The relaxed cost, energy, and size constraints aboard larger spacecraft allow an
implementation of our approach spanning multiple FPGAs. Compared to a single-
chip implementation, a multi-FPGA MPSoC variant offers better scalability due to
easier routing, can tolerate chip-level defects, and SEFTs to the globally shared memory
controllers, these can be distributed to different FPGAs. Replicated thread-instances
could then also be distributed across FPGAs, offering non-stop operation while one of
the FPGAs undergoes full reconfiguration. However, our proof-of-concept is focused
on a single-FPGA based prototype for nanosatellite use.

Our project is focused on payload data handling and platform control for miniatur-
ized spacecraft, and therefore accelerator cores supporting computational offloading
are outside the scope of our research. Nonetheless, it is possible to also protect accel-
erator systems using this approach, yielding at least similar benefits. The structure
and type of applications usually executed on accelerators is tightly constrained as
compared to general purpose platform control, simplifying lockstep replication and
thread-mapping. Especially synchronization for real-time applications and the impact
of live-migration between compartments or state-updates on a faulty compartment,
become much simpler if fully deterministic application behavior is assumed, as would
be the case for computational offloading.

Our existing MPSoC design utilizes an AXI interconnect, but we plan to rework our
MPSoC to instead use a NoC between compartments and shared memory controllers.
The existing interconnect implementation allows low-latency communication, but has



104 6.9. CONCLUSIONS

a large footprint, and is difficult to route? for larger compartment counts (without
optimization, we successfully placed 8 compartments). A NoC instead allows not only
better scalability and easier routing, but also enables the implementation of a broad
variety of FT concepts such as [93].

Tiles have direct read-only access to another compartment’s memory segment to
allow rapid thread migration and allow real-time capacity. However, direct access to
shared main memory is not necessary to facilitate Stages 1-3. The data exchange
required to facilitate thread migration could very well be implemented using IPC or
through sockets, when considering complex networked architectures. In distributed
systems, our approach could thus manage threads across multiple nodes sharing data
when required, at the cost of higher latency.

We developed this approach to guarantee FT for opaque threaded applications on
POSIX-compatible RTOS and general purpose operating systems such as RTEMS and
Linux. However, the same functionality can also be applied to virtualized, voted sys-
tems and to runtime based platforms. It would be very well imaginable to implement
Stage 1 within MicroPython or a hypervisor, and instead vote on Python scripts or
virtual machines.

6.9 Conclusions

To the best of our knowledge, the on-board computer (OBC) design presented in
this chapter is the first practical, non-proprietary, and affordable fault tolerance (FT)
approach suitable even for very small spacecraft. It offers strong fault coverage, using
just commercial-off-the-shelf hardware, library IP, and commodity processor cores,
requiring only a single FPGA and a microcontroller based supervisor. The software-
side FT approach outlined in Stage 1 is non-invasive to applications and the OS,
therefore existing software can be reused and extended easily, while retaining real-
time capabilities. The research presented in this chapter covers the entire FDIR loop,
and does not ignore or make unrealistic assumptions regarding fault detection.

Our approach enables the re-use of existing development tools and IP designed for
mass-produced mobile-market applications, taking an important step towards depart-
ing from the artisanal development approach in today’s space computing. Instead of
requiring new technologies to be re-invented constantly and maintained at high cost,
the FT mechanisms presented in this chapter are flexible, which can adapt and grow
with the development of computer and processor technology.

We do not just enable FT for a satellite class which so far has been considered
unreliable, but also enhance the fault coverage capabilities of OBCs in larger space-
craft, and other applications with similar constraints and fault profile. Our approach
facilitates majority voting through dynamic, replicated thread groups mapped to the
available processor cores dynamically at runtime, instead of hardwiring them. Thus,
all processing capacity, including spares, are part of a shared resource pool. Therefore,
spare resources can be used more efficiently, and allowing idle compute capacity to be
used productively until it is needed for fault coverage. An OBC running the presented
hybrid hardware-software F'T approach can adapt to varying mission requirements re-
garding adjusting the OBC transparently at run-time, trading processing capacity for
reduced energy consumption or increased fault coverage.

4We can still achieve a functional implementation meeting timing constraints at several hundred
megahertz, but the interconnect PBlock becomes disproportionately large.
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Reliable Data Storage for
Miniaturized Satellites

Memory Fault Tolerance

Reliable operation of an OBC can only be guaranteed if the integrity of the OBC’s
firmware, operating system, applications, as well as payload data can be safeguarded.
Chapter 7 is therefore dedicated to discussing storage fault tolerance to answer RQ4.
We discuss how the robustness of a nanosatellite’s volatile memory components can
be increased through software measures, as space-grade parts with strong erasure cod-
ing are not available to CubeSat designers. In the later parts of the chapter we cover
integrity protection for data stored in commercial non-volatile memory ICs. The re-
search presented in this chapter was published as finalist paper in the proceedings of the
ATAA/USU Conference on Small Satellites (SmallSat) [Fuchs15]. The sections related
to MRAM and flash memory were published in the proceedings of the International
Conference on Architecture of Computing Systems (ARCS) [Fuchs18] and the Space
System Engineering Conference Data Systems In Aerospace (DASIA) [Fuchs16].
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7.1 Introduction

Recent miniaturized satellite development shows a rapid increase in available com-
pute performance and storage capacity, but also in system complexity. CubeSats have
proven to be both versatile and efficient for various use-cases, thus have also become
platforms for an increasing variety of scientific payloads and even commercial appli-
cations. Such satellites also require an increased level of reliability in all subsystems
compared to educational satellites, due to prolonged mission duration and computing
burden. Nanosatellite computing will therefore evolve away from federated clusters of
microcontrollers towards more powerful, general purpose computers; a development
that could also be observed with larger spacecraft in the past. Certainly, an increased
computing burden also requires more sophisticated operating system (OS) or software,
making software-reuse a crucial aspect in future nanosatellite design. In commercial
and agency spaceflight, a concentration on few major OSs (e.g., RTEMS [248]) and
processors (e.g., LEON3 and RAD750) has therefore occurred. A similar evolution,
albeit much faster, can also be observed for miniaturized satellites.

To satisfy scientific and commercial objectives, miniaturized satellites will also
require increased data storage capacity for scientific data. Thus, many such satel-
lites have begun fielding a small but integrity-critical core system storage for soft-
ware, and a dedicated mass-memory for pre-processing and caching payload-generated
data. Unfortunately, traditional hardware-centered approaches to fault tolerance, also
increase costs, weight, complexity and energy consumption while decreasing over-
all performance. Therefore, such solutions (shielding, simple- and triple-modular-
redundancy — TMR) are often infeasible for miniaturized satellite design and unsuit-
able for nanosatellites. Also, hardware-based error detection and correction (EDAC)
becomes increasingly less effective if applied to modern high-density electronics due
to diminishing returns with fine structural widths. As a result of these concepts’ lim-
ited applicability, nanosatellite design is challenged by ever increasing long-term fault
coverage requirements.

7.1.1 Context and Application

Neither component level, nor hardware or software measures alone can guarantee suffi-
cient system consistency. However, hybrid solutions can increase reliability drastically
introducing negligible or no additional complexity. Software driven fault detection, iso-
lation and recovery from (hardware) errors (FDIR) is a proven approach also within
space-borne computing, though it is seldom implemented on nanosatellites. A broad
variety of measures capable of enhancing or enabling FDIR for on-board electronics
exists, especially for data storage. Combined hard- and software measures can strongly
increase reliability.

This research was conducted as part of the MOVE-II CubeSat project based upon
an ARM-Cortex processor as a platform for scientific payloads. To fulfill this role, the
traditional CubeSat approach to reliability, risk acceptance, does not suffice. Hence,
we designed MOVE-II’s on-board computer (OBC) to guarantee data integrity using
software side measures and affordable standard hardware where necessary. The capa-
bility to assure data integrity for program code and data is essential to then achieve
fault-tolerance for data processing elements and at the system level.

After a detailed evaluation of potential OSs for use aboard MOVE-II, we chose
the Linux kernel due to its adaptability, extensive soft-/hardware support and vast
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community. We decided against utilizing RTEMS mainly due to our limited software
development manpower, the intended application aboard our nanosatellite MOVE-II,
and the abundant compute power of recent OBCs.

7.1.2 Chapter Organization

Often, fault tolerance aboard spacecraft is only assured for processing components,
while the integrity of program code is neglected. In the next section, we thus outline
the importance of memory integrity as a foundation for fault-tolerant satellite comput-
ing and provide a view on the topic at a high level. To protect data stored in volatile
memory, we present a minimalist yet efficient approach to combine error scrubbing,
blacklisting, and error correction encoded (ECC) memory in Section 7.3. MOVE-
IT will utilize magnetoresistive random access memory (MRAM) [147] as firmware
storage, hence, we developed a POSIX-compatible filesystem offering memory protec-
tion, checksumming and forward error correction. This filesystem is being presented
in Section 7.4, can efficiently protect an OS- or firmware image and supports hard-
ware acceleration. Finally, a high performance dependable storage concept combining
block-level redundancy and composite erasure coding for highly scaled flash memory
was implemented to assure payload data integrity, the resulting concept is outlined in
Section 7.5. The final section of this chapter is used to discuss and wrap up the results
obtained herein.

7.2 Data Integrity as Foundation of Fault Tolerance

The increasing professionalization, prolonged mission duration, and a broader spec-
trum of scientific and commercial applications have resulted in many different propri-
etary on-board computer concepts for miniaturized satellites. Therefore, miniaturized
satellite development has not only seen a rapid increase in available compute power
and storage capacity, but also in system complexity. However, while system sophis-
tication has continuously increased, re-usability, reliability remained quite low [249].
Recent studies of all previously launched CubeSats show an overall launch success rate
of only 40% [41]. Such low reliability rates are unacceptable for missions with more
refined or long-term objectives, especially with commercial interests involved.

As nanosatellites consist mainly of electronics, connected to and controlled by the
OBC, achieving fault tolerance must begin with this component. Hence, an OBC’s
software and hardware must be designed to handle faults throughout a space mission,
not if, but when they occur. fault tolerance can only be assured if program code
and required supplementary data can be stored consistently and reliably aboard a
spacecraft. Thus, data storage integrity must be assured first and foremost, without
resorting to expensive, proprietary space-grade components that realize fault tolerance
in hardware.

To enable meaningful fault tolerance, data consistency must be assured both within
volatile and non-volatile memory, see Figure 43. Data is usually classified as either
system data or payload data stored in volatile or non-volatile memory. The storage
capacity required for system data may vary from few kilobytes (firmware images stored
within a microcontroller) to several megabytes (an OS kernel, its and accompanying
software). Very large OS installations and applications are uncommon aboard space-
craft and thus not considered in this chapter. Payload data storage on the other hand
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Figure 43: Data transiting or stored within components or system components shown in
yellow and white may be corrupted due to radiation effects. Components depicted in blue can
be safeguarded against data corruption using the concepts presented in the different sections
of this chapter as indicated.

requires much larger memory capacities ranging from several hundred megabytes to
many terabytes depending on the spacecraft’s mission, downlink bandwidth or link
budget, and mission duration. In addition, data and code will temporarily reside in
volatile system memory and of course the relevant memories within controllers and
processors (i.e. caches and registers) which again must satisfy entirely different re-
quirements to performance and size.

Due to these varying requirements, different memory technologies have become
popular for system data storage, payload data storage and volatile memory. In the
following sections, we will discuss and develop protective concepts to ensure memory
integrity aboard spacecraft with a special focus on our nanosatellite use-case. All
these concepts can be implemented at least as efficiently to larger satellites, as size
and energy restrictions are much less pressing aboard these vessels.
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7.3 Volatile Memory Consistency

Inevitably, data stored will at least temporarily reside within an OBC’s volatile mem-
ory and all current widely used memory technologies (e.g., SRAM, SDRAM) are prone
to radiation effects [250]. As a straightforwards solution, some OBCs were built to
utilize only (non-volatile) MRAM as system memory which is inherently immune to
SEUs and therefore allows OBC engineers to bypass additional integrity assurance
guarantees for RAM. However, MRAM currently can not be scaled to capacities large
enough to accommodate more complex OSs. Thus, while miniaturized satellites often
utilize custom firmware optimized for very low RAM usage, larger spacecraft as well
as most current and future nanosatellites do utilize DDR or SDRAM. For simplicity,
we will refer to these technologies as RAM in this chapter. However, it is not to be
confused with the use of the term RAM in Sections 7.4 and 7.5 of this chapter, as in
MRAM.

Radiation induced errors alongside device failover is often assured using error cor-
recting codes (ECC), which have been in use in space engineering for decades. How-
ever, a miniaturized satellite’s OS must take an active role in volatile memory integrity
assurance by reacting to ECC errors and testing the relevant memory areas for per-
manent faults. To avoid accumulating errors over time in less frequently accessed
memory, an OS must periodically perform scrubbing. In case of permanent errors,
software should cease utilizing such memory segments for future computation and
blacklist them to reduce the strain on the used erasure code. Assuming these FDIR
measures are implemented, a consistency regime based on memory validation, error
scrubbing and blacklisting can be established.

7.3.1 DRAM Corruption and Countermeasures

The fault profile for DRAM aboard CubeSats mainly includes two types of gradually
accumulating errors: soft-errors (bit-rot) and permanent (hard) errors. Depending on
the amount of data residing in RAM, even few hard errors can cripple an on-board
computer: the likelihood for the corruption of critical instructions increases drastically
over time. Therefore, to compensate for both hard and soft errors, ECC should be
introduced [158].

Modern DRAM chips benefit strongly from feature size reduction and run at very
high clock frequency, as a vast majority of a memory IC consists of memory cells. Soft
errors there occur on the Earth as well as in orbit, due to electrical effects and highly
charged particles originating from beyond our solar system. In case of such an error,
data is corrupted temporarily but, and once the relevant memory has been re-written,
consistency can be re-established. The likelihood of these events on the ground is
usually negligible as the Earth’s magnetic field and the atmosphere provide significant
protection from these events, thus weak or no erasure coding at all is applied.

Hard errors generally occur due to manufacturing flaws, ESD, thermal- and aging
effects. Thus, they may also occur or surface during an ongoing mission, further
information on the causes for hard-faults in RAM is described in detail in [251].

By utilizing ECC, integrity of the memory can be assured starting at boot-up,
though in contrast to other approaches ECC can not efficiently be applied in soft-
ware [252]. Due to the high performance requirements towards RAM, weak but fast
erasure codes such as single error correction Hamming codes with a word length of
8 bits are used [253,254]. ECC modules for space-use usually offer two or more
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bit-errors-per-word correction. These codes require additional storage space, thereby
reducing available net memory, and increase access latency due to the higher compu-
tational burden. Single-bit error correcting EDAC ASICs are available off-the-shelf at
minimal cost, whereas multi-bit error correcting ones are somewhat less common and
expensive. While such economical aspects are usually less pressing for miniaturized
satellites beyond the 10kg range, nanosatellite budgets usually are much more con-
strained prompting for alternative, lightweight low-budget-compatible solutions. In
the remainder of this section, we thus present a software driven approach to achieve a
high level of RAM fault-coverage. We do so using commercial ECC paired with soft-
ware measures, without expensive and comparably slow space-grade multi-bit-error
correcting logic.

Ultimately, strong ECC is not a satisfying final solution to RAM consistency re-
quirements due to inherent weaknesses of this approach to controller-faults, chip-level
failure, and data-economical reasons in prolonged operation. Highly charged parti-
cles impacting the silicon of RAM chips can also permanently damage the circuitry
of controller logic. In consequence, radiation can induce faults in control logic and
other infrastructure elements of a memory IC, which there can causing SEFIs [255].
In contrast to hard and soft error in memory logic, SEFIs and permanent faults in
controller logic can not be mitigated effectively through ECC. Instead, these should be
mitigated at the system level, if this is possible. In Chapter 9, we show how this can
be facilitated with commercial components. Otherwise, if no system-level mitigation
is possible, the OBC remains prone to chip-level faults.

7.3.2 A Software-Driven Memory Consistency Concept

When utilizing ECC, memory consistency is only assured at access time, unless spe-
cialized self-checking RAM concepts are applied in hardware [256,257]. Rarely used
data and code residing within memory will over time accumulate errors without the
OS being aware of this fact, unless scrubbing is performed regularly to detect and cor-
rect bit-errors before they can accumulate. The scrubbing frequency must be chosen
based on the amount of memory attached to the OBC, the expected system load and
the duration required for one full scrubbing-run [258]. Resource conserving scrubbing
intervals for common memory sizes aboard nanosatellites range from several minutes
up to an hour. Also, if a spacecraft were to pass through a region of space with ele-
vated radiation levels (e.g., the SAA), scrubbing should be performed directly before
and after passing through such regions.

As depicted in Figure 44, the DRAM integrity assurance measures usually real-
ized in hardware in traditional space-grade components can be also be facilitated in
software. We can construct a DRAM-integrity assurance regime using allocation-time
memory testing, software-realized error scrubbing, and OS-side blacklisting of memory
pages with defective blocks. All these elements can be realized in software using stan-
dard functionality, while a scrubbing tasks can be implemented within the OS’s kernel,
or even in userland. The specific implementation details therefore vary depending on
what level this functionality is realized in.

Concept Overview

At a high level, this concept can be described as follows:
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Figure 44: Integrity of volatile memory can be guaranteed if memory checking and ECC
(yellow), as well as memory blacklisting (blue) are combined. Scrubbing must be performed
periodically to avoid accumulating errors in rarely used code or data.
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Bootup: During operating system bootup, the second stage bootloader or OS Ker-
nel itself will execute platform bring-up code, may relocate the Kernel or RTOS code
from storage into faster main memory. Subsequently, it will then prepare key OS data
structure, and initialize core system functionality such as virtual memory, memory
protection, a kernel console and logging, if available. All of these operations occur
linearly, and require very little memory to be allocated. More memory intensive op-
erations will occur past this point.

Blacklist: We add functionality to read a matrix of bad memory pages, where pages
containing defective hard errors are marked. We can elegantly blacklist these memory
pages by simply reserving them, thereby preventing them from being issued at a later
stage. This is being done for performance and simplicity reasons, to avoid trigger-
ing ECC syndromes for known bad memory pages during operation, and performance
costs. As the integrity of this bit-matrix is critical, it should reside in radiation-immune
memory that does not suffer wear. Both FRAM and MRAM are viable technologies,
due to small size of this memory, and simply redundancy for this memory can be
realized as described in Chapter 9.

Operation: Once the bootup is completed, the Kernel will setup a suitable scrubbing
task to periodically perform error scrubbing on main-memory associated memory re-
gions. the OS will initialize flight software applications, and allocate memory for them.

Allocation: During operation of the flight software, whenever an application allo-
cated memory, the OS will test the integrity of a memory page before issuing it to the
consuming application. Should a memory page be discovered to be permanently de-
fective, it will be left allocated but not issued. As we assume the availability of virtual
memory, fragmentation of the memory map is a non issue. Memory allocation in most
operating systems is an atomic operation, with interrupts being disabled during the
operation. Hence, for the duration of memory allocation, no ECC syndromes will be
processed. At the end of allocation, in case an ECC syndrome interrupt is pending,
syndromes for bad memory pages will be discarded.

Scrubbing: Periodically, the scrubbing task set up during OS initialization will read
the entire DRAM address space, if hardware scrubbing is unavailable. This causes
rarely accessed memory regions to be refreshed, preventing bit-upsets to accumulate
there. The scrubbing application itself will not attempt to test if a page contains
permanent faults, it just triggers ECC syndromes. It can be implemented in a variety
of different ways, as described in Section 7.3.2.

Syndromes: We extend the functionality of the ECC syndrome handler, to not only
determine if the ECC error was recoverable or not, and to respond to it in a suitable
manner. Instead, we add functionality to test the relevant piece of memory to detect
if the ECC error was caused by a soft or hard fault. In case of a hard fault, the rele-
vant bit of the bad-memory matrix is flipped, and the page should no longer be used,
as far as this is possible for already issued in-use memory. If desired, the syndrome
handler can therefore consider ECC parameters in case multi-bit correcting ECC or
Reed-Solomon block coding are used. Then, a minimum delta between hard errors in
memory word and error correction capacity can be defined. This can help slow down
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the pace at which pages are discarded that contain faulty memory words.

Software-Implemented Scrubbing

In the case of a Linux Kernel and a GNU userland, a scrubbing task can most conve-
niently be implemented as a cron-job reading the OBC’s physical memory. For this
purpose, the device node /dev/mem is offered by the Linux Kernel as a character de-
vice. /dev/mem allows access to physical memory where scrubbing must begin at the
device specific SDRAM base address to which the RAM is mapped. Technically, even
common Unix programs like dd(1) could perform this task without requiring custom
written application software.

Another possibility would be to implement a Linux kernel module using timers to
perform the same task directly within kernel space. In this case, the scrubbing-module
could also directly react to detected faults by manipulating page table mappings or
initiating further checks to assure consistency. Execution within kernel mode would
also increase scrubbing speed, allowing more precise and reliable timing.

Memory Checking and Blacklisting

Unless very strong multi-bit-error correcting ECC (> 2 bit error correction) and scrub-
bing are utilized, ECC can not sufficiently protect a spacecraft’s RAM due to in-word-
collisions of soft- and hard errors as depicted in Figure 45. To avoid such collisions,
memory words containing hard faults should no longer be utilized, as any further
bit-flip would make the word non-recoverable [228]. Even when using multi-bit ECC,
memory should be blacklisted in case of grouped permanent defects which may be
induced due to radiation effects or manufacturing flaws as well.

Memory must also be validated upon allocation before being issued to a process.
Validation can be implemented either in hardware or software, with the hardware
variant offering superior testing performance over the software approach. However,
memory testing in hardware requires complex logic and circuitry, whereas the software
variant can be kept extremely simple. The Linux kernel offers the possibility to perform
these steps within the memory management subsystem for newly allocated pages for
ia32 processors already, and are currently porting this functionality to the ARMv7
MMU-code. In case the Linux kernel detects a fault in memory, the affected memory
page is reserved, thereby blacklisted from future use, and another validated and healthy
page is issued to the process. Therefore, we chose to rely upon this proven and much
simpler software-side approach.

The ia32 implementation does not retain this list of blacklisted memory regions
beyond a restart of the OS, though doing so is an important feature for use aboard a
satellite. As memory checking takes place at a very low kernel-level (MMU code es-
sentially works on registers directly and in part must be written in assembly), textual
logging is impossible and persistent storage would have to be realized in hardware.
An external logging facility implemented at this level would entail rather complex and
thus slow and error prone logic, thus, a logging based implementation is infeasible.
However, at this stage we can still utilize other functionality of the memory manage-
ment subsystem to access directly mapped non-volatile RAM, in which we can retain
this information beyond a reboot. Due to the small size required to store a page
bitmap, it can be stored within a small dedicated FRAM/MRAM module, read by
the bootloader and passed on to the kernel upon startup. This implementation can
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Stored Value:

0 1 0 1 0 1 0 1

Codeword with Parity:

0 1 0 1 0 1 0 1 0 1 1 1

Recoverable Codeword with Fault:

0 0 0 1 0 1 0 1 0 1 1 1

Unrecoverable Codeword with Hard and Soft-fault:

0 0 0 1 ono 1 0 1 1 1

Figure 45: With single-bit correcting ECC-RAM, a word should no longer be used once a
single hard-fault has been detected. Hard faults are depicted in black, soft faults in yellow,
erasure code parity in green.

thus enable multi-bit-error correcting equivalent protection without requiring costly
specialized hardware, while increasing system performance on strongly degraded sys-
tems.

7.4 A Radiation-Robust Filesystem for Space Use

The increased compute burden handled aboard modern nanosatellites also requires
more sophisticated operating system (OS) software, which in turn results in increased
code complexity and size [259].

For very simple computers, custom tailored OSs offer an excellent balance of size
and functionality. However, development of proprietary OSs for unique custom com-
puters has been abandoned in most of the IT industry, in favor of standard soft- and
hardware reuse. This is still an ongoing process in spaceflight, though already produc-
ing a focus on a few types of radiation hardened processor platforms (e.g., LEON3,
PPC750, RAD6000, see [260]) running common OSs [261,262]. The same evolution
has begun in nanosatellite computing, albeit much faster.

OSs popular in spaceflight such as RTEMS can consume less than 256KB of non-
volatile (nv) memory [263], whereas Linux requires at least 2MB. If such a larger
OS is used aboard a satellite, more sophisticated storage concepts are needed. Data
must be stored permanently and consistently throughout the mission lifetime. Space
missions often last between 5 and 10 years [264], but can reach 25 years or longer as
discussed in Chapter 3. Thus a satellite’s command and data handling (CDH), the
on-board computer, must guarantee integrity and recover degraded or damaged data
(error detection and correction — EDAC) over a prolonged period of time in a hostile
environment. We consider a filesystem the most resource conserving and efficient
approach, which also allows dynamically adjustable protection for the individual data
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structures. As Magnetoresistive Random-Access Memory (MRAM) [147] is widely
used for radiation resistant data storage in nanosatellites, and therefore we developed
FTRFS specifically for this technology.

7.4.1 Related Work and Preexisting File Systems

Filesystems often include performance optimizations such as disk head tracking, uti-
lization of data locality and caching. However, most of these enhancements do not
apply to storage technologies used in spaceflight. In fact, such optimizations add sig-
nificant code overhead, possibly resulting in a more error prone filesystem and may
even reduce performance.

Next-generation Filesystems, e.g., BTRFS, F2FS, and ZFS, are designed to
handle many-terabyte sized devices and RAID-pools. Silent data corruption has be-
come a practical issue with such large volumes [265]. Thus, these filesystems can
maintain checksums for data blocks and metadata. Due to their intended use in large
disk pools, they do also offer integrated multi-device functionality.

Multi-device functionality would certainly be advantageous, but neither ZFS nor
BTREFS scale to small storage volumes. Minimum volume sizes are far beyond what
current nanosatellite CDHs can offer. Technology scaling for the technologies strongly
drives development of these file systems continuously towards larger volumes Hence,
future development of these filesystems will require design decisions the conflict with
the needs for spaceflight applications.

Filesystems for flash devices, similar to the memory technology itself, have
evolved considerably over the past decade [266,267]. Upcoming filesystems already
handle challenges concerning potentially negative compression rates [268] or erase
block abstraction, offer proper wear leveling and interact with device EDAC func-
tionality (checksumming, spare handling and recovery). UFFS even offers integrity
protection for data and metadata using erasure codes.

Most new flash-filesystems interact directly with memory!, thereby are incom-
patible with other memory technologies unless flash properties are emulated. This
introduces further IO and may result in unnecessary data loss, as flash memory is of
course block oriented.

RAM filesystems are usually optimized for throughput or simplicity, often re-
sulting in a relatively slim codebase. If designed for volatile RAM, these filesystem
are optimized for simplicity and do not necessarily require a nondestructive unmount
procedure. Non-volatile RAM filesystems access data in memory directly avoiding
many of the indirection and abstraction layers required for more abstract memory
technologies [269], while some even utilize in-line compression to increase storage ca-
pacity [269].

Except for PRAMFS [270], none of these filesystems consider memory protection
to increase dependability. PRAMFS offers execute-in-place (XIP) support [271] and
is POSIX-compatible, but offers no data integrity protection.

In contrast to flash memories RAM filesystems are not block based, but benefit
from the ability to access data arbitrarily. Thereby, no intermediate block manage-
ment is required and read-erase-update cycles are unnecessary. While simple block-
layer EDAC would certainly be possible, structures within a RAM filesystem can be
protected individually allowing for stronger protection.

lin the case of Linux through the memory technology device subsystem (MTD)
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Open source space engineering and CDH research is directed mainly to-
wards testing radiation related properties of memory technologies [272,273] and on
NAND-flash in particular [274,275]. At the time of this writing, we are unaware of
advanced software-side non-flash driven storage concepts for space use.

7.4.2 FTRFS

We designed FTRFS as Fault-Tolerant Radiation-robust Filesystem for Space use. It
is intended to operate efficiently with small volumes(<4MB) and assure data integrity
for critical firmware-related data stored within COTS MRAM components. To fulfill
its purpose for storing a firmware image, it was designed to be bootable, and also
to allow for the capacity to scale much to larger volumes than can be achieved with
toggle-MRAM at the time of writing.

As base for this filesystem’s fault model, we assume that computational correctness
within the OBC itself can be assured. Furthermore, we assume that within the OBC,
ECC is applied to CPU-caches and RAM so that upsets in in-transit data can be
detected and mitigated before they are written to memory. A CPU running FTRFS
must be equipped with a memory management unit with its page-table residing in
ECC protected volatile memory. All other elements (e.g., periphery and ALUs), other
memories (e.g., registers and buffers) and in-transit data are considered potential error
sources.

Memory protection has been largely ignored in RAM-filesystem design. In part,
this can be attributed to a misconception of memory protection as a pure security-
measure against malware. However, for directly mapped nv-memory, memory protec-
tion introduces the memory management unit as a safeguard against data corruption
due to upsets in the system [276]. Thus, only in-use memory pages will be writable
even from kernel space, whereas the vast majority of memory is kept read-only, pro-
tected from misdirected write access i.e. due to SEUs in a register used for addressing
during a store operation.

FS-level data compression has been popular in size constrained filesystems. How-
ever, in our use case, well-compressible data, e.g., textual or binary log data, would
reside in flash or PCM. Hence for a satellite’s flight software firmware image will yield
little gain, a and we therefore do not realize data compression as part of FTRFS,
thereby allowing reduced code complexity and increasing performance.

After a detailed OS evaluation which was presented in [Fuchs12], we chose the Linux
kernel as the base for our filesystem due to its adaptability, extensive soft /hardware
support and vast community. We decided against utilizing RTEMS mainly due to our
limited software development manpower. Further details on this evaluation including
scoring data and a detailed description of the used criteria is available in [Fuchs12].

A loss of components has to be compensated at the software- or hardware level
through voting or simple redundancy. Multi-device capability was considered for this
filesystem, however it should rather be implemented below the filesystem level (e.g.,
via majority voting in hardware [277]) or as an overlay, e.g., RAIF [96].

The capability to detect and correct metadata and data errors was considered
crucial during development. Based on the mission duration, destination or the orbit a
spacecraft operates in, different levels of protection will be necessary. The protective
guarantees offered can be adjusted at format time or later through the use of additional
tools.
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Due to the relatively restricted system resources aboard a nanosatellite, crypto-
graphic checksums do not offer a significant benefit. Instead, CRC32 is utilized for
performance reasons in tandem with Reed-Solomon encoding (RS) [229].

Metadata Integrity Protection

For proper protection at the filesystem level, in addition to the stored filesystem objects
(inodes) and their data, all other metadata must be protected. Figure 46 depicts the
basic layout. Although similar to ext2 and PRAMFS [270], data addressing and bad
block handling work fundamentally different. We adapt memory protection from the
wprotect component of PRAMFS, as well as parts of the inode layout. PRAMFS is
licensed under GPLv2 and based upon ext2.

The Super Block (SB) is kept redundantly, as depicted in Figure 46. An update
to the SB always implies a refresh of the secondary SB, hence, hereafter no explicit
reference of the secondary SB will be made. The SB also contains EDAC parameters
for blocks, inodes and the bitmap.

The SB is the most critical structure within our filesystem, and is static after
volume creation. Its content is copied to system memory at mount time, thus it is
sufficient to assure SB consistency the first time it is accessed.

As the SB contains critical filesystem information, we avoid accumulating errors
over time through scrubbing. Thereby, the CRC checksum is re-evaluated each time
certain filesystem API functions (e.g., directory traversal) are performed.

A block-usage bitmap is dynamically allocated based on the overhead subtracted
data-block count and is appended to the secondary SB. The bitmap EDAC is also
dynamically sized and must be stored beyond the compile-time static SB, even though
placing it there would be convenient. Thus, the protection data is located in the first
block after the end of the bitmap, see Figure 46. In case the bitmap is extended, the
new part of the bitmap is initialized and then the error correction data is recomputed
at its new location. We refrain from re-computing and re-checking the EDAC data
upon each access, instead FEC data is checked before and updated after each relevant
operation has been concluded.

Inodes are kept as an array. Their consistency is of paramount importance as
they define the logical structure of the filesystem. The array’s length is determined
upon filesystem initialization and can change only if the volume is resized. As each
inode is an independent entity, an inode-table wide EDAC is unnecessary. Instead, we
extend and protect each inode individually.



118 7.4. A RADIATION-ROBUST FILESYSTEM FOR SPACE USE

i ) F
Flrs—t/_> First

C
=

F F

Root Parent
Tnode [€ < Eg Directory &Eg Inode [x]
=

\) eee E Last Inode 2x Indir. Block or
Last Last C in Directory Single Data Block

Figure 47: Each inode can either utilize direct addressing or double indirection. Extended
attributes are always addressed directly.

First Inode
in Directory 4

o]

xattr

QmT

Data Blocks [ ]

Coo |
Qmod

Y

Data Consistency and Organization

To optimize the filesystem towards both larger (e.g., a kernel image, a database) and
very small (e.g., scripts) files, direct and double indirect data addressing are supported,
as depicted in Figure 47. The filesystem selects automatically which method is used.
Data protection requirements vary depending on block size, and use case. Thus FTRFS
allows the user to adjust the protection strength for data blocks, as will be described
in the next section.

Data block size cannot be arbitrarily decreased, as some Linux kernel subsystems
assume them to be sized to a power of two. Instead, the filesystem internally utilizes
larger blocks to include EDAC data, see Figure 48.

Extended attributes (zattr) are deduplicated and referenced by one or more
inodes, as depicted in Figure 47. Like in PRAMFS, zattrs are stored as data blocks,
thereby we can treat these identically to regular data.

Nanosatellites, at least the non-classified ones, are not yet considered security crit-
ical devices. However, the application area of nanosatellites will expand considerably
in the future [220]. An increasing professionalization will introduce enhanced require-
ments regarding dependability and security. Shared-satellite usage scenarios as well
as technology testing satellites will certainly also require stronger security measures,
which can be implemented using zattrs.

An zattr block’s integrity is verified once its reference is resolved. Once all write
access (in bulk) has been concluded, the EDAC data is updated.

Algorithm Details and Performance

Our primary design objective was to create a filesystem which could be used to store a
full size-optimized Linux root FS including a kernel image safely over a long period of
time within an 8MB volume. There are numerous erasure codes available that could
be used to protect our filesystem, as discussed also by Wylie et al. in [102]. After
careful consideration, RS was chosen due to the following reasons:

e The algorithm is well analyzed, and widely used in various embedded scenarios,
including spacecraft.
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Figure 48: A data block subdivided into 5 subblocks. Separate checksums for the entire
data block, EDAC data and each subblock are depicted in blue, which EDAC data is depicted
in yellow.

e Highly optimized software implementations of RS encoder and decoder are avail-
able as part of standard libraries free of charge and are present in the Linux
kernel.

e Open-source and commercial IP-cores are available to achieve hardware accel-
erations in an FPGA-based system, e.g. from opencores, from Xilinx, and via
GRLIB.

e MRAM, while being SEU immune, is still prone to stray-writes, controller errors
and in-transit data corruption. Misdirected access within a page evades memory
protection and can then corrupt the filesystem, thus corrupted single-byte, 2, 4
and 8B runs will occur. RS relies upon symbol level error correction and can
support symbols longer than 8 bit to then allow much larger codewords. This
covers well the practical effects of faults will induce in commercial MRAM ICs.

RS decoding is computationally expensive, thus we split protected data into sub-
blocks sized to 128B plus the user specified error number of correction-roots simplifying
addressing and guaranteeing data alignment for power-of-two correction-root counts.
Inodes and SBs can be fit into one single RS-code, while data block length does not
result in extreme checking times. To skip the expensive RS decoding step during
regular operation, a CRC32 checksum allows high-performance checking. The RS-
code is only read in case the checksum is invalid.

Data blocks are divided into subblocks so the filesystem can make optimal use of
the RS code length. For common block-sizes and error correction strengths, 5 to 19 RS
codes are necessary, see Table 4 for information on expected overhead. The correction
data is accumulated at the end of the data block. Checksums across the entire block’s
data, each subblock and the error correction data are also retained. The resulting data
format is depicted in Figure 48. Protection can be enhanced further by performing
symbol interleaving for the RS codes and the block data, at the cost of performance.

Filesystem traversal and data access will eventually slow down for strongly de-
graded storage volumes. As we immediately commit corrected data to memory, per-
formance degradation is only temporary, assuming soft-faults.
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Results and Current Status

FTRFS has been implemented for the Linux kernel. Due to its POSIX-compliance, it
could easily be ported to other platforms. The memory protection functionality has
been inherited from PRAMEFS, the filesystem structure from ext2. We utilize the RS
implementation of the Linux kernel, as its API also supports hardware acceleration.

Several components of the filesystem should undergo an optimization process,
which will increase fault coverage capacity and read/write performance. Even though
we have not yet conducted long-term benchmarking and performance analysis, the
throughput degradation during regular operations is minimal: most modern mobile-
market CPU cores can compute CRC32 within a few clock cycles due to hardware
acceleration. We intend to publish additional performance and energy consumption
metrics, once testing has been concluded and basic optimizations have been applied
and the OBC computer has been finalized.

Data is read and written once per access. It is good practice in critical scenarios and
especially spaceflight to read and write data multiple times, or deploy more advanced
consistency checking techniques [278]. These changes could be applied in bulk, through
a macro, or compiler side.

The level of protection offered by FTRFS is adjustable during volume creation, or
later by using a proprietary filesystem-tuning tool. RS has a long record of space use
in CDH and communications. Thus, we know the algorithm offers efficient protection
regarding our threat scenario. Once testing has been concluded, we will perform long-
term performance analysis in a degraded environment. To benchmark the filesystem,
data degradation can be introduced through fault injection.

Limitations and Advanced Applications

It is debatable whether journaling would increase FTRFS’s reliability, as it usually
helps safeguard filesystem consistency with slow storage media [279] due to power loss
or disconnect. Spontaneous power loss for an OBC could also occur aboard a spacecraft
due to EPS malfunction, but in most cases the practical effects of such an event can be
handled differently at the design side. Spacecraft are battery backed and can utilize
power electronics with a sufficient hold-back time to notify and gracefully shut down
an OBC in case of EPS failure. All access in our filesystem happens synchronously,

Data Size EC-Symbols Words Parity Overhead Overhead
Structure (B) per Word per Block (B) (B) (%)
Super Block 128 32 1 32 68 53.13%
Inode 160 32 1 32 68 42.50%
Data Blocks 1024 4 5 20 68 5.86%
1024 16 5 80 188 17.58%
4096 4 17 68 212 4.98%
4096 16 19 304 692 16.70%
Bitmap 1773 32 10 320 688 38.80%

Table 4: EDAC overhead for FS structures. 16MB volume size, 5% inodes, 1024B bock size
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and MRAM still allows rapid access unlike classical mechanical disks. Hence, FTRFS
can thus either conclude a pending write operation within the remaining active time,
or the OS will have sufficient time to cancel pending writes in case the system has
sufficient warning time. We therefore do not implement journaling.

Our filesystem implementation can currently not handle the failure of entire mem-
ory ICs holding the volume, or component-level SEFIs. However, FTRFS could be
extended to support RAID-like features to compensate for device failure [277].

If data is stored with RS-symbol interleaving, an XIP mapping would technically
be impossible. XIP could still perform mappings for non-interleaved data though,
but thereby only the clear-text part of each RS code would be mapped and read.
Via this memory mapping, integrity protection for stored file data would be ignored,
unless we accept that a potential XIP mapping would allow program code to be
loaded/executed without any integrity checking. Thereby, the integrity assumptions
upon which FTRFS’s concept is based would be violated and integrity could not be
guaranteed for any executed program stored on the filesystem. Theoretically, data
integrity could also be checked each time a mapping is established for a block. To
perform these checks however, this data would have to be read in full, obsoleting the
performance advantage and RAM conserving properties of XIP. XIP and filesystem-
level data integrity protection can thus be considered mutually exclusive.

Permanent faults would cause fault effects to be corrected upon every access to
a memory word, which is inefficient Fault in frequently accessed file system compo-
nents (e.g., int the root inode), could therefore degrade the performance of FTRFS. In
the current filesystem implementation, there is no functionality to avoid this behav-
ior completely. Bad-block relocation is implemented within the filesystem, but only
applied during file data write, truncate and allocation operations. This functionality
could also be applied to file data read operations as well as for accessed inodes to
increase robustness.

FTRFS could also operate on different memory technologies than MRAM, as long
as data in this memory is directly addressable RAM or mapped through OS-kernel
means (mmap). For more abstract memory technologies such as Flash, FTRFS is
not an optimal solution and a block-based approach as described in the next section
should be used.

7.5 High-Performance Flash Memory Integrity

Scientific and future commercial space missions as well as miniaturized satellites im-
pose increasing demands on their on-board computer (OBC) systems, especially data
storage devices [280]. They may require vast amounts of data to be stored, high
throughput, and the possibility for concurrent access of multiple threads, programs
or devices. While satisfying these requirements, storage systems must guarantee data
integrity and the recovery of degraded or damaged data (error detection and correc-
tion — EDAC) over a prolonged period of time in a hostile environment. Consistent
data storage becomes even more crucial for long-term missions (e.g., JUICE [281] and
Euclid [282]) or in cases where highly scaled memory is used.

Legacy memory technologies can not be scaled for modern storage applications
due to mass and energy restrictions or result in high complex storage systems. Thus,
single-level cell NAND-flash memories (SLC), have become popular for high perfor-
mance mass memory scenarios as they offer reasonably high packing density, and can
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be manufactured sufficiently radiation hardened. The chip-industry has moved on
from SLC to multi-level cell flash memories (MLC) due to economical reasons. There-
fore, SLC will become unavailable and will force future spacecraft storage concepts
to rely upon MLC or entirely different memory technologies. While there are promis-
ing candidates [283] to fill this role in the long run, technological evolution does not
yet allow, for example, non-volatile magnetoresistive RAM (MRAM) to be used as
mass storage [272]. Phase change [284] or charge-trap based memory both would at
present be usable as mass storage, but are not yet widely available in high density
versions [157].

Traditionally, single-bit error correction, shielding, specialized manufacturing tech-
niques, coarse structure width and redundancy are combined to enable radiation tol-
erant flash [285]. However, the protective level offered by such solutions is static
and fixed at design-time and can result in high cost and low overall efficiency. For
miniaturized satellites, cost and efficiency are crucial, thus, countermeasures must be
implemented at a different level. With modern MLC-flash single bit error correction is
insufficient and all-in-one solutions, such as file systems, tend to become very complex
and difficult to debug. For future prolonged missions and larger storage arrays, more
sophisticated and efficient EDAC concepts are required. Thus, we present an advanced
high performance dependable storage concept based on composite erasure coding. As
MLC-flash is also widely used aboard miniaturized satellites, and the authors are in-
volved in developing such a satellite, MOVE-II, development was originally driven by
nanosatellite requirements. However, the approach can be applied more efficiently to
commercial applications where miniaturization imposed limitations do not apply. The
concept could be implemented even more efficiently with very large volumes common
in commercial spaceflight applications. It can be implemented entirely in software,
with or without hardware acceleration, but also partially or fully in hardware.

Single- and Multi-Level Cell Flash

Each flash memory cell contains a single field effect transistor with an additional
floating gate, the basic functionality of which is described further in Chapter 3. The
state of a flash memory cell depends on whether the charge stored in the floating gate
exceeds a specific threshold voltage (V;). Hence, a flash memory cell is dependent on
the capability of the memory cell structure to retain a charge. If the voltage exceeds
the threshold, a cell can be read as programmed (0), else as erased (1), see Figure 49a.
Single Level Cell Flash (SLC) cells can store one bit per cell.

The charge in an MLC cell can represent more than two states by introducing
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Figure 49: The voltage reference and threshold levels of SLC- flash cells (a) and MLC cells
with 4 (b) and 8 voltage levels (c).
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Figure 50: Radiation-induced bit upsets encountered in 4- (a) and 8-level (b) MLC cells.

additional voltage thresholds. Assuming a four level cell, one can hold four states and
represent two bits, as depicted in Figure 49b. The number of levels is not restricted
to four, with 2" states it is possible to encode n bits, but electrical complexity grows
and the required read sensitivity and write specificity increase with the number of bits
represented. Within nearly the same area of silicon, MLC flash memory thus allows
a much higher packing density and the structure itself can be stacked and scaled
well [286].

As the delta between voltage thresholds decreases due an increased number of
state-levels, increased sensing accuracy is required for read operations, and more pre-
cise charge-placement on the floating gate is necessary. MLC memory is thus more
dependent on its cells’ ability to retain charge. In contrast to SLC, a state machine is
required for addressing MLC memory which in turn increases latency and adds con-
siderable overhead logic. Addressing in MLC flash can thus take multiple cycles and
the state machine may hang or introduce arbitrary delays.

Due to a shifting voltage threshold in floating gate cells caused by the total ionizing
dose, MLC flash memories are more susceptible to bit errors than SLC [153, 287].
Depending on the number of bits represented within a cell, a varying amount of data
may thereby be corrupted by a single particle event, as depicted in see Figure 50.
EDAC measures must thus compensate for more than single bit corruptions within a
given word. Thus software or a filesystem must implement appropriate functionality
to handle these effects in addition to erasure coding to safeguard from radiation.

Flash Memory Organization

NAND-flash memories are organized in blocks, consisting of multiple pages, in which
cells are connected as NAND gates. In most NAND technologies, pages can be written
and read individually, but only the block as a whole can be erased. The drawback
here is that if a NAND-flash cell fails, the entire NAND block is affected. In NOR-
flash, cells form NOR gates, which allow more fine grained read access at the cost of
strongly increased wiring and controller overhead. Therefore, in order to appropriately
handle NAND-flash block corruption, a filesystem must handle read/write and erase
abstraction, as well as basic block FDIR. This is done through the introduction of an
additional layer of functionality, the flash translation layer (FTL). When data is writ-
ten to a flash block, partial erase operations are (usually) impossible and the entire
block’s previous content first has to be read and updated. Next, the block must be
erased (by draining the block’s cells’ voltage) and may subsequently be programmed
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anew per page. Thus, read and write operations introduce different latency and make
access to MLC flash much more complicated than to SLC due to the required address-
ing state machine.

To access data and handle special properties of flash efficiently, a filesystem has
to interact with the memory device directly or via the OS’s FTL. A flash filesystem
must implement all functionality necessary to perform block wear leveling, read and
erase block abstraction, bad-block relocation and garbage collection (depicted in blue
in Figure 51) to prevent premature degradation and failure of a bank. The FTL acts
as an interface between hardware specific device drivers and the filesystem, and can
provide part of this FDIR functionality instead of the filesystem. In commercial SSD
applications, this is handled by the SSD’s controller and hidden from the OBC.

Over time, a flash memory bank will accumulate defective pages and blocks hve to
and utilize spare pages and blocks to compensate. Traditionally, simple erasure coding
(usually some form of cyclic block codes with large symbol sizes) is applied in software
or by the controller to counter wear and charge leakage. Eventually, the pool of spares
will be depleted, in which case the FTL or filesystem will begin recycling less defective
blocks and compensate with erasure coding only, thereby sacrificing performance to
a certain degree. For space use, the erasure codes’ symbol size is usually reduced
to support one or two bit correcting erasure coding, as corruption will mostly result
from radiation effects. However, if this solution is applied for MLC-NAND-flash,
block EDAC becomes very inefficient due to the occurrence of both single bit- and
grouped errors, the latter being induced by SEUs affecting multiple cells in highly
scaled memory.

Majority Voting for Flash Memories

While voting is technically still possible for MLC-flash, it is severely constrained by
the additional circuitry, logic and strongly varying timing behavior. Voting would
have to be implemented for the addressing state machine as well, otherwise it could
stall the entire voting circuit or permanently disable its memory bank. Due to the
varying timing behavior of NAND-flash and the more complex logic, the resulting
voter-circuit thus becomes more error prone. The added logic also requires more
energy and reduces overall performance. Of course the slowest memory bank or block
also dictates performance of the voting circuit.

7.5.1 The MTD-mirror Middleware Layer

As outlined in the previous sections, error correction is crucial for current data storage
based on NAND-flash. To enable future dependable MLC-NAND-flash based data
storage solutions for space flight applications, existing EDAC functionality can be
adapted and improvements added where necessary. Thus, we developed a storage
system to satisfy the following requirements:

1. Efficient, fast data storage on MLC mass-memory.

2. Integrity protection and error correction with adjustable strength, to allow op-
timization according to mission duration, environment and type.

3. Efficient handling of direct and indirect radiation effects on the memory as well
as the control logic.
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4. Protection against device failure.

5. Low soft- and hardware complexity: While a certain level of complexity is ac-
ceptable for commercial spaceflight applications, it is crucial in microsatellite
design.

6. Universal filesystem support and interactivity.

We consider these requirements to be met best through enhanced EDAC function-
ality as FTL-middleware. At this level, RAID-like features and checksumming can be
combined most effectively with a composite erasure coding system. As our use case
includes a Linux based OBC, we implemented MTD-mirror on the memory technology
device (MTD) FTL subsystem of the Linux Kernel. The solution is depicted in Figure
51. Any unmodified flash-aware filesystem can be deployed on top of the MTD-mirror
set. By utilizing mirroring (RAID1) and distributed parity (RAID5/6) we can there-
fore protect against device, bank and block failure. Within this section we focus on
mirroring, as the basic concept is very similar to distributed parity sets.

To safeguard against permanent block defects, single event functional interrupts,
radiation induced programmatic errors and logic related problems, we apply coarse
symbol level erasure coding. As this is insufficient to compensate for radiation effects,
silent data corruption and bit flips are compensated using bit-wise error correction.
The solution was implemented in the FTL, as the required logic can still be kept
abstract and device independent while it can profit significantly from hardware ac-
celeration. The FTL-middleware also provides enhanced diagnostics, as no further
abstraction is introduced.

API

Virtual File System

Pre-Existing Flash File System

Read Block Wear Bad Block
Abstraction Leveling Relocation
Erase Block Block Garbage
Abstraction EDAC Collection
MTD-mirror MTD-Subsystem
NAND-Flash

Figure 51: Memory access hierarchy for an MTD-Mirror set. Flash-memory specific logic is
depicted in blue and partially resides within the FTL. Required modifications to enable the
concept are depicted in yellow.
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Alternative Approaches

EDAC and device independence could also be provided by an filesystem directly, which
we showed for MRAM with FTRFS in Section 7.4. A Flash filesystem such as UFFS
could be extended to handle multiple memory devices and EDAC, or FTRFS could
be modified to handle flash memory. Even though possible to implement, such an
all-in-one filesystem would be complex and error prone.

Device independence could also be added on top of an existing flash filesystem as a
separate layer of software [96], see Figure 52. Within a RAIF set, increased protective
requirements could be satisfied with additional redundant copies of the filesystem
content. The underlying individual filesystems would then have to handle all EDAC
functionality and escalate fatal errors and unrecoverable file issues to the set, as RAIF
by itself does not offer any integrity guarantees beyond filesystem or file failure.

Since RAIF only reads from underlying filesystems, it is prone to filesystem-
metadata corruption which can result in single block errors failing entire filesystems.
Additionally, Flash-filesystems usually rely upon parameter-fixed block based error
correction and do not offer configurable protection for different filesystem structures,
which is at best sub-optimal for space use.

A file damaged in different locations across the set’s filesystems would become
unrecoverable as RAIF would discard information regarding the location of damage to
a file and in the best case would forward a defective copy to the application. It would
therefore inhibit error correction and may even cripple recovery of larger files. While
RAIF could be adapted to handle these issues, the resulting storage architecture would
again become very complex, difficult to validate and debug. As RAIF implements
filesystem redundancy, its storage efficiency will furthermore be inferior to distributed
parity concepts such as the more advanced variants of the presented concept. As

API
RAIF
Virtual File System

File EDAC

Garbage
Collection Meta
Data

Block EDAC

Relocation

Flash File System

Erase Block Block
Abstraction EDAC

Read Block Wear
Abstraction Leveling

Flash Translation Layer

NAND-Flash

Figure 52: Memory access hierarchy for an enhanced RAIF based concept with added
filesystem level error correction.
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a pure software layer without the possibility to interact with the devices, hardware
acceleration of RAIF would be impossible.

Device Failure and SEFI Protection

In contrast to RAIF, RAID can been applied efficiently to storage architectures and
has been used previously aboard spacecraft (e.g., in the GAIA mission) [288]. However,
these were based on SLC (see Section 7.5) and only relied on RAID to achieve device
failover through data mirroring (RAID1) and distributed parity (RAID5/6) [288,289].
As RAID itself does not offer any integrity guarantees beyond protection against read
device failure, designs usually rely upon the block level hardware error correction
provided by the flash memory or controller or implement simple parity only.

The main issue encountered with plain RAID setups is the absence of validation
for a block or group of blocks. RAID merely retains redundant copies of data — parity
— which can be used to restore lost data. RAID foresees that a data block is either
unrecoverably lost (signaled by a read error) or fully intact; it is thereby prone to
silent data corruption encountered in flash memory [72]. As the basic RAID concepts
do not utilize checksumming to verify integrity, corrupted data will be read and used
even if sufficient parity or valid copies were available. However, once checksumming
and forward error correction is added to RAID levels, they can be utilized aboard
spacecraft efficiently.

The even distribution of bit-errors would be troublesome for symbol based erasure

API

Virtual File System

Flash File System
Read Block Wear Block
Abstraction Leveling Relocation
Erase Block Block Garbage
Abstraction EDAC Collection
FEC | RAID1

MTD-blockdev

Memory Technology Device Subsystem

NAND-Flash

Figure 53: RAID prevents EDAC and wear leveling functionality withing a flash-filesystem
from being implemented. Affected elements are colorized in gray.
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Figure 54: The layout of an MTD-mirror page. Added erasure code correction information
is depicted in yellow, checksums in blue.

codes traditionally applied for flash block EDAC. Utilizing RAID on top of block based
erasure coding is thus insufficient for protecting MLC-NAND-flash.

RAID functionality usually would be implemented as a block layer. This is certainly
possible also for flash memory, however it would hinder the file system from performing
block EDAC and wear leveling. While block abstraction would still be possible even on
top of a block layer on-top of the FTL, other high-level filesystem functionality would
be denied device access, depicted in red in Figure 53. These functions would then
have to be implemented at a much lower level within the access hierarchy, introducing
further code overhead and reducing EDAC efficiency.

RAID-like functionality could however also be implemented as a middleware within
the FTL as depicted in Figure 51. As such, it can interact both with the underlying
flash memory as well as the filesystem and the rest of the FTL, without requiring
alterations to either. Such middleware can remain previous to filesystem operations
requiring direct interactivity with the underlying flash and at the same time allow
device failure protection to be combined with enhanced erasure coding. RAID can
therein be implemented with comparably little effort. Validation, testing and analysis
can thus be simplified as all implementation work can be concentrated into an FTL
middleware module.

Block-Level Consistency

MTD-mirror’s block consistency protection is depicted in Figure 54 and includes two
checksums and error encoding layers. Thus, it implements a concatenated/composite
erasure code system. The data checksum allows bypassing decoding of intact data,
which will often be the optimistic default case. The second checksum can be used
for error-scrubbing of erasure data and prevents symbol drift of the RS-layer. Even
though CRC16 could be considered sufficient for most common page and block sizes,
we utilize a 32-bit checksum to further minimize collision probability at a minimal
compute overhead.

Protection against Multi-Bit Upsets

The first layer of erasure coding is based on relatively coarse symbols and protects
against data corruption induced by stray writes, controller issues and multi-bit errors.
As data on NAND-flash is stored in pages and blocks of fixed length and the coding
layer should protect against corruption up to 8 byte length (int64_t), Reed-Solomon
(RS) erasure coding [103] was selected. We chose to rely on the RS block code as the
algorithm is well analyzed, and widely used with NAND-flash memory and in various
embedded scenarios, including spacecraft. Optimized software implementations, IP-
cores and hardware acceleration are available.
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Erasure coding with coarse symbols is efficient if symbols are largely or entirely
corrupted, but shows weak performance when compensating radiation-induced bit-
rot, to which MLC is comparably prone. SEUs will be evenly distributed across the
memory and will thus equally degrade all data of a code word, corrupting multiple code
symbols with comparably few bit errors. Therefore, RS is applied at the page level,
instead of the block level to allow more efficient reads and avoid access to other pages
within the same block to retrieve erasure coding parity. RS parity is therefore stored
within each page, together with a checksum for the page and the parity. RS encoding
and decoding can be should parallelized due to the small word sizes in hardware.

Bit-Level Erasure Coding

Previous radiation-tolerant OBC storage concepts often relied upon convolution codes
as these allow efficient single-bit error correction. However, as error-models become
more complex (2-bit errors as in MLC), codes complexity increases and efficiency
diminishes. Therefore, a second level of erasure coding using Low-Density Parity
Check Codes (LDPC) [290] was added to counter single or double bit-flips within
individual code symbols of the first level RS code. LDPC was chosen as it is efficient
with very small symbol sizes (1 or two bit), offers superior performance compared
to convolution codes [291], and allows iterative decoding [292]. Ouly if RS decoding
fails, the set resorts to LDPC. LCPC can then support recovery of slightly corrupted
RS-symbols and parity. Thereby otherwise unrecoverable data can be repaired by
salvaging damaged symbols which can drastically increase recovery rates on radiation-
degraded memories.

Although LDPC codes benefit from longer code word lengths, Morita et al. [293]
show that the gain from a 4KB code to a 32KB code can be negligible. For systems
where buffer memory is scarce, it may therefore be of advantage to use comparably
small codes and sacrifice a bit of LDPC performance. Thus, an LDPC word size
between 3 and 4KB offers solid LDPC performance without requiring very large words
and thereby enable fast iterative decoding.

Joint Iterative Decoding using Soft-Output Shorter code words also enable
joint iterative decoding [294] using soft-output for both LDPC and RS codes. LDPC
can be adjusted to output not only plain copy of the expected original code word,
but can also yield the decoder’s certainty about each bit’s value. Equally, an RS
decoder could be extended to handle such soft-input. Then, it could attempt decoding
to decode multiple variants of a corrupted word using different uncertain positional
values from the LDPC soft-output.

In practice, this allows us to produce linear composite erasure coding system,
which we depict in Figure 55. However, decoding does not have to happen linearly:
A hardware-implemented LDPC decoder has a considerable logic footprint, while RS
decoding can be parallelized. Hence, it may be desirable to construct such a composite
system by paralellizing RS decoding.

As depicted in Figure 55, a closed feedback-loop that inputs the soft message output
R(Y) of the LDPC decoder into RS can be constructed. The system iterates between
RS and LDPC decoding until either decoder can reconstruct a valid code word. To
tackle the issue of the thereby variable timing behavior, the number of iterations can
be limited or a timeout can be defined.
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Error Handling Runtime Behavior In case the checksum does not match the
plain block data, an MTD-mirror set will first attempt to retrieve an intact copy of the
data from another memory of the RAID-set. If this fails, or all other blocks are invalid
as well, erasure decoding for the damaged block is attempted. As multiple copies of
the erasure code parity data and checksums are available, the set can also attempt
repair using fields of different blocks in the hope of obtaining a consistent combination
of block-data. This behavior can allow recovery even of strongly degraded data or
permanently defective blocks.

As RS hardware-acceleration is readily available in our use-case, we apply the two
FEC layers in order (Figure 54). However, the sequence can be chosen based on the
individual system design, the used algorithmic parameters, the available acceleration
possibilities and phase of the mission. An important aspect for this decision is the
expected level of degradation of the utilized flash memory due to radiation, thus the
occurrence of single bit errors. If severe bit-rot is expected or higher order density
MLC is used, the LDPC-layer should be applied prior to RS decoding. Thereby, the
increased probability of the second FEC layer failing to recover data is accepted in the
hope of achieving a sufficiently high amount of intact code symbols.

7.5.2 Advanced Applications

In this section, we focused on describing a storage solution based on RAID1 for
simplicity reasons. While the logic required to implement this storage solution is
relatively simple, more advanced distributed parity RAID concepts offer increased
mass/cost/energy efficiency due to overhead reduction. Thus, we have been working
to adapt and expand MTD-mirror to benefit from such more advanced architectures.

There has been prior research on adding checksumming support to RAID5 in [288,
289], though utilizing RAID5 directly would introduce certain problematic aspects.
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Figure 55: Joint iterative decoding using LDPC soft-output with added parallelization
(triple-arrows). RS encoding can be parallelized to increase write-throughput. Speculative
RS-decoding could be utilized to reduce LDPC iterations by performing multiple parallel
RS-decoding attempts with different values for low-certainty bits.
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Error correction information in RAID5C can either be stored redundantly with each
block, introducing unnecessary overhead, or as single copy within the parity-block.
While this would increase the net storage capacity, a single point of failure would be
introduced for each block group. If the parity block was lost, the integrity of data
which was protected by this block could no longer be verified. Instead, RAID5 can
be applied to data and error correction information independently, only requiring one
extra checksum to be stored with each block.

RAIDG6, however, can be implemented almost as-is, with error correction data and
checksums being stored directly on the two or more parity blocks associated with each
group. There are also promising concepts for utilizing erasure coding for generating
parity blocks by themselves, thereby obsoleting simple hamming-distance based parity
coding [97,295]. Further research on this topic is required and may enable optimization
for flash memory and radiation aspects similar to the ones described in this paper.

7.6 Conclusions

In this chapter we presented three software-driven concepts to assure storage consis-
tency, each specifically designed towards protecting key OBC components: a system
for volatile memory protection, FTRFS to protect firmware or OS images and MTD-
mirror to safeguard payload data. All outlined solutions can be applied to different
OBC designs and do not require the OBC to be specifically designed for them. They
can be used universally in miniaturized satellite architectures for both long and short-
term missions, thereby laying the foundation to fault tolerance at the system level. In
contrast to earlier concepts, none of the approaches requires or enforces design-time
fixed protection parameters. Both can be implemented either completely in software,
or as hardware accelerated hybrids. The protective guarantees offered are fully run-
time configurable.

Assuring integrity of core system storage up to a size of several gigabytes, FTRFS
enables a software-side protective scheme against data degradation. Thereby, we have
demonstrated the feasibility of a simple bootable, POSIX-compatible filesystem which
can efficiently protect a full OS image. The MTD-mirror middleware enables reliable
high-performance MLC-NAND-flash usage with a minimal set of software and logic.
MTD-mirror is independent of the particular memory devices and can be entirely
based on nanosatellite-compatible flash chips by utilizing FEC enabled RAID1 and
checksumming.

Neither traditional hardware nor pure software measures individually can guarantee
sufficiently strong system consistency for long-term missions. Traditionally, stronger
EDAC and component-redundancy are used to compensate for radiation effects in
space systems, which does not scale for complex systems and results in increased en-
ergy consumption. While redundancy and hardware-side voting can protect well from
device failure, data integrity protection is difficult at this level. A combination of hard-
ware and software measures, as outlined in this chapter, thus can increase robustness,
especially for missions with a very long duration. Thereby, a low-complexity satellite
architecture can be maintained, thereby error sources reduced, while testability and
throughput can be increased.
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Chapter 8

Validating
Software-Implemented Fault
Tolerance

Systematic Fault Injection

In this chapter, we test and wvalidate the software-mechanisms that are the founda-
tion of our fault tolerance architecture to address RQ5. Therefore, we conducted a
fault-injection campaign through system emulation with QEMU into a ARMuv7a-SoC
matching our architecture target ARM’s Cortex-A53. Our results show that our lock-
step implementation is effective and efficient for providing FDIR within our system,
and the thread-level coarse grain lockstep’s performance meets our requirements. To
place our results into context, we compared them to literature and discuss lessons
learned and knowledge obtained throughout our fault injection campaign.
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8.1 Introduction

Modern embedded technology is a driving factor in satellite miniaturization, which
today enables an entire class of smaller, lighter, and cheaper class of spacecraft. These
micro- and nanosatellites (100kg-1kg mass) have become increasingly popular for a
variety of commercial and scientific missions, which were considered infeasible in the
past. They are drivers of a massive boom in satellite launches, new scientific and
commercial space missions, laying the foundation for a rapidly evolving new space
industry. However, these spacecraft suffer from low reliability, discouraging their use
in long or critical missions, and for high-priority science.

For larger spacecraft, various protective concepts are available to assure fault toler-
ance (FT) through hardware measures. However, these concepts are effective only for
traditional semiconductors manufactured in technology nodes with a large feature size.
Such hardware can not be utilized aboard miniaturized spacecraft due to tight energy,
mass, volume constraints, and high cost. Conventional embedded and mobile-market
systems-on-chip (SoCs) are deployed in their stead, which only utilize error correction
to handle wear and aging effects encountered on the ground. A significant share of
post-deployment issues aboard nanosatellites can be attributed directly to the failure
of these components and peripheral electronics [2], which caused usually by design
failures and effects induced by the space environment, e.g., [296].

Therefore, we developed a non-intrusive, flexible, hybrid hardware /software archi-
tecture (see Chapter 4) to assure FT with commercial-off-the-shelf (COTS) mobile-
market technology based on an FPGA-implemented MPSoC design. Our architecture
utilizes multiple F'T measures across the embedded stack, and runs software in coarse-
grain thread-level lockstep to assure computation correctness through replication. It
can offer strong fault coverage without relying upon any space-proprietary logic, cus-
tom processor cores, or other radiation-hardening measures in hardware.

The utilized lockstep concept facilitates state synchronization and forward error
correction between otherwise independent processor cores. It also provides fault de-
tection capabilities for other F'T stages which otherwise would lack fault detection
capabilities: FPGA reconfiguration and dynamic thread-replication and relocation
based on mixed criticality. Therefore, it not only offers fault coverage, but also trig-
gers other protective features of our architecture, requiring thorough validation before
a custom-PCB based prototype can be constructed.

Validation of such FT measures requires systematic testing of the actual concept
implementation, a realistic fault model, a consistent fault model definition, and a
suitable test setup. As our lockstep is part of the operating system kernel, system-
level fault injection and application-level testing do not offer a sufficient level of test-
coverage, and instead a variety of fault injection techniques for software are available.
While validation using fault injection using a realistic test-setup is best practice in fault
tolerance research and space-hardware development, very few coarse-grain lockstep
concepts have been implemented and validated in this way. Most concepts described
in academic publications today, instead are validated only using mathematical models
only, but were not actually implemented or practically validated.

At the time of writing the 2018 — 2019 period, careful study of journals and con-
ference proceedings yields only a single coarse-grain lockstep concept [199] that was
practically implemented, and validated based on a realistic fault profile. Practical
implementation and the possibility to compare an implementation’s performance to
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literature, however, is seen as a prerequisite by industrial users to consider an FT
concept mature enough for practical application. This situation has resulted in a gap
between theory and application, with industry often dismissing software-implemented
FT concepts due to a (perceived?) lack of maturity and an (assumed?) tendency
to ignore practical implementation obstacles. The research results of an entire field
of research, dependable computing through software measures, are thus practically
barred from application for an entire industry segment even though there would be a
pressing technological need and a lack of viable alternatives. For critical applications
like in the space industry, practical concept validation is then just the first of many
validation and testing steps: eventually system-level testing is conducted with a hard-
ware/software prototype. For space application, this prototype is then subjected to
radiation testing followed by on-orbit demonstration.

8.1.1 Contributions

In this chapter, we show how software-implemented F'T concepts can be validated for
space applications in a realistic and representative manner, and fields with a similar
fault profile, e.g., critical and irradiated environments. We do so by example of a fault-
injection campaign we conducted to validate a novel thread-level coarse grain lockstep
concept we developed for space applications, described in detail in Chapter 4. We
utilize ISA-level fault injection into an ARM Cortex-A system through virtualization,
and fault injection into a 3-core SystemC-implemented MPSoC. This chapter includes
not only concept validation but is meant as a template for other researchers who
wish to validate their own software-implemented FT concepts. We provide a detailed
description of the fault profile in the space environment, and a through description of
the utilized tools and scripts, which have been made available to the public. Thereby,
we hope to increase acceptance of software implemented F'T concepts by industry, and
the share of concepts which are validated in a practically meaningful way.

A single set of data points is insufficient to judge the performance and effectiveness
of the entire coarse-grain lockstep concept class. Thus, it is of great importance to
offer a second set of validation results to allow fellow researchers to compare their
forthcoming results to more than just one single paper. We document a variety of
lessons learned as part of this campaign, which have allowed us to develop a better
understand the practical behavior and protective properties of coarse-grained lockstep
in critical systems.

Few software-implemented FT concepts proposed today have been implemented,
and only a handful have been validated in a realistic and meaningful way. Therefore
this chapter serves as practical guide for fellow researchers that can be used as walk-
through to make proper testing of fault tolerance techniques a less challenging and
time consuming task in an academic environment. The strategy which we describe
throughout the remainder of this chapter is depicted in Figure 56, and described briefly
below.

8.1.2 Chapter Organization

In the next section, we discuss how the challenges of the space environment described
in Chapter 3 are met today in the industry, outline which solutions currently are
available, and how these are tested. We then derive a practical fault model for an RTOS
implementation of this approach (Section 8.4), and analyze which testing techniques
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Figure 56: The top-down step-by-step testing strategy described in this chapter, with
indications in which section each step is discussed.

are available to verify the lockstep in Section 8.5. Having chosen the most suitable fault
injection techniques for our architecture, in Section 8.7 we describe the automated test
toolchain we developed to systematically conduct our test campaign. We utilize a set of
fault-templates to inject the different faults types described in Section 8.7.3, which we
derive from our fault model. The results of our fault injection campaign are presented
in Section 8.8, and we compare them to related work in 8.10. Before presenting
conclusions, we document pitfalls encountered while preparing and conducting our
campaign in Section 8.11, and describe changes made due to lessons learned during
validation.

8.2 Related Work

Computer architectures for space-use usually undergo radiation testing or laser fault
injection, as the state of the art in the field today is focused on hardware-level FT
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measures or specialized manufacturing (RHBD and RHBM - radiation hardened by
design /manufacturing). FT is traditionally implemented through circuit-, RTL-, core-
, and OBC-level majority voting [104, 132, 188| using space-proprietary IP, which is
difficult and costly to maintain and test. Circuit-, RTL-, and core-level voting are
effective for small SoCs such as microcontrollers, but this does not scale for the more
potent processor cores used in modern mobile-market MPSoCs [88,191]. Software
takes no active part in fault mitigation within such systems, as faults are suppressed
at the circuit level and usually only indicated using hardware fault counters, without
a direct feedback between fault-mitigation and software. Hence, testing is strongly
focused on the pure hardware with software functionality during tests often being
reduced to stub implementations to assert basic functionality.

The characterization of the effects induced by radiation within a semiconductor is
of major concern when implementing traditional hardware-F'T based systems. Today,
radiation testing is the only practical way to evaluate them, with radiation models
offering useful but tentative and often inaccurate high-level fault estimates. Radiation
test results for different components including memory and watchdog/supervisor-uCs
are available in databases such as ESCIES, NASA’s NEPP! and the IEEE REDW
Records. Relevant radiation tests have been conducted for the FPGAs utilized in our
project, among others by Lee et al. in [297] and Berg et al. in [143], or are currently
ongoing (Glorieux et al. [298,299)]).

Radiation testing can occur only at a very late stage in development, and the results
may vary even for identical chip-designs manufactured in different fabs and fabrication
lines. This form of testing effectively yields heritage and increases a system’s technol-
ogy readiness level, instead of verifying the effectiveness of a specific FT mechanism.
For our architecture, radiation tests yield device-specific data, which enabling us to
estimate fault frequencies, types, and effects on the FPGA on which our MPSoC is
implemented. We require this information to choose an appropriate checkpoint fre-
quency and frame times for our coarse-grain lockstep approach. By itself, however,
radiation tests do not allow an assessment of the capabilities of software-implemented
FT measures.

While transient random bit-flips are often considered in academic literature, the
otherwise different fault model [5] prevents the re-use of many FT approaches devel-
oped for ground applications. Also, the form factor constraints aboard miniaturized
satellites [197] prevent the re-use of most high-availability and failover concepts for
critical terrestrial control applications. Even for atmospheric aerospace applications,
dependable computing usually considers availability, non-stop operation, and safety,
but rarely computational correctness in a fully isolated and autonomous system.

Prior research on software-implemented FT often considers faults to be isolated,
side effect free and local to an individual application thread [208]| or purely tran-
sient [199,205]. Many practical application obstacles could be uncovered and resolved
before publication by implementing these concepts [198]. However, implementation of
a measure and fault injection are time consuming tasks [300]. They often require not
only software to be implemented, but also suitable tools and hardware or a represen-
tative substitute, as outlined among others by Sangchoolie et al. in [301]. Especially
fault injection for entire OS instances is non-trivial [302], as thorough preparation
and careful test-tool selection is necessary to obtain representative results from a fault
injection experiment [303]. Therefore, a sizable share of FT concepts exists at a theo-

lsee https://escies.org and https://nepp.nasa.gov
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retical level [212-214], instead of having undergone fault injection or hardware testing.
To still achieve some degree of validation, many publications thus resort to statistical
modeling using different fault distributions. This is a viable approach for validating
FT concepts directed towards, e.g., yield maximization [58] and aging [304], but not
for software-implemented FT measures for critical environments.

In this chapter, we conduct systematic validation of our coarse-grain lockstep ap-
proach using fault injection to verify the effectiveness and efficiency of our coarse-grain
lockstep FDIR mechanisms under stress. Specifically, we must assure voter stability
and a sufficient level of fault detection to avoid accumulating silent data corruption
and excessively brief frame times, while helping assess the amount of spare resources
needed. Together with FPGA-level fault-information obtained from radiation tests
outlined earlier in this section, and information on the mission specific target environ-
ment, we can then calculate the appropriate fault-frequency for a specific mission and
spacecraft.

8.3 Target Implementation

The high-level logic of our architecture is depicted in Figure 57, and consists of three
interlinked fault mitigation stages implemented across the embedded stack. It is de-
scribed in detail in Chapters 4 through 6. At the core of this architecture is a coarse-
grain thread-level lockstep implemented within the kernel of an OS, which we refer to
as Stage 1. It implements forward error correction and utilizes coarse-grain lockstep
to generate a distributed majority decision for an operating system. The thread-level

MPSoC Supervisor & Config Controler
Stage 3
Bootup <€ Mixed Criticality
reco_veregl
functionality failure
Stage 3
: Mixed Criticality
A S Update Replace
Apphca.tlonf Compartment Compartment
Execution :
L <limit k /T > Limit
' Check
Fault Counter
] Read Majority
Checkpoint »|  Decision

Figure 57: Stage 1 (white) assures fault detection (bold) and fault coverage, Stage 2 (blue)
and 3 (yellow) counter resource exhaustion and adapt to reduced system resources.
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lockstep assures the integrity of software replicas run on a set of otherwise isolated,
weakly coupled processor cores. Fault detection is facilitated through application-
provided callback functions, requiring no knowledge about application intrinsics and
also no modifications to the application structure. Faults are resolved through state
re-synchronization and thread migration to processors with spare processing capac-
ity. Stage 1 is described in further in Chapter 4, where we also establish an upper
bound for the performance cost of the lockstep. This coarse-grain lockstep is validated
in this chapter, and provides fault-detection capacity for the subsequent stages and
short-term fault-recovery.

8.4 Obtaining a Practical Fault Model

To properly validate software-implemented FT measures, information on the physical
fault model is required. This information is necessary to choose a fault-injection
technique and the right tools to inject the faults. In the remainder of this section,
we show how to deduct a practical fault model from our operating environment. This
enables us to subsequently determine the most suitable fault injection technique as
well as to build a concrete test-space for our fault injection campaign.

To validate our lockstep implementation, we must specifically test how well our
lockstep implementation can detect faults. We need to verify this not only at the
system level, following a majority decision by all involved compartments, but also
locally by an individual lockstepped compartment into which a fault has been injected.
Besides fault detection and the possibility for recovery, it is necessary to determine
how stable or unstable a lockstep will behave. For space applications, a software-
implemented FT concept must be subjected to transient faults, permanent faults,
faults that are neither (intermittent faults). The effect of a radiation induced fault
depends on the particular effected chip region, logic, and microfabrication technology
used [5].

Our coarse-grain lockstep exists as part of the scheduler and utilizes a set of ap-
plication callbacks. Therefore, we must consider the actual effect and impact of faults
on the system from a programmatic perspective. Radiation induced faults will, thus,
have the following effects on the software executed within one of our MPSoC’s com-
partments:

e Data corruption associated with access to main memory, caches, registers and
scratchpad memory due to non-correctable ECC words caused by SEEs.

e Bit upsets, new-value, and zero-value faults due to SEEs and SEFIs in address
and control logic of peripheral IP due.

e Incorrect or non-execution of instructions in the processor pipeline during the en-
tire sequence of processing, i.e. from instruction fetch, execute to write-back, as
well as incorrect decoding of instructions and execution of different instructions
with the given parameters.

e Control-flow deviations and data corruption due to failure of interfaces and com-
partment I/O peripherals, due to faults in controller logic of FPGA’s I/O com-
ponents.
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To properly represent these faults, we should inject both bit-flips and new-values.
Random fuzzing or type-fault injection are widely used for finding exploits and vul-
nerabilities in software, as well as logic bugs, but are not useful for our purposes due
to the different physical fault scenario. Proper validation for software must be sys-
tematic [305], which can not be achieved at the system-level when testing a physical
hardware prototype. Software must be tested separately and systematically, so that
then a prototype can be developed that can undergo system-level testing.

A broad variety of synthetic, theoretical failure types are well described in liter-
ature, e.g., in [303]. In practice these do emerge as one of the described fault types.
As discussed among others in [306], most of these synthetic failure modes [303] ac-
tually emerge as one of the aforementioned effects. To validate the fault-detection
and mitigation capabilities of our lockstep to radiation effects, we are only interested
in the practical effects of a fault, not its theoretical origin, as discussed further by
Sangchoolie et al. in [301].

Radiation can induce subtle effects into logic and may affect the OBC at a system
level (e.g., full component failure or reset) [143]. Such faults emerge disguised as
one of the aforementioned ones in case their effects are transient or intermittent.
Furthermore, we also need to test the lockstep’s behavior under permanent faults.

Faults with a permanent effect are either fatal to a compartment, therefore directly
detectable by other compartments by majority decision, or affect the system as a
whole. Our lockstep is not designed to recover the system from large-scale system-
level permanent faults, and utilizes spare resources to cover the permanent failure of
individual compartments. These are covered by Stage 2 and, if necessary, escalated to
or detected by the on-board computer’s external supervisor through time-out.

8.5 Suitable Fault-Injection Techniques

Fault injection into a live hardware-system or an FPGA (e.g., using JTAG or ICAP)
would be most straight forward way of conducting fault injection. As research bud-
gets are finite, this naive approach does not allow a meaningful level of test coverage
from being achieved, as systematic test coverage is potentially destructive [115], time
consuming, and would require a high degree of parallelization. [307]

As our architecture is designed for FPGA, fault injection using netlist simula-
tion [64] or directly into the FPGA [115,308] could be facilitated with comparably?
little development effort, as we already utilize a development-board based MPSoC
design implementation. This technique would grant precise control over the type and
effect of faults and the simulation could be conducted with a system closely correspond-
ing to the real one. Several proprietary partially [115,308,309] and fully automated
test frameworks [310] as well as commercial applications [64] have been developed for
this purpose. Unfortunately, netlist simulation of a full MPSoC is computationally
disproportionately expensive. Therefore, netlist simulation, too, does not allow us to
achieve meaningful level of test coverage.

Faults could also be injected via widely available standard software debug tools
(e.g., GDB) into software running in userland. This is only representative for tests
considering only the effects of transient faults in simple userland applications [199].
The effects of faults on a full OS implementation and permanent component damage

2as compared to developing a new FPGA design from scratch for the purpose of testing.
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cannot be simulated [311]. Furthermore, validation of embedded software for low-
power ARM or RISC-V SoCs using desktop-grade ia32/amd64 hosts may bias the
outcome of a fault injection experiment, as the platforms and their ABIs are fun-
damentally different. Fault injection into kernel functionality emulated in userland
may also result in a different run-time behavior than when running bare-metal. This
technique can therefore only yield meaningful validation results for pure application
level FT concepts [303]. Debugger-driven fault injection into a virtual machine can
alleviate these constraints by allowing an actual OS to be tested. However, this tech-
nique is unable to correctly simulate permanent and intermittent faults in components
other than memory and the current execution context. In consequence, the fault injec-
tion using debug tools is significantly constrained [303] and insufficient for validating
our lockstep. This is an inherent limitation of that can only be alleviated through
cooperation of a virtual machine monitor without hardware acceleration [302].

ISA-level binary instrumentation has been shown powerful and efficient for con-
ducting black- and grey-box fault injection [301], and is today widely used for reverse
engineering, security and malware analysis purposes. Though most of these tools are
tuned towards reverse engineering, not fault injection. Fault-injection capable tools
discussed today in relevant publications are mostly proprietary to individual research
groups [301,312]. Without exception, they are rather experimental and tuned to-
wards single applications, and often also simply not publicly available [312]. To be
comparable however, proprietary tools unavailable to all but a research group are not
relevant.

Fault-injection into a virtual machine (VM), in contrast, allows considerable code
and tool reuse: a VM can be constructed using pre-existing virtualized hardware
available in widely used standard tools. Due to the considerable optimization effort
invested into virtual machine monitors, this technique is computationally relatively
cheap. Depending on the used VM technology, it no changes are to a victim application
and the emulated machine be can resemble the actual intended target system rather
closely. Several test frameworks implementing this approach have emerged in recent
years, though most are still custom tailored for specific usecases or have not been
released to the public [300,305]. Notable exceptions here are the two open source
frameworks FAIL [306] and FIES [313]. These are publicly and freely available as
open source software and reasonably mature, and therefore we began to conduct our
fault-injection campaign using this technique. However, these tools are only capable
of injecting faults into a single core of an MPSoC, even though they can simulate a
VM with multiple processor cores.

Fault injection using system simulation can combine many of the advantages of
the aforementioned techniques. In prior research, actual MPSoC architectures were
simulated using SystemC to demonstrate architectural features. This could also be
used as compromise between the level of detail and extreme computational cost of
fault injection using netlist simulation, and limitations of fault-injection using system
emulation when targeting an multicore system. Until recently, however, modeling
and implementation of an MPSoC capable of running real software software using
SystemC required an excessive amount of development effort. With the emergence of
modern architecture description languages such as ArchC and in combination with the
emergence of more open processor core designs such as RISC-V, the development effort
necessary to do so has been reduced to a more realistic level. We therefore conducted
further testing of our implementation for with an ArchC implemented SystemC model
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our our MPSoC to validate our lockstep in a true multi-core environment without the
constraints of system-emulation-based fault injection.

8.6 Test Campaign Setup

Having determined a fault-injection techniques and knowing what kind of faults need
to be injected, we must prepare a suitable test environment to properly To achieve sys-
tematic test coverage, manual fault injection or injection relying upon manual binary
introspection are unsuitable. Instead, an automated campaign setup is needed. In
this environment, we can then subject our lockstep implementation to fault injection
in bulk. This process can then be paralleled to achieve the desired test coverage. In
this section, we therefore describe how such a test setup can be realized with limited
development manpower, and pre-existing standard software based on our own setup.

Our fault injection toolchain performs the following steps implemented as a set of
python scripts:

1. Result harvesting: obtain the victim application’s process state, results and
correct lockstep checksums for each payload application. We run the emulation
without fault injection and tracing, outputting the application and OS state for
comparison during later steps. This allows us to e.g., include additional debug
output or otherwise alter the victim-binary’s code for our golden run. Thereby,
we can obtain a correct victim OS state without distorting the actual golden-run.

2. Fault-free simulation: we execute a golden run of our target implementation and
generate traces for executed instructions, register and memory access with the
actual binary used for fault injection.

3. Filter the traces to constrain fault injection to application relevant code and
data (e.g., omitting platform bring-up, OS, and shutdown code).

4. Remove duplicates, and annotate each trace-entry with the number of occurrence
in the trace, generating the test-campaign input data.

5. For each address and occurrence, we generate a fault definition based on a tem-
plate and launch an instance of our fault injection tool.

6. Based on a comparison to the known-correct results obtained in the first step, we
determine the impact of the injected fault (e.g., OS crash, incorrect checksum,
SDC, etc.) and log the result to an sqlite® database. Besides collecting and
interpreting the results of a fault injection run, we also retain compartment
state information to enable manual analysis in the future if necessary. This
includes a compartment’s human readable output to each compartments’ serial
port, CPU and gemu processor context dumps, as well as the logs generated by
FIES during the fault injection, as well as its exit code.

Steps 1-3 are executed once at the beginning of a test campaign, whereas steps 4
and 5 are computationally comparably expensive but can be parallelized. As sqlite
stores a run’s database in an individual file, result databases from different systems

3Any database would work, but we want to keep the results portable so they can be combined
later one.



CHAPTER 8 143

can be merged, and each test record includes information about the precise injected
fault.

Long fault injection campaigns place considerable strain on host a computer’s
filesystem. While running our test campaigns, we discovered that this can cause induce
significant wear in SSD-based storage device. When replicating this setup, the avid
reader may wish to instead conduct fault injection fully in memory to avoid damage
the host computer’s SSD. This can be achieved by running experiments in a ramdisk,
e.g., by mounting tmpfs on the experiment directory.

8.7 Executing a Test Campaign

We conducted our fault-injection campaign using both system emulation with the
FIES fault injection framework and through SystemC simulation with a 3-core MPSoC
model.

8.7.1 Tool Selection

The available emulation-based FI tools which were available at the time of initiating
validation for our lockstep were not functionally equivalent. They differ regarding
the target environment, test setup and intended test subject scope, and the way in
which they inject faults. The FAIL-framework utilizes a powerful C+-+ based test
controller for thoroughly analyzing small binaries in a fully automated test campaign.
While the test itself is therefore fully automatic, the development of a test-specific
controller application requires deep knowledge of victim binary intrinsics and program
structure. This information is target binary and concept dependent, and is hardcoded
within a dedicated experiment controller binary 4. The development of FAIL is mainly
focused on the Intel platform. ARM support less mature and only available through
GEMS5 [314] or through into hard silicon, neither of which are viable for our purposes
as discussed earlier.

FIES by Holler et al. [313] was developed specifically to validate ARM-based
COTS-based critical systems. It is based upon the much faster and more mature
virtual machine monitor QEMU, thereby supporting a broad variety of SoCs and vir-
tual hardware. However, there is no not support for conducting fully automated test
campaigns, but allows rule-based and systematic fault injection into opaque binaries
during each run. Its fault injection engine utilizes a fault library which can be gener-
ated automatically using compiler-toolchain functionality and instruction and memory
access traces. We can therefore efficiently test a full OS including its kernel, without
requiring a test monitor with knowledge about application intrinsics. The test cam-
paign described in the remainder of this section is thus carried out using an automated
test toolchain incorporating FIES.

FIES does not guarantee timing and strict time determinism. Hence, when vali-
dating more timing-sensitive algorithms however, special care must be taken to assure
the golden run and fault injection runs are equivalent [312,313]. However, our lockstep
implementation also does not require strict time determinism during simulation runs.
It only requires that a comparable level of work is conducted between checkpoints.

In the process of developing our test toolchain, we extended FIES’ functionality
to better support different tracing techniques and added functional improvements.

4See the src/experiments directory at https://github.com/danceos /fail



144 8.7. EXECUTING A TEST CAMPAIGN

Initially, this began as bugfixing effort, but over the course of several months, we in
practice rewrote most fault-injection triggering related code, as well as a major part of
FIES’ state machine. FIES originally was also based on QEMU 1.17, and therefore we
rebased the heavily modified FIES code to QEMU-git 2.12 (gemu-head in December
2017). We also added support for the THUMB2 instruction set as FIES originally only
could inject faults into ARM instructions, and only used those as fault-triggers, as most
common software use both ARM and THUMB2 assembly intermixed. At this point,
we had rewritten major parts of FIES, and we therefore made not just patches for FIES
available, but released the entire tool as “FIESer — FIES Extended and Reworked” to
the public. It is source code is available at https://fieser.dependable.space and
on https://github.com/dependableD0Tspace/FIESer.

To realized fault injection via SystemC, we first had to develop a suitable MPSoC
implementation. Most SystemC MPSoC models described in literature, however, at
close inspection turn out to only be capable of running brief instruction sequences
to validate parts of, e.g., an instruction set, or a specific low-level functionality of an
MPSoC. Hence, they are incapable and often not even intended to run run actual
application software, which we require to test our lockstep implementation. This is
no problem for emulation-based fault injection, where only the high-level behavior
of a system is emulation, but challenging for more close-to-hardware SystemC-based
simulation. Hence, as part of an ongoing international inter-university collaboration,
we implemented a true multi-core model of our MPSoC. We implemented this MPSoC
through the use of the open RISC-V platform, for which preexisting ArchC models
were available. Each processor core existed in its own compartment with dedicated 1/O
capabilities as described in Chapter 4, and have access to a shared memory segment
used to exchange and compare lockstep state information.

8.7.2 Target Implementation and Payload

When conducting fault injection it may seem obvious that these tests should be con-
ducted against a realistic target implementation. However, this is only feasible if the
right tools were chosen as described in the previous sections. A majority of publica-
tions today does not do so, and often researchers seemingly try to force-use unsuitable
fault injection tools to validate their implementation. In the remainder of this section,
we thus describe the fault injection target implementation of our lockstep, and outline
how and why it is representative for our purposes.

A simplified function flow graph of our lockstep implementation is depicted in
Figure 58 for reference, and in full described in Chapter 4. As payload application,
we utilized two applications:

e The ESA Next Generation DSP benchmark® run as POSIX threads within
RTEMS. This is a space-industry standard benchmark application used to mea-
sure and compare system performance.

e An application alike the NASA /James Webb Space Telescope Mid-Infrared In-
strument readout softwareS [219].

While this choice represents satellite computing workloads reasonably well, test cam-
paigns for other application should utilize representative software. If no specific target

5Source code publicly available at https://essr.esa.int
6See https://github.com/spacetelescope
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Figure 58: The execution cycle of our coarse-grain lockstep implementation on a compart-
ment. Payload application callbacks are depicted in yellow, checkpoint trigger timers in blue.
Faults are injected after initialization.
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application code is available, synthetic algorithm suites such as the SPEC performance
tests” can be utilized at a loss of realism due to the limited scope and low complexity.

Our fault injection experiments using system emulation were conducted against
an implementation of our approach in RTEMS 4.11.2 using the ARMv7a-Zynq board-
support-package, which closely resembles the compartments of our MPSoC. RTEMS
is a real-time OS running bare-metal, and is used in a broad variety of space applica-
tions. We chose not to utilize the Linux kernel for our fault injection experiments to
maximize the level of control over our experiment and reduce the test time overhead.
We cross-compiled the kernel image from Fedora 28 x86 64 with standard compile
flags (-marm -mfpu=neon -mfloat-abi=hard -02) in RTEMS GCC 4.9.3. Note that
RTEMS does not utilize privilege separation, enforces no separate between a userland
and kernel code, and has no virtual memory support. All these features would make
faults more easily detectable and the OS as a whole more robust. Hence, faults in ap-
plication code can directly interfere with kernel data structures. However, the absence
of such functionality is representative for today’s space computing even aboard larger
spacecraft.

For SystemC-based fault injection, the model used was implemented using Sys-
temC version 2.3.1 and ArchC 2.4.1 with custom patches to enable fault injection.
Instruction instrumentation was realized using nightly builds of AspectC++, as the
latest released version of AspectC++ is outdated®. The excessive amount of compute
time necessary for fault injection into the MPSoC prevented the re-use of the same
lockstep implementation used as for emulation-based fault injection [315]. Initially, we
attempted to re-use the same test application setup we developed for emulation-based
fault injection, but a single fault-injection run with this application in our ArchC model
on just one processor core would have taken more than 8 hours. Therefore, instead of
running a full RTEMS implementation of our lockstep, we constrained our implementa-
tion to run bare-metal code without thread-management, interrupts, and timers. This
implementation was cross-compiled using the RISC-V toolchain released and main-
tained by the Andes Technology Corporation at https://github.com/andestech/
riscv-1lvm-toolchain against the i1p32 ABI of the rv32ima RISC-V architecture
variant. At the time of writing and conducting these fault injection experiments, the
toolchain uses GCC 7.1.1. Naturally, this curtails the fault tolerance capabilities this
implementation can achieve, but it allows the test time to be reduced to approximately
1 minute of real-time per injected fault.

8.7.3 Test Space and Target Components

We prepare a set of fault definition templates, which our fault injection toolchain
combines with information from the previously generated traces. These templates
define the test-space of our campaign. However, choosing the right test-space for
testing an OS-scale fault tolerance measure is non-trivial. A test-space as described in
literature [316] as ideal for testing software in practice is usually not achievable [317],
and stands in stark contrast to the best practices in system-level testing in industry
[318,319]. Even fault injection with state-of-the-art tools requires a carefully chosen
compromise between realism and test-coverage to avoid runaway test-times and high
cost.

"see https://www.spec.org/cpu
8 At the time of writing AspectC++’s latest released 2.2 is more than 2 years out of date and its
functionality is no longer comparable to those of the nightly development builds
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Transient Fault Injection

Transients are injected as bit-flips and new-value errors into registers and the proces-
sor pipeline using the program counter as trigger. Simple time triggered injection is
insufficient, as the available tools do not assure clock-cycle accurate timing. For in-
structions which are visited more than once, we trigger faults after the n-th occurrence,
which is enabled by an extension of the FIES framework’s fault definition language.
Our SystemC implementation is designed to allow fault injection also with cycle accu-
racy in different parts of the processor pipeline, though we consider this functionality
to be too unreliable to use it for fault-injection yet. With FIES, we inject faults also
into memory access operations based on physical memory addresses. This allows us
to approximate the effect of faults in caches and main memory, as well as faults in
buffers. To better simulate non-correctable upsets in ECC words and faults in the
address logic, we can also directly replace accessed data or replace the address of the
operation.

Permanent Fault Injection

Permanent faults should be injected into accessed main memory and devices address
space. However, they should not be injected into general purpose registers, spe-
cial registers, and the CPU pipeline provided little added value for testing software-
implemented fault tolerance measures. This is due to the fact that the effects of faults
in these components are fatal at the latest after a few clock cycles. Hence, they will
interrupt operation of a processor core, and this can be detected through our lockstep
by other compartments in the MPSoC, as well as by the supervisor. While it is impor-
tant to not ignore parts of our fault model, testing with faults with a predetermined
and known result would needlessly inflate the test space and time.

Functional Interrupts and Intermittent Faults

Radiation may also cause fault-effects which are neither transient nor permanent. To
simulate SEFIs with FIES, FIES’ fault types of periodic and intermittent faults can
be used. For these, fault effects persist for a user-described period of time and are
resolved by the injection framework afterwards.

In our tests, we chose 100ns as fault-duration for SEFIs, the period-equivalent to
10 clock cycles at 100MHz, the frequency emulated by QEMU for the Zynq MPSoC.
This represents the interruption effect and the reset-induced outage of specific circuit
groups due to SEFIs reasonably well. However, we are not aware of radiation-test
data further analyzing the actual timing and detailed interruption behavior SEFIs in
processor logic and FPGA fabric.

Fault Placement during Execution

After executing bring-up code and OS initialization, our victim binary executes pay-
load software for 3 lockstep cycles on FIES and 5 lockstep cycles on ArchC, and then
terminates. The test sequence is depicted in Figure 59, and faults are injected during
the first checkpoint cycle or frame of execution. This allows faults to propagate within
the system, to corrupt the application state, without requiring excessive experiment
time. During the first checkpoint executed after fault injection, corruption of the ap-
plication state should be recovered. Upon reaching the second checkpoint after fault
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injection, the application state should have fully recovered and thereby the system
state should match the golden run’s results. This allows us to verify the full FDIR
cycle from fault injection to recovery.

For emulation-based fault injection we chose a frame time of 2 seconds as interval
between checkpoints. This is a reasonable choice for operation in LEO when pass-
ing through increased radiation zones such as the South Atlantic Anomaly, based on
radiation-testing data for Ultrascale [143,297] and Ultrascale+ FPGAs [298]. For
SystemC-based fault-injection, checkpoints are executed after each frame the NIR
HAWAII-2RG algorithm has been processed.

For our RTEMS implementation, a golden run takes approximately 7 seconds of
guest-virtual time, which on our test system is equivalent to approximately 30 seconds
of host-time. In case the experiment does not terminate in time, e.g., due to control
flow corruption, the experiment is terminated by the toolchain after 45 seconds (allow-
ing one additional checkpoint to be processed). FIES can also be configured to end an
injection run after executing given number of instructions (e.g., 10 times the number
of instructions executed in the golden run). We are not relying upon this functionality
as the value has to be hardcoded in FIES.

For our MPSoC, the execution time of a golden run for generating traces does
not differ significantly from a run where faults are injected. However, even after
much optimization a single run takes approximately 45 minutes of real-time on Core-
i7 8700K system. We therefore reduced the NIR detector frame size from 2048x2048
pixels to 32x32 pixels, which then reduced the overall runtime to between 1 minute
and 20 seconds, depending on the host system’s performance. Naturally, this changes
the ratio between code and data due to the much reduced size of the data structures
used, but does not change the overall program structure of the executed application
and the lockstep. As we already established an upper bound for the performance cost
of our lockstep in Chapter 4, we consider this constraint acceptable.

After fault injection has terminated, we analyze if our lockstep could detect the
effects induced by the injected fault (if any), and if they could be resolved through a

N

Figure 59: The experiment sequence and fault placement for a compartment. Fault are
injected during the red-outlined time period on processor compartment Cp.
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state update from another compartment. To reduce the test space, we do not inject
faults into platform code, bring-up, an shutdown-related code.

Limitations

We chose the length of a fault injection run to allow our victim binary to exhibit the
entire FDIR circle. As we are testing a full OS instead of just code snipplets or brief
instruction sequences, this is necessary. In contrast to related work, the runtime of
our fault injection campaign is therefore already excessively long, e.g., extended by
more than an order of magnitude as compared to Amarnath et al. [305]. However,
such a brief run still does not allow dormant or latent faults to be discovered, e.g.,
such affecting OS data structures and logic resulting time-delayed regressions. Only
certain fault will produce immediate effects, and it is infeasible to extend our target
binary’s runtime even further. Therefore, it is impossible to observe or even determine
if a fault results in no effect, silent data corruption, or time-delayed effects. The time
allotted to each fault injection run therefore is a direct trade-off between achieving
sufficient test-coverage to judge the fault-detection capacity of our lockstep, and to
observe long-term effects.

In our ArchC system model, simulate RISC-V processor cores. This instruction set
offers a large quantity of general purpose registers, which would inflate the test space
as compared to our FIES ARM target (30 general-purpose registers as compared to 12
on the ARM platform). Therefore, we conduct an Architectural Vulnerability Factor
(AVF) analysis [320] for the traces used in our fault injection campaign. AVF allows
us to reduce the test space to avoid injecting faults into locations which would subse-
quently be overwritten, reducing masked faults and the overall test space. However,
as discussed further by Maniaktakos et al. in [321] AVF overestimates vulnerability
by more than 70%, and can not properly model the impact of multi-bit upsets in
semiconductors manufactured in technology nodes less than 65nm feature size. In our
campaign, we utilize AVF to constrain potential fault location (register address), but
not to determine which bits are vulnerable and instead inject faults in each bit of a
32-bit word.

Our need for systematic testing also induces another limitation: Being constrained
to running only a few lockstep cycles after fault injection, we also can not making
more long-term observations regarding fault recovery. The fault recovery potential of
coarse-grain lockstep also are heavily influenced by the protected applications and OS
structure. Any fault-recovery statistics obtained for very short term fault recovery
thus would be unreliable. Instead, this information should better be obtained through
system-level testing with actual on-board data handling software on a prototype.

It would be feasible to inject faults in QEMU’s emulated virtual hardware and into
the infrastructure of our SystemC-MPSoC model. This would allow faults to be injec-
tion more realistically for each emulated or simulated device and MPSoC component.
However, this is not supported in FIES and our SystemC-MPSoC model today. To
our understanding FIES was also never developed with such functionality in mind.
Hence, while technically possible, fault injection in gemu virtual devices would require
considerable development effort even for only one set of virtual devices relevant for
validating our target architecture. Due to a lack of tools, we can instead approximate
the practical effects of radiation by injecting faults during access to memories and
device address space, as well as into the CPSR on FIES.

For our SystemC-MPSoC, there is no structural limitation to fault injection as with
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FIES, and in the coming months we plan to expand the fault-injection capabilities of
this model. At this point in time, have begun adding cycle accurate fault injection
support, instead of instruction-based fault injection which is possible with FIES and
our ArchC model today. Once this has been accomplished, we plan to inject faults
also into the MPSoC’s interconnect, as well as CPU peripherals and interfaces that
are part of a compartment.

8.8 Results & Interpretation

To test our toolchain and verify its correct functionality, we conducted manual fault
injection into specific application structures using FIES. We injected such faults into
interesting data and logic which could cause an incorrect application state, or could
otherwise alter the run-time behavior of a compartment. This allows us to analyze
the practical behavior of our lockstep under faults, and enabled us to directly compare
the impact of a fault in a specific location when injected as transient, permanent and
intermittent faults. Table 5 shows the behavior of our lockstep under faults, and
we subsequently expanded our fault injection campaign in the described automatized
way with FIES and our ArchC model. In Table 6, we provide statistics observed when
conducting fault-injection with FIES and ArchC.

In payload-application code, a majority of the injected transient faults resulted in
a corruption to the payload applications’ state. With less than 20% of all faults, the
application of the entire OS crashed or terminated prematurely (compartment resets
were treated as early termination). Faults affecting the lockstep mechanisms (e.g.,
resulting in false comparison or incorrectly generated checksums from correct data)
were rare due to the minimal time spent executing lockstep mechanisms, as its low
code and data footprint.

A comparable share of bit-flips with permanent effects resulted in a corrupted
thread state and thus checksum-comparison mismatch, as was the case with transient
faults. However, this number alone is misleading, as the amount of masked upsets
without noticeable effects plummeted to just 19%, while the share of thread- or OS-
crashes increased. Therefore, we can deduct that a number of faults which due to
transient faults would have resulted in just thread state corruption, now instead result

Detection by Recovery Recovery Method
Result Victim System Trigger State Update | Reboot
Corrupted State yes yes lockstep yes yes
Thread Crash yes timing only lockstep yes yes
Lockstep Failure no yes supervisor no yes
Crash/Hangup no yes victim core no yes
No Effect /SDC no no supervisor sometimes yes

Table 5: Behavior of our RTOS implementation under faults, considering fault detection
at the system level, as well when considering victim-processor core itself. Notice that our
lockstep implementation can not detect silent data corruption with no immediate impact on
the thread state.
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Effect by Injected Fault Type
FIES ArchC
Result Transient | Transient | Permanent | Intermittent
Corrupted State 49% 32% 44% 53%
Thread Crash 8% - 17% 10%
Lockstep Failure 1% 1% 2% 1%
Crash/Hangup 10% 14% 18% 15%
No Effect/SDC 32% 54% 19% 21%

Table 6: Fault injection experiment results to date with FIES and ArchC divided into
transient, permanent, and intermittent faults. A share of all masked faults will cause silent
data corruption, which can have long-term effects on OS data structures. These could be
detected through erasure coding, while memory protection and virtual memory would allow
us to detect misdirected memory access caused by faults. Neither measures is in place in our
proof-of-concept.

in crashes. The total amount of detected faults in turn was increased again by faults
which were previously masked. Intermittent faults have a similar effects to permanent
ones, though with slightly fewer crashes and more faults affecting only the payload
application.

Our coarse grain lockstep implementation contributed fault-detection to the sys-
tem, whereas the state synchronization functionality serves to reduce the amount
of reboots needed to restore the state of each compartment. In practice, its fault-
detection strength depends on both the frequency at which checkpoints are execute
(frame-time) and the likelihood that faults can be covered and corrected. Hence, we
analyzed how rapidly a compartment itself can detect faults in Figure 60.

The fault injection campaign shows that there is indeed a measurable difference
in behavior between transient and permanent faults, and between target applications
of different complexity. As expected, permanent faults are more likely detectable
than transients, due to their increased severity. However, we also expected permanent
faults to be easier detectable by a compartment than SEFIs (see Figure 60a). This
was not the case. The increased likelihood of permanent faults resulting in crashes
and the higher percentage of non-fatal state corruption faults due to SEFIs made fault
detection within the affected compartment more likely for SEFIs. For permanent
faults a larger percentage of faults results in a crash, which can no longer be detected
by the affected compartment. These results underline the importance of conducting
validation not only using transient faults, but also with permanent and intermittent
faults.

The effects of a fault will be detected through majority decision by the rest of
the system. The fault detection rate increases sharply, as the MPSoC as a whole
can also detect crashes of an entire compartment or lockstep mechanism failure, as
shown in Figure 60b. In Figure 61, we therefore provide a direct comparison between
self detection and majority decision for transients, permanent and intermittent faults.
While the results for transient faults again match our expectations, for permanent
faults and SEFIs, the initial fault detection capability for the full MPSoC even with
only a single executed checkpoint is drastically better than for self-detection. Here, a
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Figure 60: Payload application and state corrupting fault detection chance of a single
compartment for different fault types after a given number of execute checkpoints. Notice
that intermittent faults are more likely to be detected than permanent faults by the affected
compartment itself, which is counter intuitive. This is due to the increased percentage of
faults that are fatal for a compartment, and the system as a whole can detect permanent
faults with higher likelihood.

fault detection chance of near 79% and 78% during the first checkpoints also implies
a near certain fault detection likelihood during the second checkpoint; see Figure 61b
and c. In contrast, for self detection, faults can be detected after with 57%, 61% and
63% during the first checkpoint after fault occurrence and near certain detection only
being achieved after three checkpoints.

When designing our lockstep concept, we considered fluctuations in compartments
thread assignment within the MPSoC to be critical. This is caused by crashes and
reboots of individual compartments. Worst-case benchmark results showed that fre-
quent crashes of compartments could degrade performance of the system by between
9% and 26% for high checkpoint frequencies and brief frame times. Based on our
experiments, we find comparably few faults, between 11% and 20%, cause crashes
and lockstep-failures. Even under the (unrealistic) assumptions that faults were to
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Figure 61: Comparison of the fault detection capabilities of an individual compartment and
the by MPSoC through majority decision. The full system can also detect a crash of the OS
instance running on a compartment, and malfunctions in the lockstep logic.
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Number Immediate | Lockstep | Reboot
Effect of Faults % Thereof: Recovery | Timeout | Required
Non-Masked 47526 46% 22004 10915 14607
46% 23% 31%
Masked 57379 54%
All 104905

Table 7: Fault Recovery statistics for SystemC fault injection.

occur in each checkpoint period, many faults could still be resolved through a state
update and do not require a reboot. Hence, our lockstep implementation can provides
the necessary degree of voter stability to making application reassignments between
compartments rare.

A majority of faults that resulted in no observable effect on our implementation may
indeed be masked and require no measures to be taken, as they may have no impact on
the application state [322]. This is a limitation of our fault injection toolchain, as faults
are also injected into registers and memory which may be overwritten by subsequent
instructions, or faults that cause self-masking control flow deviations. Such situations
occur e.g., due to faults in branch or comparison instructions triggering the same
iteration of a loop more than once. They have no practical impact on the application
state while, and also cause only minor timing deviations which do not impact the work
conducted until to the next checkpoint.

8.9 ArchC MPSoC vs. FIES Result Comparison

Comparing our transient results between ArchC and FIES, we notice that the results
are mostly comparable. The share of faults without noticeable effect are increased
by approximately 20%, which seems reasonable considering the different lockstep im-
plementations tested: part of this difference can be attributed to the vulnerability
overestimation remaining due to limitations of our AVF analysis. Furthermore, the
lockstep implementation on ArchC can not exploit the powerful exception handling
function available in a proper operating system implementation, as we are here run-
ning the test implementation bare-metal. Instead, our FIES implementation exists
as part of RTTEMS, which allows more precise fault analysis, and overall reduces the
chance that a fault will crash the entire OS instead of just the test application thread.

To allow better comparison of the fault effect ratios between system emulation
and SystemC fault injection, we have to normalize the results obtained with both
techniques. To do so, we apply normalization to the 54% of masked faults to all
effect ratios obtained with FIES, where we encountered just 32% masked faults. A
comparison between normalized FIES fault effect ratios and ArchC is depicted in Table
8. As depicted, after normalizing the result data, we receive almost identical fault effect
ratios with both techniques, with our RTOS implementation showing 6% higher data
corruption likelihood than our bare-metal implementation. In our ArchC lockstep
implementation, 15% of all faults cause a crash or hangup effect, while in our RTOS
implementation 14% of cause such an effect. As our FIES implementation utilizes
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threading 6.5% of all crashes remain isolated to the crashed application software, or
the lockstep, while our ArchC implementation knows no such separation. In practice,
this shows that the additional OS and application isolation functionality implemented
within a modern OS also has a positive impact on suitability. In turn, the increased
amount of code an data required for an OS-scale implementation also shows that the
ratio of faults causing data corruption is slightly higher than when running the same
application bare-metal.

In Figure 7, we provide fault effect and recovery statistics obtained from our ArchC
MPSoC model. After observing 105905 fault injection runs into our ArchC MPSoC
model using AVF-filtered golden run traces, we can observe that: in 46% of cases a cor-
rupted thread-state could immediately be recovered through a state update, required
no reboot of the faulty MPSoC core. In further 23% of cases, faults could have been
recovered if the lockstep had allowed for more wait time during checkpoint voting,
which was severely constrained in our test campaign to assure sufficient test coverage.
Only in 31% of cases, fault resolution was unsuccessful, requiring a reboot of the af-
fected processor core. Overall, these statistics are very positive, considering especially
the much reduced fault-recovery potential that a bare-metal lockstep implementation
has as compared to a full OS implementation.

Considering the different scale and detection capabilities of the two different lock-
step implementations analyzed, this different is in line with our expectations: The
target implementation we used for ArchC fault injection does not utilize a threaded
scheduler, and therefore thread-management and scheduling is eliminated as potential
failure source. Overall, injected faults in a threaded RTOS implementation should
locally also impact OS-level control logic, and infrastructure data structures, and in-
duce secondary fault effects there. At the same time, the this also means that faults
which in an RTOS implementation caused a thread to crash, now would only cause
data corruption in the protected application.

8.10 Comparison to Literature

To place these results in context with results from other lockstep concepts, we sought
to compare our results to literature. Unfortunately, few coarse-grain lockstep concepts
have been implemented in practice and tested using means beyond modeling. At the
time of writing, we are aware of only one publicly released validation report by Dobel

FIES
Ref. | @ 54% SDC ArchC A
Corrupted State | 49% 38.22% 31.72% -6.5%
Thread Crash 8% 6.24% 0% | -6.24%
Lockstep Failure | 1% 1% 1% 0%
Crash/Hangup 10% 7.8% 14.54% | +7.66%
A Total | 5.08%

Table 8: Transient fault effect comparison between system emulation and SystemC fault
injection, normalized to equivalent SDC ratios.
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et al. [199] considering practical fault injection with real software and faults, instead
of statistical estimation.

When directly comparing our results to Dobel et al.’s transient fault injection re-
port [199], the share of faults causing application, thread, and OS crashes with our
approach is noticably increased. For transient faults, this can at least in part be ex-
plained with the different capabilities of Dobel et al.’s proposed lockstep mechanisms.
In their contribution, lockstep is facilitated through application intrusive function
call hooking. Thereby, Dobel et al.’s lockstep can offer more fine-grained protection
than our approach. However, it also require considerable code, deep and non-portable
changes in the target OS, has a high performance overhead, and constrains the tar-
get OS and application structure. The measured detection differences are consistent
across all effect categories: we measure a higher amount of masked faults, a decreased
amount of detected state deviations, and an increased amount of crashes with our
approach.

Dobel et al. consider their fault injection measurements overly optimistic, as they
utilized payload applications “of little complezity (leading to few potential candidates
for fault injection)” [199]. Their validation and lockstep implementation is constrained
to handling transient faults, while SEFIs or permanent effects are not covered as these
faults were injected into a user-land application of their approach through a debugger.
Dobel et al. assume the OS, system libraries, and kernel to be fault-free, while we
instead inject faults into a full OS including POSIX libraries with payload applications.
In light of this bias, we consider our results are in line with Dobel et al.’s, and our
lockstep implementation to function as desired.

The results we obtained with SystemC fault injection into our ArchC MPSoC
confirms this further. There, we can in practice reproduce exactly this same scenario
between the two lockstep implementations we have been utilizing for testing with
FIES and for our ArchC MPSoC-model. The lockstep implementation there is overall
simpler, has fewer calls to critical infrastructure functionality that could break, and
therefore offers less overall failure potential than our full RTEMS-implementation.
Furthermore, in this MPSoC we utilize RISC-V processor cores with a much simpler
and less powerful instruction set than that offered by a full Cortex-A processor core
implementing the ARMv7a instruction set, which not only supports one instruction
set, but uses two instruction sets in combination (ARM and THUMB).

8.11 Discussions

Fault injection today can be conducted for different reasons, such as to detect secu-
rity vulnerabilities in software, memory leaks, or to assure test coverage when testing
for functional correctness. However, fault injection for validating the correction func-
tionality of a fault-detection and lockstep technique is very different from, e.g., fault
injection conducted for security purposes. Applying the same assumptions or test
tools to both, while attractive, does not result allow for proper validation. The used
fault injection techniques, target implementations, and payload software will influence
the obtained results. Validation using an overly simplistic target implementation will
bias the results obtained. Comparing our results to Dobel et al.’s underlines that it is
important to conduct fault injection into a realistic implementation with non-trivial
payload software, but also that more lockstep concepts must be validated.

Our coarse-grain lockstep can detect faults resulting in a crash or in corruption of
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the thread state. However, it is unable to detect silent data corruption and latent faults
in OS data structures and code. To better handle this, a compartment’s checkpoint
handler could generate a checksum for certain critical kernel data structures. However,
the scope to which this is possible is limited and the computational cost may be high.
It would be practically impossible to do this for a larger OS or, e.g., the Linux kernel.

Velasco et al. propose in [323] to apply erasure coding for critical OS data struc-
tures in software. The proposed concept is similar to code signing, and today widely
used for tamper-proving of embedded devices and e.g., for secure boot. The availabil-
ity of this functionality would allow our lockstep to also detect silent data corruption
in rarely accessed OS structures and device drivers code and data.

When experimenting with different compiler flags, we found that faults injected in
equivalent code segments of differently compiled binaries could result in varying fault
effects. We determined through introspection of the relevant target binary parts, that
the changed behavior was caused due to specific compiler flags. Especially loop un-
rolling (GCC’s -funroll-loops flag) had a particularly positive effect when injecting
permanent and intermittent faults. In practice then compiler then flattens the program
structure, duplicating code segments instead of executing the same segment multiple
times within a loop. Serrano Cases et al. in [324,325] as well as Lins et al. in [326]
have begun to explore these effects for improving reliability, but otherwise industry
and literature today seem oblivious on this issue. Designers of software-F'T measures
in the future should consider the impact of a broad variety of behavior-altering flags
and toolchain settings supported by modern compiler suites, as these have a direct
impact on the utilized FT mechanisms as well as validation.

FIES originally offered no support for the THUMB instruction set. However, most
OS kernels, many device drivers, and even standard library functions mix THUMB
and ARM instructions. Therefore, we had to implement support for the THUMB and
THUMB?2 instruction sets for FIES, to assure consistent tracing and fault injection
results.

A jump between instruction sets without compiler-interwork would yield an unde-
fined instruction exception, as the opcode-encoding for ARM and THUMB instruc-
tions differs. This effectively prevents undetected, incorrect jumps in ARM/THUMB
interwoven code segments. We argue that instruction set mixing could be exploited
to improve fault detection. Critical code segments could intentionally be assembled
with strong instruction-set interweaving to assure that an incorrect jump immediately
results in an exception instead of silent data corruption or control-flow deviations.
For C-code, this can be achieved per function using target attributes and prefixes, or
more fine-grained using preprocessor definitions and pragma. This would reduce the
likelihood of silent data corruption and introduce a level software diversity through
compiler instrumentation or scripted, automated code transformation [327].

When designing our coarse grain lockstep measure, we were aware of two ways of
inducing checkpoints: through timers on each compartment and externally through in-
terrupts. If timers are used, checkpoints are triggered independently on each compart-
ment. Interrupt induced checkpoints are centrally triggered by the off-chip supervisor,
creating a potential single point of failure. At design time, we therefore considered
timer driven lockstep to be better, as it avoids a central authority inducing checkpoints
in favor of decentralized triggers. However, our fault injection campaign showed that
interrupt induced checkpoints are considerably simpler. The timer-handling related
logic requires more code and increases the OS state, and thus also more prone to faults
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than a simple interrupt handler. Hence, in future work we decided to use interrupt
driven checkpoints instead of timed checkpoints.

8.12 Conclusions

In this chapter, we presented an automated fault injection toolchain, and validation
results of the software-implemented fault tolerance (FT) concept described in Chapter
4. Few software-implemented F'T concepts proposed today have been validated, and
therefore this chapter also serves as practical guide for fellow research, to make proper
testing of fault tolerance techniques a less challenging and time consuming task. Today,
a broad variety of fault injection techniques and tools are available for finding bugs
or security vulnerabilities, to assure logical correctness of a concept, or to validate
FT concepts. Validation of software-implemented F'T concepts requires a realistic
implementation, and in-depth knowledge on the tested mechanisms and tools. Hence,
not all tools and techniques are suitable for all purposes, and validating FT concepts
in the same way as fault injection is conducted for, e.g., software security purposes,
does not work.

Proper validation thus is non-trivial, is time consuming and requires considerable
research. In consequence, developers of coarse-grain lockstep concepts often forego the
practical concept implementation and validation, resorting instead to modeling. Prac-
tical validation, however, is a prerequisite to even consider a concept for application in
mission critical systems, which then can be subjected to system-level validation and
prototype development. This has resulted in a large gap between academic theory
and practical application, with researchers proposing powerful concepts but industrial
users disregarding them out of hand due to a perceived lack of maturity and time
pressure due deliver results.

The lockstep implementation validated in this publication and is the key element of
a hardware-software-hybrid system architecture which combines different FT measures
across the embedded stack within an FPGA-based MPSoC design. Validation of such
concepts has to be conducted differently than for traditional hardware-voting based
systems, and requires systematic fault injection. Hence, we developed an automated
fault injection toolchain, which enables systematical testing using system emulation
to validate the complete FDIR, cycle. To place our results into context, we compared
them to literature and discuss lessons learned and knowledge obtained throughout
our fault injection campaign beyond analyzing raw numbers. The overall results of
our fault injection campaign are positive and the thread-level coarse grain lockstep’s
performance meets our requirements.

As the other parts of our architecture have been verified separately in related
work, our test campaign represent the final step in validating our current development-
board based proof-of-concept. In practice, through this testing, we have exhausted all
technically feasible testing techniques for software that are possible today to validate
a fault tolerance measure of the scale of our lockstep. The positive outcome of our test
enables us to now produce a prototype OBC implementation, which then allows us to
then subject it to laser fault injection, radiation testing, and trials on-orbit. Systematic
validation of our coarse-grain lockstep implementation is therefore an intermediate
step. To further test our architecture, a prototype system must be implemented to
then conduct radiation testing.
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Chapter 9

Combining Hardware and
Software Fault Tolerance

High-Level System Design

In this chapter, we describe in detail the topology of our multiprocessor System-on-
Chip (MPSoC) to address RQG by providing an ideal platform architecture for the
lockstep described in Chapter 4. We show how it can be assembled in its entirely from
well tested COTS components using commodity processor cores and library IP. The
resulting MPSoC' is the result of a true hardware-software co-design process, and uti-
lizes the concepts presented in the previous chapters. It is designed as ideal platform
for our architecture, where each design decision was taken to reinforce the fault toler-
ance properties of the system as a whole. This chapter therefore servers the final step
in developing our fault-tolerant system architecture. In Chapter 10, we then present
practical implementation results of this MPSoC.
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9.1 Introduction

Satellite miniaturization has enabled a broad variety of scientific and commercial space
missions, which previously were technically infeasible, impractical or simply uneconom-
ical. However, due to their low reliability, nanosatellites, as well as light microsatellites,
are typically not considered suitable for critical and complex multi-phased missions
and high-priority science. The on-board computer (OBC) and related electronics con-
stitute a large part of such spacecraft, and were shown to be responsible for a significant
share of post-deployment failure [2]. Indeed, these components often lack even basic
fault tolerance (FT) capabilities.

Due to budget, energy, mass, and volume restrictions, existing FT solutions origi-
nally developed for larger spacecraft can not be adopted. In this chapter we describe an
multiprocessor System-on-Chip (MPSoC) that utilizes conventional hardware, provid-
ing FT for miniaturized satellites. The MPSoC is assembled from well tested COTS
components, library logic (IP), and powerful embedded and mobile-market proces-
sor cores, yielding a non-proprietary, open architecture. Our key contribution is a
fault-tolerant OBC architecture for CubeSat use that consists only of extensively val-
idated standard parts, and can be reproduced with minimal manpower and financial
resources.

9.2 Background & Related Work

Aboard nanosatellites, subsystems are controlled by just one command & data han-
dling system, whereas aboard a larger satellite these tasks are distributed across mul-
tiple dedicated payload and subsystem computers. This implies a varying OBC work-
load throughout a nanosatellites mission, which traditional FT solutions only handle
through over-provisioning. The MPSoC design presented in this chapter can efficiently
handle faults through thread migration and partial reconfiguration. Major parts of our
approach are implemented in software, allowing the OBC to deliver the desired com-
bination of performance, robustness, functionality, or to meet a specific power budget.
To enable strong FT with low-cost commodity hardware, we combine fault detection,
isolation and recovery in software, FPGA configuration scrubbing with other fault
detection, isolation and recovery (FDIR) measures across the embedded stack.

Nanosatellites today utilize almost exclusively COTS microcontrollers and appli-
cation processors-SoCs, FPGAs, and combinations thereof [40,237]. Due to manufac-
turing in fine technology nodes, and the use of extensively optimized standard IP, they
offer superior efficiency and performance as compared to space-grade OBC designs.
The energy threshold above which highly charged particles can induce faults (SEE —
single event effects) in such components decreases, while the ratio of events inducing
multi-bit upsets (MBU), and the likelihood of permanent faults, increase. To adapt
such hardware-FT based concepts additional FT-circuitry is required, inflating logic
size and producing diminishing returns, resulting in limited scalability and low clock
frequencies [188,190,192]. We can observe that traditional FT-concepts applied to
modern COTS hardware yield no nanosatellite compatible architectures.

While more sensitive to transient faults than ASICs [142,143], FPGA-based Soft-
SoCs have been shown to offer excellent FDIR potential for miniaturized satellites
[238]. Transients in critical parts of the FPGA fabric can be scrubbed [242], while
permanent faults may be compensated through reconfiguration with differently routed
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configuration variants [105]. Fine-grained, non-invasive fault detection in FPGA fab-
ric, however, is challenging, and subject of ongoing research [239,240]. Relevant FT-
concepts thus rely on error scrubbing, which has scalability limitations and cover only
parts of the fabric [239,242|. We overcome these limitations by implementing fault-
detection in software through thread-replication and coarse-grain lockstep within an
MPSoC using weakly coupled cores.

Tiled architectures [246,328] are often used for well paralellizable applications with
many low-performance processor cores. Among others, [329] and [328] showed that
this topology can also be exploited to achieve F'T for image processing applications
with a very specific structure. We combine a compartmentalized topology with a
coarse-grained lockstep described in Chapter 4, enabling FDIR without constraining
the application type or system architecture. Thus, the architecture presented in this
chapter is well suited for platform control and can be used as a template, allowing a
high level of OBC design freedom, and enabling a considerable amount of testing to
be inherited from COTS components and logic.

Thread migration has been shown to be a powerful tool for assuring F'T, but prior
research ignores fault detection, and imposed tight constraints on an application’s type
and structure (e.g., video streaming and image processing [241]). Thread-level coarse-
grain lockstep of weakly coupled cores instead supports general purpose computing,
and in the past, has already been used for high availability, non-stop service, and
error resilience concepts. However, in prior research, faults are usually assumed to be
isolated, side effect free, and local to an individual application thread [208] or transient
[199, 205], entailing high performance [209] or resource overhead [210,211]. More
advanced proof-of-concepts [198,199], however, attempt to address these limitations,
and even show a modest performance overhead between 3% and 25%, but utilize
checkpoint & rollback or restart mechanisms [199], which make them unsuitable for
spacecraft command & control applications.

Many of these limitations and obstacles ultimately can be attributed to low ma-
turity, as a majority of software-F'T concepts are published as a concept TRL1 but
remain unvalidated. Hence, they could be uncovered, and in many cases, can be po-
tentially resolved through implementation and practical validation [198], increasing
maturity to TRL2 or TRL3. However, development of a testable proof-of-concept is a
time consuming and costly undertaking [300], as outlined among others by Sangchoolie
et al. [301] with limited immediate yield for academic publication. Fault injection for
entire OS instances is especially non-trivial [302], as thorough preparation and care-
ful tool-selection is necessary to obtain representative results from a fault injection
experiment [303]. Therefore, a broad variety of TRL1 software-FT concepts exist
today at a theoretical level [212-214], for which validation was only conducted statis-
tically using modeling with different fault distributions or not a all. In this chapter,
we therefore conduct validation of our coarse-grain lockstep approach using system-
atic fault-injection. Thereby we verify the effectiveness of our coarse-grain lockstep
FDIR mechanisms under stress using a RT'OS-based proof-of-concept implementation,
increasing maturity to TRL3.

9.3 A Hybrid Fault Tolerance Approach

Conventional FT architectures require proprietary logic in hardware to facilitate fault
detection and coverage. In contrast, the architecture described in this chapter can
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offer strong FT using just COTS components and proven standard library logic. This
is made possible through the use of the FT approach we presented in Chapter 4. The
high-level functionality of this approach is depicted in Figure 62, and consists of three
interlinked fault mitigation stages implemented across the embedded stack:

Stage 1 implements forward error correction and utilizes coarse-grain lockstep of
weakly coupled cores to generate a distributed majority decision across compartments.
Fault detection is facilitated through application callback functions, without requiring
deep modifications to an application or knowledge about intrinsics.

Stage 2 recovers failed compartments through reconfiguration and self-testing.
It assures the integrity of programmed logic and deploys configuration scrubbing, as
well as Xilinx Soft-Error-Mitigation (SEM), to correct transients in FPGA fabric. Its
objective is to assure and recover the integrity of processor cores and their immediate
peripheral IP through FPGA reconfiguration and the use of differently routed and
placed alternative configuration variants, thereby counteracting resource exhaustion.

Stage 3 engages when too few healthy compartments are available, and re-allocates
processing time to maintain reliability. To do so, thread-level mixed criticality is ex-
ploited, assuring sufficient compute resources are available to high-criticality applica-
tions by sacrificing performance or availability of lower-criticality threads.

Further details including benchmark results are available in Chapter 4. The main
target in our project is the ARM Cortex-A53 application processor, which is today
widely used in embedded and mobile-market devices. However, this research is pro-
cessor and ISA independent. In this chapter, we describe an MPSoC design and

MPSoC Supervisor & Config Controler
Stage 3
Bootup < Mixed Criticality
recqvereq
functionality failure
Stage 3
: Mixed Criticality
A A Update Replace
Appllca'tlonf Compartment Compartment
Execution :
: Check
Fault Counter
. Read Majority
Checkpoint »|  Decision

Figure 62: Stage 1 (white) assures fault detection (bold) and fault coverage. Stages 2 (blue)
and 3 (yellow) counter resource exhaustion and adapt the on-board computer application
schedule to reduced system resources.
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architecture template, which is enabled by this approach and can be reproduced in
Xilinx Vivado 2017.1 and later.

9.4 The MPSoC Architecture

We developed our software-F'T architecture for use on top of an MPSoC consisting
only of COTS technology. The main target in our project is the ARM Cortex-A53
application processor. For many size-optimized space applications, smaller cores such
as the Cortex-A32, A35 and A5 may also offer a better balance between performance,
universal platform support, and logic utilization. The Cortex-A53 core was chosen as
it is today widely used in a variety of industrial and mobile-market devices, though
our architecture is processor and instruction set architecture (ISA) independent.

In this section, we describe a publicly reproducible MPSoC design variant imple-
menting our architecture, which can be designed in full using Xilinx library IP and
Microblaze processor cores. The architecture minimizes shared logic, compartmental-
izes compartments, and offers a clearly defined access channel between compartments
and the supervisor, and is depicted in Figure 63.

9.4.1 Supervision & Reconfiguration

Stage 1 can be implemented on a single chip, but we utilize an off-chip supervisor
to facilitate FPGA reconfiguration and transient fault scrubbing in the running con-
figuration. The outlined multi-stage FT approach puts only minimal load on the
supervisor, and it can thus be again implemented using a traditional radiation hard-
ened or tolerant microcontroller. The FeRAM-based TI-MSP430FR family would be a
solid somewhat radiation-tolerant but non-FT substitute, which is today widely used
aboard a broad variety of CubeSats and low-performance COTS products designed for
nanosatellite use. The level of performance offered by such microcontrollers is usually
sufficient only for educational CubeSats and federated systems. However, a supervisor

_____________________ 1 FeRAM |
BRIGE—+ (OS Code)
S | I: | E—
|
M I MRAM |
:I (App Code)
| | E—
1
ax 1 NAND Flash |1
I | (Payload Data)
|
1 |
; DDR [ li
C Scrubber |I
A — |
|
P DDR ctlr [7 |! Main
+ECC I, Memory
e O R |

Figure 63: The topology of our compartmentd MPSoC design. Each compartment exists
in its own reconfiguration partition and therefore also clock domain, simplifying routing and
logic placement. Reconfiguration partitions are indicated with dashed lines.
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in our architecture only receives the majority voting results from the coarse grain lock-
step, controls the FPGA, and facilitates reconfiguration through an ICAP controller
in static logic. Hence, the low level of performance of an MSP430FR, for example, is
sufficient, and allows an ultra-low-cost implementation of our approach for academic
CubeSat projects and scientific instrumentation.

We deployed configuration error mitigation through Xilinx SEM in combination
with supervisor-side scrubbing to safeguard logic integrity. However, SEM and scrub-
bing only detect faults in specific components of the FPGA fabric (e.g., not in BRAM),
leaving significant parts of the design unprotected unless logic-side ECC is used.

These measures alone do not provide sufficient protection for fine-feature size FP-
GAs. Thus, our software-FT functionality can locate faults in the partition of a specific
compartment, allowing the supervisor to resolve them using reconfiguration. We place
compartments in separate configuration partitions to enable partial reconfiguration of
individual compartments, without affecting the rest of the system.

As depicted in Figure 62, the supervisor only reacts to disagreement between com-
partments, otherwise remaining passive. It maintains a fault-counter for each compart-
ment and acts as a watchdog. When resolving transient faults within a compartment,
it increments the fault-counter and induces a state update through a low-level debug
interface. After repeated faults, the supervisor will replace the compartment by ad-
justing the thread-mapping of a spare compartment, activating it, and rebooting the
faulty compartment. In case a system developer indicated threshold is exceeded, the
disagreeing compartment is assumed permanently defunct and not re-used as a spare.

To allow supervisor access to a compartment and its address space, each compart-
ment is equipped with an AXI debug-bridge (Figure 64). The supervisor can trigger
execution of self-test functionality within a compartment to detect faults in periph-
erals. It can also trigger an adjustment of a compartment’s thread allocation as part
of Stages 1 and 3, making the MPSoC’s computational performance, robustness and
energy consumption adjustable at runtime.

Majority voting between compartments can be implemented as distributed major-
ity decision [330], then requiring no direct intervention of the supervisor during regular
operation. If this is not desired, or lockstep through interrupt triggered checkpoints
is implemented, then the supervisor should also take care of receiving the voting re-
sults generated on each compartment. In that case, the supervisor can access each
compartment’s thread mapping via each compartment’s debug interface, and if nec-
essary induce a reset or otherwise manipulate a compartment without requiring its
cooperation.

9.4.2 Tile Architecture

Our MPSoC design implements multiple isolated SoC-compartments accessing shared
main memory and OS code. Even though the purpose and function of these compart-
ments is different, the topology resembles a compartmentalized architecture instead
of a conventional MPSoC design, in which cores share infrastructure and peripherals.
This topology increases Stage 1’s fault coverage capacity and allows task mapping
for general-purpose software. Each such compartment contains a processor core, local
interconnect, and peripheral IP-cores and interfaces as depicted in Figure 64, resides
in its own clock domain, and can be reset independently. Allocating a clock domain
to each compartment improves timing, and reduces logic-overlap and interdependence
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Figure 64: The logic-side architecture of a compartment. Access to local IP bypasses the
cache, while access to global memory passes is cached for performance reasons.

between compartments. Furthermore, we can then also utilize partial reconfiguration
and frequency scaling for each compartment, as well as clock gating.

A compartment executes a set of thread replicas, and its loss can be compensated
by the rest of the system. To assure a failed compartment can not cause performance
degradation in the rest of the system (e.g., by continuously accessing DDR, or program
memory), it can be disconnected off from the global interconnect by the supervisor.
Non-masked faults (due to radiation, aging, and wear) disrupt the data or control flow
of the software running on a compartment. Stage 1 builds upon this capability at the
thread-level, as state differences can be detected by other compartments and often
even by the malfunctioning compartment itself as described in Chapter 8.

All compartments are equipped with an identical set of peripheral interfaces, with
controllers being mapped to identical locations and address ranges. The compartment
address space layout is uniform across the system and compartments are indistinguish-
able for software. Hence, application code and data structures are portable between
compartments, simplifying thread migration drastically. This allows us to reduce the
computational cost and complexity of software-lockstepping.

Thread allocation and information relevant to the coarse-grain lockstep is stored
in a dedicated dual-ported on-chip BRAM on each compartment. We refer to compo-
nent is as state memory, and indicate it as SM in the figures. One port is accessible
to the compartment’s processor core, while the other is read-only accessible to the
system. This allowing low-latency information exchange between compartments with-
out requiring inter-compartment cache-coherence or main memory access. The state
memory architecture is depicted in Figure 65. The supervisor can access and modify
each compartment’s state memory through its debug interface on each compartment.

9.4.3 Interconnect Topology and Shared Memory

Figure 63 depicts the MPSoC’s high-level topology. Our MPSoC design utilizes an
AXI interconnect in crossbar mode to allow compartments access to shared main and
non-volatile memory controllers, though we are currently reworking our MPSoC to
instead use a NoC [329].

Main memory is shared between compartments, as SD- and DDR memory con-
trollers are too large and require too much I/O to instantiate for each compartment.
Each compartment has full access to a segment of main memory, which is mapped to
the same address range on all compartments (the MMU component in the figures).
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Figure 65: A compartment’s state memory is accessible to all other compartments in the
system. It provides a write protected, high-speed on-chip possibility to expose state-relevant
data to the MPSoC as a while.

All compartments can access main memory read-only to simplify state synchronization
and IPC. The supervisor can access each set of main memory controllers directly.

For nanosatellite missions to LEO, often only SECDED ECC support is required
and readily available in library IP already [331], while basic error scrubbing can be
facilitated in software. For critical, deep-space, and long-term missions, block coding
should be used instead to compensate for the increased impact of SEEs and higher
likelihood of MBUs in high-density SDRAM. Reed-Solomon ECC as well as error
scrubbers are available commercially, or can be assembled from open-source IP. The
main memory scrubbers are controlled by the supervisor to avoid potential interference
by malfunctioning compartments. ARM Cortex-A53 as well as Microblaze caches and
several local memories and buffers offer ECC support as basic functionality [331].

To safeguard main memory, FeRAM [332], MRAM [150], and mass memory from
SEFIs, as well as permanent failure, these memories are implemented redundantly to
enable failover. To allow non-stop operation during FPGA reconfiguration, we also
implement their controllers, and the AXI interconnects they are attached to redun-
dantly. This also enables further protective measures which we described in Chapter
7, and allows load distribution for timing critical main memory through segment inter-
leaving. Thereby the available DDR memory bandwidth is increased and the overall
latency for memory access can be reduced. This also enables us to recover an instance
of a memory controller on short notice without requiring the full system to be halted?.

Tiles compete for DDR memory access. As our architecture is implemented on
FPGA, the clock frequency of each compartment’s processor core is lower as on ASIC
implemented MPSoCs. In consequence, the global interconnect as well as DDR mem-
ory controllers offer abundant throughput at drastically higher clock frequencies. Each
processor core caches access to shared memory, drastically reducing the strain on the
memory subsystem. Access to a compartment’s state memory still bypasses the cache,
but this is implemented directly in high-speed, low-latency on-chip BRAM. Hence,

INote that depending on the used OS, a reboot of a compartment may be required. Linux sup-
ports modifications to the memory layout and relocation, while simpler OS, such as RTEMS, do not
currently know such functionality.
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while in principle competing for memory bandwidth, even an 8-compartment system
can not saturate the two available DDR4 channels in our current MPSoC design. Ide-
ally however, our architecture should be implemented using a NoC instead of a global
AXI-interconnect crossbar, which would offer drastically better scalability, more effec-
tive caching and buffering, and also a degree of FT.

9.5 Subsystem Connectivity and Peripheral 1/0

A fault resolved in Stage 1 may cause incorrect data to be emitted through I/0
interfaces. This is an inherent limitation of coarse-grain lockstep concepts, and can
only be slightly alleviated through additional application-intrusive work-around as
described, for example, in [199]. Instead, this limitation is better solved at the logic
level through interface-level voting, which is possible with minimal extra logic. For
most CubeSats, most nanosatellites, and less critical microsatellite missions, however,
this is usually foregone.

Larger spacecraft already utilize interface replication or even voting to assure full
hardware TMR, usually requiring considerable effort in hardware or logic to facilitate
this replication. Our MPSoC architecture inherently provides interface replications
by design, requiring no extra measures to be taken, as the individual compartment-
interfaces can be directly used for TMRed architecture. Further safeguards are neces-
sary for very small CubeSats where interface replication is undesirable, for example,
due to PCB-space constraints.
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Figure 66: An activation-driven, buffered output voter with input de-multiplexer can be
constructed for low-pin-count CubeSat interfaces. Note that an additional re-sampling step
would be required in case of different thread scheduling on lock-stepped compartments.
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9.5.1 Electrical- and Logic-level Interface Voting

For simple embedded interfaces like I12C and SPI connected to “dumb” sensors or
actuators with no user configurable firmware, a simple majority decision per I/O line
is possible. While hardware voting is challenging for large arrays of voters running
synchronized at very high frequencies, the CubeSat-relevant interfaces are electrically
simple, have a very low pin count, and run at relatively low clock frequencies. Hence,
voting for these interfaces can efficiently be implemented on-chip through simple voters
assuming compartments signals interface activity.

Our coarse grain lockstep mechanisms allow software to be executed with slight
timing variations. These may be caused by clock-domain interactions, competition of
compartments for global interconnect DDR4 and QSPT access, as well as differences in
compartment partition routing and or I/O pin placement. In general, these variations
will be limited to few clock cycle duration. I/O on these interfaces must be buffered,
which can be done within the FPGA as discussed further also by Li et al. in [333]. For
simplicity, compartments should also indicate that an interface is active, and we can
double-use the chip-select pins present in almost all 12C and SPI implementations.
The voter can use activity on these pins as indication that the interfaces is active,
and delay voting for a given amount of clock cycles using a set of FIFO buffers. The
depth of these FIFOs thereby determines the maximum delay compensated by the
voter [334]. In our design we can utilize a combination of re-sampling majority voter
and MUX as depicted in Figure 66.

Note that larger MPSoC variants with 6 or more compartments can host multiple
independent lockstep sets as described in Chapter 6. In this case, simple buffered vot-
ing is insufficient, as compartments could then also run mixed lockstep groups where
threads may be scheduled with much larger time differentials. This differential will
always be shorter than the duration of a lockstep cycle or the frame time, but in LEO
these may extend to up to several seconds. It would be uneconomical and, depending
on the application, even technically infeasible to buffer I/O for long duration. How-
ever, we consider the design-combination of a low-end CubeSats that can not afford
subsystem TMR, packet-based communication, with a high-performance 6-core MP-
SoC not very attractive and therefore a corner case. If this combination was still
deemed necessary, a straight forward solution would be to maintain multiple isolated
thread-assignment groups.

9.5.2 Simple Inter-Subsystem and Controller Networks

Many SPI and 12C implementations support multi-master shared bus operation, and
it is possible to even create large and complex CAN-bus networks [335]. CubeSats
often use these interface standards for low-speed inter-subsystem communication in
simple CubeSat designs [39,336]. While packet based interfaces offer far better scala-
bility, reliability, and fault-mitigation properties for this purpose [337], in reality these
concepts will remain in use aboard CubeSats for the foreseeable future. However, in
contrast to interfacing with “dumb” endpoints ICs, these networks? usually consist of
microcontrollers running satellite developer provided software. In this case, a better
solution to de-replicating and obtain consensus within the system of our MPSoC’s
compartments is to make the subsystems aware of the replication.

2In CubeSat jargon often referred to as “buses”.
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A subsystem controller then can await receiving a second replica of a command
sequence from a different master. Of course this does not solve the issue of a single
compartment /master jamming or saturating the bus due to malfunction. However,
most CubeSats using these interfaces as subsystem-bus currently usually also do not
take actual meaningful countermeasures in this regard. This is technically possible, but
requires entirely different network topologies [335,337] than the simplistic single-level
bus concepts used aboard CubeSats today [39].

9.5.3 Packet Switching and Routing On-Board Networks

For packet-based interfaces such as Spacewire [338], AFDX [94], CAN [55], or Ethernet
[73], no hardware- or logic-side solution is necessary. There, packet duplication and
integrity checking can be managed efficiently at the data link, network and transport
layers (OSI layers 2 — 4 [339]). At the physical layer, Ethernet and thereof derived
technologies such as AFDX [94] and TTEthernet [340] perform shared medium through
collision detection and micro-segmentation with frame switching. Then, packet routing
(L3) and de-duplication in software at the higher OSI layers can be deployed, e.g., in
software. Today, this is common practice in relevant industrial applications such as
AFDX and TTEthernet used in related fields such as atmospheric aerospace or safety
critical automotive applications.

The FPGAs considered in our research provide an abundance of high-speed MGT
transceivers. These are intended to support high-performance serial interfaces such as
PCle, or USB3 host interfaces [341], which may become attractive for CubeSat use in
the future and have built in error correction support. Even the smallest XCKU3P part
fields 16 such interfaces, and the location of these interfaces is in very attractive loca-
tions for using 2-3 of them isolated within each of our MPSoC’s compartments [342].
In practice, this would allow for a very scalable, high-performance CubeSat inter-
subsystem communication architecture [343] at little cost assuming a the satellite’s
high-level design takes this into account.

9.6 Implementation Considerations

The MPSoC architecture described in this chapter was developed for miniaturized
satellite use, as an ideal platform for the software-FT approach described in Chapter
4. This architecture is not specifically dependent on utilizing ARM processor cores,
but can be implemented with any FPGA-implementable soft-core. Our choice of the
ARM platform was taken in part to allow thread migration between soft- and hard-
cores (e.g., on Zynq Ultrascale+), maximum comparability to COTS mobile-market
and embedded MPSoCs with secondary use aboard a major share of CubeSats. Espe-
cially for low-budget CubeSat users in research or university projects, standard vendor
library cores such as Xilinx Microblaze may be an excellent alternative to our Cortex-
A choice. These cores offer erasure coding and other basic fault tolerance features out
of the box already, and performed rather well in radiation tests [331]. They are readily
available and often even free of charge, especially to academics and non-commercial
scientific research users.

We implemented a proof-of-concept on a Xilinx XCKU5SP FPGA with modest re-
source utilization (28% LUTs, 33% BRAMs, 16% FFs, 5% DSPs) and 1.92W total
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power consumption with Microblaze cores. In this 4-compartment design, each com-
partment was equipped each with one peripheral 12C master controller, one SPI mas-
ter, as well as a dual-channel GPIO controller. Such an interface configuration is rep-
resentative for most CubeSat applications, while AFDX, TTEthernet, and Spacewire
are today not widely used aboard CubeSats.

This approach and architecture could very well be implemented on ASIC without
reconfiguration and Stage 2, and we see this as a “big-space” variant of our approach.
An ASIC implementation offers lower energy consumption, and allows higher clock
rates due to reduced timing and shorter paths. If manufactured in an inherently radi-
ation hard technology such as FD-Sol [144], it would be less susceptible to transients
and more robust to permanent faults. Due to the drastically increased development
cost and required manpower, the resulting OBC would not be viable for most minia-
turized satellite applications (not anymore “on a budget”).

9.7 Conclusions

The 3-stage FT approach combined with its MPSoC host system presented in this
chapter is the first practical, non-proprietary, affordable architecture suitable for FT
general-purpose computing aboard nanosatellites. It utilizes FT measures across the
embedded stack, and combines topological with software functionality, utilizing only
extensively validated standard parts. Thereby, we enable the use of nanosatellites in
critical space missions, while the architecture allows trading processing capacity for
reduced energy consumption or fault coverage.

An OBC relying upon this architecture can be facilitated with the minimal man-
power and financial resources. The MPSoC can be implemented using only COTS
hardware and extensively validated, and widely available library IP, requiring no pro-
prietary logic or costly, custom space-grade processor cores. It offers a high level of
resource isolation for each processor, utilizing architectural features originally con-
ceived for ManyCore systems to achieve FT.

Each compartment functions as a stand-alone processing compartment with ded-
icated I/0, existing in its own clock domain and reconfiguration partition, thereby
minimizing shared resources and reducing routing complexity. Compartments were
purposefully designed to best support thread-level coarse-grain lockstep of weakly
coupled cores, while allowing partial reconfiguration without stalling the rest of the
system. The architecture was implemented successfully, and tested on current gen-
eration Xilinx Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 compartments, and
validated through fault-injection into RTEMS.
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On-Board Computer Integration
and MPSoC Implementation

Practical Design Verification on FPGA

In this chapter, we present a practical implementation results for our MPSoC design,
as just making up fault tolerance concepts would be insufficient to answer RQ6. We
show that this on-board computer architecture in its full functionality can be imple-
mented with a low component cost, and only with standard development tools and IP.
We achieve 1.94W total power consumption, which is well within the power budget
range achievable aboard 2U CubeSats and larger satellites. This serves as proof-of-
concept for our architecture and answers RQ6, paving way to radiation testing and
on-orbit demonstration in the future.

Spacecraft

OBC /@

Semiconductor

Software

MPSoC Logic

Registers

On-Chip SRAM

Non-Volatile RAM

Volatile RAM

Abstract Data Storage Technolgies

— OBC Interfaces =

On-Board Network / Satellite Bus

Saving coM | EPS | AOCS | Sensors |Payloads

171



172 10.1. INTRODUCTION

10.1 Introduction

Cheap, CTOS electronics designed for the embedded and mobile-markets are the foun-
dation of modern nanosatellite design. They offer an excellent combination of low
energy-consumption, minimal cost, and broad availability. However, such components
are not designed for reliability, and include only rudimentary fault tolerance capabili-
ties. Due to the elevated risk of loosing a satellite due to failure of these components,
CubeSat missions today are kept brief or up-scaled to larger, more expensive satellite
form factors.

Low-complexity, low-performance satellite on-board computer (OBC) designs have
allowed a variety of successful CubeSat missions, with a few missions even operating
successfully for as long as 10 years. This demonstrates that there is no fundamental,
hard technological barrier that could prevent the use of modern semiconductors in
space missions. However, these designs are sufficient only for missions with very low
performance requirements, e.g., for educational missions and brief technology demon-
stration experiments.

Many sophisticated scientific and commercial applications can today also be fit into
a CubeSat form factor, which make a much longer mission duration desirable. To fly
these payloads, a CubeSat has to process and store drastically more data, and at all
levels requires increased performance. Therefore, all advanced CubeSats today utilize
industrial embedded and mobile-market derived systems-on-chip (SoC), which offer an
abundance of performance. However, these SoCs in turn are manufactured in modern
technology nodes with a fine feature size. They are drastically more susceptible to
the effects of the space environment than simple but robust low-performance micro-
controllers. Hence, proper fault tolerance capabilities are needed to ensure success for
advanced long-term CubeSat missions, as gambling against time and radiation can be
risky.

Radiation hardening for big-space applications can not be adopted, as this ap-
proach is only effective for very old or very proprietary and costly manufacturing
processes. Budget, energy, and size constraints prevent the use of traditional space-
grade components used aboard large satellites, while component-level fault tolerance
significantly inflate CubeSat system complexity and failure potential. Today, no fault-
tolerant computer architectures exist that could be used aboard nanosatellites powered
by embedded and mobile-market semiconductors, without breaking the fundamental
concept of a cheap, simple, energy-efficient, and light satellite that can be manufac-
tured en-mass and launched at low cost. Hence, we developed a scalable, yet simple
OBC architecture that allows high-performance MPSoCs to be used in space, and is
suitable for even small 2U CubeSats.

Our proof-of-concept OBC utilizes Microblaze processors on a low-power FPGA,
exploits partial reconfiguration and software-implemented fault tolerance to handle
system failure. It is assembled only from COTS components available on the open
market, standard vendor library IP, and runs standard operating system and software.
To protect our system, we utilize a combination of runtime reconfigurable FPGA logic
and software-implemented fault tolerance mechanisms, in addition to well understood
and widely available EDAC measures. We facilitate fault tolerance in software, which
enables our system to guarantee strong fault coverage without introducing the hard
design limitations of traditional hardware-TMR based solutions.

Our OBC architectures can efliciently and effectively handle permanent faults in
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the FPGA fabric by utilizing alternative FPGA configuration variants. It ages grace-
fully over time by adapting to an increasing level semiconductor degradation, instead
of just failing spontaneously. The performance of the OBC itself is adjustable, allow-
ing spacecraft operator to modify system parameters during the mission. An operator
can trade processing-capacity and functionality to achieve increased fault coverage or
reduced energy consumption, without interrupting satellite operations. Thereby, we
can maintain strong fault coverage for missions with a long duration, while adjusting
the OBC to best meet the requirements of complex multi-phased space missions.

To our understanding, this is the first scalable and COTS-based, widely repro-
ducible OBC solution which can offer strong fault coverage even for 2U CubeSats. We
provide an in-depth description of our proof-of-concept MPSoC, which requires only
1.94W total power consumption, which is well within the power budget range achiev-
able aboard 2U CubeSats. In the next section, we provide a brief overview over the
status-quo in fault-tolerant computer system design for large spacecraft, CubeSats,
and ground use. Subsequently in Section 10.3, we describe our OBC’s component-
level architecture, the MPSoC used, as well as the interplay between the different
components of the OBC. Before providing conclusions, we present our implementa-
tion results and details about how this MPSoC was tested and validated in Section
10.5. Finally, we discuss advanced applications of our proof-of-concept with multiple
FPGAs, Network-on-Chip usage and resistance to full-chip SEFIs in Section 10.4. All
components required to re-implement this OBC design are available at low cost to
scientists and engineers in an academic environment. The necessary IP and standard
design are available free of charge from the relevant vendors, e.g., through Xilinx’s
university program for academics and scientific users.

10.2 Related Work

In contrast to the initial generation of educational CubeSats, today fewer satellites
fail due to practical design problems caused by inexperience [39]. Instead, Langer et
al. in [2] showed that a majority of these failures can be attributed to electronics
heavy subsystems. Even experienced, traditional space industry actors with years of
experience in large satellite design, who develop CubeSats satellites “by the traditional
book” with quasi-infinite budgets today struggle to reach just 30% mission success [42].

The main source of failure are environmental effects encountered in the space en-
vironment: radiation, thermal stress, and corruption of critical software components
that can not be recovered from the ground, and failures caused by power electronics.
Considering again Langer et al., [2], with increasing age mission duration, a broad
majority of documented failures aboard CubeSats originate from OBCs, transceivers,
and the electrical power subsystem. While functionally disjunct, these subsystems all
have in common that they are heavily computerized and architecturally rather similar,
built around one or multiple microcontrollers and memories.

Fault tolerance concepts targeting generic commercial ground-based computing
applications usually cover only a small subset of our fault model: transient faults,
material aging, and occasionally gradual wear. Such assumptions are valid for crit-
ical applications for ground applications, but not for space applications. Often, the
introduction of permanent faults breaks fault tolerance concepts for ground applica-
tions, weaken their protective capabilities strongly, or limit their protection to only
a brief period of time. Most ground-based and atmospheric aerospace fault tolerance
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concepts also aim to guarantee reliable operation from the point in time a fault occurs
until maintenance can be performed. This is a problematic assumption for CubeSat
use, as servicing missions have only been performed on rare occasions for spacecraft
of outstanding scientific, national, and international significance such as the Interna-
tional Space Station or the Hubble Space Telescope. But certainly not for low-cost
CubeSats.

These limitations, however, by using a combination of different additional fault
tolerance measures across the embedded stack. Fault tolerance concepts for ground
and atmospheric aerospace applications can therefor serve as building blocks to design
a fault-tolerant architecture for space applications.

10.2.1 Fault Tolerance for Large Spacecraft

Traditional OBCs for large satellites realize fault tolerance using circuit-, RTL- [344],
IP-block- [104, 132], and OBC-level TMR [90] through costly, space-proprietary IP.
They make heavy use of over-provisioning and tries to include idle spare resources
(processor cores, components, memory, ...) where necessary. Naturally, this is done
at the cost of performance and storage capacity, increases system complexity, and
power consumption. Circuit-, RTL-, and core-level measures are effective for small
microcontroller-SoCs [88,345], if they are manufactured in large feature-size technology
nodes. More and more error correction and voting circuitry is needed to compensate for
the increased severity of radiation effects with modern technology nodes [345]. This in
turn again inflates the fault-potential, requiring even more protective circuitry, making
this approach ineffective for modern semiconductors.

Processor lockstep implemented in hardware lacks flexibility, limits scalability, and
is feasible only for very small MSoCs with few cores [88,346]. Timing and logic
placement becomes increasingly difficult for more sophisticated processor designs, and
becomes infeasible for SoCs running at higher clock frequencies. Practical applications
run at very low clock frequencies [347] with two or three very simple processor cores,
even for ASIC implementations [88,132]. Common to all these solutions is that they
are proprietary to a single vendor, implying a hefty price tag and tight functional con-
straints. Especially the space-proprietary single-vendor solutions available are often
difficult to develop for, have in many cases no publicly available developer documen-
tation, have no open-source software communities which could provide support in
development, and usually imply vendor lock-in into a walled garden ecosystem.

To design nanosatellites, we instead utilize the energy efficient, cheap modern elec-
tronics [41], for which traditional radiation-hardening concepts become ineffective.
Specifically, CubeSats utilize COTS microcontrollers and application processor SoCs,
FPGAs, and combinations thereof [40,41]. Some of these were shown to performing
well in space, and others poorly. On-orbit flight experiences varying drastically even
between different controller models of the same family and brand [39]. Specifically,
components that were discovered to perform well are very simple microcontrollers
with a minimal logic footprint and low complexity. These are manufactured in coarse
feature-size technology nodes, and were by coincidence designed to be rather tolerant
to radiation (radiation-hard by serendipity) [46]. Examples of such parts are the PIC
controller family, which are logically extremely simple, and controllers that include in-
herently radiation-tolerant functionality such as the Ferroelectric RAM (FeRAM) [332]
based MSP430FR, family [225]. Unfortunately, these “well behaved” components also



CHAPTER 10 175

offer very limited performance, which is sufficient only for simple educational missions,
technology demonstration, and short low-data rate science missions.

Computer designs for nanosatellites utilized about 10 years ago began to heavily
utilize redundancy at the component level to achieve failover, to provide at least
some protection from failure. However, practical flight results show that such designs
are complex and fragile, as compared to entirely unprotected ones [39,41]. Entirely
unprotected OBC designs, in turn, may fail at any given point in time. However, today
satellite designers are usually forced to simply accept this risk, leaving the hope that
a satellite will by chance not experience critical faults before its mission is concluded.
Risk acceptance is viable only for educational, and uncritical, low-priority missions
with a very brief duration.

10.2.2 Fault Tolerance Concepts for COTS Technology

FPGAs have become popular for miniaturized satellite applications as they allow a
reduction of custom logic and component complexity. FPGA-based SoCs can offer
increased FDIR potential in space over ASICs manufactured in the same technology
nodes [40] due to the possibility to recover from faults through reconfiguration. Tran-
sients in configuration memory (CRAM) can usually be recovered right away through
reconfiguration [105], while permanent faults may be mitigated using alternative con-
figuration variants. However, fine-grained, non-invasive fault detection in FPGA fabric
is challenging [345], and is a subject of ongoing research [239,240]. Applications thus
rely on error scrubbing, which has scalability limitations and covers only parts of the
fabric.

Software implemented fault tolerance concepts for multi-core systems were identi-
fied as promising already in the early days of microcomputers [131], but was technically
unfeasible and inefficient until few years ago. Modern semiconductor technology al-
lows us to overcome these limitations and recent research [348,349] shows that modern
MultiCore-MPSoC architectures can theoretically be exploited to achieve fault toler-
ance. However, these are incapable of general-purpose computing, and instead cover
deeply embedded applications with a very specific software structure [241,350]. They
require custom processor designs [348], or programming models which are suitable
for accelerator applications [349]. The fundamental concept of software-implemented
coarse-grain lockstep, however, is flexible and can be applied, e.g., to MPSoCs for
safety-critical applications [348,351], networked, distributed, and virtualized systems
[201].

10.3 A Reliable CubeSat On-Board Computer

A system designed for robustness must avoid single-points of failure and assist in fault-
detection. It should also support non-stop operation. Ideally, it should be capable of
tolerating the failure of entire block and individual attached component. The OBC
architecture presented in this chapter consists of an FPGA and a microcontroller in
tandem, which is used for test and diagnostic purposes. Within the FPGA, we im-
plement an MPSoC architecture, which is then made fault-tolerant using software
measures, while its robustness is increased using memory EDAC and FPGA reconfig-
uration.
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However, conventional MPSoCs follow a centralist architecture with processor cores
sharing functionality where possible to minimize footprint, optimize access delays,
improve routing [238]. There, processor cores share memory in full, and have full access
to all controllers operating within this address space, to maximize system functionality
and code portability. In consequence, conventional high-performance computer designs
offer only weak isolation for application running on different processor cores for the
sake of performance. Faults in one core may therefore compromise the functionality
of other cores and the MPSoC as a whole. This increases the overall failure-potential
sharply as compared to very small microcontroller SoCs, as an MPSoC’s logic does
not have only a larger footprint, but also more components that can independently
cause such a system to fail.

From a fault tolerance perspective this is undesirable, and in our OBC we follow a
different approach. Designers of fault-tolerant processors for traditional space applica-
tions handle this issue by utilizing custom fault-tolerant processor cores, to assure that
faults occurring within a core are mitigated and covered before they could propagate.
For miniaturized satellite use, this is not feasible, and instead we must achieve fault-
isolation and non-propagation through system-, software-, and design-level measures.
In the remainder of this section, we show how this can be done with only commodity
COTS components and tools that are available to academic CubeSat designers.

10.3.1 System- and Component-Level Architecture

We designed out architecture as in-place replacement for a conventional MPSoC-driven
OBC design and utilize a commodity FPGA. The component-level topology of our
OBC design is depicted in Figure 67.

We utilize an FPGA to realize an MPSoC that offers strong isolation between
the individual processor cores, and to enable recovery from permanent faults. This
FPGA serves as main processing platform for our OBC, and capable of running a full
general-purpose OS such as Linux. We implemented a proof-of-concept of our OBC
architecture using Xilinx Kintex and Virtex Ultrascale+ FPGAs, as well as the ear-
lier generation Kintex Ultrascale FPGAs. For CubeSat use, only Kintex Ultrascale+
FPGAs are relevant at this point due to drastically reduced power consumption as
compared to older generation and Virtex FPGAs. We provide further details on this
MPSoC in the second to next subsection.

To store the FPGA’s configuration memory is attached to the FPGA via SPI. The
FPGA by default acts as SPI-master for this memory and automatically loads its con-
figuration from there. In our proof-of-concept implementation, we utilize conventional
NOR-flash [153] for this purpose, which also is included on most commercial FPGA
development platforms. However, NOR-flash is inherently prone to radiation [153],
and phase-change memory (PCM [284]) is much better suited for this task as its mem-
ory cells are inherently radiation-immune. Thus, in future applications and in our
prototype, we will utilize a PCM IC instead of serial-NOR-flash.

Like most CubeSat OBCs, our OBC includes an additional microcontroller which
acts as watchdog, and performs debug and diagnostic tasks. However, as we are
utilizing an FPGA as the main processing platform, it only controls the FPGA and the
MPSoC implemented within it. Hence, it acts as a saving subsystem (redwave/hard-
command-unit), and can resolve failures within the MPSoC its peripheral ICs for
diagnostics purposes in case the MPSoC became dysfunctional. To reflect this role,
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we refer to it as “supervisor”.

As depicted in Figure 71, the supervisor is connected to the FPGA through GPIO
and SPI. The SPI interface allows low level diagnostic access to different parts of
the MPSoC, as well as facilitate low-level test access to FPGA-attached components.
Through the GPIO interface, the supervisor controls the FPGA’s JTAG interface and
can reset the FPGA as well as different parts of the MPSoC. The FPGA also has access
to the FPGA’s configuration memory, and shares this SPI bus with the FPGA in a
multi-master, so that in case of failure, it can independently reconfigure the FPGA.

The supervisor itself is not connected to other satellite subsystems, and can not
control other parts of the satellite beyond the OBC itself. During regular operation, it
takes no part in the normal data processing operations of the OBC and only receives
correctness information from the MPSoC, which is further described in Chapter 4.
However, for failure diagnostics the supervisor can be used to reprogram the OBC
FPGA to access the rest of the satellite through its interfaces for debug purposes.
Therefore, the supervisor requires very little processing power, and we utilize a robust
low-performance MSP430FR5969 microcontroller. The MSP430FR, controller family
is manufactured with inherently radiation-tolerant FeRAM instead of flash, and has
become popular in low-performance COTS CubeSat products due to its good perfor-
mance under radiation and in space [225]. A space-grade substitute is available in the
form of the MSP430FR5969-SP.

10.3.2 Memory Components

Besides the FPGA, configuration memory, the supervisor, and the usual power elec-
tronics, our OBC architecture includes two redundant sets of memory ICs for use
by the MPSoC implemented on the FPGA. Each memory set includes DDR memory
used as main working memory by the MPSOC, magnetoresistive-RAM [150] (MRAM)
used to store the operating system and flight software, as well as PCM for holding
payload data. In our development-board based proof-of-concept, we are constrained
to substituting MRAM and PCM with NAND-flash due to hardware constraints.

DDR-SDRAM is prone to radiation-induced faults [250], though with modern high-
density components manufactured in fine technology nodes, the likelihood to experi-
ence bit-upsets is low [255,352]|. Hence, for most nanosatellite missions single-bit
correcting error correction coding (ECC) [254] is sufficient to protect the integrity of
data stored [251] as long as error scrubbing is implemented [353]. In LEO, scrubbing
intervals can be kept very low, e.g., once per orbit, as the particle flux and likelihood
to receive bit-flips with modern DDR memory is minimal. This can be realized using
software-measures as we showed in Chapter 7. ECC can be implemented using stan-
dard Xilinx Library IP [331], as well as free open-source cores from OpenCores, and the
GPL version of GRLIB. Specifically, standard Xilinx design software out-of-the-box
includes the necessary library IP for Hsiao and Hamming coding.

For CubeSats venturing to areas in the solar system with more intensive radiation
bombardment, continuous memory scrubbing can be implemented in logic within the
MPSoC. Then, stronger EDAC with longer code-words and larger code-symbols should
be used, instead of the weaker coding that can be assembled using Xilinx library
IP. Symbol-based ECC can compensate better for the effects of radiation in modern
DDR-SDRAM: despite occurring less frequently overall, highly charged particles have
an increased likelihood to cause multi-bit upsets instead of changing the state of just
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a single DRAM cell. EDAC using Reed-Solomon ECC as well as interconnect error
scrubber IP cores are available commercially, e.g., via Xilinx or from the commercial
GRLIB library. Alternatively, they can be assembled from open-source IP, available
from OpenCores, and a broad variety of other open-source code repositories. However,
the quality of such cores is often uncertain, and even a good part of the IP available
through the curated OpenCores catalog is known to be defunct. Memory scrubbing
can be assembled on the FPGA from standard library IP, while ready-made scrubbers
are available commercially (e.g., the “memscrub” IP core from commercial GRLIB).

To store the OBC’s OS and its data, COTS MRAM ICs are available at low cost on
the open market today and flight experience with the parts inside earlier CubeSats has
been overwhelmingly positive. However, only the memory cells of these memories are
radiation immune. Without further measures, they are still susceptible to misdirected
read- or write access, and SEFIs. We showed in Chapter 7 that these issues can be
mitigated in software, through ECC, and redundancy. We also showed that this can be
achieved with minimal overhead through the use of a bootable file-system with Reed-
Solomon erasure coding. FeRAM would be more power efficient than MRAM, and is
also inherently radiation tolerant, but its low storage density makes it insufficient for
our use-case.

For storing applications and payload data, memory technologies with a much higher
storage density than MRAM are necessary. In practice, this limits us to use NAND-
flash and PCM, of which only the latter is radiation-immune. The storage cells of
both have a limited lifetime, and therefore are subject to wear. However, high-density
PCM has not become widely available on the open market, and so we currently have to
resort to using NAND-flash. Fault tolerance for these memories can again be realized
in software. As both these memories suffer from use-induced wear, the necessary
functionality to handle wear is needed to efficiently safeguard their long-term use.
Therefore in Chapter 7, we presented MTD-mirror, which combines LDPC and Reed-
Solomon erasure coding into a composite erasure coding system.

One of the main causes for failures in commercial memory ICs of all memory
technologies are faults in control logic and other infrastructure elements, causing SEFIs
[255]. These may cause temporary or permanent failure of memory ICs, regardless of
the memory technology used, which can not efficiently be mitigated through erasure
coding. Instead, redundancy for these devices is needed, which we can realize by
placing two memory sets. However, we do not implement failover in hardware, but
merely connect the two memory sets to the FPGA. All failover functionality is realized
through the topology of our MPSoC and in software.

10.3.3 The OBC Multiprocessor System-on-Chip

To realize fault tolerance for our OBC architecture, we isolate software run within
our OBC as much as possible and without constraining software design. To do so, we
co-designed an MPSoC as platform for the software functionality described in Chapter
4. Tts logic placement is depicted in Figure 68, and we will describe its composition
here.

We place each processor core within a separate compartment. Applications and the
environment in which they are executed are strongly isolated through the topology of
the MPSoC. The MPSoC version described in this chapter has 4 Xilinx Microblaze
processor cores, and therefore 4 compartments, which are depicted in brown, green,
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blue and purple. Compartments have access to two independent memory controller
sets through an FPGA-internal high-speed interconnect. The two memory controller
sets are depicted in the Figure in red and yellow.

The final, pink-colorized logic segment contains infrastructure IP responsible for
FPGA housekeeping, as well as an on-chip configuration controller with access to the
FPGA'’s internal configuration access port (ICAP). As depicted in Figure 69, several
MPSoC components related to FPGA housekeeping are placed in static logic:

e the configuration controller makes up only a minor part of the pink-indicated
logic,

e the supervisor’s debug interface (further described in Section 10.3.4),

e as well as a library IP core facilitating CRAM-frame ECC for the detection
and correction errors in the FPGA’s running configuration (Xilinx Soft Error
Mitigation IP — SEM [354]).

Researchers showed in related work [355,356] that faults within an FPGA can ef-
fectively be resolved through reconfiguration, or mitigated using alternatively routed
and placed configuration variants [105]. Usually, full FPGA reconfiguration would
interrupt the operation of the MPSoC, and depending on the configuration memory
used, can require considerable time. By using partial reconfiguration, we can instead
split the MPSoC into separate partitions, which can then be independently reconfig-
ured. The use of an on-chip reconfiguration controller drastically improves the re-
configuration speed, but also allows fine-grained fault analysis and configuration error
scrubbing. Multiple alternative partition designs can be provided for each compart-
ment and memory controller set, which can then be reconfigured independently. This
not only allows non-stop operation, but also increases the likelihood that a suitable
combination of partition variants can be found to mitigate permanent faults present
in the FPGA fabric [105].

Compartments and memory controller sets are placed in dedicated partial recon-
figuration partitions. Partial reconfiguration allows us to test and repair individual
compartments, and to reprogram one memory controller set transparently in the back-
ground, without affecting the remaining system. We have implemented this concept
in prior research in Chapter 5 for the MOVE-II CubeSat.

Placement in static logic instead of a partition implies that infrastructure logic
is not part of any partial reconfiguration partition, which is required both for SEM
and logic utilizing ICAP. In practice approximately 90% of the fabric’s area is part
of the reconfiguration partitions, of which 75% is quadruple-redundant and part of
a compartment supporting TMR operation through software. The other 25% of the
logic holds the shared memory controllers, which offers simple redundancy and can be
recovered transparently using partial reconfiguration. Only 10% of the fabric holds
static logic, which can be still be recovered through reconfiguration.

Large clock trees and reset networks are known to be problematic in space ap-
plications [357]. The logic in each compartment resides in a separate clock domain,
and a memory controller set in 3 — one each for DDR4 backend, memory controller
front-ends, and AXI-interconnects. Therefore, clock trees are isolated from each other
and are de-coupled on the AXI interconnects of the memory controller sets. This
minimizes clock skew and its impact, as well as temperature-related effects, while
improving timing and logic routing.
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sides in a dedicated configuration partition, but during reconfiguration compartments can no
access state information. In practice, this results in an interruption of the MPSoC, which
can be avoided using a NoC instead of a AXI interconnect.
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Figure 70: The memory and logical topology of a compartment in a quad-core MPSoC. The
compartment local and the global memory controller interconnects are logically isolated. A
compartment’s processor core has access to the memory controller sets and to compartment-
local controllers. Access to compartment-local controllers bypasses the cache.

Compartments are comprised by the minimum set of IP-blocks required for a con-
ventional single-core SoC, including interrupt controller, peripheral controllers, 1/0O,
and bring-up software. A compartment is conceptually similar to a tile in a Many-
Core architecture, which are today widely used for compute acceleration and pay-
load data processing [205]. However, their functionality is different, as a ManyCore
compute-tile usually is constrained to run simple software, without supporting inter-
rupts, inter-process communication, and I/0. A compartment instead runs a full copy
of a general-purpose OS with rich software, has access to hardware timers, interrupts,
may preform inter-process communication freely, and can handle I/O autonomously.
Besides an on-chip memory holding the bootloader, it is also outfitted with a dedi-
cated dual-port state-memory used to exchange lockstep information. The topology
of a compartment is depicted in Figure 70. Each compartment is outfitted with a di-
agnostic access port, which enables low-level access to a compartment’s internal logic
through an SPI2AXIT bridge. This facility is further described in Section 10.3.4.

In general, for the sake of reliability, the use of SPI or I12C based satellite bus
architectures is in general discouraged. However, in Chapter 9, we showed how the
interfaces of multiple compartments can be concentrated to emit only a correct result
to the satellite bus. Indeally, a network-based satellite-bus should be implemented,
which has been shown to be more robust to failures aboard CubeSats of all sizes. If an
on-board network is available, no interface-concentration measures are needed, as the
network can take care of data de-duplication and can assure that data from a faulty
compartment is not propagated. See also [94], for an excellent example of how this
can be done while providing real-time guarantees.

On-chip memory controllers used across our MPSoC are implemented in BRAM,
which in turn consists of SRAM. Xilinx library IP offers ECC for caches and on-chip
memories to detect and correct faults. We utilize Hsiao ECC to protect the data
stored in these memories due to its lower logic footprint and otherwise comparable
performance as compared to Hamming coding. Due to the brief lifetime of data in
caches and buffers, no scrubbing is necessary and the overhead induced through ECC
would be detrimental to the overall robustness of the system. Instead, faults in these
components are mitigated in software, as described in Chapter 4. To avoid accumu-
lating errors in a compartment’s bootloader, we can attach an error scrubber to each
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compartment’s local interconnect, which is managed by each compartment.

To protect the running configuration of our SRAM-based FPGA, we implement
CRAM-frame ECC using the Xilinx Soft Error Mitigation IP (SEM [354]). However,
configuration-level erasure coding and scrubbing can still only detect faults in specific
components of the FPGA fabric (e.g., not in BlockRAM). We address this limitation
at the system level: Our coarse grain lockstep functionality enables us to detect faults
in the fabric with compartment granularity within 1-3 lockstep cycles, which is further
discussed in Chapters 4 and 5. In practice, this closes the fault-detection gap left by
scrubbing and configuration erasure coding.

Each memory controller set consists of a DDR4 memory controller, a QSPI con-
troller, a set of clock and reset generators, as well as an optional memory scrubber core
and the top-level AXI crossbar. The optional memory scrubber cores can be controlled
by the supervisor to avoid potential interference by malfunctioning compartments.

Each compartment has full write access to a segment DDR memory, while it can
access the DDR memory in its entirety read-only. We construct the interconnect
used by compartments to access a controller set from an AXI crossbar and four AXI
switches, one for each compartment. The top-level crossbar is connected to the area-
optimized AXI interconnect attached to each compartment, which makes up the second
level of the MPSoC'’s interconnect. In each interconnect, we realize memory protection
for the address space of the relevant compartment to avoid a single point of failure
causing misdirected write access. Thereby, we create a topology that strongly isolates
compartments from each other, and assures non-interference between compartments.

The address space of all compartments is uniform, enabling memory structures to
be migrated between compartments and re-used. Through the MMU component indi-
cated in Figures 70 and 69, we perform the necessary address translation operations.

In case one memory controller set fails, MPSoC compartments that were using this
set will switch to failover through a reboot. Compartments that are already utilizing
the secondary set can continue executing correctly and provide non-stop operation.
Hence, it is desirable to run two of the MPSoC’s compartments off the A-controller
set, and the rest off the B-set. This allows the software-implemented fault tolerance
functionality to guarantee non-stop operation even if an entire memory set would fail.
In our proof-of-concept, we realize this functionality by outfitting compartments to be
able to use two kernel variants, of which one booting into with main memory in the
A set, and the second one into the B set. However, there are more elegant ways to
accomplish this, e.g., using position-independent firmware images [358].

To efficiently perform lockstep state comparison and synchronization between com-
partments, an MPSoC has to provide adequate means of exchanging state-data, as
discussed also in Chapters 4 and 9. For small MPSoCs with less than 6 cores, this
is realized in DDR/SDRAM memory. For larger designs, a dedicated state-exchange
network improves performance and offers stronger isolation. These components are
depicted in green in the figures. Access to state memory then takes place entirely
on-chip without passing through caches, and the global interconnect.

10.3.4 The Supervisor-FPGA Interface

The supervisor can access the FPGA through the FPGA’s JTAG interface. JTAG in
principle is powerful which can be used as a universal tool to interact with the FPGA
and its MPSoC, and manipulate it in a variety of ways. However, JTAG TAPs can be
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very complex, and the protocol does not assure the integrity of transferred data, while
binary data transfer via JTAG can be very slow. Hence, we only use it to reconfigure
the FPGA in case the on-chip configuration controller fails.

The supervisor can trigger an interrupt or permanently disable a compartment, and
can induce a reset in compartments, memory controller sets, for the configuration con-
troller, and for the FPGA itself. This is realized through a set of GPIO pins attached
to the supervisor. The supervisor can conduct low-level diagnostics and has access
to each compartment’s address space, without having to rely upon a compartment’s
processor core.

We realize high-speed interconnect access through SPI, as the CubeSat community
is already familiar with this type of interface. As we just required a direct point-to-
point between the FPGA and the supervisor without chip select, this interface setup
on the PCB-side is very simple. We attach an SPI2AXI bridge to each compartment’s
local interconnect, and additionally to each memory controller set. This SPI-bridge
can be assembled entirely from well tested, free, open-source IP available in the GPL
version of GRLIB, using the SPI2AHB and AHB2AXI IP cores. Alternatively, a
variety of open-source SPI2AXI cores are available, e.g., on gitlab, but the quality of
these cores is uncertain. Xilinx and other vendors offer a selection of commercial TP
cores.

The supervisor also communicates with the FPGA-internal configuration con-
troller, which is outfitted with a conventional SPI-slave interface. In contrast to the
SPI-diagnostics setup used for accessing the interconnect of compartments and mem-
ory controller sets, the configuration controller actively collaborates with the supervi-
sor. The configuration controller communicates with SEM and can be deactivated by
the supervisor in case of failure. During normal operation, it will notify the supervisor
about faults in the FPGA fabric. It can then perform reconfiguration via ICAP. The
satellite developer can therefore deposit multiple differently placed designs for each
partition in configuration memory, which the configuration controller can attempt to
use to resolve a fault. Finally, the configuration controller will report outcome of the
repair attempt to the supervisor.

Architecturally, the configuration controller resembles a stripped-down compart-
ment design, but is constrained to a minimal logic footprint in the following way:

e It can run only baremetal code or an RTOS, not a general-purpose OS, thereby
reducing the controller’s logic footprint.

e This software is stored directly in on-chip BRAM which is part of the reconfig-
urable fabric.

e It has no access to the memory controller sets, to prevent interdependence be-
tween static logic and partial-reconfiguration partitions.

e Besides its SPI master connected to configuration memory, the configuration
controller has no other external interfaces.

In case of failure, the supervisor can substitute the full set of the configuration con-
troller’s functionality through JTAG, and can recover it through fulllFPGA reconfig-
uration.

As depicted in Figure 71, the supervisor can utilize it’s SPI interface to access the
different components of the MPSoC in a controlled and performance-efficient manner.
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Figure 71: The design of our supervisor-FPGA control and diagnostic interface including
the debug-facilities used by the supervisor to access different compartments of the MPSoC.
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It can disable individual compartments in case of failure by using existing circuitry
required for partial reconfiguration, as indicated in Figure 70. However, instantiating
the combination of SPI, reset, and interrupt lines for each compartment, memory set,
and the reconfiguration controller would require a large amount of IO-pins. In practice,
the supervisor will only communicate one MPSoC component at any given time, and
never with multiple concurrently. Hence, we de-multiplex (DEMUX) this interface,
thereby reducing the need for I/O resources to just an SPI interface and 5 GPIO lines.

10.4 Handling Chip-Level SEFIs and Failure

Our proof-of-concept MPSoC design spans only of a single FPGA and is not designed
to withstand component-wide SEFIs affecting the entire FPGA. However, it can be
implemented to tolerate such faults and even full component failure.

Figure 72a depicts an idealized traditional A /B-failover system with I/O switching.
Such a system can tolerate the failure of components in either the A or the B side,
but fails if an additional fault occurs elsewhere in the system. The B-side of the
system remains inactive until a fault has been detected and isolated, and can be
used productively without further design measures in hardware. Due to failover being
implemented at the component level in hardware, additional glue logic required for
switching between the A and B-system. It is usually not possible to test the failed
side without further design measures, and tests can only be conducted if the system
is taken offline. These limitations can be worked around with more glue logic and a
more complex failover implementation, but even then the relevant logic can usually
not just be be turned off and bypassed. Instead, it remains a potential failure source.

The system depicted in Figure 72b implements our architecture on two FPGAs
and does not suffer these limitations: Instead of implementing all compartments and
shared memory controller sets on a single FPGA, they can be distributed across multi-
ple FPGAs. The chip-to-chip AXI IP used to connect two or more FPGAs is available
in the Vivado IP library. The failure of, e.g., a memory component connected to
one FPGA, does not cause the failure of an entire redundant system side. Compart-
ments on one FPGA connected to a failed component can still access components
on the B-side. The supervisor and platform controller on the faulty side can then
reconfigure the relevant FPGA partitions, and conduct further analysis on the failed
components. The system can thus continue thus support non-stop operation in case
of severe component failure, if threads-replicas are distributed so that not all replicas
of a thread are executed on the same FPGA. In a TMR setup, this enables non-stop
operating, e.g., with the A-side running 2 replicas on one FPPGA and the B side
running the third replica on the other. In NMR setups, two replicas can be assigned
to each side, allowing fault-detection even if one of the FPGAs has failed during the
same lockstep cycle. For diagnostic purposes, thread-replication and therefore fault
tolerance can also be constrained temporarily or even fully disabled. Even a severely
degraded system implementing our architecture that has suffered multiple component
failures can thus still operate correctly and support non-stop operation. In contrast to
a traditional OBC based on component-redundancy, our architecture thus can delivers
stronger fault tolerance capabilities than traditional OBCs. As compartments on dif-
ferent FPGA can share resources, this allows for increased efficiency and performance
as compared to traditional systems.

To support larger MPSoCs with more than 8 compartments efficiently, a more
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scalable interface between compartments and memory controller sets should be used.
This can be achieved with a Network-on-Chip (NoC). A NoC allows drastically larger
MPSoC designs [329] due to improved scalability, but also enables fault-tolerant rout-
ing [349], backwards error correction (re-transmission), and quality-of-service sup-
port [359]. When implementing our architecture with a NoC, the shared memory
controller sets would be implemented as one NoC layer, while the state-exchange net-
work forms a second layer. In contrast to conventional interconnects typologies, a NoC
can also utilize error correction for NoC routers [93].
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(a) A traditional redundant system where there A-side failed due to malfunc-
tion in one memory components, which will fail once a fault occurs on the B
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(b) Our architecture, which is still functional and not degraded, even though
multiple components have failed on both sides.)

Figure 72: Fault tolerance examples of a traditional OBC and our architecture, which
shows that our architecture can tolerate a much increased number of faults than a traditional
system.
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10.5 Utilization and Power Comparison

The quad-core MPSoC architecture described in this chapter was implemented on a
set of Kintex Ultrascale and Ultrascale+ devices using Xilinx Microblaze soft-cores
running at 300MHz, and DDR4 controllers. In our proof-of-concept, we utilize a
FeRAM-based MSP430FR5969 controller for our proof-of-concept, for which a low-
cost space-grade substitute is available. The MPSoC is reproducible in Xilinx Vivado
2017.1 and later. The necessary IP is included in the Vivado IP library, and can be
obtained free of charge through Xilinx’s university program by academics and non-
commercial scientific users. This serves as proof-of-concept for our architecture, with
resource utilization indicated in Table 9.

For this Microblaze-based MPSoC implementation, the added logic footprint for
instantiating a compartment as compared to just an application-processor without any
peripherals is low. For size comparison between an interface IP-core and a compart-
ment, a QSPI controller core is highlighted in Figure 68 in teal. It makes up only 2.5%
of a compartment’s LUT and 6% BRAM utilization, with other commonly used cores
aboard CubeSat such as 12C or UART showing a similar or even lower footprint. The
larger size of ARM Cortex-A53 processor cores reduce this ratio even further.

Our initial proof-of-concept was implemented on the Xilinx Virtex Ultrascale+
VCU118 Evaluation Kit with DDR4 controllers running at 1600MHz. This FPGA
family was ideal for design space exploration as the kit has two DDR4 memory channels
and a large fabric. Within the Xilinx Radiation Test Consortium we are currently
working on a Kintex Ultrascale KU60/XQRKUO060 test board for radiation testing, to
which we ported our design. Logic and partition placement are depicted in Figure 68.
FPGA utilization and power consumption tables are indicated in Tables 9 and 10. On
KU60, DDR4 memory controllers run at 1000MHz due to generational constraints.

We ported our MPSoC also to smaller Kintex Ultrascale+ devices, the KU60’s
closest equivalent part KU11P and the smallest FPGA in the family and generation,

KCU3P KCU11P KCU60 (XRTC)
Resource Used % Total Used % Total Used % Total
LUT 85505 52.55% 87187  29.20% | 132359 39.91%
LUTRAM 9319 9.33% 9632 6.49% 19536 13.30%
FF 93766  28.81% 96043 16.08% | 158617 23.91%
BRAM 303.5 84.31% 303.5 50.58% 316 29.26%
DSP 30 2.19% 30 1.02% 30 1.09%
10 224 73.68% 224  43.75% 378 60.58%
BUFG 21 8.20% 22 3.20% 26 4.17%
MMCM 2 50.00% 2  25.00% 2 16.67%
PLL 7 87.50% 9 56.25% 13 54.17%

Table 9: Resource utilization our MPSoC on different Xilinx Kintex FPGAs. The XRTC
variant’s DDR4 memory controllers has a larger data-width due to package constraints. De-
sign constraining fabric-resources are marked in bold.
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10.5. UTILIZATION AND POWER COMPARISON

FPGA XKCU3P XKCU11P XKCU60
FPGA Generation Ultrascale+ Ultrascale+ Ultrascale
Technology Node 16nm FinFET | 16nm FinFET | 20nm Planar
Part Package SFVB784-1 FFVE1517-1 | FFVA1517-1
Clocks 0.23W 0.29W 0.71W
Signals 0.11W 0.15W 0.30W
Logic 0.11W 0.15W 0.42W
BRAM 0.19W 0.19W 0.41W
DSP <0.01W <0.01W <0.01W
PLL 0.37TW 0.46W 0.72W
MMCM 0.23W 0.23W 0.21W
I/0 0.27TW 0.34W 1.50W
Dynamic Power 1.51W 1.81W 4.26W
Static Power 0.44W 0.70W 0.67TW
Total Power 1.94W 2.51W 4.93W

Table 10: Power consumption of the 3 quad-core MPSoC implementations. Data generated
by Xilinx Vivado 2018.3’s Implementation Power Report.

On-Chip Power

Dynamic: 1.500wW (72%)
15% Clocks:  0.228W
7% Signals:  0.112W  (7%)
7% _ i
F8% - Logic: 0.112'W (7%)
B BRAM: 0.188W (12%)
2504 DSP: 0.002W (<1%)
PLL: 0.371 W
- B mc: 0.228'W
18% ToF 0.266 W
22%
Device Static: 0.435W (22%)

Figure 73: Power consumption of the 4-core MPSoC powering our MPSoC implemented on
XCKUS3P. Figure generated by Xilinx Vivado 2018.3.
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the KU3P. The port required minor adjustments to the utilization of clocking resources,
as both KU11P and KU3P have fewer clocking-resource (MMCM and PLL tiles) than
the KU60. On KU11P, it was sufficient to switch several clock-generators used in
the shared memory controller sets from PLL to MMCM tiles, without changing other
parameters. The main constraint of the KU3P, however, required a reduction of clock
generators in memory controller sets to 1 clock domain instead of 3 as described in
Section 10.3.3. Due to the much smaller fabric of the KU3P, clock-domain sizes and
routing distances decrease, resulting better timing of the design.

Despite much lower dynamic power consumption across the board in Ultrascale+,
the KU11P variant shows slightly higher static power consumption than the KUG0,
which is counterintuitive. After discussion within the Xilinx Radiation Testing Con-
sortium, the most plausible explanation for this anomaly is the different I0-bank
placement within the fabric between these devices. On KU60, IO-banks are placed in
more favorable locations considering MPSoC design than on KU11P. This increases

Figure 74: Logic placement of our proof-of-concept MPSoC on a Xilinx Kintex Ultrascale-+
KU3P with 4 compartments (purple, blue, green, and brown), two shared memory controller
sets (red & yellow) and static logic (pink). In contrast to the KU60 implementation, DDR
controllers of this designs have reduced data width.
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logic-spread, leaving less fully inactive fabric sections, which could explain an increase
in static power consumption due to infrastructure on KUG60.

The resulting Ultrascale+ MPSoC implementations, while functionally equivalent,
show a 50% lower power consumption than the previous generation. This is due to
manufacturing in a 16nm FinFET technology node instead of 20nm planar. Power
savings mainly come from a reduced dynamic power consumption of this design, due
to an increased degree of logic concentration in a smaller of FPGA-fabric area. For
CubeSat-use, the Kintex Ultrascale+ family is therefore more attractive, despite the
potential risk of IO-pin latch-up is acceptable [299] which today is mitigated in this
field through the system-level measures [39]. On the the smallest Ultrascale+ part
and most compact BGA package xcku3p-sfvb784 available at the time of writing, we
achieved 1.94W total power consumption. This is well within the power budget range
of 2U CubeSats. Vivado’s power report for this design is depicted in Figure 73.

Synthesis was run in “Alternative Routability” mode, while implementation was
with the “Performance-Explore” strategy with post-route placement & power optimiza-
tion, as the resulting implementations showed consistently better timing and power
utilization.

10.6 Experimental Results and Testing

We have tested our proof-of-concept OBC on Xilinx VCU118 (with 2 DDR memory
channels) and KCU116 boards (with 1 channel due to board constraints), and con-
structed a breadboard setup in conjunction with an MSP430FR development board.
Further information on this designs is available in Chapter 9, with an MPSoC im-
plementation paper currently undergoing peer review. The actual platform for our
research has been the ARM Cortex-A53 application processor, which is today widely
used in a variety of mobile-market devices and certain COTS CubeSat OBCs. The
architecture we presented in this chapter is processor and platform independent, with
the MPSoC presented here implemented using Xilinx Microblaze processor cores.

To test our implementation, we have conducted fault injection through system em-
ulation into an RTEMS implementation of Stage 1 running on a Cortex-A processor.
In 2019, we also constructed a multi-core model of our MPSoC also in ArchC/SystemC
on RISC-V to conduct further fault-injection close-to-hardware. The results of this
fault-injection campaign are documented in Chapter 8. They show that with near sta-
tistical certainty, a fault affecting a compartment can be detected within 1-3 lockstep
cycles, demonstrating that Stage 1 is effective and works efficiently.

10.7 Conclusions

In this chapter, we presented a CubeSat compatible on-board computer (OBC) ar-
chitecture that offers strong fault tolerance to enable the use of such spacecraft in
critical and long-term missions. It is the result of a hardware-software co-design pro-
cess, and utilizes fault tolerance measures across the embedded stack. We described
in detail the design of our OBC’s breadboard layout, describing its composition from
the component-level, to the MPSoC implementation used, all the way down to the
software level. We implement fault tolerance not through radiation hardening of the
hardware, but realize it in software and exploit partial FPGA-reconfiguration and
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mixed criticality. To implement and reproduce this OBC architecture, no custom-
written, proprietary, or protected IP is needed. All COTS components required to
construct this architecture can be purchased on the open market, and are affordable
even for academic and scientific CubeSat developers. The needed designs are avail-
able in standard FPGA-vendor library logic (IP), which in most cases is available to
academic developers free of charge through university donation programs.

Overall, our OBC architecture is non-proprietary, easily extendable, and scales
well to larger satellites where slightly more abundant power budget is available. We
successfully implemented a proof-of-concept of our MPSoC for a variety of Xilinx
Kintex and Virtex Ultrascale and Ultrascale+ FPGA. This MPSoC was implementable
even for the smallest Kintex Ultrascale+ FPGA, KU3P, and we achieved 1.94W total
power consumption. This puts it well within the power budget range available aboard
current 2U CubeSats, which currently offer no strong fault tolerance.

A comparison to existing traditional space-grade solutions as well as those available
to CubeSat developers seems unfair. Today, miniaturized satellite computing can use
only low-performance microcontrollers and unreliable MPSoCs in ASIC or FPGA with-
out proper fault tolerance capabilities. Using the same type of commercial technology,
our OBC can assure long-term fault coverage through a multi-stage fault tolerance
architecture, without requiring fragile and complex component-level replication. Con-
sidering the few more robust, low-performance CubeSat compatible microcontrollers,
our implementation can offer beyond a factor-of-10 performance improvement even
today. Considering traditional space-grade fault-tolerant OBC architectures for larger
spacecraft, our current breadboard proof-of-concept implemented on FPGA exceeds
the single-core performance of the latest generation of space-grade SoC-ASICS such as
an GR740. However, it does so at a fraction of the cost of such components, and with-
out the tight technological constraints of traditional or ITAR protected space-grade
solutions.

Traditional fault-tolerant computer architectures intended for space applications
struggle against technology, and are ineffective for embedded and mobile-market com-
ponents. Instead, we designed a software-based fault tolerance architecture and this
MPSoC specifically to enable the use of commercial modern semiconductors in space
applications. We do not require any space-grade components, fault-tolerant processor
designs, other custom, or proprietary logic. It can be replicated with just standard
design tools and library IP, which is available free of charge to many designers in
academic and research organizations.

Our architecture scales with technology, instead of struggling against it. It bene-
fits from performance and energy efficiency improvements that can be achieved with
modern mobile-market hardware, and can be scaled up to include more, and more
powerful processor cores. At the time of writing, Xilinx has begun to introduce a new
generation of FPGA-equipped devices manufactured in a 7nm FinFET+ technology
node, in which the design issue causing latch-up in Ultrascale+ could also have been
mitigated [299]. Xilinx’s foundry TSMC expects this manufacturing process to offer
approximately 65% reduction power consumption as compared to the 16nm FinFET
node used for Ultrascale+ FPGAs [360]. Even if only half of this expected power reduc-
tion would manifests, in combination with FPGA-fabric optimizations, we can expect
to achieve approximately 1W power consumption with our MPSoC implemented on
a next-gen Xilinx FPGA. While these expectations based on experiences with the
current 20nm Planar and 16nm FinFET manufactured Xilinx FPGAs, future FPGA
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generations released within the next decade will, with near certainty [361], allow our
architecture to even become usable aboard 1U CubeSats.

At the time of writing, each component of our OBC architecture has been imple-
mented and validated experimentally to TRL3 in a 1-person PhD student project.
From each individual component, we have assembled a development-board based
breadboard setup. As next step in validating this new OBC architecture, we will
construct a prototype for radiation testing. Since 2018, we have therefore contributed
to the Xilinx Radiation Testing Consortium to develop a suitable Kintex Ultrascale-
equipped device-test board. This will bring our architecture to TRL4, and is an in-
termediate step before developing a custom-PCB based prototype for on-orbit demon-
stration. Once this has been achieved, we intend to perform the final step in validation
of this technology aboard a CubeSat.
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Conclusions and Outlook

11.1 Conclusions

RQ1 In this thesis, we presented a satellite on-board computer (OBC) ar-
chitecture that can offer strong fault tolerance with conventional, low-cost, modern
semiconductors manufactured in small feature-size technology nodes. The correct
functionality of this architecture is safeguarded through a set of inter-linked software-
implemented fault tolerance measures combined with FPGA reconfiguration, which
we described in Chapter 4. These concepts allow us to assure fault tolerance even for
satellites with a very small form factor, which today can only utilize primitive or no
fault tolerance measures at all, as traditional radiation-hardened satellite computer so-
lutions can not be utilized due to volume, mass and power restrictions. We showed that
through lockstep implemented in software, we can efficiently protect a system consist-
ing of embedded and mobile-market components, and should ideally be implemented
within an FPGA to exploit reconfiguration. We demonstrate that the performance
cost of this lockstep mechanics is economical, and that its implementation is possible
in a non-invasive manner. Its protective guarantees are run-time configurable, and
fault tolerance can even be entirely deactivated at runtime if so desired.

RQ2 In Chapters 4 and 5, we showed that the logic of an FPGA-implemented
MPSoC can be protected well from radiation effects through smart configuration man-
agement and off-chip diagnostics. We closed the fault-detection gap which prior re-
search struggles to close through the multi-stage fault tolerance architecture described
in Chapter 4. To safeguard an FPGA from transient faults, we showed that error
scrubbing and FPGA reconfiguration can be used to detect and correct bit-upsets in
the CRAM of an FPGA. As described in Chapter 4, permanent faults can then be
mitigated through reconfiguration with alternative partition variants. This not only
increases the capability to cover permanent faults, but as we show in Chapter 5, it also
allows an OBC to adapted to the specific requirements during each phase of complex,
multi-phased space missions. This allows a reduction of overall system complexity,
reduces the need for spare processor cores and MPSoC infrastructure logic, and can
drastically extend the lifetime of a COTS FPGA-based OBC.

RQ3 In space missions with a very long duration, parts of an FPGA’s fab-
ric will eventually no longer be recoverable through reconfiguration. This is due to
accumulating permanent faults in the semiconductor the FPGA, and thus also the
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MPSoC, are implemented in. Over time, this will result in an increasing number of
the MPSoC’s processor cores becoming unusable, gradually reducing the amount of
processing time available to the lockstep, and the level of replication it can achieve
for all applications. In Chapter 6, we showed that the run-time configurable nature
of software-implemented fault tolerance enables an OBC to respond to this behavior
in a way that can best be described as “graceful aging”. By exploiting mixed criti-
cality, it is possible to autonomously reallocate processing time between the different
applications that are part of an OBC’s flight software, allowing us to safeguard fault-
tolerant operation for the flight software’s core functionality. We showed that stability
and availability of critical applications can be maintained by sacrificing performance
of less important applications. In practice, this allows an OBC to age gracefully and
adapt to a shrinking set of intact processor cores, instead of failing spontaneously
as traditional systems do. A satellite operator can use this functionality to priori-
tize and dynamically trade system performance for increased fault coverage, power
saving, or to maximize an OBC’s functionality. Spare processor cores in traditional
hardware-voting based systems remain idle until a fault occurs, but our lockstep can
use them actively to run less critical parts of the flight software, until they are needed
in practice to replace a failed processor core. This allow spare processor cores available
throughout an MPSoC to be pooled and used more efficiently, thereby to overcoming
the static nature of traditional static hardware-implemented fault tolerance measures.
This allows an OBC to offer stronger fault coverage, and to more efficiently meet the
changing performance requirements throughout complex multi-phased solar system
exploration missions with much reduced over-provisioning and without requiring idle
spares.

RQ5 All these operational and system-design improvements are possible due
to the coarse-grain lockstep concept described in Chapter 4, which we utilize to achieve
forward error correction. We implement this lockstep within the OS kernel of an op-
erating system (RTEMS, FreeRTOS, and experimentally also on Linux) or as part of
baremetal software, where it assures synchronization between multiple thread-replicas
run on the processor cores of an MPSoC. To test and validate our architecture, in
Chapter 8, we conduct fault-injection into an emulated system and into a SystemC-
implemented MPSoC model. In this chapter we describe the two fault injection cam-
paigns we conducted against implementations of our lockstep: In the first campaign,
we utilized the QEMU-based FIES fault injection framework to inject faults into an
RTEMS implemented variant of our lockstep run on a Cortex-A system. In the sec-
ond campaign, we modeled a triple-core model of our MPSoC using RISC-V cores
in ArchC, and injected faults using SystemC simulation. Few software-implemented
fault tolerance concepts described in literature have been practically implemented and
validated. Therefore this chapter is also intended as practical guide for fellow re-
searchers, to make proper testing of software-implemented fault tolerance measures
less challenging and time consuming.

RQ4 Relying on software-implemented fault tolerance measures also require
special care to be taken to assure the integrity of the flight-software in which they are
implemented. Hence, in Chapter 7, we explored how unprotected volatile and non-
volatile COTS memory can be retrofitted with strong error correction and protected
from bit-upsets and SEFIs in control logic. We showed that error scrubbing for volatile
memory can be combined with allocation-time integrity checking and blacklisting for
defective pages in widely-used operating systems such as Linux. To safeguard the logic
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of our lockstep and a full firmware image, we showed that a file system can be equipped
symbol-based erasure coding and can use memory protection to mitigate the impact
of faults in control logic. To protect payload data, we described that a composite
erasure coding system can be combined with RAID-like functionality to efficiently
protect data stored within high-density NAND-flash and phase change memory. We
showed that software measures can guarantee strong fault tolerance, the NAND-flash
industry has in even begun to adopt the same erasure coding systems we proposed
in this paper as part of a solid-state drives embedded software-stack, e.g., in [286].
Simple erasure coding for caches and other on-chip memories at the time of writing is
a standard feature in Xilinx library IP, and supported in all currently available model-
market devices [119]. Security vulnerabilities such as Rowhammer and an increased
need for yield enhancement have prompted the adoption of ECC also for protecting
main memory [362], and in combined with software-implemented memory testing and
scrubbing described in this chapter, sufficient protection can be assured even for LEO
CubeSat missions with an extended duration of 2-5 years.

RQ6 Much of today’s fault tolerance research proposes interesting and novel
concepts. But in practice, the majority of these concepts can not be applied to protect
a critical system as it exists in the real world. To show that our architecture is
effective in practice, in Chapter 9 we developed an MPSoC design which provides
an ideal platform for the software-mechanics used to assure fault tolerance. It is
the result of a hardware-software co-design process and assures a high-degree of logic
and data isolation for software run on the individual processor cores of the OBC
within compartments. It can be implemented with just currently available COTS
hardware and extensively validated FPGA-vendor library IP, requiring no proprietary
logic or costly, custom space-grade processor cores. This design demonstrates that our
architecture can not just protect a satellite OBC in theory, but also that a suitable
computer architecture is feasible, and that no space-proprietary logic or IP is required.

In Chapter 10, we described the practical implementation of this MPSoC for a
variety of Xilinx Ultrascale and Ultrascale+ FPGAs as proof-of-concept. To show how
a practical OBC implementation for this MPSoC can look like, we developed a series
of MPSoC implementations and a breadboard proof-of-concept of this architecture on
Xilinx VCU118 (with 2 DDR memory channels) and KCU116 boards (with 1 channels
due to board constraints) in conjunction with TI-MSP430FR development boards. We
described the component-level setup of this architecture for CubeSat-use, for which
an MPSoC implementation on a KU3P FPGA is possible with just 1.94W total power
consumption. This demonstrates that a practical implementation of our architecture
can be achieved, which stays well within the power budget range available aboard
current 2U CubeSats.

11.2 Discussions

Traditional fault-tolerant computer architectures intended for space applications strug-
gle against technology, and are ineffective for embedded and mobile-market compo-
nents manufactured in technology nodes with a fine feature size. In this thesis we
showed that the solution to this limitation is the use of software-implemented fault
tolerance measures, which can be utilized to systematically protect each component
of an OBC as depicted in Figure 75. Through the architecture we developed orig-
inally as OBC for the MOVE-II satellite, we show that it is possible to efficiently
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Figure 75: A component-level model of a satellite OBC, components for which the research
presented in this thesis offers protection are indicated with checkmarks.

protect modern COTS semiconductors effectively, and make them usable for critical
space applications. To realize such an architecture, we do not require any space-
grade components, fault-tolerant processor designs, or other custom and proprietary
logic. The OBC architecture we developed from this approach can be replicated with
just standard design tools and library IP, which are available commercially and even
free-of-charge to designers in academic environments. Our architecture scales with
technology, instead of struggling against it. It benefits from performance and energy
efficiency improvements that can be achieved with modern mobile-market hardware,
and can be scaled up to include more, and more powerful processor cores.

In Chapter 10, we showed as practical example that our architecture can achieve
beyond 50% power saving even between two generations of Xilinx FPGAs, one being
manufactured in 16nm FinFET and the prior generation in a 20nm planar technology
node. In this regard, we eagerly await the release of the next generation of FPGAs
manufactured in EUV-based technology nodes with 7nm or 5nm feature size. Com-
pared to 16nm FinFET and 20nm planar manufactured devices, we expect that next
generation FPGAs manufactured in these technology nodes will offer further power
saving, will allow much higher clock frequencies to be achieved for an MPSoC imple-
mented in configurable logic, while the reduced feature size of the semiconductor logic
would further reduced the likelihood for radiation to affect.
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A comparison of our OBC architecture to traditional space-grade solutions and
contemporary CubeSat computing seems unfair. Today, miniaturized satellite devel-
opers are limited to use low-performance microcontrollers and MPSoCs implemented
in ASIC or FPGA. Considering the few CubeSat compatible low-performance micro-
controllers that have been shown robust under radiation, our implementation can offer
drastically more performance. At the time of writing Chapter 4, we estimated that
our architecture run on modern MPSoC and FPGAs can offer a beyond factor-of-5
performance improvement as compared to these microcontrollers. Since 2017, within a
time-span of just two years, mobile market MPSoCs have advanced drastically, and a
beyond factor-of-10 improvement seems more realistic. At the time of writing in mid-
2019, most mobile-market devices can offer almost twice the clock speed and a better
performance per clock cycle as compared to their counterparts in 2017. Same ap-
plies to the upcoming generation of FPGA which will benefit greatly from technology
scaling.

Mobile-market MPSoCs used aboard CubeSats today seldom include any fault tol-
erance capabilities. Only sometimes to CubeSat designers implement custom home-
brew component-level failover concepts, which has been shown to inflate complexity
and failure potential. Our OBC architecture is based upon the same type of commer-
cial technology, but through software-measures and a smart MPSoC design, we assure
long-term fault coverage with a component-wise simple setup. Comparing this OBC
architecture with traditional solutions for larger spacecraft, even our current FPGA-
based proof-of-concept exceeds the single-core performance of the latest generation of
space-grade ASICS-SoCs such as an GR740 (250MHz vs 300MHz+). On top of that,
our architecture can offer fault tolerance at a fraction of the cost. It can do so without
suffering from the tight technological constraints of this classical technology and the
archaic development tools used there. All this is possible while still using COTS hard-
ware, without being impacted by the legal constraints of components that are subject
to ITAR or other export control laws.

11.3 Outlook and Future Work

As of early 2019, Xilinx has began to introduce a new generation of FPGA-equipped
devices manufactured in a 7nm FinFET+ technology node, in which the design issue
causing latch-up in Ultrascale+ should be mitigated [299]. With this node, Xilinx’s
foundry TSMC expects an around 65% reduction power consumption as compared
to the 16nm FinFET node used for Ultrascale+ FPGAs [360]. Even if only half of
this expected power reduction would manifests, in combination with FPGA-fabric
optimizations, we can expect to achieve approximately 1W power consumption with
our MPSoC implemented on a next-gen Xilinx FPGA. While these expectations based
on experiences with the current 20nm Planar and 16nm FinFET manufactured Xilinx
FPGAs, future FPGA generations released within the next decade will, with near
certainty, allow our architecture to even become usable aboard 1U CubeSats.

At this point in time, I have validated this OBC architecture to the extent that
this is possible for a single researcher in an academic environment. As next step
to validate it, I therefore plan to develop a prototype implementation. Since 2018,
I have therefore collaborated with and contributed to the Xilinx Radiation Testing
Consortium in the creation of a Kintex Ultrascale KU60 device-test card to reduce
the cost and time required for constructing this prototype. As of 12.09.2019, we, the
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XRTC infrastructure team, have finalized the KU60 card’s design and schematics, and
after routing and a final review pass, the KU60 DuT-card will go into production later
this year.

Once the XRTC KU60 DuT-card becomes available, I plan to implement a match-
ing daughterboard carrying DDR-SDRAM, MRAM, and PCM components as well as
a supervisor MSP430FR, to then conduct radiation testing. Radiation testing will
then increase the maturity of this architecture to TRL4, and also serves as intermedi-
ate step to then realize a full custom-PCB based prototype. This prototype can then
for the first time be used to demonstrate the full capabilities of this architecture at
TRL5, without the constraints present in a development-based breadboard setup.

There is considerable potential for improvements considering the proof-of-concept
that I have developed before and during my PhD: The relaxed cost, energy, and size
constraints aboard microsatellites and larger spacecraft would allow an implementation
of this OBC architecture spanning multiple FPGAs and with a drastically higher
number of compartments. Such an OBC would not only offer better scalability and
fault-isolation than a single-FPGA system, but can then also tolerate chip-level defects
and SEFIs. Application replicas in lockstep could then be distributed across multiple
FPGAs, allowing non-stop operation even if an individual FPGA would have to be
reset, if or full reconfiguration is necessary.

To support larger MPSoCs with more than 8 compartments efficiently, a more
scalable interface between compartments and memory controller sets should be used.
This can be achieved by replacing the 2-level AXI crossbar the MPSoC is built around
today with a Network-on-Chip (NoC). A NoC offers improved scalability [329], can
also be used to enable fault-tolerant routing [349], backwards error correction through
re-transmission, and quality-of-service support [359]. When implementing this archi-
tecture with a NoC, the shared memory controller sets would be implemented on one
NoC layer, while the state-exchange network described in Chapter 9 would exist as
second layer. NoC routers can also be outfitted with error correction themselves [93].
Unfortunately, the few NoC-specialized experts I encountered while conducting this
research had little interest in implementing their research practically. Hence I hope
incorporate NoC into this MPSoC design in the future in collaboration with those who
are willing to do so.

I designed this OBC architecture specifically to utilize and exploit the powerful
fault-recovery capabilities of modern FPGAs. However, this OBC architecture could
very well be realized also on ASICs manufactured in radiation-robust COTS man-
ufacturing processes such as FD-Sol [144]. This would allow much reduced energy
consumption, and drastically higher clock speeds to be achieved. An ASIC variant
would be less susceptible to transients and more robust to permanent faults, while
loosing the capability to mitigate permanent faults through FPGA reconfiguration.
However, due to the drastically increased development costs of an ASIC implemen-
tation, the resulting OBC would not be viable for miniaturized satellite applications
anymore. We see this as a “big-space” variant of this approach with its own advantages,
but it would no longer offer fault tolerance “on a budget”.

This research began as a one-person project, but towards the end of my PhD, it
has become clear that it has today outgrown the capacity of just a single researcher. In
all regards, the end of my PhD is actually the beginning of something new, and more
important. I know that in the coming years, I must gather a research group to advance
this research and develop it further in a suitable environment. Where I will do this
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remains yet to be seen. At the end of the second year and the beginning of the final year
of my time as PhD researcher, I therefore began to explore ways for conducting long-
term testing for this OBC architecture to appropriately consider the time-component
that is introduced in testing hardware-software-hybrid systems. In this processes,
I have had the pleasure collaborate with several international experts in the fields
of radiation testing, space engineering, and semiconductor testing. Promising test
environments for long-term testing include the close proximity of a radiation source,
the Exposed Facility aboard the ISS (JEM-EF), or the vicinity of the Fukushima
Daiichi site. Naturally, all these test setups require considerable preparation time,
and preparing a prototype for deployed, e.g., aboard ISS is a highly competitive and
certification-heavy undertaking. Therefore, I aim to conduct in parallel to long-term
testing also on-orbit validation aboard a CubeSat, which is possible more rapidly and
at reduced cost than e.g., through an ISS experiment. After all, on-orbit technology
demonstration and validation is one of the prime use-cases for CubeSats today, and
also one of their most successful applications.

On-orbit validation aboard a CubeSat also closes a circle that began with the early
failure of the FirstMOVE CubeSat, and that initiated my satellite fault tolerance
research. I started this research, searching for a way to realize a better, fault-tolerant
satellite bus architecture for the MOVE-II CubeSat project. Back then, it became clear
that there were simply no fault-tolerant OBC architectures or products in existence
that could even theoretically be used to assure fault tolerance and guarantee reliable
operation for long-term CubeSat mission. At the start of this thesis, we raised the
question:

RQO Can a fault tolerance computer architecture be achieved with modern embedded
and mobile-market technology, without breaking the mass, size, complezity, and
budget constraints of miniaturized satellite applications?

This hard question arrose at the beginning of the development process of the MOVE-
IT CubeSat. I approached this research without a specific architecture or solution in
mind, and even briefly considered a highly experimental, academic VLIW platform.
Three years, many published research papers, and several catastrophes later, it is now
possible to answer this question in the following way:

RQO Yes. A fault-tolerant computer architecture for miniaturized satellites is tech-
nically feasible with contemporary COTS technology. Once fully implemented
as a prototype, it can be used to expand the reliable lifetime of modern day
CubeSats drastically, thereby enabling their use in critical and long-term space
missions. With contemporary COTS components, this OBC architecture can
be applied to satellites as small as 2U CubeSats. Advances in semiconductor
manufacturing in the upcoming generation of FPGAs will make this approach
also usable for smaller spacecraft, and even more appealing as it scales with
technology. It can improve efficiency and scalability when implemented aboard
heavier spacecraft that we use today for high-priority science and solar system
exploration. And maybe in the future, hopefully, we can explore even what lies
beyond its boundaries.
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