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Abstract

Cilk (pronounced “silk”) is a C-based language for multithreaded parallel program-
ming. Cilk makes it easy to program irregular parallel applications, especially as com-
pared with data-parallel or message-passing programming systems. A Cilk programmer
need not worry about protocols and load balancing, which are handled by Cilk’s provably
efficient runtime system. Many regular and irregular Cilk applications run nearly as fast
on one processor as comparable C programs, and they scale well to many processors.

1 Introduction

Cilk is an algorithmic multithreaded language. The philosophy behind Cilk is that a program-
mer should concentrate on structuring his program to expose parallelism and exploit locality,
leaving the runtime system with the responsibility of scheduling the computation to run ef-
ficiently on a given platform. Cilk’s runtime system takes care of details like load balancing
and communication protocols. Unlike other multithreaded languages, however, Cilk is algo-
rithmic in that the runtime system’s scheduler guarantees provably efficient and predictable
performance.

The basic Cilk language is extremely simple. It consists of C with the addition of three
new keywords to indicate parallelism and synchronization. A Cilk program, when run on one
processor, has the same semantics as the C program that results when the Cilk keywords are
deleted. In addition, the Cilk system extends serial C semantics in a natural way for parallel
execution. For example, C’s stack memory is implemented as a “cactus” stack in Cilk.

One of the simplest examples of a Cilk program is a recursive program to compute the
nth Fibonacci number. A C program to compute the nth Fibonacci number is shown in
Figure 1(a), and Figure 1(b) shows a Cilk program that does the same computation in parallel.
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#include <stdlib.h>
#include <stdio.h>

int fib (int n)

{
if (n<2) return (n);
else

{
int x, y;
x = fib (n-1);
y = £ib (n-2);

return (x+y);

int main (int argc, char *argv[])
int n, result;
n = atoi(argv[1]);
result = fib (n);

printf ("Result: %d\n", result);
return O;

(a)

Figure 1: Programs to compute the nth Fibonacci number

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
{
if (n<2) return n;
else
{
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

cilk int main (int argc, char *argv[])
{

int n, result;

n = atoi(argv([1]);

result = spawn fib(n);

sync;

printf ("Result: %d\n", result);

return O;

(b)
. (a) A serial C program. (b) A parallel Cilk program.



Notice how similar the two programs look. In fact, the only differences between them are the
inclusion of the library header file and the Cilk keywords cilk, spawn, and sync.

The keyword cilk identifies a Cilk procedure, which is the parallel analog of a C function.
A Cilk procedure may spawn subprocedures in parallel and synchronize upon their completion.
A Cilk procedure definition is identified by the keyword cilk and has an argument list and
body just like a C function.

Most of the work in a Cilk procedure is executed serially, just like C, but parallelism is
created when the invocation of a Cilk procedure is immediately preceded by the keyword
spawn. A spawn is the parallel analog of a C function call, and like a C function call, when
a Cilk procedure is spawned, execution proceeds to the child. Unlike a C function call,
however, where the parent is not resumed until after its child returns, in the case of a Cilk
spawn, the parent can continue to execute in parallel with the child. Indeed, the parent
can continue to spawn off children, producing a high degree of parallelism. Cilk’s scheduler
takes the responsibility of scheduling the spawned procedures on the processors of the parallel
computer.

A Cilk procedure cannot safely use the return values of the children it has spawned until it
executes a sync statement. If all of its children have not completed when it executes a sync,
the procedure suspends and does not resume until all of its children have completed. The sync
statement is a local “barrier,” not a global one as, for example, is sometimes used in message-
passing programming. In Cilk, a sync waits only for the spawned children of the procedure to
complete, not for the whole world. When all of its children return, execution of the procedure
resumes at the point immediately following the sync statement. In the Fibonacci example,
a sync statement is required before the statement return (x+y), to avoid the anomaly that
would occur if x and y were summed before each had been computed. A Cilk programmer
uses spawn and sync keywords to expose the parallelism in a program, and the Cilk runtime
system takes the responsibility of scheduling the procedures efficiently.

Cilk uses a cactus stack [8] for stack-allocated storage, such as is needed for procedure-local
variables. As is shown in Figure 2, from the point of view of a single Cilk procedure, a cactus
stack behaves much like an ordinary stack. The procedure can allocate and free memory by
pushing and popping the stack. The procedure views the stack as extending back from its
own stack frame to the frame of its parent and continuing to more distant ancestors. The
stack becomes a cactus stack when multiple procedures execute in parallel, each with its own
view of the stack that corresponds to its call history, as shown in Figure 2.

Cactus stacks in Cilk have essentially the same limitations as ordinary C stacks [8]. For
instance, a child procedure cannot return to its parent a pointer to an object that it has
allocated, since the object will be deallocated automatically when the child returns. Similarly,
sibling procedures cannot reference each other’s local variables. Just as with the C stack,
pointers to objects allocated on the cactus stack can only be safely passed to procedures
below the allocation point in the call tree. Cilk supports heap memory as well as stack
memory, however, and a Cilk malloc() function is available to programmers.

The Cilk language also supports several advanced parallel programming features. It pro-
vides “inlets” as a means of incorporating a returned result of child procedures into a procedure
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Figure 2: A cactus stack. Procedure A spawns B and C, and B spawns D and E. The left part of
the figure shows the spawn tree, and the right part of the figure shows the view of the stack by the
five procedures. (The stack grows downward.)
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frame in nonstandard ways. Cilk also allows a procedure to abort speculatively spawned work.
A procedure can also interact with Cilk’s scheduler to test whether it is “synched” without
actually executing a sync. The Cilk-5 reference manual [9] provides complete documentation
of the Cilk language.

2 The Cilk model of multithreaded computation

Cilk supports an algorithmic model of parallel computation. Specifically, it guarantees that
programs are scheduled efficiently by its runtime system. To better understand this guarantee,
this section surveys the major characteristics of Cilk’s algorithmic model.

A Cilk program execution consists of a collection of procedures,' each of which is broken
into a sequence of nonblocking threads. In Cilk terminology, a thread is a maximal sequence of
instructions that ends with a spawn, sync, or return statement. (The evaluation of arguments
to these statements is considered part of the thread preceding the statement.) The first thread
that executes when a procedure is called is the procedure’s initial thread, and the subsequent
threads are successor threads. At runtime, the binary “spawn” relation causes procedure
instances to be structured as a rooted tree, and the dependencies among their threads form a
dag embedded in this spawn tree, as is illustrated in Figure 3.

A correct execution of a Cilk program must obey all the dependencies in the dag, since a
thread cannot be executed until all the threads on which it depends have completed. These
dependencies form a partial order, permitting many ways of scheduling the threads in the
dag. The order in which the dag unfolds and the mapping of threads onto processors are
crucial decisions made by Cilk’s scheduler. Every active procedure has associated state that
requires storage, and every dependency between threads assigned to different processors re-
quires communication. Thus, different scheduling policies may yield different space and time
requirements for the computation.

It can be shown that for general multithreaded dags, no good scheduling policy exists.
That is, a dag can be constructed for which any schedule that provides linear speedup also
requires vastly more than linear expansion of space [4]. Fortunately, every Cilk program

! Technically, procedure instances.
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Figure 3: The Cilk model of multithreaded computation. Each procedure, shown as a rounded
rectangle, is broken into sequences of threads, shown as circles. A downward edge indicates the
spawning of a subprocedure. A horizontal edge indicates the continuation to a successor thread. An
upward edge indicates the returning of a value to a parent procedure. All three types of edges are
dependencies which constrain the order in which threads may be scheduled.

generates a well-structured dag that can be scheduled efficiently [5].

The Cilk runtime system implements a provably efficient scheduling policy based on ran-
domized work-stealing. During the execution of a Cilk program, when a processor runs out of
work, it asks another processor chosen at random for work to do. Locally, a processor executes
procedures in ordinary serial order (just like C), exploring the spawn tree in a depth-first man-
ner. When a child procedure is spawned, the processor saves local variables of the parent on
the bottom of a stack and commences work on the child. When the child returns, the bottom
of the stack is popped (just like C) and the parent resumes. When another processor requests
work, however, work is stolen from the top of the stack, that is, from the end opposite that
which is normally used.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From
an abstract theoretical perspective, there are two fundamental limits as to how fast a Cilk
program can run. Let us denote by 7Tp the execution time of a given computation on P
processors. The work of the computation is the total time needed to execute all threads in
the dag. We can denote the work by 77, since the work is essentially the execution time of
the computation on one processor. Notice that with 77 work and P processors, the lower
bound Tp > T;/P must hold.? The second limit is based on the program’s critical-path
length, denoted by T, which is the execution time of the computation on an infinite number
of processors, or equivalently, the time needed to execute threads along the longest path of
dependency. The second lower bound is simply Tp > T,..

Cilk’s work-stealing scheduler executes a Cilk computation on P processors in time Tp <
T,/P + O(Ty), which is asymptotically optimal. Empirically, the constant factor hidden by
the big O is often close to 1 or 2 [3], and the formula

Tp~T,/P+ T (1)

2This abstract model of execution time ignores memory-hierarchy effects, but is nonetheless quite accu-
rate [3].



is a good approximation of runtime. (This model assumes that the parallel computer has
adequate bandwidth in its communication network.) This performance model can be inter-
preted using the notion of average parallelism, which is given by the formula P = T} /T,..
The average parallelism is the average amount of work for every step along the critical path.
Whenever P < P, meaning that the actual number of processors is much smaller than the
average parallelism of the application, we have equivalently that 77/P > T,. Thus, the
model predicts that T &~ T /P and the Cilk program is guaranteed to run with almost per-
fect linear speedup. The measures of work and critical-path length provide an algorithmic
basis for evaluating the performance of Cilk programs over the entire range of possible parallel
machine sizes. Cilk provides automatic timing instrumentation that can calculate these two
measures during a run of a program, no matter how many are used to run the program.

Cilk’s runtime system also provides a guarantee on the amount of cactus stack space used
by a parallel Cilk execution. Denote by Sp the (cactus) stack space required for a P-processor
execution. Then, S is the space required for an execution on one processor. Cilk’s scheduler
guarantees that for a P-processor execution, we have Sp < S;P, which is to say that the
average space per processor is bounded above by the serial space. In fact, much less space
may be required for many algorithms (see [2]), but the bound Sp < S; P serves as a reasonable
limit. If a computation uses moderate amounts of memory when on one processor, one can
be assured that it will use no more space per processor when run in parallel.

The algorithmic complexity measures of work, critical-path length, and space—together
with the fact that a programmer can count on them when designing a program—justify Cilk
as an algorithmic multithreaded language.

3 Experiments

The Cilk distribution contains a variety of example programs which explore the difficulty of
solving problems in parallel. Some of these programs, such as the program for computing
a sparse Cholesky factorization, have irregular inputs. Others, like the backtrack searching
algorithm used to solve the n-queens problem, have an irregular structure in the computa-
tion. Because of Cilk’s flexibility in expressing parallelism, irregular problems pose no undue
hardship on execution efficiency. The minimal loss of performance that is sometimes experi-
enced is generally due to parallel algorithms that are intrinsically less efficient than the serial
algorithm they replace. This section describes some preliminary performance measurements
taken of the example programs.

The Cilk distribution (available from http://theory.lcs.mit.edu/~cilk) includes the
following programs:

e blockedmul — Blocked multiplication of two dense m x nm matrices, written by Keith
Randall.

e notempmul — A slightly less parallel, but more efficient, blocked multiplication of two
dense n x n matrices, written by Keith Randall.

e strassen — Strassen’s algorithm for multiplication of two dense n X n matrices, written



Program Size Ty Too P T,/Ts Ts Ti/Ts Ts/Ts
blockedmul 1024 209 0.0044 6730 1.05 4.3 7.0 6.6
notempmul 1024 29.7  0.015 1970 1.05 3.9 7.6 7.2
strassen 1024 20.2 0.58 35 1.01 354 5.7 5.6
cilksort* 4,100,000 54  0.0049 1108 1.21 090 6.0 5.0
queenst 22 150  0.0015 96898 0.99 188 8.0 8.0
knapsackf 30 682 0.0017 392343 1.21 85 8.0 6.6
lu* 2048 155.8  0.42 370 1.02 203 7.7 7.5
cholesky*  BCSSTK29 | 87 0.64 136 1.22 18 4.8 3.9
- BCSSTK32 | 1427 3.4 420 1.25 208 6.9 5.5
heat 4096 x 512 | 62.3  0.16 384 1.08 94 6.6 6.1
ffe* 220 4.3 0.0020 2145 093 077 5.6 6.0
Barnes-Hut 216 124 8.3 15 1.02 25 5.0 4.9

Table 1: The performance of example Cilk programs. Times are in seconds. Measurements are
for a complete run of the program, except for those programs that are starred (*), where because
of large setup times, only the core algorithm was measured. Programs labeled by a dagger ()
are nondeterministic, and thus, the running time on one processor is not the same as the work
performed by the computation. For these programs, the value for 77 indicates the actual work of
the computation, and not the running time on one processor.

by Michael Bender, Stuart Schechter, and Bin Song.

e cilksort — Sort a random permutation of n 32-bit integers, written by Matteo Frigo
and Andrew Stark.

e queens — Backtrack search to solve the problem of placing n queens on an n X n
chessboard so that no two queens attack each other, written by Keith Randall.

e knapsack — Solve the 0-1 knapsack problem on n items using branch and bound, written
by Matteo Frigo.

e 1lu — LU-decomposition (without pivoting) of a dense n x n matrix, written by Robert
D. Blumofe.

e cholesky — Cholesky factorization of a sparse symmetric positive-definite matrix rep-
resented as a quad-tree, written by Aske Plaat and Keith Randall.

e heat — Heat-diffusion calculation on an m x n mesh, written by Volker Strumpen.

e fft — Fast Fourier transformation of a vector of length n, written by Matteo Frigo.

e Barnes-Hut — Barnes-Hut n-body calculation, written by Keith Randall.

Figure 1 shows speedup measurements that were taken of the programs, as well as mea-
surements of work T}, critical path T.,, and average parallelism P = T;/T,,. The machine
used for the test runs was an otherwise idle Sun Enterprise 5000 SMP, with 8 167-megahertz
UltraSPARC processors, 512 megabytes of main memory, 512 kilobytes of L2 cache, 16 kilo-
bytes of instruction L1 cache, and 16 kilobytes of data L1 cache, running Solaris 2.5 and a
version of Cilk-5 that used gcc 2.7.2 with optimization level -03. The times measured are
those of a complete run, except for cilksort, lu, cholesky, and fft (which are starred in
the figure). For these codes, the setup time to read in the input was sufficiently long compared
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to the runtime that only the core algorithm was measured. For cholesky, numbers for two
sparse matrices from the Harwell-Boeing test set [6] are reported. The matrix BCSSTK29
has dimension 13992, with 619488 nonzeros, or 0.3 percent of the matrix entries. The BC-
SSTK32 matrix has dimension 44609, with 1029655 nonzeros, or 0.05 percent of the entries.
The two matrices were ordered using Matlab’s minimum-degree ordering heuristic, which is
not included in the cholesky benchmark. Regrettably, our time measurements are only accu-
rate to within about 10 percent, due to unpredictability in today’s deeply pipelined processor
architectures, caused, for example, by direct-mapped caches and instruction alignment.

The column T /Ts gives the overhead of the 1-processor Cilk run versus our best serial C
algorithm, showing that the overhead imposed by the Cilk runtime system is generally small.
The Ty column gives the time in seconds for a 8-processor run. The speedup column 77 /Ty gives
the time of the 8-processor run of the parallel program compared to that of the 1-processor run
(or work, in the case of the nondeterministic programs) of the same parallel program. (The
measurements for queens and fft, which show a speedup for the Cilk implementation over
the C implementation, are likely caused by a difference in code alignment in the instruction
prefetch buffer.) The Ts/Ts column gives the speedup relative to the C code.

Two of the example programs, queens and knapsack, which are marked by a dagger (1)
in the figure, are nondeterministic programs. The work of these programs depends on how
they are scheduled. For these programs, the figures in the column labeled 7} (and the other
dependent figures) give the work in the computation as measured by adding up the individual
execution times of each of the threads, rather than as measured by a one-processor run, as
would otherwise be implied. For the other (deterministic) programs, the measures of 77 and
work are synonymous. Because Cilk reports work and critical path measurements, it enables
meaningful speedup measurements of programs whose work depends on the actual runtime
schedule. Conventionally, speedup is calculated as the one-processor execution time divided by
the parallel execution time. This methodology, while correct for deterministic programs, can
lead to misleading results for nondeterministic programs, since two runs of the same program
can actually be different computations. Cilk’s instrumentation can compute the work on any
number of processors by adding up the execution times of individual threads, thereby allowing
speedup to be calculated properly for nondeterministic programs.

As can be seen from the table, all of the programs exhibit generally good speedups. Even
the complicated and irregular Barnes-Hut code achieves a speedup of 4.9 on 8 processors,
which is at least as good as any implementation we have found in the literature or on the
World Wide Web. Furthermore, as can be seen in the 77 /Ts column, the performance of
any of our Cilk programs running on one processor is generally indistinguishable from the
performance of the comparable C code. The sorting example and sparse Cholesky factorization
are worst cases for this set of examples, and even for these programs, the single-processor Cilk
performance is within 25 percent of our fastest C code for the problem. The slowdown for
sorting is due to the fact that unlike a good serial quicksort, our parallel algorithm cannot be
performed in place. The slowdown of the Cholesky factorization is due the overhead in our
quad-tree representation of sparse matrices.

As a final note on the performance of Cilk, we mention that there is one unfortunate



aspect of Cilk’s current dependence on the otherwise outstanding gcc compiler technology.
Some machines have a native C compiler which is heavily optimized to exploit the machine’s
floating-point capability. We have found that these native compilers can sometimes produce
floating-point code that is nearly twice as fast as that produced by gcc (although gcc remains
competitive for integer-dominated calculations). Since our cilk2c compiler does not produce
ANSI-standard C output, but rather exploits some of the advanced capabilities of gcc, we
cannot directly take advantage of these native compilers. Consequently, in order to obtain
the best performance on programs with heavy use of floating-point, a user must use the
native compiler to separately compile C functions containing the floating-point inner loops
and link them in with the gcc-compiled cilk2c output of the rest of his program. We hope to
alleviate this inconvenience by eventually providing a new Cilk compiler that translates Cilk
into ANSI-standard C.

4 Conclusion

To produce high-performance parallel applications, programmers often focus on communi-
cation costs and execution time, quantities that are dependent on specific machine configu-
rations. Cilk’s philosophy argues that a programmer should think instead about work and
critical-path length, abstractions that can be used to characterize the performance of an al-
gorithm independent of the machine configuration. Cilk provides a programming model in
which work and critical-path length are measurable quantities, and it delivers guaranteed per-
formance as a function of these quantities. Moreover, Cilk programs “scale down” to run on
one processor with nearly the efficiency of analogous C programs.

Cilk’s fork/join parallelism is well suited for expressing divide-and-conquer algorithms.
Some algorithms, such as FFT and Cholesky factorization, have traditionally been imple-
mented using for-loops. For efficient implementations, the steep memory hierarchy of a mod-
ern computer forces these algorithms to be reformulated in a blocked fashion, making the
algorithms harder to understand and reducing their scalability and portability. Divide-and-
conquer solutions, which parallelize naturally in Cilk, better exploit the memory hierarchy of
today’s microprocessors than do for-loops. The natural blocking due to the divide-and-conquer
paradigm often allows recursive programs to exploit multilevel caching near optimally without
knowing the specific cache sizes.

As a case in point, consider Strassen’s algorithm for matrix multiplication, which is a
divide-and-conquer algorithm. Conventional wisdom has it that although it is theoretically
superior (runs in ©(n*8!) time) to the ordinary algorithm that employs a triply nested for-
loop, the constant factor overheads are so large that in practice it is only suited for very
large matrices. Surprisingly, in our measurements, it is 48 percent faster than a blocked
version of the traditional algorithm for matrices of moderate size. As memory hierarchies
become taller, divide-and-conquer algorithms such as Strassen’s will become more and more
appealing, especially since both algorithms appear to be about as complex to implement.
Moreover, such an algorithm is easy to code in Cilk, which takes care of all the complexities
of scheduling and load balancing.



Because the semantics of Cilk are a simple and natural extension of C semantics, solving
regular and irregular problems in Cilk imposes insignificant runtime overhead compared to
solving the problems in C. Programming in parallel can be harder, however, because to obtain
parallelism, one must sometimes change a serial algorithm in a way that sacrifices efficiency.
Our initial experiences in writing Cilk programs for regular and irregular problems, however,
lead us to believe that this loss of efficiency is frequently small or negligible. Nevertheless,
more experience with Cilk will be required to evaluate its effectiveness across a wide range of
applications. The Cilk developers invite you to program your favorite application in Cilk.

Cilk software, documentation, publications, and up-to-date information are available via
the World Wide Web at http://theory.lcs.mit.edu/"cilk. The two MIT Ph.D. theses [1,
7] contain more detailed descriptions of the foundation and history of early Cilk versions. Cilk
development is currently being carried out at MIT under the direction of Charles E. Leiserson,
in cooperation with Robert D. Blumofe of the University of Texas at Austin.
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