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Preface

Amazing breakthroughs in reinforcement learning have taken place. Computers
teach themselves to play Chess and Go and beat world champions. There is talk
about expanding application areas towards general artificial intelligence (AI). The
breakthroughs in Backgammon, Checkers, Chess, Atari, Go, Poker, and StarCraft
have shown that we can build machines that exhibit intelligent game playing of the
highest level. These successes have been widely publicized in the media, and inspire
AI entrepreneurs and scientists alike. Reinforcement learning in games has become a
mainstream AI research topic. It is a broad topic, and the successes build on a range
of diverse techniques, from exact planning algorithms, to adaptive sampling, deep
function approximation, and ingenious self-play methods.

Perhaps because of the breadth of these technologies, or because of the recency
of the breakthroughs, there are few books that explain these methods in depth. This
book covers all methods in one comprehensive volume, explaining the latest research,
bringing you as close as possible to working implementations, with many references
to the original research papers.

The programming examples in this book are in Python, the language in which
most current reinforcement learning research is conducted. We help you to get started
with machine learning frameworks such as Gym, TensorFlow, and Keras, and provide
exercises to help understand how AI is learning to play.

This is not a typical reinforcement learning textbook. Most books on reinforcement
learning take the single-agent perspective, of path finding and robot planning. We
take as inspiration the breakthroughs in game playing, and use two-agent games to
explain the full power of deep reinforcement learning.

Board games have always been associated with reasoning and intelligence. Our
games perspective allows us to make connections with artificial intelligence and
general intelligence, giving a philosophical flavor to an otherwise technical field.

ix



x Preface

Artificial Intelligence

Ever since my early days as a student I have been captivated by artificial intelligence,
by machines that behave in seemingly intelligent ways. Initially I had been taught
that, because computers were deterministic machines, they could never do something
new. Yet in AI these machines do complicated things such as recognize patterns, and
play Chess games. Actions emerged from these machines, behavior that appeared not
to have been programmed into them. The actions seemed new, and even creative, at
times.

For my thesis I got to work on game playing programs for combinatorial games
such as Chess, Checkers, and Othello. The paradox became even more apparent.
These game playing programs all followed an elegant architecture, consisting of a
search function and an evaluation function.1 These two functions together could find
good moves all by themselves. Could intelligence be so simple?

The search-evaluation architecture has been around since the earliest days of
computer Chess. Together with minimax, it was proposed in a 1952 paper by Alan
Turing, mathematician, code-breaking war hero, and one of the fathers of computer
science and artificial intelligence. The search-evaluation architecture is also used in
Deep Blue, the Chess program that beat World Champion Garry Kasparov in 1997 in
New York.

After that historic moment, the attention of the AI community shifted to a new
game with which to further develop ideas for intelligent game play. It was the East
Asian game of Go that emerged as the new grand test of intelligence. Simple, elegant,
and mind-bogglingly complex.

This new game spawned the creation of important new algorithms, and not one, but
two, paradigm shifts. The first algorithm to upset the worldview of games researchers
was Monte Carlo Tree Search, in 2006. Since the 1950s generations of game playing
researchers, myself included, were brought up with minimax. The essence of minimax
is to look ahead as far as you can, to then choose the best move, and to make sure
that all moves are tried (since behind seemingly harmless moves deep attacks may
hide that you can only uncover if you search all moves). And now Monte Carlo Tree
Search introduced randomness into the search, and sampling, deliberately missing
moves. Yet it worked in Go, and much better than minimax.

Monte Carlo Tree Search caused a strong increase in playing strength, although
not yet enough to beat world champions. For that, we had to wait another ten years.

In 2013 our worldview was in for a new shock, because again a new paradigm
shook up the conventional wisdom. Neural networks were widely viewed to be too
slow and too inaccurate to be useful in games. Many Master’s theses of stubborn
students had sadly confirmed this to be the case. Yet in 2013 GPU power allowed the
use of a simple neural net to learn to play Atari video games just from looking at
the video pixels, using a method called deep reinforcement learning. Two years and
much hard work later, deep reinforcement learning was combined with Monte Carlo

1 The search function simulates the kind of look-ahead that many human game players do in their
head, and the evaluation function assigns a numeric score to a board position indicating how good
the position is.
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Tree Search in the program AlphaGo. The level of play was improved so much that a
year later finally world champions in Go were beaten, many years before experts had
expected that this would happen. And in other games, such as StarCraft and Poker,
self-play reinforcement learning also caused breakthroughs.

The AlphaGo wins were widely publicized. They have had a large impact, on
science, on the public perception of AI, and on society. AI researchers everywhere
were invited to give lectures. Audiences wanted to know what had happened, whether
computers finally had become intelligent, what more could be expected from AI,
and what all this would mean for the future of the human race. Many start-ups were
created, and existing technology companies started researching what AI could do for
them.

The modern history of computer games spans some 70 years. There has been
much excitement. Many ideas were tried, some with success. Games research in
reinforcement learning has witnessed multiple paradigm shifts, going from heuristic
planning, to adaptive sampling, to deep learning, to self-play. The achievements are
large, and so is the range of techniques that are used. We are now at a point where the
techniques have matured somewhat, and achievements can be documented and put
into perspective.

In explaining the technologies, I will tell the story of how one kind of intelligence
works, the intelligence needed to play two-person games of tactics and strategy. (As
to knowing the future of the human race, surely more is needed than an understanding
of heuristics, deep reinforcement learning, and game playing programs.) It will be a
story involving many scientists, programmers, and game enthusiasts, all fascinated
by the same goal: creating artificial intelligence. Come and join this fascinating ride.
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Chapter 1
Introduction

1.1 Tuesday March 15, 2016

Tuesday March 15, 2016, is an important day in the history of artificial intelligence,
and not just in the history of artificial intelligence, but in the history of intelligence,
period. That day was the final day of a five-game match in which a computer
challenged one of the strongest human Go players. Go is an ancient game of strategy,
played by millions around the world, originating in East Asia. Playing the game well
requires years of training and a considerable amount of intelligence. Dedicated Go
schools exist in China, Korea, and Japan, and professional Go players enjoy star status
in their countries and can live well from their prize money. Go is considered to be a
hallmark of human intelligence and creativity, and the game was thought to be safe
from machine intelligence for at least another decade.

Yet on March 15, 2016, at the luxurious Four Seasons Hotel in Seoul, the computer
program AlphaGo beat top Go professional Lee Sedol (Fig. 1.1). AlphaGo had been
developed by a team of scientists of the AI company DeepMind. The prize money,
1 million dollars, was donated to charities. Lee Sedol received 170,000 dollars for
his efforts. The match consisted of 5 games, and the human champion was beaten
4–1. A subsequent match in 2017 in China against champion Ke Jie was also won
by the computer. Commentators described AlphaGo’s level of play as very strong,
and the style of play as refreshing, with a few highly surprising moves, that some
described as beautiful and creative. AlphaGo was awarded a 9 dan professional rank,
the highest rank possible, by the Chinese Weiqi association, and the journal Science
chose the event as one of the breakthrough of the year runners up. Today, human Go
players are taking inspiration from the games played by AlphaGo, trying to learn
from its deep insights and unusual moves [778].

The breakthrough performance of AlphaGo came as a surprise to the world and
to the research community. The level of play of computer Go programs had been
stagnant around the strong amateur level for years. Experts in computer games had
expected grandmaster level play to be at least ten years away, let alone beating the
world’s strongest players.

1



2 1 Introduction

Fig. 1.1 AlphaGo versus Lee Sedol

The techniques used in AlphaGo are the result of many years of research, and cover
a surprisingly wide range of topics. It is a culmination of decades of research by many
researchers. A main motivation for writing this book is to provide a comprehensive
overview of the technologies that led to the creation of AlphaGo.

This brings us to the problem statement of this book, to describe the core of what
this book is about.

Problem Statement

The main question that we are concerned with in this book is the following:

What are the machine learning methods that are used in Chess and Go to achieve a level of
play stronger than the strongest humans?

Among the technologies used are (1) heuristic planning methods, (2) adaptive
sampling, (3) deep reinforcement learning, and (4) self-play. We provide an in-depth
introduction to all four technologies, each in their own chapter. We will explain how
they work with example code. We use the formalism of reinforcement learning as the
common language to describe all the technologies that are covered in this book, both
for planning and learning. We describe the algorithms and architectures.

Our style is hands-on, providing the intuition behind the algorithms to apply them
in practice. References to the literature are provided to find more details and the
relevant mathematics behind the methods.
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1.2 Intended Audience

Now that we know what this book is about, we can see who this book is for.
This book is intended for you if you are excited about finding out how computers

play games, and which techniques are used to achieve such amazing displays of
intelligent behavior. We aim to be comprehensive, to provide all necessary details.
Basic introductions to Markov decision processes, reinforcement learning, and deep
learning are provided. We also aim to make these details more accessible than the
scientific papers on which the content is based, translating formulas in research
papers into intuitive concepts. The level of difficulty of this book is targeted at a
graduate-level university course in AI. We explain the algorithms, and we provide
opportunity for practice.

Our approach to artificial intelligence is hands-on. After each new method is
described, we will show how the concepts can be implemented in examples, exercises,
and small programs. After basic methods are explained, move advanced enhancements
are discussed, enhancements that are necessary to achieve high performance in
practice.

Games AI is an open field. Researchers have released their algorithms and code
allowing replication of results. This is a sharing-oriented research field. We point you
to code bases at GitHub throughout the book. Even when you do not have access to
Google-scale compute power, at the end of this book, you should be able to create a
fully functioning self-learning program, and you can join the active community of
reinforcement learning researchers. For that purpose, Appendix A contains pointers
to software environments and open-source code frameworks for machine learning,
deep reinforcement learning, and games.

As you may have noticed, there is great excitement about reinforcement learning,
excitement that also prompted the writing of this book. The algorithms and the
pointers to code also serve this purpose: to make it easy for you to join the excitement
and to stimulate you to join the people already active in the field.

Graduate Course

This book is designed for a graduate course in Reinforcement Learning with Games.
The material is organized in chapters that roughly correspond to a full semester
course. The availability of source code provides for practical assignments where you
can get your hands dirty and immerse yourself in this fascinating topic. Pieces of
working code can be extended to your liking for further study and research.

Each chapter starts with an introduction in which the core problems and core
solution concepts of the chapter are summarized. Chapters end with questions to
refresh your memory of the material that was covered, and with larger programming
exercises. Chapters are concluded with a summary and with more pointers to the
literature.

Figure 1.2 shows the structure of the book. There is a logical progression in the
chapters; they build on each other. It should be possible to cover all chapters in a
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1. Introduction

2. Intelligence and Games

3. Reinforcement Learning

4. Heuristic Planning

5. Adaptive Sampling

6. Function Approximation

7. Self-Play

8. Conclusion

Fig. 1.2 Overview of the chapters of this book

one-semester course, possibly skipping the starred sections. Normally the chapters
would be taught in sequence. Chapters 2 and 8 are less technical, and provide some
reflection on intelligence and artificial intelligence. They can be combined towards
the end, putting the technical material first.

All links to web pages were correct at the time of writing and have been stable for
some time. The companion website for this book https://learningtoplay.net
contains free updates, slides, and other course material that you are welcome to
explore and use in your course.

Prerequisite Knowledge

In order to build up an understanding and to experiment with the algorithms, a general
computer science background at undergraduate level is required. Some proficiency
in programming is needed, preferably in Python, since that is the language that is
currently used in the field of reinforcement learning, and the language that we use
in this book. Also some background in undergraduate AI is beneficial, although we
strive to be comprehensive and self-contained.

https://learningtoplay.net
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Chapter Algorithm Select Backup Eval
Chap. 4 alpha-beta left to right minimax heuristic
Chap. 5 MCTS adaptive average sample
Chap. 6 DQN - - generalize
Chap. 7 self-play adaptive average generalize

Table 1.1 Heuristic-Sample-Generalize

Experiment and Theory

As in many fields, progress in reinforcement learning is driven by an interaction
between experiment and theory. Experiments are designed to better understand theory,
and new theory is developed to explain experimental results. Reinforcement learning
rests on a strong theoretical foundation in computational complexity and decision
theory, some of which is introduced in Chap. 3.

However, many of the eye-catching advances in the field (Deep Blue, TD-Gammon,
and most recently Atari and AlphaGo) are driven by experimental and engineering
advances. There are some intuitions to explain results, but many theoretical questions
remain. This state of affairs is reflected in the style of this book. In the later chapters we
mention experiments and intuitions, but few formulas, lemmas, or proofs. Establishing
a comprehensive theory of deep reinforcement learning is still future work.

1.3 Outline

We have almost come to the end of the introduction. Let us have a closer look at what
we can expect in the remainder of this book.

This book covers the technologies behind the major AI breakthroughs in reinforce-
ment learning in games; see Table 1.1. Chess, Atari, and Go required surprisingly
diverse techniques. The methods in this book go from heuristic planning to self-play.
First we describe methods that need domain-specific heuristics, and we end with a
method that is able to generalize features in many domains, and to teach itself to
do so. We will describe in detail heuristic methods, sampling, and generalization.
Together the chapters tell a story of how AI progressed from artificial specific (or
narrow) intelligence towards somewhat more general intelligence.

Figure 1.3 gives a related overview of the topics of this book, in terms of mappings
between problems and methods that go from specific to general. The first chapters are
specific in the sense that the methods make direct use of the structure of the problem
to traverse board positions. The later chapters are more abstract, and the mapping
between method and problem becomes less direct. Methods become adaptive, and
learn features from examples of the problem domain, instead of directly traversing
the problem itself. Self-play methods that teach themselves which examples to learn
from, are described.



6 1 Introduction

3. Common language (reinforcement learning)

4. Direct traversal (Chess)

5. Adaptive traversal (Go)

6. Train on examples (Atari)

7. Adaptively generate curriculum to train on (Go)

8. Future mappings (Poker, StarCraft, . . .)

Fig. 1.3 Stack of chapters, with (from bottom to top) increasingly advanced mappings from problems
to methods

The story of games research is the story of AI researchers who were learning how
to make algorithms that learn to learn.

*Starred Sections

The chapters are organized from planning to learning to self-play. Figure 1.2 gives an
overview of the chapters. The names of the four core technical chapters are printed in
bold.

Sections and exercises whose name starts with a *star are advanced material,
which is essential for understanding high-performing implementations, but may be
skipped when in a hurry, without missing the main thread.

We will now describe the main topics of this book. Please refer to Table 1.1 and
Fig. 1.3, since the concepts Heuristic-Sample-Generalize and (in)direct mappings
between methods and problem spaces are important threads.

The Chapters

Let us now discuss the chapters in more detail. We will start in Chap. 2 with early
thoughts on intelligence and intelligent machines. We then provide a brief historical
overview of some of the important games and game playing programs, starting with
the early designs of Claude Shannon, Christopher Strachey, and Alan Turing.

In the next chapter, Chap. 3, we introduce reinforcement learning. The concepts
and formalizations of reinforcement learning are at the basis of the historic advances
in artificial intelligence that we have recently witnessed. Concepts such as value
function, policy function, and Q-learning are discussed in this chapter.

In Chap. 4, we introduce heuristic planning. In this chapter we discuss the principles
of the search methods that are at the basis of AI breakthroughs in Checkers and Chess.
Heuristic planning in games uses domain-specific knowledge to reduce the size of
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the state space, and then uses minimax planning to traverse that reduced state space.
The planning methods of heuristic planning are simple and rigid, and it turns out that
many enhancements are needed to achieve good performance in real game playing
programs. We introduce enhancements that overcome some of the rigidity of the
minimax approach.

In the next chapter, Chap. 5, we delve deeper into the principles of learning by trial
and error. Major topics in this chapter are the exploration/exploitation trade-off and
the concept of evaluation by random playout, leading to the Monte Carlo Tree Search
(MCTS) algorithm. The algorithm in this chapter is variable-depth and variable-width
by design, and great performance improvements, especially in 9 × 9 Go, are achieved
with MCTS. The chapter ends with a discussion of enhancements of MCTS.

Then, we switch paradigms from planning to learning. Instead of traversing the
states directly and finding good states, we now try to generalize features from the
states. We start in Chap. 6 with a review of deep learning methods for supervised
learning. Among many other things, convolutional networks are discussed, and the
problem of overfitting. In 2012 deep learning methods caused a breakthrough in image
recognition performance. Much of the current interest in artificial intelligence is
caused by this breakthrough for which Bengio, Hinton, and LeCun received the 2018
Turing award. Section 6.3 looks at how these methods can be used in a reinforcement
learning setting: generalization of features in deep neural networks for learning by
trial and error, of which Deep Q-Networks (DQN) is the best known algorithm.
Q-learning with function approximation and bootstrapping is in principle unstable,
and important enhancements had to be developed to achieve stable training. With
these enhancements, we find that deep reinforcement learning can be an effective
way to improve on heuristic evaluation functions.

Chapter 7 combines planning and training to create self-learning systems. This is
a long chapter in which the methods behind AlphaGo are explained, and AlphaGo’s
variants. AlphaGo Zero teaches itself to play Go from scratch. This kind of learning
resembles human learning, creating much interest in the research community, and
some self-play and self-learning variants and other related research are discussed.

Finally, we conclude in Chap. 8 by reflecting on artificial intelligence progress, and
on the relation to natural intelligence. We discuss possible future research directions.

The appendices contain an overview of open-source deep learning environments
that are suitable for experimentation, details on the AlphaGo implementations that
were too detailed for the main text, the tournaments of AlphaGo against Fan Hui, Lee
Sedol, and Ke Jie, pointers about learning to play and program Go and Chess, and
some pointers to the Python programming language.

After this overview, let us begin our journey through the world of reinforcement
learning and games.





Chapter 2
Intelligence and Games

As long as we have been around, humans have had dreams about artificial forms of
intelligence, wondering if it would be possible to make intelligent machines. It is
wonderful to live in a time where we are able to see the first realizations of these
dreams appearing.

This chapter introduces the field of study of this book, artificial intelligence and
games.

We will briefly touch upon the nature of intelligence, human and artificial. We will
see that most AI researchers take a pragmatic, behavioristic approach to intelligence.
Board games such as Chess and Checkers were used by the earliest computer science
researchers to study reasoning processes. We will list the defining features of these
games.

To give a broader understanding of the history of the field, we will then review
some of the better known game playing programs, both old and new. The technical
material with the algorithms that achieved all these accomplishments starts in the
next chapter.

Core Problems

• What is intelligence?
• How can we measure intelligence?

Core Concepts

• Intelligence: embodied/computational; AI: symbolic/numerical
• Early work: Shannon, Turing, and Samuel
• Modern work: TD-Gammon, Chinook, Deep Blue, AlphaGo, and Libratus

9
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2.1 Intelligence

What is intelligence? Psychology provides various definitions of intelligence. Most
definitions include recognition, reasoning, memory, learning, problem solving, and
adapting to your environment. These elements are related to cognition.

In psychology most definitions implicitly assume that intelligence is human, and
therefore embodied. Related to intelligence are intuition, emotion, self-awareness
and volition, or free will. Humans have all of these capacities. However, artificial
intelligence typically studies a limited set of capacities. Essential elements currently
studied in AI are related to cognition, such as recognition, reasoning, memory, and
learning [572]. Intelligent decision making is at the core of current AI research.

An important difference between human intelligence and artificial intelligence is
that humans are intelligent beings. We are, we have an identity, and we are self-aware.
Computers are not. Artificial intelligence research mostly studies intelligent behavior.
Machines that exhibit intelligent behavior are generally not considered to be intelligent,
just to behave intelligently, even programs that jokingly suggest that they have an
identity by printing texts such as Hello, World. As Shakespeare wrote: “To be or not
to be, that is the question.”

We will now discuss cognition and intelligence in more depth.

2.1.1 Human Intelligence

Psychology teaches us that intelligence includes cognitive abilities, the abilities to
learn, form concepts, and reason. These abilities allow us to recognize patterns,
comprehend ideas, solve problems, plan, and use language to communicate. Cognitive
abilities enable intelligent behavior. They also enable other capacities, such as
conscious thought. There are two schools of thought on cognitive intelligence.

Embodied and Computationalist Intelligence

Experience and conscious thought are elements of embodied intelligence. The theory
of embodied intelligence stresses our ability to perceive information, to use it as
knowledge in adapting behaviors to an environment [718].

A rival theory is the theory of computationalism. Computationalism states that
thoughts are a form of computation following a set of laws for the relations among
representations. Computationalism regards the brain as a big computer [443]. Clearly,
artificial intelligence, as part of computer science, studies intelligence through
computations, and thus builds on computationalism.

Interestingly, the field of reinforcement learning has elements of both computa-
tionalism and embodiment. Reinforcement learning is all about learning in response
to stimuli from an environment, both in AI and in psychology. It studies how agents
act in an environment and learn from responses to alter their behavior, as in the
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embodied view of intelligence. Reinforcement learning is related to both schools, the
school of embodiment and the school of computationalism.

We will now have a look at two similar approaches to artificial intelligence, a
mathematical approach and a biological approach.

Mathematics and Biology

Artificial intelligence is the study of machines that exhibit behavior for which humans
need intelligence. Main topics in the study of AI are cognitive functions such as
learning and problem solving [572].

Artificial intelligence research is based on two fields of science: mathematical
logic and biology [488]. One of the early ways of modeling thought processes is the
top-down deductive approach that has come to be known as symbolic AI. Symbolic
AI is inspired by mathematical logic. In symbolic AI logic, reasoning is used to draw
inferences and conclusions from underlying facts and assumptions about the world. In
this view, intelligence is considered to be equivalent to a top-down reasoning process.
This school has yielded progress in expert systems, reasoning systems, and theorem
proving systems. Well-known outcomes of this line of research are the STRIPS
planner [213], the Mathematica and MATLAB computer algebra systems [110], the
programming language PROLOG [147], and also semantic (web) reasoning [71, 17].
The material covered in the chapter on heuristic planning has grown out of the
symbolic approach.

A second school of thought is the connectionist approach to AI. It purports that
intelligence emerges bottom up, out of interaction processes between many small
elements. Connectionism is inspired by biology. Examples of the successes of this
approach are embodied intelligence (robotics) [101], Nature-inspired algorithms such
as Ant colony optimization [183], swarm intelligence [361, 85], genetic algorithms
and evolutionary strategies [220, 300, 27], and, last but not least, neural networks [278,
405]. This approach is also called the numerical, data driven, approach, because of
the many numerical parameters of artificial neural networks. The material covered in
the chapter on learning has grown out of the connectionist approach.

Thinking, Fast and Slow

The philosophical implications of the AlphaGo achievement are large. The realization
that we are now able to create a machine that can learn to play such a tremendously
challenging and rich game of strategy, beating the smartest professional players, is
baffling. Indeed, for many researchers the goal of artificial intelligence research is to
understand intelligence, and here we have made a tremendous step. It is now certainly
the case, at least for the narrow domain of combinatorial board games, that we have
succeeded in achieving learning and reasoning behavior beyond the human level,
although it is not known how similar the artificial and human thought processes are.
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In fact, it has often been argued that humans and computers think in very different
ways.

Daniel Kahneman is a psychologist and winner of the Nobel Prize in Economics.
In his works he combines psychology and economics. He has helped found the field
of behavioral economics. In his book Thinking Fast and Slow [347] he presents
topics of his most famous papers. Central in Kahneman’s book are system 1 thinking,
or fast, approximate, intuitive human thinking, and system 2 thinking, or slow,
exact, reasoned human thinking. These two concepts fit well with our AI schools:
learning/connectionist is related to system 1 thinking, and planning/symbolic is
related to system 2 thinking.

It is interesting to note that Kahneman’s system 1 and 2 suggests at least a crude
similarity between artificial and human thought processes. At a few places we will
highlight links between the methods described here and the concepts in Kahneman’s
book. Kahneman’s book describes fast and slow thinking in human intelligence. In
this book we focus on artificial intelligence (see also Chap. 8).

2.1.2 Artificial Intelligence

Let us now have a closer look at the main topic of this book, artificial intelligence.
Artificial intelligence is old. There are indications that the first ideas on mechanical
thought are as old as human thought, and are related to materialistic worldviews.
The first recorded dreams of intelligent machines, which we now call robots, go
back to Indian philosophies 1500 BC of Charvaka [443, 766]. In Greek the word
“automaton” means acting on one’s own will. In Greek mythology, Homer’s Iliad
describes automatons, self-operating machines, that open doors automatically. There
are many more examples of automata in Greek mythology, such as an artificial
person made of bronze, or watchdogs made of gold and silver. In Chinese texts
mechanical engineers, or artificers, are described, as well as artificial wooden flying
birds [481, 375].

By attempting to describe human thought as the mechanical manipulation of
symbols, classical philosophers were the first to describe ideas of modern AI. This
work on mathematical reasoning culminated in the invention of the digital computer
in the 1940s. The advent of the first computers and the ideas behind it prompted
scientists to start serious discussions on the possibility of creating an electronic brain.

The modern field of AI research was subsequently founded in the summer of 1956
at a workshop at Dartmouth College, New Hampshire (Fig. 2.1). Among those present
were John McCarthy, Marvin Minsky, Nathaniel Rochester, Claude Shannon, Allen
Newell, Herbert Simon, Arthur Samuel, John Nash, and Warren McCulloch. These
would all become leaders of AI research in the following decades.1 There was much
optimism then, and many predicted that human-level machine intelligence would
be achieved within 20 years (this was in 1956) [469, 443]. Eventually, however, it

1 Some would become known for other fields, such as information theory and economics.
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Fig. 2.1 A history of AI [327]

became clear that they had underestimated the difficulty of this project. An AI winter
followed in which funding for AI research all but dried up (Fig. 2.2 [419]). Despite
the funding drought, progress was made, and another period of inflated expectations
followed (about knowledge representation and expert systems), followed by another
winter. Achievements in the 1990s (Deep Blue, deep learning, Watson) heralded the
current AI summer that we are still enjoying. After 2000 interest in AI has been
high again, because of machine learning successes in search, vision, speech, and
robotics. In fact, many other unexpected inventions did happen in industry, such as
in search engines (Google and Baidu), in social networks (Facebook and Tencent),
in recommender systems (Amazon, Alibaba, and Netflix), and in multi-touchscreen
communicators (Apple, Samsung, and Huawei).

In 2018 the highest recognition in computer science, the Turing award, was awarded
to three key researchers in deep learning: Bengio, Hinton, and LeCun (Fig. 2.3).
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Fig. 2.2 AI winters [419]

Fig. 2.3 Geoffrey Hinton, Yann LeCun, and Yoshua Bengio

2.1.3 Intelligent Behavior

In contrast to some parts of psychology, AI is traditionally less interested in defining
the essence of intelligence (“being intelligent”) as it is in behaving intelligent, with a
strong focus on creating intelligent systems. The AI approach is a pragmatic approach.

AI researchers are interested in machines that exhibit reasoning, knowledge,
planning, learning, communication, perception, and the ability to interact with the
physical environment and with humans. The focus is on behavior; by which methods
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Fig. 2.4 Turing test [700]

the machines exhibit this behavior is considered less relevant. Consciousness and
self-awareness are not (yet) on the mainstream AI research agenda, and simulating
the human brain is not part of typical AI research.

Note that the strict separation between behavior and being is becoming somewhat
less strict. The focus on behavior of AI fits the school of symbolic AI especially well,
where intelligence is based on human logic, and not on human hardware. The other
school, connectionism, is emphatically inspired by biology and neurology, i.e., a
simulation of human hardware to achieve intelligent behavior.

Behavior: Turing Test

In 1950 Alan Turing proposed a test for how to determine if a machine exhibits
intelligence. The machine passes the test when its behavior is indistinguishable from
that of a human. In the Turing test a human evaluator engages in a natural language
conversation with a human and with a machine (Fig. 2.4). The evaluator is aware
that one of the two participants is a machine, and both participants are separated
from one another by a screen. Participants are restricted to text only, such as through
keyboard and screen (speech technology is deemed too hard). If the evaluator cannot
tell which conversation is machine-generated and which is human, then the machine
is considered to have passed the test. Note that the machine may make mistakes
as long as they are mistakes that humans would also make. The Turing test is an
imitation game. It might even be the case that making deliberate mistakes is a good
idea, for example, when the domain would be a game of Chess, then a Chess machine
could be identified by its being much stronger than a human would be.

The paper that introduced the Turing test was titled: “Computing Machinery and
Intelligence” [700]. It opens with the words: “I propose to consider the question,
‘Can machines think?’ ” and is a classic in AI.

The Turing test has been highly influential, but is also widely criticized. One of
the first criticisms was exemplified by the Eliza experiment. Eliza was a computer
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program developed by Joseph Weizenbaum in 1966 [754]. The program had a list
of keywords for which it had responses in which it transformed the user’s input in a
certain way. If no keyword was used, a generic “witty” reply was given, sometimes
reusing part the user’s input. Eliza was developed to appear like a psychotherapist,
allowing the program to have little knowledge of the real world. The program was able
to fool some people into believing that they were talking to a real person. However,
its simple rule-based structure, and its use of superficial tricks, only succeeded in
suggesting that intelligent behavior can be created with rather unintelligent means.2
Eliza’s success showed the limitations of the Turing test as a mechanism for identifying
true artificial intelligence.3

Another noteworthy approach to Turing’s question became known as the Loebner
Prize. The Loebner Prize provided an annual platform for practical Turing tests. It
was named after Hugh Loebner, who provided the prize money.

The first Loebner Prize competition in 1991 was again won by a mindless program
that misled interrogators into making the wrong identification by such means as
imitating human typing errors. It generated much controversy in which the term
artificial stupidity was used [619].

A problem of the Turing test is that it does not directly test if the computer behaves
intelligently, but rather if humans think it behaves like another human being. Turing
tests have since taught us that human behavior and intelligent behavior are not the
same thing. The Turing test can fail to identify intelligent behavior correctly because
some human behavior is unintelligent, and because some intelligent behavior is
inhuman (such as performing complicated mathematical sums quickly and correctly).
The Turing test requires deception on the part of the computer; it does not require
highly intelligent behavior, in fact, it discourages it, to prevent the computer from
appearing to be inhumanly smart.

For these reasons, other tests of intelligence have been devised, such as tests for
the ability to play games.

Before we take a look at those games, we will look at what kinds of artificial
intelligence have been created.

Specialized and General Intelligence

Humans are good at many different things. Our intelligence is a general kind of
intelligence; it allows us to cook, read, argue, do mathematics, and enjoy a movie.
Studying artificial ways of being intelligent in all these domains is a daunting task.
Machine intelligence researchers typically limit themselves to a single domain, and
artificial intelligence is almost always narrow or special intelligence. Ever since the
start of AI, games have played an important role. The rules of a game limit its scope,
making it better suited as a first object of study than the full complexity of reality.

2 Some would go so far to say that some unintelligent humans behave in a more human way than
intelligent humans, confusing the discussion even more.
3 The genealogy of Eliza and a list of programs that implement it can be found here http:
//elizagen.org/index.html.

http://elizagen.org/index.html
http://elizagen.org/index.html
http://elizagen.org/index.html
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Artificial general intelligence (AGI) would be the intelligence of a machine that
can perform any intellectual task that a human can. AGI is the holy grail of AI
research, and a favorite topic in science fiction and future studies. AGI is sometimes
called strong AI, although that term is used by some other researchers to mean
machines that experience consciousness [613]; see also Sect. 7.2.3. As of 2017, one
study found that over forty organizations worldwide are doing active research on
AGI [41].

It should be noted, of course, that most humans also have special intelligence
abilities. Some humans are better at playing Chess and weaker at Tennis, and very
few humans are equally good in all kinds of intelligence (if such a thing could even
be measured). In terms of definitions, AGI is even less well defined than AI.

Drosophila melanogaster

In 1965, the Soviet mathematician Aleksandr Kronrod called Chess the Drosophila
melanogaster of artificial intelligence [401]. Drosophila melanogaster is a type of
fruit fly that is used by developmental biologists in genetics experiments as a model
organism; because of its fast reproduction cycle it allows quick experiments. Also,
by using Drosophila, biologists hope to learn about biological processes in general,
beyond the particular species. Similarly, by using Chess, AI researchers hope to learn
about processes of intelligence in general, beyond the particular game.

Such an experimenter’s tool with quick turnaround times is useful in AI research.
Chess was a convenient domain that was well suited for such experimentation. It is
clearly a game for which humans need intelligence, requiring many years of dedication
and study to achieve proficiency.

In addition to having a limited scope, a second advantage of games is the clarity of
the rules. Possible actions are well defined by the rules, and the end of a game is also
well defined. In this, games differ from real-world activities, such as preparing a meal,
performing a dance, or falling in love, where goals and rules are often implicit and less
well defined. Combinatorial games are thought to abstract from nonessential elements.
Games allow researchers to focus on reasoning processes, processes that are assumed
to capture the essence of intelligence. Thus, in games it is easier to achieve good
performance than in other real-world tasks, a clear advantage for researchers [554].

Clear Performance

Games also allow for a clear and undisputed way to measure progress. Game rules
define win and loss, and the intelligence of programs can be measured by letting them
play against each other or against humans. Many games have rating systems, such
as in Tennis, where the best of the world are ranked based on how many wins have
been scored against other players. An often used measure is the Elo rating, a system
devised by the Hungarian-American physicist Arpad Elo. The basis of the Elo rating
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is pairwise comparison [196]. In Chess, a beginner starts around 800, a mid-level
player is around 1600, and a professional, around 2400.

Anthropomorphization

In the original Turing test any question can be asked of the machine. It is a test for
general intelligence, the kind of intelligence that humans have. As with theDrosophila,
limiting the scope of our domain to a single game clearly cannot be used for the
general Turing test; all we can hope for is to achieve special intelligence, the kind of
intelligence needed to win a certain game. Still, achievements in specific intelligence,
such as by Deep Blue, Watson, and AlphaGo, attract large publicity. This may be
in part because the human mind generalizes easily, and anthropomorphizes4 easily.
When we see a device do something in a particular domain for which a human must
be incredibly smart, then we automatically assume that the device must be smart, and
will do as well in another domain because that is what a human would do. It is easy
for us to forget that the machine is not a human, something that writers of science
fiction books and Hollywood movies eagerly exploit. Current machine intelligence is
almost always highly specialized, which is quite unhuman like.

In Chap. 8 the issues of artificial and human intelligence will be revisited, including
the topics of learning, and specialized and general intelligence. By then, we will have
acquired a deep understanding of how to create specialized artificial intelligence in
games.

2.1.4 Machine Learning

Machine learning is the field of research that studies algorithms that learn relations
that were not explicitly preprogrammed, such as training an algorithm with a set of
images in order to classify them. Machine learning encompasses both symbolic and
connectionist methods. Machine learning algorithms find patterns, categorize data,
or make decisions. Machine learning consists of three groups of learning problems:
supervised learning, reinforcement learning, and unsupervised learning [81].

In supervised learning a (typically large) database of labeled examples exists, from
which the type of relation between example and label is inferred. The labels have to
be provided beforehand, by humans, or by other means. Chapter 6 covers supervised
learning in detail.

In reinforcement learning there is no database of labeled examples; interaction
is the key. In reinforcement learning an agent can interact with an environment,
which returns a new state and a reward value after each action. The reward value
can be positive or negative. By probing the environment, the reinforcement learning
agent can learn relationships that hold in the environment. Reinforcement learning

4 Treat as if human.
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problems are often modeled as Markov decision processes [659]; see Chap. 3. Most
games can be modeled as reinforcement learning problems. In addition to Chap. 3,
Chap. 6 also covers reinforcement learning in detail.

Unsupervised learning algorithms find patterns in data without the need for human
labeling. Typical unsupervised algorithms cluster data based on inherent properties,
such as distance.

Reinforcement Learning in Games

In this book we study reinforcement learning algorithms in games. Reinforcement
learning problems are interesting in that some problems are best solved by symbolic
methods, while for others connectionist methods work best. In the chapter on self-play,
we see how the two methods in AI join to achieve great success.

Thus, the work in this book draws on both schools of thought. Planning is closely
related to symbolic AI, and learning to connectionism. Reinforcement learning is
related to both computationalism and embodied intelligence. The breakthroughs of
Chess are related to symbolic AI. Breakthroughs in Atari are related to connectionism.
Breakthroughs in AlphaGo (and other self-play programs) in Chap. 7 rely on both
schools of thought, and their success is a success of an integrated approach to AI,
expressed in a reinforcement learning framework. For other combined approaches,
see [705, 233].

After having looked at artificial intelligence in some depth, it is time to look at
games.

2.2 Games of Strategy

Games come in many shapes and sizes. Some are easy, some are hard. Before we
will look at game playing programs, we first describe the combinatorial games that
are used frequently to study artificial intelligence. In the literature on games the
characteristics of games are described in a fairly standard taxonomy.

2.2.1 Characteristics of Games

Games are used in artificial intelligence because they provide a challenging envi-
ronment to play them well. The complexity of games is determined by a number of
characteristics. Important characteristics of games are: the number of players, whether
the game is zero-sum or non-zero-sum, perfect or imperfect information, turn based
or simultaneous action, what the complexity of taking decisions is, and what the state
space complexity is. We will discuss these characteristics now in more detail.
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Fig. 2.5 15 Puzzle [304]

Number of Players

One of the most important elements of a game is the number of players. One-
player games are usually called puzzles. The goal of a puzzle is to find a solution
while following the rules of the puzzle. Well-known examples are mazes, Sudoku,
mathematical problems such as the traveling salesperson problem (TSP), and the
15-puzzle [304, 381] (Fig. 2.5). Typical optimization problems are to find the shortest
(lowest cost) solution of a problem instance.

Two-player games are “real” games. Most games in this book are two-player
games; these have been studied the most in AI. The game play in two-player games is
often competitive, zero-sum: my win is your loss. Keen reasoning and calculation
often play a large role in these games, providing satisfaction to the players when
a hard problem is solved. Quite a number of two-player games exist that provide
a nice balance between being too easy and too hard for players, and for computer
programmers. Many multiplayer games are still highly challenging for AI. Examples
of two-player games that are popular in AI are Chess, Checkers, Go, Othello, and
Shogi. These games will all be described in a little more detail shortly.

Multiplayer games are played by three or more players. Psychology, collaboration,
and hidden information (and bluffing) often play a large role in these games. Much of
the fun of playing these games may be related to social aspects. The game play can
be competitive and collaborative, since players may collude in different phases to
obtain their goals. Many card games are multiplayer games. Well-known examples of
multiplayer games are the card games Bridge and Poker, and strategy games such as
Risk, Diplomacy, StarCraft, and Defense of the Ancients (DOTA).

Zero-Sum vs. Non-Zero-Sum

An important aspect of a game is whether it is competitive or collaborative. Many
two-player games are competitive: the win (+1) of player A is the loss (−1) of player
B. These games are called zero-sum because the sum of the wins for the players
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remains a constant zero. Competition is an important element in the real world, and
these games provide a useful model for the study of strategy and conflict, in practice,
and especially in theory. The field of game theory has important links to economics
and political science. The classic work is Von Neumann and Morgenstern’s 1944 book
Theory of games and economic behavior [730, 731], which laid the foundation for
economic game theory. Many more modern and accessible works have been published
since then, such as [163]. Classical game theory analyzes strictly rational behavior;
the classical homo economicus is assumed to always act rationally. Many years later
behavioral economics married psychological insight with economics. Amongst others,
Kahneman and Thaler have written popular and accessible accounts [347, 680].

In contrast, in collaborative games the players win if they can create win/win situa-
tions. Again, the real world is full of opportunities for collaboration, and these games
can be studied to hone our understanding of collaboration intelligence. Examples of
collaboration games are Bridge, negotiation games such as Diplomacy [383, 168],
management simulations such as Hexagon [190], or board games such as Magic
Maze. Collaboration also occurs frequently in multiplayer games such as Poker and
Risk.

Perfect vs. Imperfect Information

In perfect information games all relevant information is known to all players. This is
the case in typical board games such as Chess and Checkers. In imperfect information
games some information may be hidden for some players. This is the case in typical
card games such as Bridge and Poker, where not all cards are known to all players.

A special form of (im)perfect information games are games of chance, such as
Backgammon and Monopoly, in which dice play an important role. There is no hidden
information in these games, and these games are therefore sometimes considered to
be perfect information games, despite the uncertainty present at move time.

Turn-Based or Simultaneous-Action

In turn-based games players move in sequence. In simultaneous-action games, players
make their moves at the same time. Simultaneous-action games are considered
imperfect information, since players hold secret information that is relevant for a
player at move time.

Chess, Checkers, and Monopoly are examples of turn-based games. StarCraft and
Diplomacy are simultaneous-action games.

Decision Complexity

The difficulty of playing a game depends on the complexity of the game. The decision
complexity is the number of end positions that define the value (win, draw, or loss) of
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the initial game position (see Chap. 4 for a theoretical explanation of critical tree).
The larger the number of actions in a position, the larger the decision complexity.
Games with small board sizes such as Tic-Tac-Toe (3 × 3) have a smaller complexity
than games with larger boards, such as Gomoku (19 × 19). When the action space is
very large it can be treated as a continuous action space. In Poker, for example, the
monetary bets can be of any size, defining an action size that is practically continuous.

State Space Complexity

The state space complexity of a game is the number of legal positions reachable
from the initial position of a game. State space and decision complexity are normally
positively correlated, since games with high decision complexity typically have high
state space complexity. As we shall see in Chap. 4, determining the exact state space
complexity of a game is a nontrivial task. For most games approximations of the state
space have been calculated.

In general, games with a larger state space complexity are harder to play (“require
more intelligence”) for humans and computers.

Zero-Sum Perfect-Information Games

Now that we have seen several important aspects of games, let us look at concrete
examples of zero-sum perfect-information games.

Chess and Go are two player, zero sum, perfect information, turn based, discreet
action games.

To study strategic reasoning in AI, two-player zero-sum perfect-information games
are frequently used. Strategies, or policies, determine the outcome of these kinds of
games. This was the first class of games tried by AI researchers.

2.2.2 Examples of Games

We will now give examples of games that have played an important role in artificial
intelligence research. Table 2.1 summarizes the games and their characteristics.

Chess

Chess (Fig. 2.6) is a two-player zero-sum perfect-information turn-based game, played
on an 8× 8 board with 64 squares and 32 pieces, many with different move rules. The
pieces move and can be captured. The goal of Chess is to capture the king. It has a
state space complexity estimated to be 1047. The number of actions in a typical board
state is around 35. It is a game where material balance (the number and importance
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Name board state space zero-sum information turn
Chess 8 × 8 1047 zero-sum perfect turn
Checkers 8 × 8 1018 zero-sum perfect turn
Othello 8 × 8 1028 zero-sum perfect turn
Backgammon 24 1020 zero-sum chance turn
Go 19 × 19 10170 zero-sum perfect turn
Shogi 9 × 9 1071 zero-sum perfect turn
Poker card 10161 non-zero imperfect turn
StarCraft real-time strategy 101685 non-zero imperfect simultaneous

Table 2.1 Characteristics of games

Fig. 2.6 Chess

of the pieces that the sides have) is quite important for the outcome of the game.
The ability to reason over deep tactical lines in order to capture a piece is important.
Chess has been used as a testbed of AI research since the early days of AI.

Computer players are typically based on heuristic planning and consist of a search
function (that looks ahead) and an evaluation function (that scores the board position
using heuristics). A heuristic is a rule of thumb that captures domain knowledge. In
Chess a useful heuristic is to count material balance (which side has more pieces)
and mobility (which side has more legal moves) and center control.

Chess is a tactical game in the sense that substantial changes in the static score of a
position are present in the state space. Such sudden changes occur for example when
an important piece, such as the queen, is captured. Chess also has “sudden death:”
the game can end abruptly when the king is captured (checkmate). Tactical situations
(i.e., large changes between static evaluation between positions) can typically be dealt
with by searching, or looking ahead.
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Fig. 2.7 Checkers

Checkers

Checkers (Fig. 2.7) is also a zero-sum perfect-information turn-based game, played
on an 8 × 8 board with 24 pieces. (North American and British Checkers is played on
an 8 × 8 board. In most other countries the board size is 10 × 10. In British English
the game is called Draughts.) The pieces move diagonally (only on the dark squares)
and can be captured. All pieces move in the same fashion. The number of actions
in a typical board position is around 3. The goal of Checkers is to capture all the
opponent’s pieces. Ordinary pieces move only forward, until they reach the other side
of the board, where they are promoted to kings, which can move backward as well.
As in Chess, material balance is a good indicator (heuristic) for the chance to win,
with mobility a good second indicator.

The state space of Checkers is estimated to be 1018. This state space is just small
enough for the game to have been mathematically solved in recent years: it has been
proven by traversing all relevant lines of play that perfect play by both sides yields a
draw [589]. This computation took months of computer time by a state-of-the-art
research team.

Computer players for Checkers and Chess have a highly related design. Many of
the techniques for search and evaluation functions that work on Checkers also work
in Chess.

Shogi

Shogi (Fig. 2.8) is a zero-sum perfect-information turn-based game, sometimes
described as Japanese Chess. Shogi is played on a 9 × 9 board, with 40 pieces. Pieces
can be captured, and when they are, they may be returned to the board as piece for
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Fig. 2.8 Shogi

Fig. 2.9 Othello

the capturing side. The number of actions in a typical board position is around 92.
The state space complexity of Shogi is significantly larger than Chess, 1071, because
of the reintroduction of pieces, and the larger board size, among others.

Important heuristics for Shogi are material balance and mobility. Techniques that
work in Chess and Checkers playing programs often work in Shogi as well.

Othello

Othello (Fig. 2.9) is a zero-sum perfect-information turn-based game, played on an
8 × 8 board. Othello is also known as Reversi. Othello is a disc flipping game. The
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Fig. 2.10 Go

number of actions in a typical board position is around 10. When a disc is placed
adjacent to an opponent’s disc, and there is a straight line to another friendly disc, the
opponent’s discs change color to the friendly side. In each move one disc is placed.
Discs are never taken off the board. When the board is full the game stops, and the
side with the most discs wins.

The state space complexity of Othello is estimated to be 1028. Traditional heuristics
such as material and mobility work to a limited extent. More advanced statistical
and machine learning methods were needed for breakthrough performance [113]
(Sect. 2.3.4).

Go

Go (Fig. 2.10) is a zero-sum perfect-information turn-based game, played on a 19×19
board. It is also played on smaller boards, for quicker and easier games for teaching,
9 × 9 and 13 × 13. Go originated in East Asia, and is popular in Korea, Japan, and
China. In Go, stones are placed on intersections on the board. The number of actions
in a typical board position is around 250. Surrounded stones are captured, although
this occurs infrequently among strong players. The board is large, and the state space
complexity of Go is also large: 10170.

In Go, the objective in the game is to acquire territory, intersections that the
opponent cannot claim. No effective heuristics have been devised for Go to calculate
this territory efficiently for use in a real-time game playing program. Approaches
as in Chess and Checkers failed to produce anything but amateur-level play in Go.
Sampling-based methods (Monte Carlo Tree Search) and deep reinforcement learning
caused a breakthrough (Chaps. 5 and 7).

Capturing stones occurs less frequently in Go than in Chess. Go is a more strategic
game: stones, once placed, do not move, and typically radiate influence all the way to
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Fig. 2.11 Backgammon

the end of the game. Strategically placing stones to later work together is an important
concept in Go. Sudden death (checkmate in Chess) does not exist in Go. Strategic
implications of a move are long term, and are typically beyond the horizon of a search
or look ahead. Long-term effects are typically dealt with by the evaluation function.

Backgammon

Backgammon (Fig. 2.11) is a zero-sum turn-based game of chance. Backgammon is
one of the oldest and most popular board games, often played for money. It is played
on a board as in the figure. Dice are used to determine the number of moves that a
player can make. Each side has 15 pieces. The objective is to be the first to move all
pieces off the board. The number of actions in a typical board position is around 250.

Backgammon is a game of skill and luck. The state space complexity of Backgam-
mon is estimated at 1020. Computer player BKG achieved some success in 1970–1980
with a heuristic planning approach [68, 69]. Later TD-Gammon used a small neu-
ral network for temporal difference learning, and achieved world champion level
play [675] (see the next section).

Poker

Poker (Fig. 2.12) is a non-zero-sum imperfect-information turn-based card game of
chance. Betting is an integral part of the game play. It is used to signal the quality of
a hand of cards to the other players (or to mislead them). Poker is a multiplayer game.
The action space is large due to the betting, and varies greatly for different versions
of the game. The difficulty of play is in estimating the quality of a hand with respect
to others, and has psychological aspects, to ascertain if players are bluffing: placing
high bets on weak hands, trying to scare other players.

The state space of No-Limit Texas Hold’em, a popular Poker variant, has been
estimated between 1018 [77] and 10161 [103, 336]. There are many Poker variants,
and this number can differ from variant to variant.
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Fig. 2.12 Poker

Fig. 2.13 StarCraft [725]

Poker is an imperfect-information game (the hidden hands 1 in the figure). Because
of this it is closer to some decision making situations that are common in the real
world, than games such as Chess and Checkers.

Most computer Poker players are based on a detailed analysis of the quality of the
hands using a methods called counterfactual regret analysis [779, 104].



2.2 Games of Strategy 29

StarCraft

StarCraft (Fig. 2.13) is a non-zero-sum imperfect-information simultaneous action
real-time strategy game. It is a multiplayer game. The goal of StarCraft is to gather
resources, create buildings, develop new technologies, and train attack units, which
then must prepare for and fight battles. StarCraft combines imperfect information with
multiplayer aspects, long-term strategy, and short-term tactics. Armies have to be
built up (strategy), and battles have to be played (tactics). The imperfect-information
aspect is that the game map is only partially visible, and the actions of the other
players are not all known.

It is a highly popular, highly complex game. The number of actions in StarCraft
positions has been estimated to be between 1050 and 10200 [496]. The state space
complexity of StarCraft has been conservatively estimated by these authors at 101685,
which is a very, very large number.

Of all the games that are used in AI, the complexity of the actions in StarCraft
is one of the highest, and the decision making comes closer to real-world decision
making than in other games. As AI methods are improving, the interest in StarCraft
is growing.

2.2.3 Early Game Playing Programs

Now that we have studied the characteristics of some combinatorial games, it is time
to have a look at the research field of computer game play.

In order to get a good understanding of the field, let us start with a short overview
of some of the better known game playing programs in the history of AI. Even before
computers were powerful enough to run game playing programs, there were paper
designs of game playing programs. First we discuss two hypothetical game players,
and then we continue with the first real game playing programs.

As an aside, please note that there is a common approach in all these attempts. A
search function does look ahead, and a heuristic evaluation function scores the board
positions. Together the two functions form the search-eval architecture, which we
will study in detail in Chap. 4.

Claude Shannon 1949

Claude Shannon (1916–2001) was an American mathematician, electrical engineer,
and cryptographer. Shannon is primarily known as the father of information theory.

In 1949 Shannon presented a paper titled “Programming a Computer for playing
Chess.” The paper describes a design of how to program a computer to play Chess
based on position evaluation and move selection. The paper describes strategies for
restricting the number of possibilities to be considered. Shannon’s paper is one of the
first articles published on the topic [618].
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Fig. 2.14 Ferranti Mark 1

Fig. 2.15 Alan Turing

Alan Turing 1950

In 1948 Alan Turing (1912–1954, Fig. 2.15) worked with David Champernowne on a
Chess program for a hypothetical computer. They named their program Turbochamp.
In 1950, the program was finished. In 1952, Turing tried to implement it on a Ferranti
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Fig. 2.16 Arthur Samuel

Mark 1, Fig. 2.14, but the computer was unable to execute the program, so he ended
up executing the program by hand, flipping through the pages of the algorithm and
carrying out its instructions on a chessboard. Reportedly, this took about half an hour
per move. The program is the first to have played a full Chess game, even though it
was executed on paper and by hand [701]. Turbochamp had an evaluation function
and a search function, the design that is still used in today’s programs.

Christopher Strachey 1951

Christopher Strachey (1916–1975) was a preeminent computer scientist at Oxford,
well known for his work on denotational semantics and programming language design.
In 1951, Christopher Strachey wrote a Checkers program for the Ferranti Mark 1
computer of the University of Manchester. It could play a complete game of Draughts
(Checkers) at reasonable speed [648].

Arthur Samuel 1959

Arthur Samuel (1901–1990, Fig. 2.16) started in 1949 to write a Checkers program
for the IBM 701 computer. It was among the world’s first successful self-learning
programs, adapting coefficients in the evaluation function based on the outcome of
the search [577].

The main driver of the program was a search tree of the board positions reachable
from the current state. To reduce memory consumption Samuel implemented a
version of what is now called alpha-beta pruning. He used a heuristic evaluation
function based on the position on the board to prevent having to search to the end of
the game. He also used a method to memorize search results, and later versions used
supervised learning from professional games and from self-play. Around the 1970s
the program had progressed to amateur level [588].
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2.3 Game Playing Programs

The playing strength of game playing programs has increased steadily since the early
days. Computer hardware has become much more powerful, and better algorithms
have been found. Most of these algorithms are described in this book.

For the pioneers the challenge was to create a program that could successfully
play a game to the end. We will now skip a few years. The level of play has increased
greatly, and now the challenge has become to beat human champions. We will pick
up around 1990, where some programs started playing at world champion level.

2.3.1 TD-Gammon 1992

At the end of the 1980s Gerald Tesauro worked on Backgammon programs. (Fig-
ure 2.11 showed a Backgammon board.)

His programs were based on neural networks that learned good patterns of play.
His first program, Neurogammon, was trained using supervised learning. It achieved
an intermediate level of play [673]. His second program, TD-Gammon, was based
on temporal difference learning and self-play, a form of reinforcement learning
(see Chaps. 3 and 6). Combined with hand-crafted heuristics, in 1992 it played at
world-class human championship level, becoming the first computer program to do
so in a game of skill [677].

TD-Gammon is named after temporal difference because it updates its neural
net after each move, reducing the difference between the evaluation of previous and
current positions. In Tesauro’s previous program Neurogammon an expert trained
the program by supplying the “correct” evaluation of each position. The neural
network used a single hidden layer with 80 units. In contrast, TD-Gammon initially
learned knowledge-free, or tabula rasa. Tesauro describes TD-Gammon’s tabula rasa
self-play as follows: “The move that is selected is the move with maximum expected
outcome for the side making the move. In other words, the neural network is learning
from the results of playing against itself. This self-play training paradigm is used
even at the start of learning, when the network’s weights are random, and hence its
initial strategy is a random strategy” [676].

The self-play version used the raw board encoding directly, without any hand-
crafted heuristic features. It reached a level of play comparable to Neurogammon: that
of an intermediate-level human Backgammon player. After adding a simple heuristic
search it reached world-class level.

TD-Gammon’s success inspired many other researchers to try neural networks
and self-play approaches, culminating eventually in recent high-profile results in
Atari [461] and AlphaGo [623, 626], Chaps. 6 and 7).

Amodern reimplementation of TD-Gammon in TensorFlow is available on GitHub
TD-Gammon.5

5 https://github.com/fomorians/td-gammon

https://github.com/fomorians/td-gammon
https://github.com/fomorians/td-gammon
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2.3.2 Chinook 1994

The Checkers program Chinook was the first computer program to win the world
champion title in a competition against humans. It was developed by Canadian
computer scientist and Chess player Jonathan Schaeffer. Based on his experience in
Chess, Schaeffer decided to write a Checkers program, believing that the technology
existed to achieve world championship level.

Chinook’s architecture follows the standard search-eval approach of computer
Chess, based on alpha-beta search and a hand-crafted heuristic evaluation function
(see Chap. 4). Both functions were highly enhanced, well tested, and highly tuned [590,
591]. Apart from meticulous testing and tuning, Chinook derived much of its strength
from its endgame databases. These endgame databases contained perfect knowledge
for any board position with 8 or fewer pieces on the board.

Schaeffer started development in 1989. At first, progress came swift. In 1990
Chinook won the right to play in the human World Championship by being second to
Marion Tinsley in the US Nationals. Tinsley, the current World Champion, was an
exceptionally strong player who had reigned supreme for a long time in Checkers.

In 1994 Chinook was declared the Man–Machine World Champion. In 1995,
Chinook defended its Man–Machine title in a 32-game match. The final score was
1–0 with 31 draws for Chinook. At the time Chinook was rated at a very high 2814
Elo. After the match, Chinook retired from competitive playing. Later, Schaeffer and
his team used Chinook to solve Checkers, proving in 2007 that with perfect play by
both sides, Checkers is a draw [589].

Chinook’s win is made all the more impressive because of the opponent it faced:
Dr. Marion Tinsley. Tinsley, a professor of mathematics, played Checkers at a level
that was unheard of. He was world champion from 1955–1958 and 1975–1991 and
never lost a world championship match, and lost only seven games in his 45-year
career, two of which to Chinook [588]. He withdrew from championship play during
the years 1958–1975, relinquishing the title during that time. It was said that Tinsley
was to Checkers what Leonardo da Vinci was to science, what Michelangelo was
to art, and what Beethoven was to music [436]. Schaeffer wrote a book about his
experience, in which he recalls one particular event [588]. In one game from their
match in 1990, Chinook made a mistake on the tenth move. Tinsley instantly remarked,
“You’re going to regret that.” And, yes, after they played on, Chinook resigned after
move 36, fully 26 moves later, when it saw its loss. Schaeffer looked back into the
database and discovered that Tinsley picked the only strategy that could have defeated
Chinook from that point and that Tinsley was able to see his win an implausible 64
moves into the future [588].

2.3.3 Deep Blue 1997

If the Checkers events caused excitement, then Chess did even more so. In 1985
Feng-hsiung Hsu, a PhD student at Carnegie Mellon University, started work on a
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Fig. 2.17 Garry Kasparov

Fig. 2.18 Excitement in 1997. Game 6, Caro Kahn. Kasparov resigned after 19 moves

Chess program that, after much development, showed enough promise for IBM to
become involved. After quite some more years of development, in 1996 performance
had improved enough for IBM to sponsor a match against the human world Chess
champion Garry Kasparov (Fig. 2.17).6 The match took place at the ACM Computer
Science Conference in Philadelphia. On February 10, 1996, Deep Blue won its first
game against human champion Kasparov, making Chess history. However, Kasparov
went on to win three games and draw two, winning the six-game match by 4–2.

A year later, in May 1997, the rematch was played in New York at the 35th
floor of the Equitable Center (Fig. 2.18). An upgraded version of Deep Blue played

6 Pictured speaking at the Turing centennial conference in Manchester. Image credit: Creative
Commons.
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Kasparov again, this time capable of evaluating 200 million positions per second,
twice as fast as the 1996 version. Kasparov was defeated 3 1

2–2 1
2 in a highly publicized

match. Deep Blue became the first computer system to defeat a reigning world
Chess champion in a match under standard Chess tournament time controls. Several
accounts of the match, its historical significance, and the technology behind it, have
been written [593, 119, 310, 309, 416, 483].

Deep Blue started out as a hardware design project, when Feng-hsiung Hsu wanted
to see if he could create a special-purpose VLSI Chess move generator chip. This
project evolved into a full-fledged Chess program, which was named Deep Thought,
after the fictional computer in Douglas Adams’ The Hitchhiker’s Guide to the Galaxy,
that computed the answer to life, the universe, and everything.7

The design of Deep Blue followed the standard search-eval architecture, with quite
a number of special enhancements. To start with, the evaluation function used 480
specially developed hardware chips, allowing it to evaluate 200 million positions per
second in parallel. The search algorithm was also heavily parallelized, running on a
30-node IBM RS/6000 system. Deep Blue would typically search to a depth of 6–8
moves and to a maximum of more than 20 moves in some situations.8 The opening
library was provided by grandmasters Miguel Illescas, John Fedorowicz, and Nick de
Firmian. Deep Blue had an endgame database of positions with 5–6 pieces.

Deep Blue’s evaluation chips were highly customizable, containing 8000 individual
parts, and a database of master games was used to tune their weights [309]. The
success of Deep Blue was rightfully billed as the success of brute force, due to the
impressive number of 200 million evaluations per second. However, the fact that
the evaluation weights were initially tuned by supervised learning, and not by hand,
would equally allow a claim to a victory due to machine learning (although it did not
use neural nets, nor did Deep Blue use any deep learning).

In its time, Deep Blue, with its capability of evaluating 200 million positions per
second, was the fastest computer to face a world Chess champion. Since then, the
focus has shifted to software, rather than using dedicated Chess hardware. Chess
algorithms have progressed, and modern Chess programs such as Stockfish, Houdini,
and Deep Fritz are more efficient than the programs of Deep Blue’s era. Today less
hardware is needed to achieve the same performance. In a November 2006 match
between Deep Fritz and World Chess Champion Vladimir Kramnik, the program ran
on a computer system containing one dual-core Intel Xeon 5160 CPU, capable of
evaluating only 8 million positions per second, but searching to an average depth of
17 to 18 moves in the middle game, thanks to fast heuristics and aggressive search
extensions (Chap. 4). Stockfish is currently one of the strongest Chess programs. It is
open source, available on GitHub here.9

7 Which, as you may know, is 42.
8 To be precise, 6–8 moves for a side. In official Chess terminology a move is one half-move by
white plus one half-move by black. So what we call 6–8 moves should really be called 3–4 moves if
we would follow official Chess terminology.
9 https://github.com/official-stockfish/Stockfish

https://github.com/official-stockfish/Stockfish
https://github.com/official-stockfish/Stockfish
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2.3.4 Logistello 1997

After the massive team effort for Chess, a year later a one-person effort achieved
impressive results in the game of Othello. The program is named Logistello. It was
written by Michael Buro and was a very strong player, having beaten the human world
champion Takeshi Murakami with a score of 6–0 in 1997. The best Othello programs
are now much stronger than any human player.

Logistello’s evaluation function is based on patterns of discs, and has over a
million numerical parameters which were tuned using advanced logistic linear
regression [113, 116, 117].

2.3.5 AlphaGo 2016

After the 1997 defeat of the Chess world champion, the game of Go (Fig. 2.10)
became the next benchmark game, the Drosophila of AI, and research interest in Go
intensified significantly.

Traditionally, computer Go programs followed the conventional Chess design of a
minimax search with a heuristic evaluation function that was influence based. The
GNU Go program is a good example of this approach [450]. This Chess approach,
however, did not work for Go, or at least not well enough. The level of play was stuck
at mid-amateur level for quite some time.

In a sense, the game of Go worked very well as Drosophila, in that new AI
approaches were developed, and many researchers produced interesting findings. New
algorithms have been developed, such as Monte Carlo Tree Search, and impressive
progress has been made in deep reinforcement learning.

In 2015–2017 the DeepMind AlphaGo team, headed by David Silver, played
three matches in which it beat all human champions that it played. There was even a
book written analyzing the Go-theoretical innovations that AlphaGo has unlocked
for human Go masters [778]. To get an appreciation of the achievement of AlphaGo,
and to introduce the program, we will now have a closer look at the matches that it
played, quoting some of the commentary that was written about the matches. Please
go to Appendix C for a record of all games played in the Fan Hui tournament, the Lee
Sedol tournament, and the Ke Jie tournament. First we discuss the Fan Hui games,
then the Lee Sedol games, and finally the Ke Jie games. Fig. 2.19 shows the players
and some of the AlphaGo team members.10

Fan Hui

The games against Fan Hui were played in October 2015 in London as part of the
development effort of AlphaGo. Fan Hui is the 2013, 2014, and 2015 European Go

10 Image credit Hassabis and Silver: DeepMind; Hui: Tristan Fewings/Getty Images.
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Fig. 2.19 Fan Hui, Lee Sedol, Ke Jie; Demis Hassabis, David Silver and Aja Huang (left-to-right,
top-to-bottom)

Champion, then rated at 2p dan. He described the program as very strong and stable.
“It seems like a wall. I know AlphaGo is a computer, but if no one told me, maybe I
would think the player was a little strange, but a very strong player, a real person.”

Lee Sedol

The games against Lee Sedol were played in May 2016 in Seoul as part of a highly
televisedmedia circus. Although there is no official worldwide ranking in international
Go, in 2016 Lee Sedol was widely considered one of the four best players in the
world. Lee Sedol has been a 9p dan professional Go player since 2003. When he
played AlphaGo, he had 18 international titles, and was confident that he would win
against the computer.

To his surprise, the match ended in a 4–1 win for AlphaGo, with the program
playing very strong games. The games against Lee Sedol attracted a large amount
of media attention, comparable to the Kasparov–Deep Blue matches two decades
earlier. A movie was made of AlphaGo, which can be found here.11

The match started with game 1, which was a win for AlphaGo. Then, in game 2,
AlphaGo played a move on the right-hand side of the board that shocked spectators
(Fig. 2.20). Commentators said that it was a very strange move; many thought that it
was a mistake. Lee Sedol took nearly fifteen minutes to formulate a response. Fan

11 https://www.alphagomovie.com

https://www.alphagomovie.com
https://www.alphagomovie.com


38 2 Intelligence and Games

Fig. 2.20 “Speechless” move 37 by AlphaGo in game 2 (played on P 10)

Hui explained that, at first, he also could not believe his eyes. But then he saw the
beauty in this rather unusual move. Indeed, the move changed the course of the game,
and AlphaGo went on to win. At the post-game press conference Lee Sedol was in
shock. He said: “Yesterday, I was surprised,” referring to his loss in game 1. “But
today I am speechless. If you look at the way the game was played, I admit, it was
a very clear loss on my part. From the very beginning of the game, there was not a
moment in time when I felt that I was leading.”

Fan Hui gives more commentary, showing why this move looks so profound from
a human perspective. He writes: “Black 37 is one of the two moves from this match
sure to go down in Go history. This move proved so stunning that, when it appeared
on the screen, many players thought the stone had been put down in the wrong place.”

“On seeing Black 37, I wrote down the following: ‘Here?! This goes beyond my
understanding. Globally, there’s nothing wrong with it, it’s going in the right direction
[. . . ] and AlphaGo always pays special attention to coordinating the stones. It seems
anything is possible in Go! Everyone will be talking about this move! A human would
never dare play it, it’s too difficult to estimate. But AlphaGo can. Perhaps this move
is a sign of its confidence.’ ”

“This move made a deep impression on me during the game. I experienced first
confusion, then shock, and finally delight. It reminded me of an old Chinese saying:
‘A beginner plays the corners, an average player the sides; but a master controls
the center.’ These days, due to the convergence of strengths and the pressure of
competition, something close to the opposite is true, with most players focusing on
the corners and sides. In contrast, AlphaGo’s talent for central control is second to
none. Perhaps, through AlphaGo, we too can become the ‘masters’ of which the
proverb speaks.”
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“Returning to the game, we may say that Black 37 casts an invisible net across the
board. Together with the lower side, Black’s shoulder hit creates potential all across
the center. Although it helps White make territory on the right, the presence of White
means that a Black invasion there would not have been valuable anyway. Of course,
Black should be reluctant to give away fourth-line territory too easily, but one must
give to get.”

“After the match, when I examined the data back at DeepMind, I saw that AlphaGo
had not even been thinking about 37 only a few moves before. It had been expecting a
different move, and its data indicated that a human player would hardly consider the
shoulder hit a possibility. It was only when White played 36 that AlphaGo discovered
37, and boldly decided that this move would work even better.”

“The pace of the game was much slower than the previous day, so Lee had already
gone out to smoke before 37. The minute he caught sight of AlphaGo’s reply, he
stared blankly at the board. Then he smiled, sat down, and started thinking. The
longer he thought, the more serious his expression became, while the clock ran down
little by little” [319]. And indeed, this game was also won by AlphaGo.

Lee continued to play three more games in the match, winning game 4 by a
beautiful move, but losing the match 1–4, the first time in history that a Go champion
of his caliber had lost a match to a computer program.

Ke Jie

A year later another match was played, this time in China, against the Chinese
champion. Ke Jie was ranked number one in the Korean, Japanese, and Chinese
ranking systems at the time of the match. He was also first among all human players
worldwide under Rémi Coulom’s ranking system [150].

On 23–27 May 2017 a three-game match was played in Wuzhen, China. The match
was won 3–0 by AlphaGo. AlphaGo was subsequently awarded a professional 9-dan
title by the Chinese Weiqi Association.

As preparation for this match the team had organized an online 60-game tournament
against top pros, from 29 December 2016 to 4 January 2017. This version of AlphaGo
ran on a strong machine that used four specially developed tensor processing units
(TPU). TPUs are a kind of GPU, specially developed by Google for fast and efficient
tensor processing. They are described in Sect. B.1. This version of AlphaGo achieved
a very high Elo rating of 4858 against the online pros [626]; it showed that the
program was 3 stone stronger than the version that defeated Lee Sedol. They named
this match version AlphaGo Master. It was a refined and further developed version
of AlphaGo, although the basic architecture was unchanged, with a combination of
supervised and reinforcement learning (even though the researchers were, at the time,
already working on a redesign, AlphaGo Zero).

In the rest of the book we will have a look at the methods that were used to achieve
these results. Chapter 5 covers the search algorithm, Chap. 6 covers deep learning,
and Chap. 7 goes in depth into self-play.

Appendix D contains links to tutorials on the rules of Go and on learning to play.
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2.3.6 Poker 2018

In contrast to games of perfect information such as Chess, Checkers, and Go, Poker
is a game of imperfect information. It is a card game in which some of the cards are
hidden from the player. The set of possible actions is large, posing a challenge for
search-based AI approaches. This has held back the development of strong Poker
programs for some time.

Recently, however, impressive progress has been made by groups from the
University of Alberta [92, 93, 470] and Carnegie Mellon University [579, 103].
Programs DeepStack and Libratus have defeated some of the strongest human Poker
players in one-on-one play [105]. A year later they published equally strong results for
multiplayer Poker, with the Pluribus program [104] defeating top players in six-player
Poker.

Research in computer Poker is an active field, with versions of research programs
being licensed for commercial entertainment purposes. Section 8.2.3 provides more
information on the methods for Poker.

2.3.7 StarCraft 2018

StarCraft is a popular real-time strategy game with strong human champions. Re-
searchers have become interested in using the game as a test bed for AI. Since 2010
academic competitions have been organized that stimulated research [692, 496].
In 2017 a Python interface to the game was created to facilitate its use in AI
research [727].

In 2018 DeepMind’s player AlphaStar played two-person test matches against
some of the world’s strongest players, which it won [725]. Research into multiplayer
methods for StarCraft is becoming quite an active field. Section 8.2.4 provides more
information on the challenges that StarCraft poses for AI and looks into further
research.

Summary

We have covered a lot of ground in this chapter. We have discussed elements of
intelligence, and mentioned that most AI researchers take a behavioristic approach to
intelligence. For AI researchers “to be or not to be” is not the question; most take the
pragmatic approach of duck-typing: “If it walks like a duck and quacks like a duck,
then it must be a duck.”

We have looked at characteristics of games, and discussed the important concepts
zero sum and perfect information. We have also had a look at historical approaches
to game playing programs, and we have listed modern successes, where computer
programs have achieved a level of play beyond that of the strongest human players.
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This chapter discussed key aspects of AI: recognition, reasoning, memory, and
learning. AI takes a behavioristic approach to intelligence, which is operationalized
with the Turing test, introduced by Alan Turing in 1950. We then proceeded with a
brief history of AI, starting with the 1956 Dartmouth College workshop. A list of
ambitious goals for AI were formulated, which turned out to be overly ambitious,
causing AI funding winters. However, after research picked up by the turn of the
millennium, a number of AI technologies (such as search, social networks, deep
learning, and recommender systems) had deeply affected society, and AI summer
arrived.

Games have been a favorite test-bed for AI research. Games such as Chess and
Go have been called the Drosophila of AI, after the fruit fly from genetics research.
An important difference between human intelligence and artificial intelligence is
that human intelligence is general, or broad, while artificial intelligence is special,
or narrow. Human intelligence can solve many problems; an AI program can solve
only one, such as playing good Chess. Research is under way into artificial general
intelligence.

The chapter provided a short overview of important designs and programs. We
listed the early designs by Shannon, Strachey, Turing, and Samuel. The programs
featured were TD-Gammon (Backgammon), Chinook (Checkers), Deep Blue (Chess),
Logistello (Othello), AlphaGo (Go), Libratus and DeepStack (Poker), and AlphaStar
(StarCraft).

Games are a favorite experimenter’s tool for AI.Many breakthroughs in intelligence
and learning have taken place in a variety of games, each with their own characteristics.

The early designs established some of the basic algorithms and approaches, such as
the search-eval architecture, minimax, alpha-beta, heuristics, and learning. Computers
were not yet powerful enough to reach strong levels of play. The later programs all did,
using highly enhanced versions of the original blueprints, as well as new techniques,
such as deep learning.

It is now time to prepare ourselves for the four core chapters of this book that look
in detail at the methods that have been developed by researchers. We will do so by
first discussing the reinforcement learning paradigm, as a common language for the
four following chapters.

Historical and Bibliographical Notes

We conclude each chapter with a brief summary of entry points to the scientific
literature. The works mentioned here may be more accessible than some of the more
technical papers.

In this chapter we now list a few such works.
An excellent, popular, and all-encompassing standard textbook of AI is by Russell

and Norvig [572]. If you have taken an undergraduate course in AI, chances are that
you already own a copy.
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Artificial intelligence and search are also used to generate content for computer
games [693]. An excellent text on how to use artificial intelligence for creating
entertaining and believable computer games is Yannakakis and Togelius [770], which
also covers procedural content generation and game design.

Insightful and entertaining accounts have been written about the human and
scientific side of writing world champion-level game playing programs. Schaeffer’s
account of how he and his team created Chinook is memorable, not just because of
his inside story, but also because of the picture that it paints of Marion Tinsley, the
amazing Checkers champion [588].

Much has been written about the Chess match between Deep Blue and Garry
Kasparov. Feng-hsiung Hsu’s account gives the story behind their “quest to build the
mother of all Chessmachines.” It is an awe-inspiring story of thismoment in the history
of Chess-playing intelligence versus computer programming intelligence [309].

A good reference on how computers play Chess is [416], and Chap. 4 covers many
of the techniques that are used in Chess programs.

OpenSpiel is a library for reinforcement learning in games. It provides a wealth
of high-quality implementations of algorithms [399]. A link to OpenSpiel is here.12
Appendix A contains more environments relevant to research in reinforcement
learning and games.

A popular psychology book is Thinking Fast and Slow by Kahneman [347].
Kahneman is one of the founders of the field of behavioral economics, and his
approach to intelligence fits well with the search-eval architecture that is prevalent in
artificial intelligence in games.

12 https://deepmind.com/research/open-source/openspiel

https://deepmind.com/research/open-source/openspiel
https://deepmind.com/research/open-source/openspiel


Chapter 3
Reinforcement Learning

The field of reinforcement learning studies the behavior of agents that learn through
interaction with their environment. Reinforcement learning is a general paradigm,
with links to trial-and-error methods and behavioral conditioning studies. In this
chapter we will introduce basic concepts and algorithms that will be used in the rest
of the book.

It is customary to use Markov decision processes (MDPs) as the formalism to
model reinforcement learning. MDPs are a suitable paradigm to model the games that
we use as benchmarks of intelligent behavior. Reinforcement learning and Markov
decision processes allow solution methods for games to be formalized concisely and
precisely. Our language will be mathematical in nature, but links to agent behavior,
and behavioral studies, are never far away.

To start, let us summarize the core problem and concepts that will be covered in
this chapter.

Core Problem

• How can an agent learn from interaction with an environment?

Core Concepts

• Agent and environment
• State, action, policy, and reward
• Value function, credit assignment, exploration/exploitation, and exact/approximate

The reinforcement learning paradigm consists of an agent and an environment
(Fig. 3.1). The environment is in a certain state s. At time t, the agent performs
action a, resulting in a new state in the environment. Along with this new state comes

43
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Fig. 3.1 Reinforcement learning: agent and environment [659]
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Fig. 3.2 Backup diagram with MDP tuple [659]

reward value r (which may be positive or negative). The goal of the agent is to learn
how to maximize the rewards that the environment returns. To this end the agent
learns a function, called policy π. It can improve (reinforce) this policy by interacting
repeatedly with the environment (note that taking an action—sampling from the
environment—may be costly).

3.1 Markov Decision Processes

Reinforcement learning problems can be modeled as Markov decision processes
(MDPs). Markov decision problems are an important class of problems that have the
Markov property: the next state depends only on the current state and the actions
available in it (no memory of previous states or other information is necessary) [306].
The no-memory property is important because it makes reasoning about future states
possible using only the information present in the current state. If previous histories
would all influence the current state, then reasoning about the current state would be
much harder or impossible. MDPs are named after Russian mathematician Andrey
Markov (1856–1922) best known for his work on stochastic processes.

Where board games use the terms board position and move, the mathematical
formalisms of MDP and reinforcement learning talk about state and action.

A Markov decision process is a 5-tuple (S, A, P, R, γ):

• S is a finite set of legal states of the environment; the initial state is denoted as s0.
• A is a finite set of actions (if the set of actions differs per state, then As is the finite

set of actions at state s).
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• Pa(s, s′) = Pr(st+1 = s′ |st = s, at = a) is the probability that action a in state s at
time t will lead to state s′ at time t + 1 in the environment.

• Ra(s, s′) is the reward received after action a transitions state s to state s′.
• γ ∈ [0, 1] is the discount factor representing the difference between future and

present rewards.

Figure 3.2 shows the MDP tuple s, a, p, r as well as s′, π, and how the value can be
calculated. The root node at the top is state s, where policy π allows the agent to
choose between three actions a, which, following distribution p, can each end up in
two states s′, with their reward r . In this way the value of the root can be calculated,
by a backup procedure [659]. (The value of γ is 1, in this tiny example.)

Deterministic board games such as Chess and Go can easily be formulated as
MDPs with γ = 1 (future outcomes (lookahead) are as important as present outcomes)
and P = 1 (actions predictably lead to one future state).1

Terminology

Reinforcement learning and MDPs introduce a new formal terminology for board
games. The board configuration is called state s, a move is action a, and the score
of an end position is the reward R (typically win, loss, or draw). In reinforcement
learning a strategy for a player (all the moves from positions leading to a certain end
position and outcome) is called a policy. In games such as Chess and Go, actions
lead deterministically to one state (in Poker and Backgammon they can stochastically
lead to different states, see [659]). The state space of a game is the set of all states
that are reachable from the initial board position or state.

The state space is easily visualized as a directed graph. Figure 3.3 shows a partial
graph of a position in the well-known game of Tic Tac Toe (also known as Noughts
and Crosses, or Three in a Row). This new diagram is a simplification of the diagram
in Fig. 3.2, since p = 1 actions directly lead to a single successor state s′. Most trees
in this book are of the new, simpler, type.

Graphs introduce yet another terminology. States/boards are nodes in the graph,
actions/moves are links, and terminal states are leaves. Note that the graph in Fig. 3.3
does not have cycles, and is a tree (artificial intelligence is full of “trees,” all growing
upside down, with the root at the top). Such a graph of the state space of a game is
often called a game tree. In general, MDPs and game graphs may contain cycles,
although most games have rules to prevent never-ending game situations. Another
difference between graphs and trees are transpositions: nodes that have more than one
parent. Transpositions are identical board positions that can be reached by different
move sequences. Section 4.3.3 discusses transpositions in more detail. A tree does
not contain transpositions: in a tree only one path exists between any two nodes, and
all children have exactly one parent. Graphs can have transpositions: in a graph, child

1 To be precise, only versions of Chess and Go that do not use rules to prevent repetition, such as the
50-move rule and the ko-rule. The repetition-prevention rules require memory and thus violate the
Markov property.
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Fig. 3.3 Tic Tac Toe game tree
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Fig. 3.4 A tree and a graph; node j is a transposition

nodes may be shared between parents, and there are more ways than one to reach a
certain position from the root. See Fig. 3.4 for an example of a tree and a graph with
a transposition. Nodes in Fig. 3.4 are either squares or circles. Squares indicate the
max (first) player is to move, and circles indicate the min (second) player is to move.
The value of a max node is the maximum of its children, while the value of a min
node is the minimum of its children (see Sect. 4.1.2).

A score function is defined for the leaves of the game tree/graph to tell whether
the game has been won, lost, or drawn. In reinforcement learning terminology we say
that the reward is known. If we look at the graph in Fig. 3.3 again, and we want to find
the value of a nonterminal board position, all we have to do is work upwards from the
leaves of the tree, and determine the values of the parent nodes, carefully taking the
max or min, until finally the value of all nodes in the tree is known. At that point we
know if the initial position of the game is won or lost if both players play perfectly.
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Now that we have discussed basic terminology we are ready to look at two central
elements in reinforcement learning: the policy function and the value function.

3.2 Policy Function, State-Value Function, Action-Value Function

In reinforcement learning two functions are usually associated with the states: the
policy function and the value function. Furthermore, this value function exists both
for states and for actions.

3.2.1 Policy Function

Of central importance in reinforcement learning is the concept of policy, or π. The
policy function π associates states with actions. A deterministic policy π : s 7→ a
returns one action for each state. A stochastic policy π(a|s) gives the probability of
taking action a in state s.

For two-person games the goal of reinforcement learning and MDPs is for the
agent to find an optimal policy π? that gives an action a = π?(s) that should be
chosen in each state s that leads to a win for the first player. Finding the optimal policy
function is also known in engineering as solving the optimal control problem [659].

3.2.2 State-Value Function

The state value function V(s) returns the expected value of state s; it is the discounted
value of the expected future rewards of a state. In leaves, the “expected” value is
equal to the reward V(s) = R(s). The expected value V(s) of a state s is determined
by the current policy, and should therefore be written Vπ(s). Many solution methods
exist to efficiently determine value functions and policy functions. Finding the value
function solves the estimation problem.

In the next chapter, Chap. 4, we will discuss methods that efficiently determine
this root value, and, by extension, the optimal policy π?, the tree of actions that leads
to it.

3.2.3 Action-Value Function

The action value Q(s, a) is the value of taking action a in state s under policy π.
Writing it more precisely as Qπ(s, a), the function takes action a and then takes policy
π for the remainder. The value of the Qπ(s, a) function is equal to the value function
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when taking action a in state s:

Qπ(s, a) = Vπ
a (s).

The final value of state s is given by the value function Vπ , after the fact, when
all computations have been done. The Qπ(s, a) function gives the value of a single
action a, and is important during the calculation. The Q-value can be computed for
intermediate single action values. Important algorithms such as Q-learning and DQN
are named after this action-value function.

3.2.4 Implementing Functions

It is common to discuss value and policy problems in terms of functions. Functions
map input values to output values, and are sometimes called mappings.

At this point it is useful to consider that value and policy functions can be
implemented in different ways. The most basic and easy to implement situation is
when for a function f (x) 7→ y a closed-form mathematical formula is known, such
as f (x) = x + 5. The formula can be implemented straightforwardly as a procedure
that takes its input arguments and runs some code to calculate the return value:
def f(x): return x+5. This is the code approach.

A slightly more complicated situation is the following. There are nonlinear
functions f (x) 7→ y that can not be expressed as a closed-form mathematical formula,
or for which no such formula is known. However, when a database of input/output
pairs is available, then we can impement the mapping as an array, list, or dictionary
in most programming languages: def f(x): return table[x]. This is typically
the case in machine learning problems, where the resulting function is to be learned
by looking at examples. When the number of examples is manageable, they can be
stored in memory. The function is then implemented as a lookup table. This is the
database approach.

For most real-world machine learning situations we have an even more complicated
situation, where the database is too large to fit in memory, or the training set must
generalize to cover unseen examples from the test set that are not present in the
training database. In this case the function can be learned with machine learning
methods, although the function values will necessarily be approximated. The function
mapping can be implemented as a parameterized (neural) network that takes as input a
state, and produces as output a value. This is what is used in many real-world machine
learning situations. Since the function is approximated using a set of parameters θ, it
is often written as fθ (x) 7→ y. This is the function approximation approach. Chapter 6
is dedicated to function approximation.
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3.3 Solution Methods

Now that we have introduced the basic elements and terminology of reinforcement
learning, it is time to discuss solution methods, methods that help us find the optimal
values and policies.

In this section we will introduce many building blocks of reinforcement learning:
the Bellman equation to recursively compute root values when the transition function
is known, the exploration/exploitation trade-off to find optimal paths, temporal-
difference learning to find the policy by sampling, the value iteration and policy
iteration solution methods, and on- and off-policy methods for learning the optimal
policy.

The methods will be introduced one by one. At the end of the chapter full
algorithms are described that combine all these fundamental concepts.

We will now start with two essential elements of reinforcement learning: Bellman
recursion and the exploration/exploitation trade-off.

3.3.1 Bellman Recursion

Games consist of actions by players. For each action that the player makes, the optimal
policy of the board position must be found. (Or, equivalently, the optimal value must
be found.) In the previous section we discussed Tic Tac Toe and how the optimal
policy and the value of a position depend on the rewards, or leaf values. We mentioned
how the value of the root can be found by recursively traversing the tree upwards,
working backwards, computing the values of inner nodes. This recursive solution
method described informally in the previous section can be described formally with
the Bellman equation. Figure 3.5 gives an artistic impression of the concept of
recursion, known as the Droste effect: a picture of a picture of a picture within a
picture etc. Richard Bellman showed that discrete optimization problems can be
described as a recursive backward induction problem [54], using what he called
dynamic programming. The Bellman equation shows the relationship between the
value function in one state and the next state.

The Bellman equation of the expected value for being in state s and following
policy π is

Vπ(s) = R(s, π(s)) + γ
∑
s′

P(s′ |s, π(s))Vπ(s′),

where R is the reward function and γ is the discount rate. The value of a state is equal
to the reward of that state, following policy π, and the discounted sum of the values of
its successors. Before a node has been searched, it is not yet known which child is the
best successor. The Bellman equation defines a recursive relation on how to compute
the expected value of the initial state s0. Note that for games such as Chess and
Checkers the search space is defined implicitly by the rules of the game and the initial
board position, of which we desire to know the optimal policy and the expected value
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Fig. 3.5 Recursion: Droste effect

(win, draw, or loss). For common two-person zero-sum perfect-information games
the Bellman equation simplifies greatly: γ = 1, and R is commonly chosen to be +1
for win, −1 for loss, and 0 for draw, and also for intermediate nodes. The expected
value therefore depends recursively on the rewards at leaf nodes. The probability of
transitioning from state s to s′ under perfect information in the optimal policy is 1.
In perfect-information game playing algorithms the Bellman equation reduces to a
simple backup function.

Dynamic Programming

Dynamic programming was introduced by Bellman in the 1950s. It recursively breaks
down problems into smaller subproblems that are then solved. Dynamic programming
can be used to solve problems whose structure follows the Bellman equation. Dynamic
programming works when the transition function P is known; it is a model-based
planning method (Sect. 3.3.4). The key idea of dynamic programming is to use
the value function to guide the search for good policies [659]. We will discuss two
dynamic programming algorithms for solving reinforcement learning problems in
Sect. 3.5. In the next chapter, we will see more methods.
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def value_iteration():
initialize(V)
while not convergence(V):

for s in range(S):
for a in range(A):

Q[s,a] =
∑

s′∈S Pa(s, s
′)(Ra(s, s

′) + γV [s′])
V[s] = max_a(Q[s,a])

return V

Listing 3.1 Value iteration pseudocode (based on [8])

Two dynamic programming methods to iteratively traverse the state space are
value iteration and policy iteration.

Value Iteration

Value iteration methods directly improve the estimate of the optimal value function by
traversing the state space. Pseudocode for a basic version of value iteration is shown
in Listing 3.1. Value iteration converges to the optimal value function by iteratively
improving the estimate of V(s). The value function V(s) is first initialized to random
values. Value iteration repeatedly updates Q(s, a) and V(s) values until convergence
occurs (when values of V(s) stop changing much). Value iteration has been proven to
converge to the optimal values, but, as we can see in the pseudocode in Listing 3.1, it
does so quite inefficiently by essentially enumerating the entire state space.

Value iteration methods help find the best action for each state by following the
action that yields the optimal value function. This can work with a finite set of actions.
However, convergence in large spaces is slow [8, 659].

Policy Iteration

Value iteration algorithms keep improving the value function at each iteration until the
value function converges. However, most agents only care about finding the optimal
control policy (the best move) and not its value.

In games with a low branching factor, such as Checkers, there are only few actions
in a state. When there are also many different state values (which is the case in
most game playing programs) then the optimal policy may converge before the
value function. Directly updating the policy function will then converge faster than
taking the route via the value function. Policy iteration methods directly improve the
policy function. This approach is also useful when the action space is continuous (or
stochastic).

Both value iteration and policy iteration can be used when there is prior knowledge
about the model/environment. For both methods the MDP 5-tuple, especially the
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transition and reward function, must be known. When that is not the case, then other
methods are needed, such as Q-learning (to be discussed shortly).

Approximate Solutions

An important choice in implementing reinforcement learning algorithms is which
storage concept to use for the states, the actions, and the policy and value functions.
For small state spaces, all states can be stored individually in a table, array, or tree.
Small state spaces can be enumerated, and solutions can be exact.

Many reinforcement learning problems have state spaces that are arbitrarily large.
For example, the number of possible images of even a small black and white picture
is very large (the number of gray scale values raised to the power of the number
of pixels). The number of instances encountered during training will be small in
relation to the possible number of instances, and the trained policy should work well
on unseen problems. The number of possible states is too large to be stored, so some
form of generalization has to be used. Where exact methods store the function values
in a table with an entry for each state/action pair, for large state spaces function
approximation must be used. Artificial neural networks are popular methods.

Neural networks, or function approximators, are parameterized by a vector of
weights θ. The length of the vector is much less than the number of possible states.
States are represented by the weight vector. This has two advantages. First, the
examples from the very large number of possible states can be stored efficiently
in limited memory. Second, the example states are generalized according to some
method, recording the generalization into the weight parameters, allowing unseen
states to be recognized as belonging to some (hopefully appropriate) value or class.

In classification or other statistical tasks where unseen states must be classified or
evaluated, generalization is a goal by itself. Through generalization the “essence” of
the states is to be found. Generalization transforms a high-dimensional space to a
lower-dimensional space.

In Chap. 6 approximation methods will be introduced. Deep Q-networks (DQN)
will be discussed. DQN consists of a deep convolutional network for function
approximation, which is trained by reinforcement learning using Q-learning (see
page 58).

3.3.2 Exploration and Exploitation

Now that we know how to calculate the expected value of a state, we should look at
how to do so efficiently. For each action to be taken in a state, let us maintain a table
of numbers that represent the probability of winning for that action. As actions are
performed, the value in the table begins to reflect more reliably the expectation of
winning when taking that action.
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Now the question is: Which action should we take? One approach is to always
choose the action that has accrued the highest winning probability so far. This
approach is called a greedy approach. Another approach is to sometimes try another
action, temporarily ignoring the one with currently the highest winning probability,
exploring a new successor state, in the hope of finding an untried action with an even
higher overall winning probability.

The ε-greedy approach is to mostly try the best (greedy) action except to explore
an ε fraction of times a randomly selected other action. If ε = 0.1 then 90% of the
times the best action is taken, and 10% of the times a random other action. The
ε-greedy policy is an example of a soft policy: a policy with a finite probability of
selecting any of the possible actions.

This choice between greedily exploiting known information and exploring unknown
nodes to gain new information is called the exploration/exploitation trade-off. It is a
central concept in reinforcement learning.

Let us look at the exploration/exploitation trade-off in more intuitive and concrete
terms. Assume you have moved into a new neighborhood, which you do not yet know,
and you want to find the route to the supermarket. After some trial and error, you
have found a route, which you meticulously memorize. The greedy approach is then,
when you need to go to the supermarket again, to always follow this same route. You
exploit the knowledge that you have to the fullest, without ever investing the cost of
trying out a possible new route (exploring). Trying out a different route will take
some extra time and effort, but might pay off in finding a shorter route, which you
can then use many times for as long as you live in the neighborhood.

Clearly, always exploiting might be the safe way, but it is likely to not find an
optimal solution. How much to explore, and in what situations, is a fundamental
topic in reinforcement learning that has been studied in depth in the optimization
literature [299, 761] and inmulti-armed bandit problems [22, 394] (see also Chapter 5).

Smart use of exploitation and exploration is at the basis of the breakthroughs in Go.
In Chap. 5 we will discuss in depth the Monte Carlo Tree Search algorithm, MCTS,
whose selection rule UCT uses bandit theory to find a good exploration/exploitation
trade-off.

Temporal Difference

We have now discussed how to calculate the values of states when the policy function
is known and how to then find the optimal policy for states. We are building up our
tools to construct solution methods with which we can estimate the optimal policy
and value of a game state, allowing us to construct a game playing program that can
compute the best moves so that it can play a full game.

The Bellman equation calculates the value of states when a model P of the problem
is known. For model-free problems (Sect. 3.3.4) we need another solution method,
that can work by sampling.

Perhaps the best known solution method for estimating policy functions is temporal
difference learning [658]. This method is the basis of TD-Gammon [676]. The
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temporal difference in the name refers to the difference that it calculates between two
time steps, which it uses to calculate the value of the new time step.

The Bellman equation describes how V(s) can be calculated using dynamic
programming when the transition function P is known. It is a model-based planning
method. TD is different: under the policy π it samples from the environment to
adjust the current V(s) estimate using a learning rate. TD does not need to know the
transition function P and finds V(s) by sampling.

TD works by updating the current estimate of the state V(s) with an error value
based on the estimate of the next state. It is, therefore, a bootstrapping method, where
the update takes into account previous estimates:

V(s) ← V(s) + α[R′ + γV(s′) − V(s)].

Here s is the current state, s′ the new state, and R′ the reward of the new state. Note
the introduction of α, the learning rate. The γ parameter is the discount rate. The last
term −V(s) subtracts the value of the current state, so that TD computes the temporal
difference. Another way towrite the update rule isV(s) ← α[R′+γV(s′)]+(1−α)V(s)
as the difference between the new TD target and the old value. Note the absence of P
in the formula; TD is model-free.

Now, in order to arrive at a full reinforcement learning algorithm, we also need
a control method. TD gives us a learning rule for value updates, the error part of
trial and error. For a full reinforcement learning algorithm we also need a control
method, which tells us which nodes to choose for expansion, the trial part of trial and
error. Two such control methods are SARSA,2 yielding on-policy TD control, and
Q-learning, yielding off-policy TD control. SARSA and Q-learning are discussed
more fully in Sect. 3.5.

3.3.3 Actor-Critic

SARSA and Q-learning learn the value function of a state in order to find the optimal
policy. Value function methods work well when there is a finite set of actions. They
work less well in continuous or stochastic environments, such as robotics, where arm
movements or distance to drive are continuous choices.

In addition to finding the value function, to then find the best action, it is
also possible to try to compute the optimal policy directly, without first going
through the intermediate step of calculating values. Williams [759] introduced the
REINFORCE policy gradient algorithm. Direct policy evaluation can bemore efficient
in continuous or stochastic environments and when there are many different reward
values. Converging to the value may then take a long time.

A first challenge for policy gradient algorithms is how to find reliable information
on which action is best. Of course there is the reward function, which is known in

2 The name of the SARSA algorithm is a play on the MDP symbols as they occur in the action value
update formula: s, a, r, s, a.
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Fig. 3.6 Value and policy in Actor-Critic

end states. However, it is not known in intermediate states, and the more intermediate
steps have to be taken between an action and a reward, the more unreliable this
end signal is. Statistics can be called to the rescue, by taking many samples, which
is computationally problematic. In large problems, policy gradient methods may
suffer from low sample efficiency, since many samples are needed for reliable reward
information [659, 262].

At this point you may ask if it would be possible to combine the value-based
approach and the policy-based approach. After all, value functions can backup reward
functions reliably. If reward values are unreliable in large problems, might value
function methods be used to provide a more reliable signal for the value of the
actions? Indeed this is possible, and this approach is called Actor-Critic [657, 660].
The actor is the policy method; the critic is the value method. Each uses its own
separate method, typically a neural network. The critic network calculates the action
value function for each state, and the actor the policy function for each state. In
Actor-Critic, value functions (not unlike SARSA or Q-learning) are used to calculate
more reliable values of states or actions more efficiently than sampling many rewards,
in large problems.

Actor-Critic interleaves a policy function (actor) and a value function (critic).
These algorithms have been studied widely [377, 364, 659, 706, 378, 491]. This
combination of the value/policy idea is shown in Fig. 3.6.

SARSA andQ-learning do not have an explicit policy representation; they are critic-
only algorithms. Actor-Critic alternates policy evaluation with policy improvement
steps. Actor-Critic methods combine the best of both worlds: better convergence than
value methods, and better policies due to value learning and reduced variance. Actor-
Critic methods are quite popular. Two well-known methods, asynchronous advantage
Actor-Critic (A3C) and proximal policy optimiation (PPO), will be introduced in
Sect. 6.4.7, where we will discuss advanced actor-critic methods in the context of
function approximation—A3C is an improvement over the popular Deep Q-Network
(DQN) algorithm.



56 3 Reinforcement Learning

Value/Policy

ExperienceModel

acting

model learning

planning

direct RL

Fig. 3.7 Model-free and model-based methods [659]

3.3.4 Model-Free and Model-Based Methods

A basic distinction in reinforcement learning is between model-free and model-based
methods (such as temporal difference and value iteration) [345]. Model-free methods
learn a value and policy function directly from the observations (Fig. 3.7, the inner
loop).Model-basedmethods, on the other hand, first need an intermediate model of the
transition probabilities. This model can be given by the rules of the problem, or it can
be learned. To use the model then another reinforcement learning algorithm is used to
find the value and policy function, often an exact planning algorithm [371, 743, 524].
Model-based methods follow the outer loop in the figure. Model-free methods are
also known as direct methods.

Some reinforcement learning methods are model-based, such as dynamic pro-
gramming, and others are model-free, such as TD. Model-based methods can be used
when a model of the environment exists, when transition and reward functions are
known. This can be a statistical model, a simulator, or the rules for the dynamics of
the environment, such as we have in games.

When a model is available, it can be used to do look-ahead planning, as we shall
do in the next chapters on planning. When no model is available, methods must be
used to first learn a model of the environment, often using sampling. The chapters on
learning discuss deep reinforcement learning methods that start with no model and
create a model. Finally, combinations of model-based and model-free methods, of
planning and training, are discussed. AlphaGo is perhaps the best known example
of this combined approach [623]. Section 7.3.5 further discusses model-free and
model-based reinforcement learning.

Let us now look at another central concept in reinforcement learning: that of
on-policy and off-policy learning methods for model-free learning.

3.3.5 On-Policy Learning and Off-Policy Learning

We will now discuss two model-free solution methods, methods that work when the
transition function of the MDP is not known.
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Reinforcement learning is concerned with learning a policy from actions and
rewards. The agent selects an action, and learns from the reward that it gets back
from the environment; or, in terms of the Tic Tac Toe tree of Fig. 3.3, the value of the
root is learned by downward selecting an action, and by backing up the value that
is returned. Note that the policy determines the downward action selection, and the
subsequent learning takes place in the backup of the reward value.

Normally, the learning takes place by backing up the value of the action that
was selected by the policy: the learning is on-policy. It turns out that there is an
alternative. If the learning takes place by backing up values of another action, not the
one selected by the policy, than this is known as off-policy learning. This makes sense
when the policy explores by selecting a non-optimal action (i.e., it does not perform
greedy exploitation). On-policy learning would then have to backup the value of
the non-optimal exploration action (since otherwise it would not learn on-policy).
Off-policy learning, however, is free to backup the value of the best action instead,
and not the inferior one selected by the exploration policy. Thus, in the case of
exploration, off-policy learning can be more efficient, by not stubbornly backing up
the value of the action selected by the policy, but of the best action instead. (In the
case of an exploiting step by the policy, on-policy learning and off-policy learning
are the same.)

All learning methods face a trade-off: they try to learn the best target action from
current behavior that is known so far (exploitation), and they choose new (most
likely non-optimal) behavior in order to explore and be able to find actions that
are better than the current best actions. Thus, in principle, there are two policies:
first, the behavior policy that is used for actual action selection behavior (sometimes
exploring), and second, the target policy that is learned by backing up values. The
first policy performs downward selection to expand states, the second upward value
propagation to update the target policy.

Recall that the Q(s, a) function computes the expected value of (downward)
selecting action a in state s. On-policy learning and off-policy learning update the
Q(s, a) function by backing up values (upward) from their successor actions (which
can be implemented as an array, or lookup table). When the algorithms sample the
state/action pairs often enough, the algorithms are proven to converge to the correct
values.

On-Policy

In on-policy learning a single policy function is used for (downward) action selection
and for (upward) value backup towards the learning target. On-policy learning updates
values directly on this single policy. The same policy array is used for exploration
behavior and for the incumbent optimal target policy.

The update formula is

Q(st, at ) ← Q(st, at ) + α[rt+1 + γQ(st+1, at+1) −Q(st, at )].



58 3 Reinforcement Learning

On-policy learning selects an action, evaluates it, and moves on to better actions. A
well-known on-policy approach is SARSA. On-policy learning starts with a starting
policy, samples the state space with this policy, and improves the policy by backing up
values of the selected actions. Note that the term Q(st+1, at+1) can also be written as
Q(st+1, π(st+1)), highlighting the difference with off-policy learning. Since SARSA is
on-policy, it updates its Q-values using the Q-value of the next state s and the current
policy’s action. In a short while we will look at SARSA example code, and compare
its behavior with off-policy learning.

The primary advantage of on-policy learning is that it directly optimizes the target
of interest, and achieves stable learning. The biggest drawback is sample inefficiency,
since policies are estimated from the full rollouts. This may further cause large
variance—if it goes in the wrong direction, there is no stabilizing other information
to get it out.3

Off-Policy

Off-policy learning is more complicated. It uses two separate policy arrays: one for
exploratory downward selection behavior, and one to update as the current target
backup policy. Learning (backing up) is from data off the downward selection policy,
and the whole method is therefore called off-policy learning.

The update formula is

Q(st, at ) ← Q(st, at ) + α[rt+1 + γmax
a

Q(st+1, a) −Q(st, at )].

The difference from on-policy learning is that the γQ(st+1, at+1) term has been
replaced by γmaxa Q(st+1, a). The learning is from backup values of the best, not
the actual, action.

The reason that Q-learning is off-policy is that it updates its Q-values using the
Q-value of the next state s and the greedy action (not necessarily the selection policy’s
action—it is learning off the selection policy).

In this sense, off-policy learning collects all available information and uses
it simultaneously to construct the best target policy. The best known off-policy
algorithm is Q-learning [748]. It gathers information from (partially) exploring
moves, it evaluates states as if a greedy policy was used, and it slowly reduces random
exploration.

Differentiating On-Policy and Off-Policy Learning

To understand the difference between on-policy and off-policy learning, let us look at
the update formulas. A way to differentiate on-policy and off-policy learning is to
look how the backup formula depends on the next action at+1, which can be written

3 See [475] for a discussion on variance reduction. To avoid large bias, SARSA can use on-policy
data, or updates can be slowed.
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as π(st+1). Q-learning is off-policy learning since it does not depend on the next
action at+1, i.e., it does not depend on the policy π. No matter what at+1 is, the
maxa Q(st+1, a) part does not depend on at+1. Q(st, at ) is updated regardless of the
future policy π starting from st+1. On the other hand, SARSA is on-policy learning
because the term Q(st+1, at+1) in Q(st, at ) depends on the next actual action at+1, the
one taken by following the policy π(st+1). The backpropagation learning in SARSA
depends on the behavior policy.

To recapitulate, off-policy approaches can learn the value of the optimal target
policy regardless of the selection policy, while in on-policy methods the agent learns
the value of the policy whose actions it is following.

Off-policy learning is especially important when there is a database of previously
stored trajectories (i.e., data in the form of tuples (s, a, r ′, s′)). This data has been
collected by previously applying some policy, and cannot be changed. This is a
common case, for example for medical problems. To use this kind of data, only
off-policy methods can be used.

Off-policy methods are more flexible in the type of problems they can be used for.
Their theoretical properties, however, are different. If we compare Q-learning with
SARSA, the difference is in the max operator used in the Q-learning update rule. The
max operator is nonlinear, which can make it more difficult to combine the algorithm
with function approximators. With function approximators (neural nets), on-policy
methods are usually more stable.

Off-policy learning can be problematic since the Q-values tend to overestimate
(because of the max operator). Off-policy learning that strays too far off the selection
policy may get lost (or rather, become inefficient). In Chap. 6 we will cover learning
stability of off-policy methods in more depth, including methods that limit the amount
of off-policy learning.

We will now look at an underlying topic that permeates all of machine learning
and that has been mentioned a few times already: sample efficiency.

3.3.6 Sample Efficiency

An algorithm is sample efficient if it gets the most out of every sample and efficiently
learns a function with only few samples of the environment.

Model-free methods often require many environment samples to converge on the
policy. A problem of model-free methods is that once a sample has been used, it is
thrown away, and a new sample is sought.

Model-based algorithms use the samples of the environment more efficiently. They
use the samples to build a transition model of the environment, which is then used
internally to find the policy. Model-based methods are often more sample efficient,
using the model to converge quickly to an optimum with few samples, provided that
the predictions from the transition model are good [743, 465, 524]. Constructing
accurate transitions models can be difficult in practice, and most good results so far
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have been achieved with model-free methods (unless a transition model is provided
by the application domain).

SARSA and Q-learning, two model-free methods, are effectively performing
random search in the environment, not using information from previous samples to
guide the search. A drawback of on-policy learning is that it samples from its own
target policy, which may lead to myopia, or tunnel vision, sampling a local part of the
search space. When an algorithm learns only a part of the search space, learning can
be unstable.

In off-policy learning old samples may be used, not related to the target policy.
This may prevent myopia, but on the other hand not using all samples of the behavior
policy may also lead to low sample efficiency.

Several methods have been proposed to improve sample efficiency of model-free
methods. One such method is importance sampling [247, 474, 747], which samples
from a distribution that overweights the important region. In this way the target is
sampled heavily (as in on-policy) but the rest is not neglected completely (as in
off-policy, preventing myopia).

3.4 Conclusion

We have now discussed in depth many elements of the reinforcement learning
paradigm, one of the major paradigms of machine learning. To conclude this chapter,
let us discuss some differences from supervised learning.

Supervised Learning

Machine learning is the part of artificial intelligence that studies mechanical learning
principles. Machine learning algorithms are algorithms to learn patterns from
data [81, 572].

In its most basic classification form, machine learning works by looking at pairs
of examples and labels (E, L). The task of the learning algorithm is then to associate
the correct label with the correct class of examples, so that when it is shown a
new example, it classifies it with the correct label. A well-known machine learning
problem is to learn the classification of a large sequence of pictures (examples E) as
either dogs or cats (labels L). Such a problem is an example of supervised learning
where the labels play the role of supervisor in the learning process. If not all examples
have labels, then supervised learning is only possible for the examples with labels.
Supervised learning needs a database of (example, label) pairs. It will be treated in
depth in Chap. 6.
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Interaction

Note that trial and error (or interaction) is an essential aspect of learning by
reinforcement. Like supervised learning, reinforcement learning is a kind of machine
learning. But unlike supervised learning, in reinforcement learning there is no
preexisting database with labeled states. All states to learn from will be generated
during the learning process by interaction with the environment. By smartly choosing
the agent’s actions, the sequence of states may be generated to learn efficiently,
without the need for a large database of examples.

Furthermore, in supervised learning we can never learn more than the examples
in the supervisory database provide; the teacher provides an upper limit to what the
pupil can learn. In reinforcement learning there is no teacher holding us back; only
the world to explore.

Credit Assignment

Now, in supervised learning all examples are labeled. However, in reinforcement
learning some actions may not return a reward, but future rewards must be propagated
to previous states. In other words, state spaces in reinforcement learning may have a
sparse reward structure. This is the case in most games, where only terminal states
have a reward {−1, 0,+1}, and for all other states the reward value must be propagated
backward from the terminal states. This is known as the credit assignment problem.
Long-range credit assignment is a challenging problem. This too will be discussed in
Chap. 6.

Dependency

There are more differences between supervised learning and reinforcement learning.
Supervised learning has a database from which it draws examples to learn from;
reinforcement learning generates its own learning examples through interaction
with the environment. In reinforcement learning there is therefore a dependency
between subsequent samples, since the learning algorithm influences its own learning
examples. This may cause learning anomalies, cycles, and local maxima. Special
care must be taken in reinforcement learning to not get stuck in local maxima, as we
will see in Chap. 6.

MDP Tuple and Reinforcement Learning

We are approaching the end of this chapter. Let us look at how the principles that
were covered apply to the different chapters further on in this book.

Reinforcement learning can formally be described by the 5-tuple of Markov
decision processes. The remainder of this book will discuss many different rein-
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Chapter Name MDP-tuple Reinforcement learning
Chap. 4 alpha-beta (S, A, 1, R, 1) policy, backup
Chap. 5 MCTS (S, A, P, R, 1) pol, b/u, exploration/exploitation
Chap. 6 DQN (S, A, P, R, γ) pol, b/u, expl/expl, discount, off-policy
Chap. 7 self-play (S, A, P, R, γ) pol, b/u, expl/expl, discount, off-pol, self-play

Table 3.1 MDP tuple and reinforcement learning in the chapters

forcement learning methods in depth, from heuristic planning, adaptive sampling, to
generalization (as we saw in Table 1.1). These methods will start simple, with some
of the MDP tuples being constant at 1, in the early chapters. As the methods become
more elaborate, the full tuple is used, and more reinforcement learning elements apply.
Table 3.1 gives an overview of how the full generality of reinforcement learning
develops throughout the chapters of this book, as the methods progress from simple
search to advanced generalization methods with adaptive self-learning.

3.5 Practice

It is time to try the insights that we have discussed in practice with programming
exercises. First are some questions to check your understanding of this chapter and
the previous chapter. Each question is a closed question where a simple, one sentence
answer is possible.

Questions

1. Name three important elements of intelligence.
2. What element of intelligence does computer game playing focus on?
3. Describe the symbolic approach to AI. Describe the connectionist approach to AI.
4. Who wrote the first Chess program?
5. When did Deep Blue beat Kasparov, in 1996 in Philadelphia or in 1997 in New

York?
6. Describe the difference between strategy and tactics in a board game. Give an

example game of each.
7. Describe the reinforcement learning model.
8. Give the 5-tuple of a Markov decision process.
9. What is a value function?

10. What is a policy function?
11. Describe in words the intuition of Bellman’s equation.
12. Describe the exploration/exploitation dilemma. Can you give one simple algorithm

for trading off exploration and exploitation?
13. Describe in words the intuition behind temporal difference learning.
14. Why is it sometimes necessary to approximate a solution?
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15. What is the difference between on-policy learning and off-policy learning? Can
you give one example algorithm for each?

16. Why is sample efficiency important?

3.5.1 Algorithms

Next, we will look at on-policy and off-policy algorithms and their behavior. How
do on-policy learning and off-policy learning learn optimal policies for the Taxi
environment? We will use SARSA as the on-policy learner, and Q-learning as the
off-policy learner.

As we saw in the previous chapter, benchmarks are of great importance for progress
in AI. To support AI progress, the organization OpenAI has provided an easy-to-use
suite of benchmarks for scientists and students to use. It is called Gym, and has a
Python interface. One of the classic examples in reinforcement learning is the Taxi
problem, introduced by Dietterich [176]. We will use the Taxi example from OpenAI
Gym.

Python is a programming language that is popular in artificial intelligence. It
supports quick development, rich and flexible data structures, and many third-party
packages have been written, ranging from numerical simulation, graphics, to machine
learning. If Python is not present on your computer, please go to Appendix E to learn
more about Python and how to install it on your computer.

Now please install Gym. Go to the webpage and the GitHub page of OpenAI Gym
and have a look around to see what is there. OpenAI Gym can be found here,4 and the
Gym GitHub page can be found here.5 You will see different sets of environments,
from easy to advanced. There are the classics, such as Cartpole and Mountain Car.
There are also small text environments. Taxi is there, and there is the Atari Learning
Environment [53], which was used in the paper that introduced DQN [461]. MuJoCo
is also available, an environment for experimentation with simulated robotics. (Our
Taxi environment can be found in gym/envs/toy_text, in case you would like to
have a look at how the environment is written.) Installing Gym on your computer is
easy. Type pip install gym (or pip3 install gym) at a command prompt. You
should also install numpy and matplotlib. Go to Spinning Up to get started with Gym.

The Taxi example (Fig. 3.8) is an environment where taxis move up, down, left, and
right, and can pickup and drop off passengers. The Gym documentation describes the
Taxi world as follows. There are four designated locations in the grid world indicated
by R(ed), B(lue), G(reen), and Y(ellow). When the episode starts, the taxi starts off at
a random square and the passenger is at a random location. The taxi drives to the
passenger’s location, picks up the passenger, drives to the passenger’s destination
(another one of the four specified locations), and then drops off the passenger. Once
the passenger is dropped off, the episode ends.

4 https://gym.openai.com

5 https://github.com/openai/gym

https://gym.openai.com
https://github.com/openai/gym
https://gym.openai.com
https://github.com/openai/gym
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Fig. 3.8 Taxi world [351]

There are 500 discrete states, since there are 25 taxi positions, five possible
locations of the passenger (including the case when the passenger is in the taxi), and
4 destination locations (25 × 5 × 4).

The environment returns a new result tuple at each step. There are six discrete
deterministic actions for the Taxi driver:

0: Move south
1: Move north
2: Move east
3: Move west
4: Pick up passenger
5: Drop off passenger

There is a reward of −1 for each action and an additional reward of +20 for
delivering the passenger. There is a reward of −10 for executing actions pickup and
dropoff illegally. Please refer to Listing 3.3.

OpenAI not only provides environments, but also the other half of reinforcement
learning, the agent algorithms. It provides baseline algorithms for learning policies of
agent behavior. Code of all well-known reinforcement learning algorithms is present
here6 and here.7

SARSA

SARSA is the on-policy learning algorithm that we will use first. Its name comes
from the tuple (s, a, r ′, s′, a′) that determines the next value of the Q(s, a)-function.
We recall the on-policy update formula:

6 https://github.com/openai/baselines

7 https://stable-baselines.readthedocs.io/en/master/

https://github.com/openai/baselines
https://stable-baselines.readthedocs.io/en/master/
https://github.com/openai/baselines
https://stable-baselines.readthedocs.io/en/master/


3.5 Practice 65

# Q learning for OpenAI Gym Taxi environment
import gym
import numpy as np
import random
#Environment Setup
env = gym.make("Taxi-v2")
env.reset()
env.render()
# Q[state,action] table implementation
Q = np.zeros([env.observation_space.n, env.action_space.n])
gamma = 0.7 # discount factor
alpha = 0.2 # learning rate
epsilon = 0.1 # epsilon greedy
for episode in range(1000):

done = False
total_reward = 0
current_state = env.reset()
if random.uniform(0, 1) < epsilon:

current_action = env.action_space.sample() # Explore
state space

else:
current_action = np.argmax(Q[current_state]) # Exploit

learned values
while not done:

next_state , reward, done, info = env.step(current_action)
# invoke Gym

if random.uniform(0, 1) < epsilon:
next_action = env.action_space.sample() # Explore

state space
else:

next_action = np.argmax(Q[next_state]) # Exploit
learned values

sarsa_value = Q[next_state ,next_action]
old_value = Q[current_state ,current_action]

new_value = old_value + alpha * (reward + gamma *
sarsa_value - old_value)

Q[current_state ,current_action] = new_value
total_reward += reward
current_state = next_state
current_action = next_action

if episode % 100 == 0:
print("Episode {} Total Reward: {}".format(episode,

total_reward))

Listing 3.2 SARSA Taxi example, after [351]

Q(st, at ) ← Q(st, at ) + α[rt+1 + γQ(st+1, at+1) −Q(st, at )].

Listing 3.2 shows Python code for improving a policy in the Taxi world with the
SARSA algorithm, adapted from [351]. The best policy found by SARSA can now
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total_epochs , total_penalties = 0, 0
ep = 100
for _ in range(ep):

state = env.reset()
epochs, penalties , reward = 0, 0, 0
done = False
while not done:

action = np.argmax(Q[state])
state, reward, done, info = env.step(action)
if reward == -10:

penalties += 1
epochs += 1

total_penalties += penalties
total_epochs += epochs

print(f"Results after {ep} episodes:")
print(f"Average timesteps per episode: {total_epochs / ep}")
print(f"Average penalties per episode: {total_penalties / ep}")

Listing 3.3 Evaluate the optimal SARSA Taxi result, after [351]

be used by following the best action values in the Q-table. When we evaluate the
performance of our SARSA agent, we do not need to explore any more, since the best
action is right there, in the Q-table.

Listing 3.3 shows the simple code to evaluate the SARSA Taxi policy. The number
of illegal pickups/dropoffs is shown as penalty.

Q-Learning

Q-learning performs off-policy learning. We recall its update formula:

Q(st, at ) ← Q(st, at ) + α[rt+1 + γmax
a

Q(st+1, a) −Q(st, at )].

Listing 3.4 shows Python code for finding a policy in the Taxi world with the
Q-learning algorithm.

Again, Listing 3.3 can be used to evaluate the Q-learning Taxi policy. On average,
Q-learning tends to find better policies than SARSA [659].

Exercises

1. Experiment with Taxi world. Download Gym, and perform the SARSA and
Q-learning steps described before. Running ready-made SARSA and Q-learning
code is nice, but you get a better idea of how the Taxi world works by tracing a
few steps of the simulator by yourself. Do so and add code to allow you to print
(render) each step, step by step. Watch the taxi move in its world.
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# Q learning for OpenAI Gym Taxi environment
import gym
import numpy as np
import random
#Environment Setup
env = gym.make("Taxi-v2")
env.reset()
env.render()
# Q[state,action] table implementation
Q = np.zeros([env.observation_space.n, env.action_space.n])
gamma = 0.7 # discount factor
alpha = 0.2 # learning rate
epsilon = 0.1 # epsilon greedy
for episode in range(1000):

done = False
total_reward = 0
state = env.reset()
while not done:

if random.uniform(0, 1) < epsilon:
action = env.action_space.sample() # Explore state

space
else:

action = np.argmax(Q[state]) # Exploit learned values
next_state , reward, done, info = env.step(action) #

invoke Gym
next_max = np.max(Q[next_state])
old_value = Q[state,action]

new_value = old_value + alpha * (reward + gamma *
next_max - old_value)

Q[state,action] = new_value
total_reward += reward
state = next_state

if episode % 100 == 0:
print("Episode {} Total Reward: {}".format(episode,

total_reward))

Listing 3.4 Q-learning Taxi example, after [351]

2. In Taxi world, which is better: SARSA or Q-learning? How do you know? On
which criteria do you measure algorithm quality?

3. The environment is initialized randomly each time. This makes it hard to compare
the two algorithms if each run is different, and it complicates debugging. Make a
deterministic version of the algorithm comparison, where each starts at the same
configuration.

4. Howmany runs do you need to do to get statistically significant results for p < 0.05
(if necessary, see a basic text on statistics or experiment design such as [37])?

5. Experiment with different values for ε , α, and γ. Which are better? Experiment
with decaying values for ε , α, and γ.
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6. Go to Gym, and look for the Mountain Car example. Compare SARSA and
Q-learning. Which learns faster, and what about the solution quality?

Summary

This has been a challenging chapter, let us summmarize what we have seen. We have
introduced many abstract formal concepts from reinforcement learning, to lay the
ground work for understanding the algorithms in the following chapters. At the end
you have been invited to experiment with the algorithms.

We started with the introduction of the concepts of agent and environment, and
introduced states, actions, and rewards, which are the basis of the agent-environment
interaction. In reinforcement learning the agent learns through interaction with an
environment, by trial and error. Markov decision processes are a powerful and popular
formalism. In processes with the Markov property, the distribution of future states
depends solely on the current state, not on the states preceding it, i.e., there is no
memory, which simplifies the mathematical analysis of Markov processes.

Two related central elements in reinforcement learning are the value of a state and
the policy: the list of actions to be taken when in a state, defining a future behavior
(strategy). Policies can be implemented as arrays, functions, mappings, or lists, and
all these terms are used in the literature. The Bellman equation is a central concept in
reinforcement learning. It recursively defines the value of a state based on the reward
of its successor states. Bellman introduced the concept of dynamic programming for
model-based reinforcement learning (planning). Other important algorithms that we
covered are Temporal Difference learning, SARSA, and Q-learning for model-free
reinforcement learning.

Reinforcement learning algorithms typically gradually build up information about
the best actions to be taken in a state. Greedy algorithms always exploit the available
information by following the actionwith the highest expected reward. Other algorithms
may explore new or under explored actions, with a larger uncertainty, to possibly find
better answers. A well-known simplistic approach is the ε-greedy approach, which
chooses to exploit in 1 − ε occurrences and chooses to explore in ε times.

On-policy learning backs up state values for the current downward behavior
selection policy, off-policy learning backs up state reward values for the best policy
independent of the downward behavior policy it follows. Q-learning is a model-free
off-policy method.

We discussed exact and approximate methods. Exact methods are suitable for
small state spaces; approximate methods are used when the state space is very large.
In fact, the state space may be so large that almost all of the states that we see at
test time are new, and cannot have been trained on. Approximation methods must be
able to generalize well. Lookup tables are well-known exact data structures; neural
networks are well-known approximation data structures.
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Historical and Bibliographical Notes

The literature on reinforcement learning and games is rich and varied. This section
will provide more pointers to interesting works.

Game playing programs solve reinforcement learning problems. Reinforcement
learning is an old and large and rapidly expanding field. This chapter has only
introduced the bare minimum. Two excellent comprehensive treatments of the field
are the books by Sutton and Barto [659] and Bertsekas and Tsitsiklis [74]. Sutton
and Barto divide reinforcement learning into exact tabular methods and approximate
methods. This distinction maps nicely to Kahneman’s categories of thinking slow
and thinking fast, and Shannon and Turing’s search-eval architecture.

Q-learning was introduced by Watkins [748]. Kaelbling provides a widely cited
review of reinforcement learning [345]. Kaelbling has also contributed greatly to
robotics, planning, and hierarchical reinforcement learning (Sect. 7.3.5). She received
the 1997 IJCAI Computers and Thought award. For a review of reinforcement learning
in robotics see [371].

A popular lecture series on reinforcement learning is by David Silver here.8
Lecture notes of Sergey Levine’s course on deep reinforcement learning at Berkeley
are available here.9

8 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

9 http://rail.eecs.berkeley.edu/deeprlcourse/

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/




Chapter 4
Heuristic Planning

Combinatorial games have been used in AI to study reasoning and decision making
since the early days of AI. An important challenge in decision making is how to
search large state spaces efficiently. The methods in this book are organized around
four main paradigms (and chapters). The first paradigm that we study for decision
making is heuristic planning. It is a model-based paradigm. Heuristic planning uses
a human-inspired approach: it is believed that when playing a board game such as
Chess, most human players (1) try to look ahead a few moves in their mind, and then
(2) try to assess if they like the situation that they arrive at, and play the move they
liked best. Heuristic planning formalizes this concept, using a search function and a
heuristic evaluation function.

A heuristic is a domain-specific rule of thumb. As a rule of thumb, it works most
of the time, but not always. Being domain specific, a heuristic is not general; it only
works in certain games, often exploiting a game-specific feature. Scientists, who
strive for general methods, have a love-hate relationship with heuristics. They are
often too successful to ignore for a specific problem, but the domain specificity limits
their general applicability. Much of the efforts for generalization and feature discovery
that have been so successful in deep learning (see Chap. 6) are driven by the desire to
transcend domain-specific heuristics.

A first implementation of the look-ahead idea is the minimax algorithm. Minimax
has been highly successful, especially since many more or less general enhancements
have been developed over the years. We will cover some of these enhancements in
depth, such as alpha-beta, iterative deepening, and transposition tables.

Heuristic planning has been quite successful in tactical games, such as Chess,
Checkers, and Othello. Planning and heuristics are basic concepts of AI. Future
chapters will introduce different paradigms, but often elements of good old heuristic
planning will appear.
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Fig. 4.1 Search-Eval architecture in a tree

Core Problems

• How can we search a large state space efficiently?
• How can search effort be directed to promising areas of the state space?

Core Concepts

• Search function
• Heuristic evaluation function
• Critical tree, alpha-beta pruning, and move ordering

First we will discuss the basis of heuristic planning: the search-eval architecture. Then
we delve deeper into computing the size of the state space, and discuss basic search
and evaluation functions. We continue with an analysis to find the smallest part of the
state space must be traversed to find the optimal policy. Finally, we discuss search
enhancements, such as alpha-beta and transposition tables, and evaluation function
enhancements, such as end-game databases.

4.1 The Search-Eval Architecture

Let us start with the basic architecture of heuristic planning. Traditional Chess-
style game playing programs consist of a search function and an evaluation function.
Together these two functions form the search-eval architecture. The transition function
P is known in these games; all successor states can be generated in each board position
by following the game rules. Finding the optimal policy is done by generating all
successor states and performing a look-ahead search. Searching the state space
exhaustively is infeasible. The size of the state space of Chess is 1047, too large to
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search fully. Therefore, after the initial state has been searched to a certain search
depth, the search tree is chopped off. A heuristic evaluation function is called before
the end of the game at a fixed distance from the root. See Fig. 4.1 for an illustration,
where the root node is shown at the top.

The root represents the initial state s0, the board position for which we wish to
find the optimal policy, and the value. One level deeper we see two inner nodes, the
children of the root, and at depth 2 we see four leaf nodes, which are not searched
further, but where the evaluation function is called to determine a heuristic leaf
value. In the square nodes it is the player’s turn to move, and in the circle nodes the
opponent’s. Square nodes are max nodes; circle nodes are min nodes.

The search-eval architecture is a simple architecture. It consists of two functions:
a search function and an evaluation function. The search function traverses the states
one by one. It is an exact function. The evaluation function returns a heuristic value
of the state on which it is called. It is an approximate function.

Note that the introduction of a heuristic evaluation function changes the range of
values of the value function. The values for the full state space are determined by the
terminal states, whose value can be {−1, 0,+1} for loss, draw, and win (as viewed
by the first player). A heuristic returns more values, typically in a more fine-grained
range such as [−16,000,+16,000]. Positive values indicate an advantage for the first
player; negative values indicate a disadvantage. Section 4.1.3 provides more details
on evaluation functions.

Exact Search and Approximate Eval

Finding the optimal policy in a game of skill requires searching through the state space.
For small state spaces, methods that traverse the states one by one are suitable; they
give precise answers. They are unsuitable for large state spaces, since traversal would
take too long. The alternative, approximation methods, do not traverse the state space
at all. Instead, they approximate the value of a single state directly. Approximation
methods use combinations of features of the state. Examples of features are heuristics
such as material balance—which side has more and better pieces—or mobility
(Sect. 4.1.3). In later chapters we will encounter other approximation methods, such
as sampling in Chap. 5 and generalization by neural nets in Chap. 6.

Exact methods are precise but slow. Approximation methods are imprecise but
fast. The search-eval architecture provides a framework for the two approaches to
work together and achieve the best of both worlds: exact search methods traverse
a part of the state space, calling the approximation methods to evaluate states at
their search horizon. Together they find a good approximation of the value function
without taking too long.

The goal of exact and approximate methods is the same: to determine the value
function (and the optimal policy). Researchers have developed search and eval
functions that together are strong enough to achieve a level of play that beats the best
humans in Chess and Checkers. The first ideas for the search-eval architecture go
back to Shannon [618] and Turing [701].
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Fig. 4.2 Tic Tac Toe game tree (part)

One could ask the question why search has to be used, what is it that the heuristics
miss that search has to be used at all? The reason that the search function is necessary
is that the evaluation function misses game dynamics. An evaluation function provides
a static assessment of a state, but cannot foresee the effects of dynamics caused by
captures and other tactical play. Evaluation functions only work well in quiet (stable)
positions (see also quiescence search in Sect. 4.4.2). The exercises at the end of this
chapter will provide an opportunity to experiment with the search and the evaluation
function to develop an understanding of the search-eval interplay.

On the other hand, the evaluation function is necessary because the search space
is too large to search completely. Let us now look in more detail at the size of the
state space.

4.1.1 State Space

Searching for the best action of a state is hard because the state space of possible
successors (and successors of successors of . . .) is so large. Let us try to see how large
it is. An often used measure to bound the size of the state space is to calculate how
many legal states would be traversed if all successors are evaluated. In general, finding
the exact state space size of games is a surprisingly challenging problem that has
generated many interesting research papers [618, 589, 86, 6, 225, 330, 308, 326, 698].

For small games, such as Tic Tac Toe, the state space is small enough to enumerate
with a computer. See Fig. 4.2 for an impression of a depth-2 tree of how the possible
states are enumerated. To compute the size of the Tic Tac Toe state space, we note
that there are 9 squares on the board that can be either empty, cross, or circle. Thus
there are 3 × 3 × . . . × 3 = 39 = 19,683 possible board configurations. However,
this is an overestimation of the reachable state space, since it contains unreachable
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and illegal positions. When we remove illegal positions we come to 5, 478 states.
When we remove symmetric positions (rotations and reflections) there are only 765
positions left [585].

Beyond Tic Tac Toe, for more challenging games such as Chess or Go, calculating
the precise number of legal and reachable game positions is harder. For Chess the size
of the state space is often approximated as 1047, and for Go on the standard 19 × 19
board this number is 10170 [6, 734, 698].1

Note that the state space size is different from the game tree size. The former is
the game graph; the latter is the game tree. The same position from the graph can
occur in many different lines of play that constitute the tree. These shared positions
are called transpositions. The difference between the game graph and the game
tree is large [618, 6, 527, 527]. For Tic Tac Toe an upper bound for the former is
39 = 19,683 (pieces on squares), while for the latter it is 9! = 362,880 (different full
game sequences of moves).

An essential element of Chess and Checkers programs is the transposition table, a
cache of positions, preventing the generation of states that have already been searched
before. In Sect. 4.3.3 we will go deeper into transposition tables and their advantages.

Code

Listing 4.1 gives an example in Python code of a very small tree, with one max
node (the root), three min nodes, and nine leaves. This code is meant to be easy
to understand; clearly, more efficient ways of coding a tree are possible. In a short
while we will provide an algorithm to compute the value of the tree by looking at the
leaf values, and later on by looking at the material (pieces). This tree is shown in
Fig. 4.4. The values at the leaves (6, 1, 3, 3, . . .) stand for the heuristic value of the
leaves, where 6 is better than 3. The values themselves have no special meaning; they
were chosen for explanatory purposes. Again, squares are max nodes, and circles are
min nodes.

4.1.2 Search

How can we determine if a position is won, lost, or drawn, and how can we find the
best move that leads to this outcome? In a two-player zero-sum game players are
always assumed to choose moves that lead to the best successor positions. Let us
assume that all values of states in the tree are viewed from the first player. If node n
represents the position of which we wish to determine the value, then the value of
node n is the maximum of the value of its children Cn. The value of these child nodes

1 John Tromp published in 2016 that the exact number of legal Go states is 208168199 381979984
69947863 33448627 7028652 24538845 3054842 56394568 209274196 127380153 78525648
45169851 9643907 25991601 5628128 54608988 831442712 971531931 75577366 20397247
064840935. Tromp used advanced combinatorial methods in his calculations [697].
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# a small tree, to be searched by the minimax algorithm
leaf_node1 = {’type’: ’LEAF’, ’value’: 1, ’material’: 3}
leaf_node2 = {’type’: ’LEAF’, ’value’: 2, ’material’: 4}
leaf_node3 = {’type’: ’LEAF’, ’value’: 3, ’material’: 2}
leaf_node4 = {’type’: ’LEAF’, ’value’: 4, ’material’: 9}
leaf_node5 = {’type’: ’LEAF’, ’value’: 5, ’material’: 1}
leaf_node6 = {’type’: ’LEAF’, ’value’: 6, ’material’: 7}
min_node1 = {’type’: ’MIN’, ’children’ : [leaf_node6 , leaf_node1 ,

leaf_node3], ’material’: 2}
min_node2 = {’type’: ’MIN’, ’children’ : [leaf_node3 , leaf_node4 ,

leaf_node2], ’material’: 7}
min_node3 = {’type’: ’MIN’, ’children’ : [leaf_node1 , leaf_node6 ,

leaf_node5], ’material’: 1}
max_node1 = {’type’: ’MAX’, ’children’ : [min_node1 , min_node2 ,

min_node3], ’material’: 3}

root = max_node1

Listing 4.1 Small tree code

is determined analogously, although here the moves are made by our opponent, who
chooses positions that will minimize the outcome for us. Next it is our move again,
and we choose the position that maximizes our winning probability. This alternating
of maximizing and minimizing is the reason the procedure is called minimax.2

In Fig. 4.3 a Tic Tac Toe tree is drawn with values. Figure 4.4 shows a more
abstract minimax tree, where nodes are drawn as squares (max) and circles (min). By
following the values we can see how the values of the nodes are determined.

Listing 4.2 gives example code for the minimax algorithm. The minimax function
will determine the value of a node by taking the minimum of the value of the children
of the min nodes, and the maximum of the values of the children of the max nodes.
In the case of the tree in Listing 4.1, the value of nodes min_node1 and min_node3
is both 1, and the value of min_node2 is 2. The maximum of 1 and 2 is 2, so the
minimax value of the root is 2.

Search Tree

The minimax procedure recursively traverses the entire game tree (Listing 4.2).
Minimax is a backtracking procedure. It starts at the root, and does a depth-first
traversal of the tree by calling itself recursively for each child node. When a child has
been searched, it backtracks up (returning its value) and searches down the next child,
going down-up-down-up through the tree. Minimax is a trial-and-error procedure,

2 Note that minimaxing is a kind of self-play. Since our opponent uses the same algorithm as we do,
in minimax we play against ourselves; our opponent is just as smart as we are. This kind of minimax
self-play is a different kind of self-play than the one in Chap. 7, where a self-play loop is used to
train a neural network evaluation function to learn to play a game from scratch.
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INF = 99999

def eval(n):
return n[’value’]

def minimax(n):
if n[’type’] == ’LEAF’:

return eval(n)
elif n[’type’] == ’MAX’:

g = -INF
for c in n[’children’]:

g = max(g, minimax(c))
elif n[’type’] == ’MIN’:

g = INF
for c in n[’children’]:

g = min(g, minimax(c))
else:

error("Wrong node type")
return g

print("Minimax value: ", minimax(root))

Listing 4.2 Minimax code

Fig. 4.3 Tic Tac Toe game tree with values [195]

as all reinforcement learning procedures are. The trial element is trivial: try all
successors. The error part is the backup rule. Minimax does not explore; all learning
is on-policy. The values that are backed up are those of the nodes that were selected.

The nodes that are actually traversed during a search procedure are referred to as
the search tree. The tree version of the full state space is also known as the game
tree. Since minimax recursively traverses all nodes in the state space, the search tree
is identical to the game tree. In the rest of this book we will see many examples
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Fig. 4.4 Minimax tree of Listing 4.2

INF = 99999

def heuristic_eval(n):
return n[’material’]

def minimax(n, d):
if d <= 0:

return heuristic_eval(n)
elif n[’type’] == ’MAX’:

g = -INF
for c in n[’children’]:

g = max(g, minimax(c, d-1))
elif n[’type’] == ’MIN’:

g = INF
for c in n[’children’]:

g = min(g, minimax(c, d-1))
else:

error("Wrong node type")
return g

print("Minimax value: ", minimax(root, 2))

Listing 4.3 Depth-limited minimax

of procedures whose search tree is significantly smaller than the game tree while
they still are able to find the value of the root. Minimax does a full-depth full-width
expansion of the game tree. For regular trees, where all nodes have the same number
of children, the number of leaves of the game tree is wd , where w is the width of the
nodes (the number of children of a node) and d is the depth of the tree. For the tree in
Figure 4.4 the width is 3 and the depth is 2, so the number of leaves is 32 = 9. The
size of the game tree is exponential in the depth parameter, and is dominated by the
number of leaves. A useful approximation of the size of the tree is therefore wd , and
also of the running time of the minimax procedure, since it visits every node.

Now that we have looked at the search function, it is time to look at the heuristic
evaluation function.
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4.1.3 Eval

Calling the minimax function on a Chess position, whose game tree is of size 1047,
would take too long to compute its value.3 In order to reduce the size of the search
tree, the search depth can be reduced.4 To do so, even the earliest Chess and Checkers
programs (Turing, Samuel) used a heuristic evaluation function as an approximation
of the true value of a position. The heuristic is based on domain knowledge, provided
by domain experts. In Chess and Checkers, the most important heuristic is material
balance (the number and the importance of the pieces on the board).

Instead of traversing the tree to the depth where the game ends due to an end-game
position, the heuristics create artificial leaves, at a much shallower search depth. The
deeper search is artificially limited, and a heuristic is called to statically evaluate
whatever position happens to occur at that depth.

A basic assumption of heuristic planning is that deeper searches provide better
approximations of the optimal policy and the value of the root. Listing 4.3 adds
depth limiting to our Python code of minimax. New is parameter d. The parameter is
decremented in the recursive call of the function. The eval function no longer uses
the score at the leaves, but takes a heuristic value of the node whenever the depth
parameter is 0. The heuristic eval in the example code is quite straightforward; it uses
the material value of the node (see Listing 4.1).

Domain Knowledge

A heuristic is a function that encodes domain-specific knowledge. To be useful in
practice, a heuristic must be such that it can be computed efficiently. For example,
in Chess, having two pawns is better than having one pawn, and the queen is more
valuable than the rook. For many years heuristic evaluation functions have been a
central piece of combinatorial search. In fact, they are so important that the field has
been called heuristic planning. (See, for example, the title of Judea Pearl’s seminal
work [511].)

A heuristic evaluation function in general takes the form

h(s) = c1 × f1(s) + c2 × f2(s) + c3 × f3(s) + . . . + cn × fn(s),

where h(s) is the heuristic function of the state, fi(s) are the feature terms such as
material balance, mobility, or center control, and ci are the coefficients, the weights
that signal the importance that a feature has in the total evaluation function.

In Chess and Checkers material balance is the dominant factor in the strength of
a position. For this reason, the heuristic evaluation function of Listing 4.3 uses the
material field of the nodes defined in Listing 4.1.

3 Even if node evaluation would take a very fast one nanosecond, it would still take 1038 seconds, or
3 × 1030 years, which is about 1020 times the estimated age of the known universe.
4 Also the width of the tree can be reduced. With forward pruning fewer children are expanded at
inner nodes. See Sect. 4.3.5.
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Heuristic evaluation functions are linear combinations of features. A typical Chess
evaluation function consists of the following features: material, mobility, king safety,
and center control. The evaluation function is static (it applies to a single position).
Tactical aspects such as captures are taken care of by the search. To search as many
positions as possible, speed of evaluation is important. For that reason heuristics are
often optimized for speed, not for accuracy.

Heuristic Approximations

Heuristic evaluations are, in almost all games, crude approximations of the value of the
states. They capture static elements of a position, and lack insight into the dynamics.
Achieving good play requires extra work either on heuristics or on understanding
dynamics with search algorithms. In reinforcement learning theory the two approaches
(exact planning and function approximation) are often treated as mutually exclusive
approaches. In most board games, however, they are studied together out of necessity,
due to the low quality of play of heuristic evaluation functions without search, and
conversely the low quality of play of search without heuristic evaluation functions.

A further problemwith the heuristic values is that their unreliability is not smoothed
in any way by the minimaxing. Minimax applies a sequence of max operations, which
tends to exacerbate noise or errors in the heuristic estimates. This effect, where deep
minimax searches of noisy values enlarge the noise, is called search pathology (since
deeper searches are supposed to give more reliable results). Nau, Pearl, and others
have studied search pathology [479, 510, 44, 760, 573]. In practice, search pathology
does not occur frequently. In any case, alternatives to minimax have been proposed
that back up probability distributions instead of single point values (Sect. 4.3.8).

In tournament Chess and Checkers programs the heuristic evaluation function
is a highly advanced piece of code, using many features. The features are typically
manually chosen, and manually optimized and tuned. This feature engineering is
quite labor intensive. The search space is large, and finding the precise state at which
unwanted behavior occurs may be difficult. It may even be unclear if solving a problem
in one part of the play does not introduce a weakness in another part. To achieve
world championship level, the teams behind Chinook and Deep Blue spent years
refining their heuristics.

A further downside of a heuristic is, of course, that it is domain specific; e.g., a
piece of Chess code that assigns the queen 900 points is of no use in Checkers, which
does not have queens.

Heuristics in Practice

Today, many Chess programs are open source, including some of the top programs,
such as Stockfish [559].5 To get an idea of just how extensive current state-of-the-art

5 The name Stockfish may seem strange for a Chess program. The authors Romstad and Costalba
state that it reflects their two countries : “produced in Norway and cooked in Italy.”
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heuristic evaluation functions have become, you may want to have a look at the
Stockfish source at GitHub, which can be found here.6

Stockfish has a conventional evaluation function with manually designed features
and manually tuned weights. In other games evaluation functions based on machine
learning have been successful, such as Othello (Logistello [114]), Backgammon
(Neurogammon [673]), and of course Go. Despite some effort to automate tuning of
weights by Samuel [577] and the Deep Blue team [309], in Chess and Checkers most
programs use manual evaluation functions. Some papers describe success in evolving
coefficients of manual features [161], and in AlphaGo both the features themselves
and the coefficients are learned [623, 626, 625]. (Table 6.5 in Sect. 6.4.8 lists game
playing programs that use machine learning.)

Machine learning evaluation functions have the advantage of being more general
and easier to debug. At the end of this chapter we will revisit machine learning
evaluation enhancements. But first, we will explore in more depth how the minimax
function works.

4.2 State Space Complexity

The state space of two-agent zero-sum perfect-information games has a minimax
structure. This structure follows directly from the fact that the value of a state is
determined by the value of the best successor state (since we assume that rational
players always play the best move). The minimax state space is redundant; only a
small part of the state space (the optimal policy) defines the value of the initial state.
We will now do a theoretical analysis to find the size of the optimal policy. This
analysis will show us that there is an exponential amount of redundancy in the tree,
which allows us to create much more efficient search algorithms.

Width and Depth

Let us start with a regular fixed-width fixed-depth tree. The size of this tree is
dominated by the number of leaf nodes, which is wd for width w and depth d. In
Fig. 4.4 we see a tree with w = 3 and d = 2 (the root node is depth 0).

Critical Path

Figure 4.5 shows a different minimax tree, w = 2, d = 3, with leaf values, and values
at the inner nodes. Recall that the leaf values are typically integer values from a
heuristic score, for example in the range [−16,000,+16,000]. As usual, the root is a
max node; its value is the maximum of its child values, and the children of the root

6 https://github.com/official-stockfish/Stockfish

https://github.com/official-stockfish/Stockfish
https://github.com/official-stockfish/Stockfish
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Fig. 4.6 Max solution tree: upper bound determined by all children at max nodes, a single child at
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Fig. 4.7 Min solution tree: lower bound determined by all children at min nodes, a single child at
max nodes

are min nodes, whose value is the minimum of their child values, as can be seen in
the example tree. The path of bold, italic number 6s is called the critical path, the
path of nodes whose value is equal to the value of the root.
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Solution tree Value # children at max node # children at min node
Max upper bound all 1
Min lower bound 1 all

Table 4.1 Solution trees and bounds

Critical/solution trees
Critical tree = max solution tree

⋃
min solution tree

Critical path = max solution tree
⋂

min solution tree

Table 4.2 Critical tree and path

Critical Tree

We will now analyze the lower bound of the size of the tree that needs to be expanded
to determine the value of the root.

As we shall see, not all nodes in the minimax tree play a role in determining
the value at the root. In fact, only a small fraction of the tree nodes do so. Let us
try to construct the smallest possible subtree that defines the minimax value. By
the definition of the maximum function that takes the highest of its inputs, at max
nodes, the highest child determines the value of the parent node. All other children
are unnecessary; they are noncritical nodes that are “dominated” by their critical
sibling. Likewise, at min nodes, only the lowest-valued child determines the value of
the node.

So, it would seem that we only need to expand a single child to know the value of
a node. There is a complication, however. If we only expand one child, then we do
not know for certain what the value of a node is. Even if it is the critical child, since
we have only seen one child so far we do not yet know if there is another, better child.
At a max parent, the single expanded child creates a lower bound on the minimax
value, since expansions of subsequent children can only increase the value upwards.
Likewise, a min node whose children have been partly expanded has an upper bound
on its final value, since subsequent expansion can only lower the value further.

A partly expanded max node defines a lower bound on the minimax value. Lower
bounds of min nodes, however, require all children of that min node to be expanded
(since, if it were partly expanded, then expansion of another child could lower the
value further, and the lower bound evidently was not a lower bound).

Likewise, a partly expanded min node is an upper bound on the min node value.
Upper bounds of max nodes, however, require all children of that max node to be
expanded.

Now we have enough information to construct the smallest tree that defines the
minimax value. If we wish to have an upper bound at the root node, then we need a
tree where at least one child of the min nodes is present, and all children of all max
nodes are present. Figure 4.6 shows such a tree. This tree is called a max solution tree
in the literature, the tree determining an upper bound [164, 522]. In a max solution
tree, all children at the max nodes are included, and one child at the min nodes.
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Conversely, if we wish to have a lower bound at the root node, then we have to
construct a tree where at least one child of all max nodes is present, and all children
of all min nodes. Figure 4.7 shows such a tree, which is called a min solution tree, a
tree determining a lower bound in a minimax tree. In a min solution tree, all children
at the min nodes are included, and one child at the max nodes (Table 4.1).

The minimax value of a position is, of course, defined by two solution trees of
equal value: one min solution tree defining a lower bound of the same value as the
upper bound defined by its max solution tree. The intersection of the min solution tree
and the max solution tree is the critical path. Figure 4.5 contains such an intersection
of a min solution tree and a max solution tree. The union of the two solution trees is
called the critical tree, or the proof tree (see Table 4.2). It is the smallest tree that
proves the value of the position.

The critical path is the optimal policy of optimal actions in each state, the critical
tree proves its value. An optimal algorithm to find the optimal policy would search
no more than the critical tree. The critical tree proves that the minimax value is not
less than the value of the min solution tree, and not larger than the value of the max
solution tree. Every algorithm that wishes to find the minimax value has to traverse
at least this critical tree, otherwise it has not seen enough of the tree to determine its
value for certain [369].

The size (or rather, the number of leaf nodes) of a max rooted max solution tree
is w dd/2e , or the square root of the size of the minimax tree, where dxe rounds up
x to the nearest integer. The number of leaves of a max rooted min solution tree is
w bd/2c . The reason that the size of the solution trees is determined by half of the
search depth is interesting to see. As the minimax tree grows down from the root
the number of nodes is multiplied at each depth by w, but in a solution tree it is
intermittently multiplied by 1, and then by w, and by 1, and by w, and so on. If wd is
the branching factor at depth d, then the number of leaves of the depth-3 minimax
tree of Fig. 4.5 is 21 × 22 × 23 = 8. The number of leaves of the max solution tree of
Fig. 4.6 is 21 × 12 × 23 = 4. The number of leaves of the min solution tree of Fig. 4.7
is 11 × 22 × 13 = 2.

Likewise, the number of leaves of the critical tree (the union of the two solution
trees) is w dd/2e + w bd/2c − 1, the square root of the size of the minimax tree,

√
wd.

Thus, the size of the critical tree that defines the minimax value is the square root of
the size of the minimax tree.

In order to determine the value of a minimax tree with 1,000,000 leaves, at least
1000 leaves have to be examined. A bad algorithm would expand a million nodes, an
optimally good algorithm a thousand. In the same time that minimax would search to
depth 5, an optimal algorithm would search to depth 10, double the depth.

In Listing 4.2 we have seen an O(wd) algorithm for traversing the tree and finding
the minimax value.
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Name Principle Applicability Effectiveness
alpha-beta backward pruning all minimax games wd →

√
wd

iterative deepening iterate search depth with TT: move ordering helps alpha-beta
transposition table cache of states with ID: move ordering helps alpha-beta
null window alpha-beta cutoffs all minimax games more cutoffs
forward pruning variable width domain specific variable
capture moves ordering games with captures good
killer moves, HH ordering domain specific good
backup rule probability imperfect info imperfect info feasible

Table 4.3 Search enhancements

Conclusion

We have now looked in depth at the part of the state space that defines the minimax
value. It is now time to look at enhancements to the basic minimax algorithm.

In Sect. 4.3.1 we will describe alpha-beta, a best-case
√
wd algorithm for traversing

the tree to find the minimax value.

4.3 Search Enhancements

The previous sections provided us with the basic building blocks for heuristic planning
in games, with the search-eval architecture and the minimax algorithm. We have seen
that theoretically it is possible to find the best move with a thousand node expansions,
where minimax would do a million.We will now discuss search enhancement methods
with which we can approach optimal efficiency.

Minimax is a fixed-width fixed-depth algorithm that is too inefficient to achieve
high performance. The heuristic function is domain dependent. In the enhancements
in this section and the next, we will see a trend towards variable-depth search and
generalization of the evaluation function (foreshadowing a bridge to the next chapter
on adaptive sampling).

An important role in search enhancements is played by the alpha-beta algorithm,
which uses a powerful exponential pruning mechanism.

Table 4.3 gives an overview of the search enhancements that are presented in
this section, to help you find your way in the myriad of terms and approaches. The
effectiveness of the approaches depends to a large extent on the domain, hence the
qualitative terms. The enhancements are presented in the order shown in the table.

Most search enhancements are related to alpha-beta, and improve its performance.
The alpha-beta algorithm is the core of decades of high-efficiency game playing
search. The difference between the best case and the worst case performance of
alpha-beta is large,

√
wd versus wd . This best case is achieved on well-ordered trees,

where the best successor positions are the first that are expanded. On well-ordered
trees alpha-beta can find many cutoffs. (On badly ordered trees it performs as badly
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as minimax.) Many of the search enhancements that we will now discuss have been
developed to improve the successor ordering, in order to improve the performance of
alpha-beta.

We will now start with the alpha-beta algorithm.

4.3.1 Alpha-Beta

Listing 4.4 shows the alpha-beta algorithm. Let us see how alpha-beta works, to
understand how it finds the true minimax value without searching the entirety of the
tree.

Alpha-Beta Window

Alpha-beta maintains a window on the value of a position. The window consists of
two bounds, named α and β. The α and β bounds together form lower and upper
bounds on the possible value of the position, or node, that the algorithm searches.

At the root node, alpha-beta starts out with an 〈α, β〉-window with the widest
possible window, which we write as 〈−∞,+∞〉.7 Alpha-beta is a recursive algorithm
to find the minimax value of a node. In order to find this value of a node, it calls itself
recursively, to find the values of the children of the node in order to compute its own
value. Each call to alpha-beta uses the latest (tightest) version of the window. The
window for recursive calls is updated with the results of the child nodes. When, at a
node n, the window collapses (the bounds become equal) the subtree below n does not
have to be explored since then the value of node n is known, and thus the search of n
is stopped. Alpha-beta is then said to cut off the search of the remaining children of n.
The alpha-beta cutoff is the central mechanism to achieve the wd →

√
wd best-case

potential.

Alpha-Beta Example

We will now look in detail at the code,8 to see how alpha-beta traverses the same
example tree of Fig. 4.8.9 The root r is a max node, the level below the root are two
min nodes, representing the two child positions of the player. Each of these has two

7 Note that∞ is shorthand for a number outside the range of numbers returned by the evaluation
function. Also note that evaluation functions are assumed to return integer values.
8 You will note that the code for the max and the min node is quite similar. A clever reformulation
exists, NegaMax, that switches the point of view each time that it is called [217]. NegaMax has no
code duplication and is functionally equivalent. The switching of sides complicates reasoning about
trees, bounds, and values somewhat, and we do not use it in this book.
9 The code shown is the so-called fail-soft version of alpha-beta, a version that may return
values outside the 〈α, β〉-window. This may seem odd, but is actually quite useful later on, when
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INF = 99999

def alphabeta(n, a, b, d):
if d <= 0:

return eval(n) # return n[’value’]
elif n[’type’] == ’MAX’:

g = -INF
for c in n[’children’]:

g = max(g, alphabeta(c, a, b, d-1))
a = max(a, g) # update alpha
if a >= b:

break # beta cutoff, g>=b
elif n[’type’] == ’MIN’:

g = INF
for c in n[’children’]:

g = min(g, alphabeta(c, a, b, d-1))
b = min(b, g) # update beta
if a >= b:

break # alpha cutoff, a>=g
return g

print("Minimax value: ", alphabeta(root, -INF, INF, depth))

Listing 4.4 Alpha-beta

child positions (again max nodes) for which the opponent moves. These are leaf
positions (it is a very small tree). The leaves have values 3, 6, 2, ·. Figure 4.8 shows an
example tree and a detailed example run. Working through the example in the caption
of the figure will show you how an alpha-beta cutoff works.

In this tiny example tree, only one nodewas cut off, but in larger trees, themaximum
gain of alpha-beta is to cut off wd −

√
wd leaf nodes. (So, in a w = 10, d = 6 tree

with 1,000,000 leaves, 999,000 leaves can be cut off, searching only a critical tree of
1000 leaves. If minimax can see important capture moves three moves in advance,
alpha-beta, in the best case, can see them six moves in advance, with the same
computational effort.) Typical high-performance game playing programs come close
to the best case; at the majority of the nodes (more than 90%) the first child is also
the best child [416, 586].

Alpha-Beta Cutoff

In addition to the walk-through in the figure we will explain how alpha-beta cut-offs
work intuitively. The concept of cutoff can be understood intuitively as follows. Let
us assume we are the max player searching the value of a max node (as in Fig. 4.8).

we introduce narrow-window searches. The fail-hard version always returns a value inside the
〈α, β〉-window, or equal to α or β.
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3r

= 3a

3c 6d

≤ 2b

2e f

Fig. 4.8 Alpha-beta starts at the root, with a window of 〈−∞, +∞〉. In other words, alpha-beta
is called with n = r, a = −∞, b = +∞. At the root it expands the max node’s first child a. Node
a is of type min, and min node a’s first child, leaf node c is visited. Node c is a leaf node with
value 3. Coming out of the recursion back in node a alpha-beta updates variables g = min(+∞, 3)
and b = min(+∞, 3) to 3. It expands the second child of min node a, leaf node d. This node d is
expanded with window 〈−∞, 3〉, a tighter beta bound. Its value is 6, coming back in a, alpha-beta
updates the variables g = min(3, 6) and b = min(3, 6) to 3, finds no other children at a, and returns
g = 3 to r . Back at the root r , alpha-beta updates g = max(−∞, 3) and a = max(−∞, 3) to 3. There
is another child b, which it expands with window 〈3, +∞〉; it expands its first child b, finding leaf
node e. The value of 2 is returned to parent b, who updates the variables g = min(+∞, 2) and
b = min(+∞, 2) to 2. Now the if statement is tested and 3 ≥ 2 is true, so the break statement breaks
out of the loop, returning the value of g = 2 to parent r , cutting off the expansion of child f . At
parent r , the root, the variables are updated to g = max(3, 2) and a = max(3, 2) to 3. Alpha-beta is
ready and returns g = 3 to the caller as the minimax value n without having expanded all nodes of
the tree.

As we perform our look-ahead, we encounter child positions. Until all children
have been searched, the values of the children seen so far provide a bound on the final
value. In our case this intermediate value is a lower bound (since we are in a max
node our value can only increase with each child value that comes in). In alpha-beta,
this lower bound is recorded in the α value of the 〈α, β〉-window as soon as the first
subtree of the root has been searched. The α-value thus increases from −∞ to the
value of the best child cα that we have seen so far. In the example tree, this cα is
node a, the first child of the root r . The alpha-beta window at root r , after a has been
searched, is 〈3,+∞〉. So far, so good.

Now, we continue the search with child b with window 〈3,+∞〉. The positions that
our opponent searches can only lower the values it finds, since our opponent is the
minimizer. Thus, in min nodes, the intermediate search results are upper bounds. In
min nodes, the search results update β of the 〈α, β〉-window. As soon as the opponent
finds child positions cβ equal to or below that good move cα that we found in the
previous paragraph, the search at our opponent’s node can be stopped, since its
remaining children cannot influence our value anymore. In the example this child is
node e, whose value 2 causes the β bound to fall below α. For us, the remaining child
positions have become irrelevant as soon as it has been proven that their min parent’s
value will be lower than the good move cα. The subsequent children of the min node
are said to be cut off by the good child cα = a of the max node that we found earlier
and the strong reply move cβ = e that the opponent found.
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After I have found a strong move cα = a, then a strong opponent’s move cβ = e
can cut off the search for further opponent’s moves. The reason is that my opponent’s
move cβ = e is so strong (bad for the first player) that searching further for other
children of b that are even worse for me is useless, since I will no longer play b, but
choose instead to play my own strong move cα = a.

In considering my own move, as soon as I have identified a strong enough reply
by my opponent to one of my options, I move on, cutting off the search for other
replies to that option. If I have not yet found a strong counter-reply by my opponent, I
continue searching for one in this option. If there is no strong reply, then I am happy,
since I have found a position where my opponent has no strong replies to my move.

Move Ordering

Cutoffs are possible due to the intermeshing of maximization and minimization. The
impact of alpha-beta on the development of early Chess and Checkers programs was
large. Through this simple algorithmic trick programs could search twice as deep as
before, achieving a much better quality of play.

It should be noted, however, that there is a catch. Alpha-beta is a left-to-right
algorithm, and it can perform cutoffs only if the trees are well ordered. The example
tree in Fig. 4.8 is well ordered: the root has two subtrees, one with value 3 and
one with value ≤ 2. It is well ordered since the highest (best) child occurs first. If
the subtrees had been ordered the other way around, then node b would have been
expanded first, and leaf f would have been expanded, along with all other leaves,
arriving at the same minimax value of 3. The ordering of successor positions does
not influence the value of the position, but it does influence the efficiency with which
alpha-beta can compute the value. Alpha-beta’s worst case time complexity is still
wd .

There is always an ordering of the leaves on which alpha-beta achieves the best-case
bound; this tree is called a perfectly ordered tree. In a perfectly ordered tree all
children of max nodes are ordered high to low, and all children of min nodes are
ordered low to high (or to be more precise, all that is needed is that the first child is
the best child). Consequently, much research in move ordering heuristics has been
performed. Two of the best-known heuristics are iterative deepening and transposition
tables, which we will discuss next.

4.3.2 Iterative Deepening

Iterative deepening is a search enhancement that, together with transposition tables,
can achieve excellent move ordering, allowing alpha-beta to achieve high efficiency.
A basic assumption of the search-eval architecture is that looking deeper improves
the quality of the answer. A shallow search provides a rough estimate of value and
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def iterativedeepening(n):
d = 1
while not keypressed() and not time_is_up():

f = minimax(n, d)
d = d + 1

return f

Listing 4.5 Iterative deepening

best move; a deeper search provides a better estimate. Likewise, a shallow search
provides an approximation of the ordering for a deeper search.

In all practical applications of reinforcement learning, there is a time limit to
the search. In typical Chess tournaments a move has to be produced every three
minutes on average. The more time we have, the deeper we can search, and the better
the playing strength will be. Thus it would be useful if we could stop our search at
any time and produce a good answer [273]. Iterative deepening provides a solution.
Instead of performing one large search to a certain fixed search depth d, iterative
deepening performs a sequence of quick searches, starting with depth 0, increasing to
depth d. It may seem wasteful to perform these d − 1 shallow searches, but due to the
exponential nature of the search, the shallow searches take negligible time.

Iterative deepening is a technique to transform a standard fixed-depth depth-first
search algorithm into an anytime algorithm, that can be stopped at any time and still
have a useful answer available.10

In addition, when the search results (especially the best moves) of all the shallow
searches are retained in a large cache (the transposition table), the move ordering of
each subsequent d + 1 search will benefit from the shallower d searches.

Thus, iterative deepening has two advantages: (1) it transforms alpha-beta into an
anytime algorithm, and, together with transposition tables, (2) it improves the move
ordering for alpha-beta, increasing its efficiency.

The code of iterative deepening is simple; see Listing 4.5. A disadvantage of
iterative deepening is that it expands more nodes: all node searches before the final
interation are unnecessary. However, because of the exponential nature of the search
space, this number is small compared with the nodes searched in the final iteration.
Also, the search time of each iteration is difficult to predict in practice, since the size
of subtrees is unknown beforehand. When an anytime algorithm is necessary, such as
in a time-controlled tournament, the negligible extra time for the earlier iterations is
traded off for the certainty of having a best move, when one is needed.

Though useful by itself, iterative deepening really shines when combined with
transposition tables, since then it can improve move ordering for alpha-beta signifi-
cantly.

10 Note that for anytime behavior also the alpha-beta searcher must now be interruptible, and check
for key-pressed or time-up conditions—not shown in the alpha-beta code in the listing.
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Fig. 4.9 Transposition: c4,d5,d4 or d4,d5,c4?

4.3.3 Transposition Tables

In many games there are positions that can be reached through multiple parent
positions. For example, the position in Fig. 4.9 can be reached through the move
sequence d4,d5,c4 but also through the move sequence c4,d5,d4. The position has
two parent positions (d4,d5) and (c4,d5). Arriving at the same position through a
different move sequence is called a transposition. So (c4,d5,d4) is a transposition for
the state that we get by playing (d4,d5,c4). It is an identical state with a different
move history.11

In Chess, the state space is not a tree but a graph. Searching a transposition
is wasteful, and exponentially so. Tree traversal algorithms such as minimax and
alpha-beta can be transformed to algorithms that traverse a graph efficiently through
the addition of a cache or table. Such a cache or table is called a transposition table.
The table stores positions and their search results, in order to prevent transpositions
from being searched. Before a new node is searched, the graph algorithm checks if
the search result is already known in the table. Search results can be stored in lookup
tables (hash tables or dictionaries). For board games often the fast Zobrist hash
function is used [780]. In Python, the Dictionary type is convenient to implement a
transposition table.

The table entries typically contain an identification key, the search depth, the
value, a best move, and an indication of whether the value is a bound or a full value.
Entries are typically less than 100 bytes. A program that searches 100,000 nodes per
second would need to store 1.8 GB to store the entire search tree for a three minute
search. Typical cache replacement schemes such as least-recently-used or depth-first
are often used when collisions occur.

11 To transpose means to exchange.
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Listing 4.6 shows how transposition table results are used to transform a tree
search algorithms into a graph search algorithm. Two italic lines of code are added to
the code. The two lines show basic versions of the use of lookup and store functions,
returning the search value g, and the best move. In a real program more elements
would be added. For one, real programs would use a null window variant of alpha-beta
(to be discussed soon). The search results that are stored would be upper bounds,
lower bounds, or minimax values. Note that in real programs not only the values
of the best successor state would be stored, but also the actions leading to them.
In this way, information on the best action in a shallower search depth is acquired,
which will greatly help with move ordering to produce many alpha-beta cutoffs. Thus,
even when a transpostion lookup for the necessary search depth fails to find an entry
of the required depth, and a search ensues, this search will still use the best-move
information stored in the table for the shallower search depth, in order to improve the
tree ordering of the deeper alpha-beta search. For this reason, the Listing shows how
best-move ttbm is inserted into the list of children, so that it is searched first.

Apart from the efficiency improvement due to the prevention of duplicate search of
transposed states, it is these best actions of shallower searches that make transposition
tables so important. In an iterative deepening search, at all inner nodes best action
information will be present in the transposition table. In most situations search values
and best moves are moderately stable between iterations: the previous search depth
is a good approximation of the current search depth. The consequence is that the
best action information from the transposition table from a previous search depth
will frequently be the best action for a deeper search depth and therefore cause an
alpha-beta cutoff at inner nodes.12

Together, iterative deepening and transposition tables allow for the search of a
well-ordered tree and an efficient alpha-beta search, approaching the best case of
alpha-beta in practice [592]. Note that this is an empirical finding, as pathological
counter-examples can be constructed, but do not appear to occur frequently in practice.

4.3.4 *Null Window Search

Before we go on to more heuristics in the next section, we will look further into
enhancements based on the alpha-beta window. The window is a powerful concept,
with which more efficiency can be gained. The move ordering can be improved in
order to approach a perfectly ordered tree, improving the number of cutoffs that
alpha-beta can find. There is another way to achieve more cutoffs, and that is through
null windows.

This is a starred section (*) that covers advanced material. If you only want to
follow the big picture then this can be skipped (or skimmed). For an understanding of
how heuristic planning can achieve good performance, to get an appreciation of the

12 The opposite situation, where shallow searches are not good predictors for deeper searches, is
considered to be pathological. See the works of Nau, Pearl, and others [479, 510, 44, 760, 573].
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INF = 99999

def ttalphabeta(n, a, b, d):
(hit, g, ttbm) = lookup(n, d)

# find in transposition table for depth d
if hit: # if not hit at this depth, still use tt-bestmove

return g
if d <= 0:

g = eval(n) # return n[’value’]
bm = ()

elif n[’type’] == ’MAX’:
g = -INF
for c in ttbm+n[’children’]: # search tt-bestmove first

gc = ttalphabeta(c, a, b, d-1)
if gc > g:

bm = c # save best-move information
g = gc

a = max(a, g) # update alpha
if a >= b:

break # beta cutoff, g>=b
elif n[’type’] == ’MIN’:

g = INF
for c in ttbm+n[’children’]: # search tt-bestmove first

gc = ttalphabeta(c, a, b, d-1)
if gc < g:

bm = c # save best-move information
g = gc

b = min(b, g) # update beta
if a >= b:

break # alpha cutoff, a>=g
store(n, g, d, bm) # store in transpostition table
return g

print("Minimax value: ", ttalphabeta(root, -INF, INF, depth))

Listing 4.6 Use of transposition table

amount of complexity and effort that went into current state-of-the-art game playing
programs, please read on.

Narrow Windows, Bounds, and Solution Trees

Alpha-beta searches with a wide window, which causes cutoffs at internal nodes,
returning the minimax value at the root node. The tighter the window, the more
cutoffs. So far we have only considered alpha-beta as a routine that searches with
a wide window at the root. At most inner nodes, alpha-beta is called with a tighter
search window. Let us have a closer look at what happens: how much of the tree is
searched, and how should we interpret a return value that falls outside the alpha-beta
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Fig. 4.10 Alpha-beta starts at the root with narrow window 〈−∞, 2〉. In other words, alpha-beta
is called with n = r, a = −∞, b = 2. At the root it expands first child a. Node a’s first child,
leaf node c, is visited. Coming out of the recursion back in node a, alpha-beta updates variables
g = min(+∞, 3) to 3 and b = min(2, 3) to 2. No cutoff happens since −∞ � 3. We then expand the
second child of min node a, leaf node d. Its value is 6; coming back in a, alpha-beta updates the
variables g = min(3, 6) and b = min(3, 6) to 3, finds no other children at a, and returns g = 3 to
r . Back at the root r , alpha-beta updates g = max(−∞, 3) and a = max(−∞, 3) to 3. Now a cutoff
happens, since 3 ≥ 2. The root returns the value 3, a lower bound since the max node has unexpanded
children. Let us also try a second narrow window, this time with a high window: 〈4, +∞〉. At the
root, node a and leaf c are expanded, which returns 3 at node a. There a cutoff happens, since
4 ≥ 3. Min node a returns upper bound 3 to the root. There, no cutoff happens since 3 � +∞ and
node b is expanded, with window 〈4, +∞〉. Node e is expanded and returns 2, which causes a cutoff
in b since 4 ≥ 2, and upper bound 2 is returned to the root, which returns max(3, 2) = 3. This value
is an upper bound, since the two children returned upper bounds. After two narrow window passes
we now have an upper bound and a lower bound of equal value 3.

window with which it was called? Figure 4.10 shows the familiar tree, whose minimax
value is 3. In the figure we will traverse the tree now two times, first with a narrow
alpha-beta window 〈−∞, 2〉 just below that minimax value, and second with a narrow
window 〈4,+∞〉 just above the minimax value, to show what happens when the return
value falls outside the alpha-beta window. Please follow the example in the figure,
and refer to the alpha-beta code in Listing 4.4.

The lower narrow window 〈−∞, 2〉 yields as return value a lower bound 3 ≤ v on
the minimax value (future child expansion can still increase the value at max nodes,
hence the value so far is a lower bound on the final return value). As we can see,
the subtree expanded so far is a min solution tree (all children of min nodes, not all
of max nodes). The higher narrow window 〈4,+∞〉 yields as return value an upper
bound v ≤ 3 since the min children of the root returned upper bounds, as only some
of their children were expanded. The tree traversed in this second pass for this upper
bound is a max solution tree (all children of max nodes, some of min nodes). The
first (low) window yielded lower bound 3 ≤ v, and the second (high) window yielded
upper bound v ≤ 3. Since, in this case, the lower and the upper bound are equal, we
have found the minimax value 3 ≤ v ≤ 3 and the proof tree is the union of the min
solution tree and the max solution tree.
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Post-condition and Bounds

A narrow window causes more cutoffs, but returns a bound if the return value is
outside the window. Can we construct useful search algorithms using only bounds?

We will now formalize these notions in the alpha-beta post-condition, in order to
see if we can create a useful and efficient algorithm based on the narrow window idea.
We know that alpha-beta returns the minimax value if it is called with the window
〈−∞,+∞〉. When the return value falls outside the window, then the return value
bounds the minimax value.

The post-condition of g = alpha-beta(n, α, β) is as follows [369, 526]:

1. α < g < β: the window was right, g is the minimax value of the tree rooted in n.
Alpha-beta has traversed at least the nodes in a critical tree, the union of a max
and a min solution tree.

2. g ≤ α: the window was too high, g is an upper bound on the minimax value of the
tree rooted in n. Alpha-beta has traversed at least the nodes in a max solution tree
whose value is an upper bound g on the minimax value.

3. β ≤ g: the window was too low, g is a lower bound on the minimax value of the
tree rooted in n. Alpha-beta has traversed at least the nodes in a min solution tree
whose value is a lower bound g on the minimax value.

This post-condition allows the construction of the ultimate in efficient decision
procedures: the null window search, or NWS. A null window of α = β−1 guarantees13
that alpha-beta performs the most efficient search possible, at the cost of returning
only a Boolean answer: the minimax value is either above or below the input window.
Finding the minimax value with the NWS decision procedure requires a sequence of
NWS calls. There are two main algorithms in the literature, Scout, which uses NWS
recursively, and MTD( f ), which uses NWS iteratively from the root.14 Scout is also
known as principal variation search [217].

Scout

Scout [509, 548] works on the assumption that the first child of a node is the best
child. This first child is called the principal variation. Assuming such a well-ordered
tree, Scout searches the first child with a wide window, and then uses NWS to check
efficiently if the other children are indeed inferior. If not, they are searched with a
wide window, to find the value. Listing 4.7 shows the code.

13 We assume that all values are integer values, so with α = β − 1 there is no room for an integer
value to fit in the window. A null window of α = β would not work, since alpha-beta would return
immediately and not traverse any nodes. The term “one window” would perhaps have been better,
but history has decided otherwise.
14 The efficiency gain for null windows versus wide windows depends to a large degree on the
quality of the move ordering. Experiments with tournament quality programs yielded differences
of around 20% in leaf count, increasing with search depth [525, 526]. For badly ordered trees the
difference is much larger.
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INF = 99999

def eval(n):
return n[’value’]

def scout(n, a, b):
if n[’type’] == ’LEAF’:

return eval(n)
elif n[’type’] == ’MAX’:

g = -INF
for c in n[’children’]:

if c == n[’children’][0]:
g = max(g, scout(c, a, b)) # first child wide

window
else:

g = max(g, scout(c, a, a+1)) # other children nws
if g >= a+1:

g = max(g, scout(c, g, b)) # if better, wide
window

a = max(a, g) # update alpha
if a >= b:

break # beta cutoff, a>=b
elif n[’type’] == ’MIN’:

g = INF
for c in n[’children’]:

if c == n[’children’][0]:
g = min(g, scout(c, a, b)) # first child wide

window
else:

g = min(g, scout(c, b-1, b)) # other children nws
if g <= b-1:

g = min(g, scout(c, a, g)) # if better, wide
window

b = min(b, g) # update beta
if a >= b:

break # alpha cutoff, a>=b
else:

error("Wrong node type")
return g

print("Minimax value: ", scout(root, -INF, INF))

Listing 4.7 Scout [509, 548]
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def mtdf(n, f, d):
ub = +INF
lb = -INF
while lb < ub:

if f == lb:
b = f+1

else:
b = f

f = ttalphabeta(n, b-1, b, d)
if f < b:

ub = f
else:

lb = f
return f

Listing 4.8 MTD( f ) [526]

Transposition Table and Null Window Search

The re-searches may seem inefficient, and they would be, if alpha-beta would
recompute search results for each search anew. (Node a and c in the example
of Figure 4.10 are re-expanded.) Actual game playing versions of alpha-beta use
transposition tables, large lookup tables in which all nodes and their search results
are efficiently stored. Re-searching is therefore not more expensive, since no new
nodes are expanded. The code in the listing omits the lookup and store calls, and the
depth parameter.

MTD( f ) and MTD-bi

MTD( f ) [526] takes as input a first guess to the minimax value, and then iteratively
calls a sequence of NWS decision procedures to home in on the minimax value. If the
first guess is too high, then NWS will return a lower value, an upper bound, which is
fed into the next NWS call, and a sequence of lower return values (upper bounds)
follows, until the minimax value is found and NWS returns a higher return value
(a lower bound equal to the previous upper bound). If the first guess is too low, the
converse occurs.

In contrast to Scout, which uses some wide window searches, MTD( f ) uses only
NWS. Experimental comparisons showed indeed that MTD( f ) expands even fewer
nodes than Scout on average, although trees can be constructed in which either
algorithm performs best [526, 523]. Even more so than Scout, MTD( f ) relies on a
well-functioning lookup table to store intermediate search results in, which requires
care with inconsistencies in the tree.

Listing 4.8 shows the code for MTD( f ). MTD( f ) starts the search for the minimax
value at a heuristic first guess, and then iterates in the direction of the minimax
value based on the outcome of the null window search. When the granularity of
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the evaluation function is fine, the number of iterations can become large, and the
overhead of traversing through the tree also increases.

An alternative approach is to use a binary search [370] to interpolate between
the upper and the lower bound. That value can then be used as the pivot for the null
window search, which will produce a new bound, and to repeat the binary search.
This may result in fewer iterations of null window search to find the minimax value.
This algorithm is called MTD-bi [526]. The idea of bisecting the search goes back to
C* [149, 752] where it is used in end-game search. MTD-bi is used in Sunfish, a tiny
fully functional Chess program in 111 lines of Python code (Sect. 4.6.1).

After this elaborate discussion of alpha-beta and related move ordering enhance-
ments, it is time to discuss other enhancements that have been developed to improve
the performance of heuristic planning.

4.3.5 *Heuristic Forward Pruning

If we want to search deeper, the first idea that often springs to mind is to only search
“important” nodes. This method is called forward pruning, in contrast to alpha-beta’s
backward pruning. In forward pruning, the idea is to use domain-dependent heuristics
to determine these important nodes. If for certain moves we can immediately see that
they are not good, then they should not be searched. In early game playing programs
this was used since compute power was so limited relative to the large number of
subtrees to be searched. This is the approach taken in Go playing programs such as
GNU Go, where the move generator generates only the “sensible” moves such as
connect, corner, jump, and territory making moves. The disadvantage of heuristic
forward pruning is that the static heuristics may be wrong, and valuable moves are
missed, that only a search would reveal to be valuable. In practice it turned out that
static board heuristics can all too easily miss deeper tactical game dynamics. As soon
as compute power allowed, programmers of Chess and Checkers programs started to
use full-width move lists.

Plain heuristic forward pruning misses too many dynamics in most games. In
Section 4.4.3 further developments of forward pruning are introduced, named null
move pruning [181] and Prob-cut [115].

4.3.6 *Capture Moves

Another ordering mechanism that is highly domain specific, but is often highly
effective, is capture move ordering. For alpha-beta it is important to search an ordered
sequence of moves. An obvious move ordering enhancement is to prioritize capture
moves, since in many games the dominant factor of the heuristic evaluation function
is material balance, e.g., how many pieces of a color are still on the board. It stands to
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reason that, in positions where among the available actions there are capture moves,
those capture moves lead to a better position, and should be tried first.

Many Chess programs therefore employ a move generator that first generates
capture moves, and if no cutoff has occurred, then the noncapture moves.

Note that this enhancement is heuristic; sometimes it fails, and a non-capture
move is best. It uses domain-dependent knowledge, and only works in domains where
captures are important and frequent. In Go, for example, captures are less frequent,
and the capture enhancement is of no importance in this domain.

4.3.7 *Killer Moves and History Heuristic

Another well-known and effective enhancement is called the killer move. In many
domains actions that are good actions in one position are also good in another position.
For example, if I am in a position where I find a strong action, say by moving my
pawn from e4 to f5 I can capture my opponent’s queen, then the move pawn e4-f5 is
likely to be a good move in many other positions, provided the board has not changed
too much. This move is called a killer move. The enhancement works by recording
moves that are so strong as to cause an alpha-beta cutoff, and then first trying these
moves in subsequent positions [318].

A generalization of the killer move is the history heuristic, which adds counters to
the moves that cause cutoffs, making the heuristic more refined. The history heuristic
maintains a table indexed by from and to squares, and when there is a cutoff, the entry
in the table is incremented, possibly weighted by search depth [587]. The history
heuristic came out of basic experiments on the interplay of search and knowledge
in Chess, one of the earlier works with a principled empirical approach to this
question [586].

Killer moves are even easier to implement than the history heuristic, are more
general than capture moves, and work in many domains. They are present in most
Chess and Checkers playing programs. Killer moves were first described by Barbara
Liskov, who would (much later) win the 2008 Turing award for work on object-
oriented and type-safe programming. The history heuristic was developed by Jonathan
Schaeffer, who would later lead the Chinook Checkers effort.

Most search enhancements focus on selection of moves as a way to improve
efficiency.

To conclude our discussion of enhancements of the search function, we will look
at a different element of the search, the backup rule.

4.3.8 *Backup Rules Other than Minimax

Most enhancements in this chapter are applicable to two-person zero-sum perfect-
information games, games that can be modeled well in the minimax paradigm. For



100 4 Heuristic Planning

other games, different backup rules are needed. Interestingly, even for some zero-sum
games a non-minimax backup rule works best, as we shall see in the next chapter on
MCTS. In this section we will discuss alternative backup rules.

The minimax backup rule has dominated game playing research for a long time
(1950–2006). For two-person zero-sum games with a single heuristic reward value it
is intuitively appealing, since it follows the idea of how humans play a game in which
they try to pick the best move.

For imperfect-information games or games of chance, such as card games or dice
games, minimax is not an obvious choice. Researchers have tried to find work-arounds
to force these games into the minimax paradigm, with limited success.

Statistical sampling can be used to cope with the randomness of the game. A
disadvantage is that in order to get reliable outcomes, the number of samples must be
high. Alternatives to minimax have been developed. Already in 1966Michie published
the Expectimax algorithm [445] for computing probabilities with the product rule.
In 1983 Ballard published the *-minimax rule, which augmented the alpha-beta
algorithm with chance nodes, allowing distributions to be propagated through the
product rule (by multiplication) while still allowing the efficiency of cutoffs [33, 547].
Subsequent experiments are reported in [137, 478, 277]. Expectimax and *-minimax
did not become popular after these experiments, although in 2013 Lanctot et al. [400]
reported good results with a combination of Expectimax and statistical sampling.

In 1988 McAllester [441] introduced conspiracy number search as an alternative
to alpha-beta, which is based on backing up the size of the subtree in addition to the
value (how many nodes conspire to change a node’s value). It thus explicitly searches
for small subtrees. It did not become popular, but it did lead to the development of
proof number search [7, 6], which is based on the search for Boolean values such as
win/loss. Proof number search is often used for mathematically solving games, to
determine the exact win/loss/draw value of a position—not its heuristic approximation.
To solve a game, the state space is fully searched to the terminal states [557, 589].

The next chapter, on Monte Carlo Tree Search, will introduce the averaging of
statistical samples as backup rule. MCTS and its backup rule did become quite
popular and successful.

To summarize the different backup rules, minimax is an efficient algorithm for
backing up scalar values. Expectimax works with probability distributions. Averaging
works well for statistical sampling. For Boolean values such as win/loss, proof number
search is an efficient algorithm.

4.3.9 Trends in Search

We are coming to the end of the section on search enhancements and will close with
some conclusions.

Please refer to Table 4.3 on page 85. Minimax is a rigid fixed-width, fixed-depth
algorithm, distributing the search effort equally over all parts of the tree, good or
bad. The enhancements reported in this section all point to a trend of variable-width,
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Name Principle Applicability Effectiveness
search extensions variable depth domain specific good
quiescence search variable depth domain specific good
null-move search variable depth no Zugzwang good
odd-even effect move advantage minimax games unstable values
piece-square tables evaluation coding heuristic evaluation efficiency
coefficient learning machine learning evaluation tuning automated learning
end-game database database endgame perfect knowledge
opponent modeling different opponent teaching explore weaknesses

Table 4.4 Eval enhancements

variable-depth, using forward or backward pruning, and move ordering, to devote
most of the search effort to the most promising part of the tree, to find the best move,
disregarding bad moves as early as possible.

Furthermore, there is a trend towards generality, away from domain-specific
heuristics, towards mechanisms such as the history heuristic, iterative deepening, and
transposition tables, methods that work in many domains.

4.4 Evaluation Enhancements

After elaborating on the many search enhancements that have been invented, it is
time to see how heuristic evaluation can be enhanced. Table 4.4 gives an overview
of the evaluation function enhancements. The enhancements try to ameliorate the
limitations of static heuristics with search extensions, and improve the evaluation
function by smart implementations and databases. (The term Zugzwang, or forced
moving, is explained in Sect. 4.4.3.)

4.4.1 *Search Extensions

The heuristic evaluation function computes a score of the static board position. These
scores are then used in the search. Potentially important tactical dynamics in the
position cannot be seen by a standard static evaluator, since the tactical problem is
over the search horizon. It would help if this situation could be detected, and the
search be extended somewhat to see the effect of the tactical dynamics. Singular
extensions were devised by the Deep Thought team (the predecessors of Deep Blue)
for Chess [10, 309]. There are many variations of search extension; all are based on
domain-specific heuristics. Two of the best-known search extensions for Chess are
check extensions and capture extensions. Positions that are in check or where some
kind of capture happened are searched one level deeper. A problem with capture
extensions can be that in positions where many capture opportunities exist, the search
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expands too much. For this reason partial depth extensions have been devised. Tuning
the amount and type of search extensions is an important part of the tuning effort of
game playing programs, especially in Chess, which is a highly tactical game.

Singular extensions are related in some sense to forward pruning. Forward pruning
uses heuristics to restrict search to certain “good” moves. Search extensions do a
full-width search up to a certain depth, and then use heuristics to extend certain
positions for deeper search, combining full-width and selective search.

Multi-cut introduced search reductions [84]. Here a shallow search is used to
determine if a cutoff is taken early in a node. Related to multi-cut are Prob-cut [115]
and a pruning technique in Chinook [590] which uses a shallow search to identify
nodes to terminate the search. Finally, search extensions are reported to reduce the
problem of search pathology [349, 9, 608].

4.4.2 *Quiescence Search

Related to search extensions is quiescence search. Quiescence search [46] and search
extensions both try to reduce the impact of the search horizon. It tries to distinguish
between so-called quiet and noisy positions. A noisy position is a position whose
value cannot be reliably estimated with static heuristics, for example, because of the
presence of threats or other dynamics. Noisy positions should be searched deeper
until a quiet position arises, that can more reliably be evaluated. Quiescence search is
most often implemented by looking at differences between positions in the heuristic
evaluation function. As with search extensions, getting quiescence search to work
requires much experimentation to build up understanding of the effects of the static
evaluation heuristics that are used in one’s program [260, 348, 46, 583].

4.4.3 *Null-Move Heuristic

We will now discuss the null-move heuristic. A null move is a pass, not making a
move, a position where the only difference with the successor position is which side
is to move [45]. In some games passing is legal, such as in Go; in some games it is
not, such as in Chess. Being allowed to move typically provides opportunities for
improvement. If it is not, and all possible moves make a position worse, it is called
Zugzwang, or forced moving. In this case the introduction of a pass move causes an
unfair advantage to occur.

The null-move heuristic tries to get alpha-beta cutoffs cheaply by seeing if a pass
creates a situation that is strong enough to cause a cutoff before the regular moves
are tried. If a position is so strong that not moving already provides a cutoff, then it
is a good idea to take that cutoff. In that case the cut off has been found without an
expensive search.
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Null moves typically work well, at least in Chess. (In other games, such as
Othello, Zugzwang plays a bigger role, and null moves are not used, or in a different
way [115].) The null-move idea has been developed further by extending zero-depth
cutoff searches to small-depth cutoff searches, with success [248, 181, 286, 115, 97].
The ProbCut algorithm [115] in particular has been successful in Othello.

4.4.4 *Odd/Even Effect

As was noted before, in most positions having the opportunity to make a move
is advantageous. If we are white, then positions with white to move are typically
better than black-to-move positions. This fact causes pronounced swings in the
score between search depths. The odd/even effect is caused by a simple statistical
fact, that the expected value of the maximum of a distribution is greater than the
expected value of the minimum of a distribution: E(max(random[−999,+999])) >
E(min(random[−999,+999])).

The odd/even effect is a statistical effect; it is possible to construct counter-example
trees where the value at the node is stable as the search depth increases. This effect
is also related to the search horizon. Many game trees have a pronounced odd/even
effect, especially when the trees are fixed depth. As iterative deepening searches
deeper (Listing 4.5) the scores at the root node go up and down as the leaf values
switch between being minimized and maximized.

The odd/even effect occurs in “normal” trees, for non-Zugzwang positions, and
without search pathology. The odd/even effect is not caused by search instability, but
is a consequence of the min-max structure of the minimax tree [193].

The value swings do complicate empirical analysis and finding errors in programs,
and comparing search results from different search depths becomes less reliable.

The odd/even effect can be reduced by search extensions, that transform the
fixed-depth search into a variable-depth search. Another solution is to prevent the
effect, using search extensions and shallow searches to extend and reduce depth in
multiples of two.

4.4.5 *Piece-Square Tables

After discussing enhancements that are concerned with the search horizon, we will
now look at the core of the evaluation function, the efficient computation of the
heuristic value.

Piece-square tables are a popular method for creating efficient evaluation functions.
They are used in many strong Chess programs [249]. A piece-square table is a table
for each piece on each square for each color. Values for the piece × square × color
combination indicate the value of the piece being on this square. Piece-square tables
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are efficient since moving a piece from a square to another amounts to subtracting
the source value and adding the destination value to the heuristic evaluation score.

Piece-square tables are quite popular because of their efficiency. A well-known
implementation of piece-square tables is by Fabien Letouzey in his open source
program Fruit.15

Furthermore, piece-square tables are well suited for learning the evaluation
function [47, 186], sometimes leading to surprising differences between manually
tuned and machine-learned values. The creation of an evaluation function that encodes
heuristics in a correct way and combines their values efficiently is a challenging
problem. Let us look at how this can be automated.

4.4.6 Coefficient Learning

As has been noted before, tuning the coefficients of evaluation function terms
(Sect. 4.1.3) by hand is a difficult and error-prone process. Recall the general form of
the evaluation function:

h(s) = c1 × f1(s) + c2 × f2(s) + c3 × f3(s) + . . . + cn × fn(s).

An alternative is to train the coefficients by supervised learning. This works by
creating a large database of test positions from grandmaster games, of which the value
or the best move is known. The difference between the evaluation of the state and
the correct answer constitutes an error value. Then an iterative optimization process
is used to adjust the evaluation function coefficients such that the sum of the error
values is minimized.

Many authors report on machine learning methods that train the coefficients against
databases of grandmaster games or in self-play [577, 42, 119, 539, 686, 222, 489, 230,
223, 162, 675]. Frequently, it is reported that the coefficients deviate considerably
from hand-tuned coefficients (the machine-learned coefficients “work, but don’t make
sense”). Many Chess programmers have tried to find a middle ground by adjusting
the coefficients to values that make intuitive sense, and also have low error scores,
after they have been optimized by machine learning.

Most work in automated Chess evaluation optimization is in the automated tuning
of the coefficient of the features. There is also some work that goes a step further,
and tries end-to-end learning of evaluation functions directly from board positions,
without the intermediate step of hand-crafted heuristic features [160, 626, 393]. This
work is quite recent and often related to the work reported in Chap. 7.

We are coming to the end of this overview of evaluation function enhancements.
There is one more to discuss: the endgame.

15 The source code is available here: Fruit. http://arctrix.com/nas/chess/fruit/

http://arctrix.com/nas/chess/fruit/
http://arctrix.com/nas/chess/fruit/
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4.4.7 End-Game Database

In Chess and Checkers the endgame is an important phase of the game. Inaccurate
play can often result in loss of the game. It is also a phase of the game where few
pieces are on the board, allowing the exact minimax value to be computed (without
heuristic approximation). Sometimes highly “artificial” lines of play turn out to be the
correct line of play, with nontrivial and counter-intuitive moves. Work on end-game
databases was proposed early, e.g., by Bellman [55], and Thompson [684].

Much of the strength of world champion Checkers program Chinook came from
the 8-piece end-game database [591]. Chess program Deep Blue used a database that
contained 5-piece endings and some 6-piece endings.

End-game databases are often computed by retrograde analysis, working backwards
from the end [205, 398, 684]. Retrograde analysis is used frequently in solving games
(determining the outcome in the case of perfect play by both sides, by full enumeration
of relevant parts of the state space). Games that have been solved are Nine Men’s
Morris [234], Awari [557], and Checkers [589].

Culberson and Schaeffer generalized end-game databases to pattern databases, to
be used in all stages of a search [154, 380]. Pattern databases play an important role
in the playout phase of MCTS-based Go programs (Sect. 5.2.1).

4.4.8 Opponent Modeling

The minimax procedure assumes that our opponent uses the same knowledge as we do.
For perfect (non-heuristic) play, this is appropriate. When the values in the state space
are heuristic evaluations, i.e., imperfect approximations of perfect play, then it may be
reasonable to assume that our opponent has a different play style than we do. Also for
teaching purposes it may be better to play other moves than the optimal policy. This
opponent modeling can be used to exploit perceived weaknesses in the opponent’s
play. Opponent modeling is often relevant in multiplayer imperfect-information
games [80, 232].

4.4.9 Trends in Eval

We are now at the end of our discussion of heuristic evaluation enhancements. Let us
see if we can find a common trend in the enhancements.

Heuristic evaluation functions are domain specific. One would think that enhance-
ments of evaluation functions trend towards more specific knowledge. This is not
the case. The techniques that are used to enhance evaluation functions trend towards
finding automated methods for feature creation: retrograde analysis for creating
end-game databases, machine learning of coefficients or piece-square tables, and
some variations trying to overcome the search horizon problem. In many cases, the
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heuristic knowledge is compartmentalized in features that are created with automated
methods. Furthermore, many game programmers use automated testing whenever a
change is made to the code base. Even in search extensions and quiescence search,
whose implementations typically involve domain specifics, there have been efforts
towards general methods [46].

The overall trend in evaluation function enhancements is that enhancements start
as domain specific, and then work is being undertaken towards automated methods
and automated learning.

4.5 Conclusion

Determining the strength of Chess programs is of great importance. The playing
strength of a program can be determined by playing tournaments, and by computing a
rating based on the outcome and the strength of the opponent. A well-known internet
tournament is the Top Chess Engine Championship (TCEC), where strong computer
Chess programs are compared and a rating is calculated. TCEC can be found here.16
In computer Chess the Elo rating is frequently used to compare playing strength.

The Elo rating was introduced by Arpad Elo (Sect. 2.1.3). It is calculated using
tournament outcomes. For each game, the winner’s rating increases, and the loser’s
rating decreases. The change depends on the difference between the original ratings.
A win by a stronger program increases its rating by less than a surprise win by a
weaker program. If player 1 has a rating R1 and player 2 has a rating R2 then the
expected score of player 1 is E1 =

1
1+10(R2−R1)/400 . If the actual score of player 1 was

S1 then the new rating of player 1 is R′1 = R1 + K(S1 − E1), where K is a constant
that determines the maximum adjustment per game. It is typically set from 16 for
master players to 32 for weak players.

Code for computing the Elo rating can be found at BayesElo.17

Search-Eval and System 1 and System 2

We have come to the end of this chapter on heuristic planning. The search-eval
architecture was originally inspired by the way in which humans are thought to play
a game. Can we see a relation between the heuristic planning methods and human
thinking as it is described by Kahneman?

Since the earliest days of game playing research, the search-eval architecture has
been the cornerstone of game playing programs. The architecture is simple. The search
function traverses possible game positions, and the evaluation function scores the
position with a heuristic value function. In the early days of Turing’s and Shannon’s
papers, when search-eval was conceived [701, 618], the search and eval functions

16 https://tcec.chessdom.com/live.html

17 https://github.com/ddugovic/BayesianElo

https://tcec.chessdom.com/live.html
https://github.com/ddugovic/BayesianElo
https://tcec.chessdom.com/live.html
https://github.com/ddugovic/BayesianElo
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Chapter Algorithm Select Backup Eval
Chap. 4 alpha-beta left to right minimax heuristic
Chap. 5 MCTS adaptive average sample
Chap. 6 DQN - - generalize
Chap. 7 self-play adaptive average generalize

Table 4.5 Heuristic-Sample-Generalize

were quite straightforward. The heuristic function was the most basic function that
worked, and the search function was a minimax(-like) function to traverse the nodes
in standard depth-first order. This simple model proved quite versatile and amenable
to successive refinements. Over the years many enhancements were introduced, and
performance has reached world champion level in games such as Chess and Checkers.
These enhancements are very important—they elevate the level of performance from
being barely able to follow the rules to World Champion beating programs.

Table 4.5 gives an overview of the different paradigms in this book. The entry for
Chap. 4 shows the heuristic search approach in reinforcement learning. The focus of
this chapter has been on full-width search and manually crafted heuristic evaluation
functions, and value backup via the minimax rule.

As the table indicates, in the following chapters different, more adaptive, techniques
will be introduced. In Chap. 7 this will culminate in functions that are able to self-learn
to play a game as complicated as Go with only the rules of the game known to the
program.

At the time when early AI researchers such as Turing, Shannon, and Samuel
discussed Chess playing computers, it was believed that by developing better Chess
programs we would learn how human thought worked, and we would learn about
human intelligence. When 40 to 50 years later Deep Blue finally beat Kasparov, this
belief had changed. It was said that brute force had won over human intellect. We
had not learned about how humans think, but we had learned how to make a fast
computer search many positions.

Kahneman’s view on human thinking as consisting of fast and slow points in
another direction. Perhaps Chess computers do operate in a way that is related to
the way that humans think. Humans have a fast, heuristic, system 1, and a slow,
deliberative, system 2. This corresponds to Chess computers that have a fast heuristic
evaluation function, and a slow planning function that painstakingly reasons through
some of the possible positions. In this sense there is a correspondence to how humans
and computers think or play Chess. The search-eval architecture is not only an
architecture to organize the functions of a Chess program in a clean way; it also fits
how Kahneman describes that humans play and think. Perhaps, at a high level, Turing
and Shannon’s dream of creating a mechanical model of thought has succeeded after
all.

Of course the “brute force” argument is not without merit. Computers calculate
fast and deep. It is true that computers always blindly follow their program, and do not
deviate. Human system 2 thinking is not so perfect, and is easily distracted by system
1 associations. Indeed, computers can search many more positions than humans can.
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Computer Chess has also taught us that writing error-free heuristic programs
is hard. It has taken four to five decades of research by a dedicated community of
researchers for artificial intelligence to rise to the challenge. Too much of this time
has been spent in frustration removing errors from and improving heuristic evaluation
functions that were hard to understand and hard to debug.

Conceptually the way in which computers and humans play Chess may be highly
related. In the details, there are important differences.

Let us now review this chapter, and get our hands dirty with exercises about a
concrete Chess program.

4.6 Practice

Questions

Below are some questions to check your understanding of this chapter. Each question
is a closed question where a simple, one sentence answer is possible.

1. What is a heuristic?
2. Why is an exponential state space problematic?
3. How can you search an exponential search space efficiently?
4. What is the role of a search function?
5. What is the role of an evaluation function?
6. Why is minimax a form of self-play?
7. Why is minimax recursive?
8. What is the number of leaves of a regular tree of width w and depth d?
9. What is the critical tree?

10. What is the number of leaves of a regular tree that proves the value at the root?
11. What is a solution tree?
12. What is material balance?
13. What is Elo?
14. What is forward pruning?
15. What is backward pruning?
16. Draw a tree with an alpha-beta cutoff.
17. What causes the performance of alpha-beta to go from worst case to best case?
18. What is a transposition?
19. How do iterative deepening and transposition tables help the performance of

alpha-beta?
20. What is a null window?
21. What is a null move?
22. What is a killer move?
23. What is a search extension?
24. How can you use supervised learning in a Chess program?
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4.6.1 Sunfish—Chess in 111 lines of Python

Chess programs are often large pieces of code. For Chess, there are many open-
source programs available that allow study of the code. However, the size of the
codes typically requires a large investment of study time. There are also a few short
Chess programs. For example, the program Micro-Max, by Harm Geert Muller, is
a minimalist Chess program in 133 lines of C code, in less than 2000 characters
(not counting comments). Another example is Sunfish, a Chess program in 111 lines
of Python. Sunfish was written by Thomas Ahle. Although the name is similar to
Stockfish, Sunfish was inspired by Micro-Max. You can download it from GitHub
here.18 The entire program code fits in a single file, sunfish.py.

The program consists of a heuristic evaluation function based on piece square
tables (Sect. 4.4.5). It uses null window search algorithm MTD-bi (Sect. 4.3.4)
enhanced with iterative deepening, transposition tables, null moves, and killer moves.
Sunfish is small enough to play around with and study, to learn how a real working
Chess program functions.

The small size and organization of the code also allow easy modification. Things
to try are, for example, changes to the piece-square table, to see the effect on playing
style of a different evaluation function (see the Exercises).

4.6.2 Implementation: New or Make/Undo

You may have noticed that the alpha-beta code in the figures lacks implementation
details such as board manipulation and move making. These “details” are actually
quite important for creating a working program. Recursive game playing programs
call the search routine with the current board state, often indicated with parameter n
for the new node. This board can be created and allocated anew in each search node,
in a clean value-passing style (local variable). Another option is to pass a reference to
the board, and to apply a makemove operation placing the stone on the board before
the recursive call, and an undomove operation removing the stone from the board
when it comes out of the recursion (global variable).

This reference-passing style may be quicker if allocating the memory for a new
board is an expensive operation. It may also be more difficult to implement correctly,
if capture moves cause many changes to the board, which must be remembered
for the subsequent undo. Sometimes the incremental evaluation calculation is also
incorporated into the makemove/undomove routines, for even more efficiency.

For parallel implementations in a shared memory at least all parallel threads
must have their own copy of a value-passing style board. (On a distributed memory
cluster the separate machines will have their own copy of the board by virtue of the
distributed memory.)

18 https://github.com/thomasahle/sunfish

https://github.com/thomasahle/sunfish
https://github.com/thomasahle/sunfish
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Exercises

1. Download and install Sunfish and BayesElo for Python. Play your first game against
Sunfish. Write a script that performs a tournament of two identical instances with
the same time controls of Sunfish. Suggestion: 10 seconds per move. Look at the
games. Do they make sense? [Only if you know how to play Chess] Does Sunfish
at this time setting look like a strong program to you? Try different settings.

2. Setup BayesElo to allow you to run a tournament between two programs to
determine their playing strength.

3. Running tournaments costs compute time. How long should a tournament be? How
many games are needed for results to be statistically significant? Add confidence
intervals or error bars to the graph showing the standard deviation of the Elo
rating.

4. Make a change: halve the playing time of the second player. How does the Elo
rating change?

5. Read part 1 of Kahneman [347], on the two systems (less than a hundred pages
of reading. Part 2 is about heuristics, but not the kind we have used here in our
evaluation functions). How is the thinking of a computer chess program related to
human thinking? Is minimax like system 1 or system 2? Is heuristic evaluation
like system 1 or system 2?

Sunfish implements null-window search, nullmoves, iterative deepening, transposition
tables, and killer moves. Throughout this chapter it was often claimed that certain
enhancements work well. Using the Sunfish and Elo code, the following exercises
are to create a graph showing the effect of individual search enhancements. In the
exercises we study the influence of search enhancements and evaluation heuristics.
The baseline is standard Sunfish with all enhancements and all heuristics. Keep in
mind how many runs of a program you need to get statistically significant results [37].

1. Try the following: Replace MTD-bi by MTD( f ) (see Listing 4.8). How is perfor-
mance influenced? If the tournaments take too long to run, what can you do to get
quicker results?

2. Replace the null window search by wide-window alpha-beta. How is performance
influenced?

3. Replace the move ordering heuristics: put killer moves last in the move list that is
generated by the move generator.

4. Show the Elo rating of the program without enhancements. Remove killer moves,
then remove null moves, then try removing the transposition table and iterative
deepening. Are the enhancements related?

5. Study the code of the piece-square tables. Make a change to one of the squares,
describe in words the intended meaning, and compare the difference in play.

6. Create test positions that contain Zugzwang (every move makes your position
worse; not moving is advantageous). Check if turning off null moves improves
performance.
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Summary

In this chapter we introduced heuristic plannning reinforcement learning algorithms.
The main problem for thesse algorithms is the size of the state space. We have
calculated the size of the state space, and found that for most games a standard
minimax enumeration of the full state space is infeasible. Heuristic methods are
introduced that can artificially reduce the state space. Static board evaluation functions
do not capture game dynamics, and search remains necessary. Thus we arrived at a
solution architecture consisting of two functions: the search-eval architecture.

The search functions covered in this chapter have been conceptually simple, in the
sense that they are directly based on maximization and minimization of the reward
values: I try to maximize my outcome; my opponent tries to minimize my outcome.
We have discussed the minimax procedure, and have looked at the concept of the
critical tree, the smallest set of nodes that has to be searched to be certain of the value
of the state space. This smallest tree concept has then been used to arrive at efficient
search algorithms. The efficiency of both the search and the evaluation function can
be greatly enhanced with general and domain-specific enhancements. We covered a
wide range of enhancements, both search enhancements and eval enhancements. The
first search enhancement is alpha-beta, an algorithm that can search twice as deep as
minimax, if the tree is optimally ordered.

Achieving world champion level of performance with alpha-beta required re-
searchers and game programmers to invent many search enhancements. For alpha-beta
cutoffs to work effectively, the tree must be ordered. Perhaps the most important
enhancements for alpha-beta are iterative deepening and transposition tables. They
work together by storing best-move information of previous searches. In this way,
alpha-beta searches a tree that is reasonably to well ordered by the previous iterations.
Null windows improve the effectiveness of alpha-beta even further.

Another important area is relaxing full-width search. A basic approach is heuristic
forward pruning. For Chess, it was found that a better approach is to use a mix of
full-width and selective search (extensions and reductions).

On the eval side, we discussed quiescence, search extensions, piece-square tables,
null moves, end-game databases, and evaluation function learning. The first few levels
of the tree are searched full width, so that no move is left untried, and after a certain
depth extensions (or reductions) are used.

A popular heuristic is null-move pruning, where before the legal moves an extra
pass move is searched to a shallow depth. If a position is so strong that even passing
yields a cutoff, then it is safe to take the cutoff.

Researchers have a large imagination, and many ideas have been tried. Not all
have been successful in the minimax framework and in the games in which they
have been tried. Among them are forward pruning (in Chess and in Go), different
backup rules (such as star-minimax), Monte Carlo evaluation (such as in Go), and
neural network evaluation (in Chess and in Go). Interestingly, as we will see in the
upcoming chapters, although these did not work in Chess all these ideas have been
used eventually to achieve a high level of play in different frameworks or games.
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We noted a trend towards variable-depth search and automation in evaluation.
Enhancements typically start with an idea to exploit a domain-specific feature (such
as the killer move, or hand-tuned coefficients). After some more research, often a
more general version arises, that performs even better (such as the history heuristic,
or machine-optimized evaluation coefficients).

In the next chapter we will continue the trend towards more generally applicable
methods and more selective search. We will see how Monte Carlo evaluation, a
different backup rule, and selective search together form an algorithm that works well
in domains in which minimax and heuristics do not work.

Historical and Bibliographical Notes

One of the earlier works in heuristic planning is Pearl’s book Heuristics [511] (he
would later co-author The Book of Why, on his work on causation [512]). Minimax is
described in most standard artificial intelligence undergraduate texts, such as Russell
and Norvig [572], although without solution trees. There is an extensive literature on
solution trees, see [390, 522, 645, 511, 526].

One of the first open-source Chess programs is Crafty [325]. Chess programs have
always used the most compute power that was available, and many have stimulated
research into parallel programs, where multiple processors search the state space
collectively. Deep Blue used special hardware and software for parallel search. Parallel
Chess has also stimulated the development of research into parallel programming
environments, such as Cilk [412]. The parallel Cilkchess program achieved some
success in its days. Fruit is an influential open source program by Fabien Letouzey;
the well-known open-source program GNU Chess is now based on Fruit [413].

The Chess programming wiki contains a wealth of information on null moves,
search extensions, transposition tables, and many, many, other things.19

Alpha-beta is reported to have been reinvented independently by several authors,
among them McCarthy, Samuel, Brudno, Richard, Hart, and Levine [485]. John
McCarthy won the 1971 Turing award for work on AI. A seminal analysis of the
alpha-beta algorithm is Knuth and Moore [369]. This analysis was without the benefit
of the concept of solution trees, which were introduced in later publications on
Stockman’s SSS* algorithm [645, 511, 522]. The relation between SSS*, solution
trees, critical trees, and alpha-beta is described in [526, 523].

Killer moves were described by Barbara Liskov (Huberman) in her 1968 the-
sis [318]. The history heuristic is described in Jonathan Schaeffer’s thesis and
subsequent paper [587]. An overview paper of search enhancements is [594]. A paper
on search versus heuristics is [342]. Null moves are described by Donninger [181].
Buro introduced Probcut [115]. Search pathologies, where searching deeper gives
worse quality answers, were introduced by Nau. They have been further studied by
Pearl, Beal, and others [479, 510, 44, 760, 573].

19 https://www.chessprogramming.org/Main_Page

https://www.chessprogramming.org/Main_Page
https://www.chessprogramming.org/Main_Page


Chapter 5
Adaptive Sampling

The previous chapter discussed heuristic planning. We saw the basic search-eval
architecture, and the many enhancements that it needed for high performance. The
search enhancements were necessary to overcome limitations of fixed-depth fixed-
width minimax search. Many of the evaluation enhancements focused on alpha-beta
cutoffs and the search horizon.

The two main challenges that are addressed in this chapter are (1) adaptive node
selection and (2) evaluation of states for which there is no efficient heuristic evaluation
function.

In minimax, all parts of the tree are searched equally, no matter how unpromising.
The enhancements attempted to fix this, to allow the search to focus on promising
parts of the state space. This approach worked very well for games in which tactical
play is important, such as in Chess, Checkers, and Othello, where a single capture
move can often change the static score significantly. For other games, notably Go,
this approach did not work. Go is more strategic in nature, moves can have hidden
long-term effects that are not easily found with a short tactical search as in Chess. For
Go, researchers did not find efficient heuristics for variable-depth and variable-width
search, nor for value estimation of states.

Addressing these two problems led to a new algorithm, based on a new paradigm.
In this chapter the new algorithm, Monte Carlo Tree Search (MCTS) [151, 108], is
introduced. MCTS combines three techniques: (1) it performs adaptive exploration
(it is not fixed-width fixed-depth), (2) it uses sampling to determine an evaluation (it
does not use heuristics), and (3) it uses averaging as backup function of the statistics
to aid node selection (it does not minimax). MCTS works well for Go and many other
applications, although for games such as Chess, Checkers, and Othello, alpha-beta
with a heuristic evaluation function performs better [108].

Core Problems

• How to focus search effort where it is needed?

113
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• What if there is no efficient heuristic function?

Core Concepts

• UCT adaptive node selection
• Monte Carlo sampling
• Average as backup rule

First we will discuss the history and the challenges that led to the creation of Monte
Carlo Tree Search and how, after decades of minimax, a different paradigm emerged.
Then we discuss the algorithm, including the UCT selection rule, that governs the
exploration/exploitation trade-off. Finally, we discuss MCTS enhancements such as
RAVE and playout pattern databases.

5.1 Monte Carlo Evaluation

When Kasparov was defeated in 1997 by Deep Blue, many computer game researchers
went looking for their new Drosophila melanogaster, a new test bed to help make
progress in understanding intelligent reasoning.

Another game of strategy, the game of Go, became the focus of much research
effort. Creating a player for Go seemed a daunting task. The branching factor of
Chess is around 35 in the middle game; for Go it is around 200. The average length
of a Chess game is 80 moves by a player; for Go it is closer to 250. The state space of
Chess is estimated to be 1047; for Go it is 10170.

Go programs of around that time played at amateur level. They were designed like
Chess programs but with forward pruning because of the high branching factor: a
highly selective alpha-beta search, and heuristic evaluations based on the concept of
territory, as humans are assumed to do [472]. The program GNU Go is a well-known
example of this approach; typical designs of that time are described by Müller, Chen
and Chen, Boon, and Kierulf et al. [472, 134, 87, 363]

Since a full-width look-ahead search is infeasible due to the branching factor, most
early Go programs used aggressive forward pruning-based heuristics: (1) generate a
limited number of heuristically likely candidate moves,1 and (2) search for the optimal
policy in this reduced state space [472]. A problem with this approach is that too
many good candidates are missed. For evaluation, territory was calculated for each
leaf. Such a territory computation used slow flooding-style algorithms and life/death
calculations, much slower than the piece-square tables in Chess, necessitating the
highly selective search. A different approach was needed.

In 1993, inspired by work on randomized solutions for the traveling salesperson
problem, physicist Brügmann wrote a 9 × 9 Go program based on simulated anneal-

1 Such as: play in corner, connect via 2-point jump, and break ladder.
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Fig. 5.1 Searching a tree vs. searching a path

ing [109], and in 1990 Abramson explored random evaluations in Othello [5]. These
programs did not have a heuristic evaluation function, but played a series of so-called
Monte Carlo playouts: random moves until the end of the game was reached, where
the position was scored as win or loss. The playouts were repeated many times, and
results were averaged for each top-level move.

This approach differs fundamentally from the minimax approach, where all moves
at each node are searched, resulting in an exponential search of a tree of size wd,
from which the best child is chosen. In Brügmann’s program, instead, the program
searched a number of linear paths of size d (Fig. 5.1). Instead of using the minimax
function, the program took the average of the scores. In contrast to the heuristic
knowledge-based programs of the time, this program had no heuristic knowledge.
Although the program did not play great Go, it played better than random. The
field of computer Go generally considered this attempt at connecting the sciences of
statistical mechanics and artificial intelligence to be a curiosity. The hand-crafted
knowledge-based programs of the time performed better. For ten years not much
happened with Monte Carlo Go.

Then, in 2003 Bouzy and Helmstetter experimented again with Monte Carlo
playouts, again finding that a program can play somewhat reasonable Go moves
without a heuristic evaluation function [90].

Three years later, with the introduction of Monte Carlo Tree Search (MCTS), a
breakthrough occurred: a new kind of recursive tree search was added to the Monte
Carlo playouts. Rémi Coulom introduced MCTS as a tree-based algorithm [152, 153,
151].2 Rules for node selection, expansion, playout, and backup were specified.

The early works by Brügmann [109] and Bouzy and Helmstetter [90] showed that
averaged random playouts do provide at the least an indication of the quality of a
position. A “flat” algorithm, with playouts at the root only, did not provide great results,
but a recursive, tree based version, combined with a smart exploration/exploitation
selection rule, did.

Two of the first Monte Carlo programs were Sylvain Gelly’s MoGo [239] and Rémi
Coulom’s Crazy Stone [151]. Crazy Stone and MoGo were instantly successful, and
many other new Go playing programs were written based on MCTS [152, 130, 129,

2 Following work by Chang et al. [127], Auer et al. [23], and Cazenave and Helmstetter [125].
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Chapter Algorithm Select Backup Eval
Chap. 4 alpha-beta left to right minimax heuristic
Chap. 5 MCTS adaptive average sample
Chap. 6 DQN - - generalize
Chap. 7 self-play adaptive average generalize

Table 5.1 Heuristic-Sample-Generalize

Chapter Name MDP-tuple Reinforcement learning
Chap. 4 alpha-beta (S, A, 1, R, 1) policy, backup
Chap. 5 MCTS (S, A, P, R, 1) pol, b/u, exploration/exploitation
Chap. 6 DQN (S, A, P, R, γ) pol, b/u, expl/expl, discount, off-policy
Chap. 7 self-play (S, A, P, R, γ) pol, b/u, expl/expl, discount, off-pol, self-play

Table 5.2 MDP tuple and reinforcement learning in the chapters

473, 201, 40, 235, 553, 408]. Since the introduction of MCTS the playing strength of
programs improved rapidly to the level of weak master (2-3 dan) and stronger on the
small 9 × 9 board.

MCTS is also successful in other domains, and there has been great research
interest. Browne et al. [108] provide an extensive survey, referencing 240 publications.

Reinforcement Learning

In this chapter we look deeper into MCTS. First, let us see how MCTS fits into the
general picture of reinforcement learning methods for games (Table 5.1). MCTS
is a reinforcement learning algorithm, as are heuristic planning algorithms. In
the Introduction we mentioned three basic paradigms: heuristics, sampling, and
generalization. MCTS represents the sampling method. All three methods are
reinforcement learning methods, and with MCTS we see the second main paradigm
of reinforcement learning.

Likewise, in Chap. 3, theMarkov decision process 5-tuplewas introduced. Table 5.2
repeats the table from that chapter. We see how the exploration/exploitation trade-
off is an integral part of MCTS, in contrast to minimax, where domain-specific
enhancements were needed to achieve variable-depth search. With MCTS, we are
using more elements of the MDP tuple in the core of the paradigm.

5.2 Monte Carlo Tree Search

We will now look at the MCTS algorithm in depth. MCTS consists of four operations:
select, expand, playout, and backpropagate (Fig. 5.2). Note that the third operation
(playout) sometimes goes by the names rollout, simulation, and sampling. Back-
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Fig. 5.2 Monte Carlo Tree Search [108]

propagation is sometimes called backup. Select is the downward policy trial part,
backup the upward error/learning part of the algorithm. Soon, we will discuss the
operations in order.

Iteration vs. Recursion

As in heuristic planning, in MCTS the state space is tree shaped, starting from the
initial state s0, using the rules of the game to generate successor states. Unlike in
heuristic planning, where the tree is built by recursively adding subtrees, in MCTS
the state space is traversed iteratively, and the tree data structure is built in a step
by step fashion, node by node. MCTS is a mix between a tree and a path algorithm.
A typical size of an MCTS search is to do 1000–10,000 iterations. In MCTS each
iteration starts at the root s0, traversing the tree down to the leaves using a selection
rule, expanding an extra node, and performing a playout. The result of the playout is
then propagated back to the root. During the backpropagation, statistics at all internal
nodes are updated. These statistics are then used in future iterations by the selection
rule to go to the currently “most interesting” part of the tree.

The statistics consist of two counters: the win count w and the visit count v. During
backpropagation, the visit count v at all nodes that are on the path back from the leaf
to the root are incremented. When the result of the playout was a win, then the win
count w of those nodes is also incremented. If the result was a loss, then the win
count is left unchanged.

The selection rule uses the win rate w/v and the visit count v to decide whether
to exploit high-win-rate parts of the tree or to explore low-visit-counts parts. An
often used selection rule is UCT (Sect. 5.2.4). It is this selection rule that governs the
exploration/exploitation trade-off in MCTS.
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def monte_carlo_tree_search(root):
while resources_left(time, computational power):

leaf = select(root) # leaf = unvisited node
simulation_result = rollout(leaf)
backpropagate(leaf, simulation_result)

return best_child(root) # or: child with highest visit count

def select(node):
while fully_expanded(node):

node = best_child(node) # traverse down path of best
UCT nodes

return expand(node.children) or node # no children/node is
terminal

def rollout(node):
while non_terminal(node):

node = rollout_policy(node)
return result(node)

def rollout_policy(node):
return pick_random(node.children)

def backpropagate(node, result):
if is_root(node) return
node.stats = update_stats(node, result)
backpropagate(node.parent)

def best_child(node, c_param=1.0):
choices_weights = [

(c.q / c.n) + c_param * np.sqrt((np.log(node.n) / c.n))
# UCT

for c in node.children
]
return node.children[np.argmax(choices_weights)]

Listing 5.1 MCTS pseudo-Python [108, 157]

5.2.1 The Four MCTS Operations

Let us now look in more detail at the four operations. Please refer to Listing 5.1 and
Fig. 5.2. As we see in the figure and the listing, the main steps are repeated as long as
there is time left. Per step, the activities are as follows [108].

Select

In the selection step the tree is traversed from the root node down until a leaf is
reached where a new child is selected that is not part of the tree yet. At each internal
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state the selection rule is followed to determine which action to take and thus which
state to explore next. The UCT rule is the best-known selection rule [373].

The selections at these states constitute the policy π of actions in the look-ahead
simulation leading to the state that currently is the best.

Expand

Then, in the expansion step a child is added to the tree. In most cases only one child
is added. In some MCTS versions all successors of a leaf are added to the tree [108].

Playout

Subsequently, during the playout step moves are played in self-play until the end of
the game is reached.3 (These node are not added to the MCTS tree, but their search
result is, in the backpropagation operation.) The reward r of this simulated game
is +1 in case of a win for the first player, 0 in case of a draw, and −1 in case of a
win for the opponent. Originally, playouts were random (the Monte Carlo part in
the name of MCTS) following Brügmann’s [109] and Bouzy and Helmstetter’s [90]
original approach. In practice, most Go playing programs improve on the random
playouts by using databases of small 3 × 3 patterns with best replies and other fast
heuristics [239, 152, 129, 622, 154].

Small amounts of domain knowledge are used after all, albeit not in the form of a
heuristic evaluation function.

Backpropagation

In the backpropagation step, reward r is propagated back upwards in the tree, through
the nodes that were traversed down previously. Note that two counts are updated: the
visit count, for all nodes, and the win count, depending on the reward value.

MCTS is on-policy: the values that are backed up are those of the nodes that were
selected (except for RAVE, at the end of this chapter).

3 Note that this self-play is like the self-play in Chap. 4 where in minimax and alpha-beta the
opponent moves for finding the best reply are found by the same algorithm. Unlike minimax, here
only one, randomly chosen, successor is played out: a path, not a tree. In Chap. 7 we will see a
different kind of self-play, where AlphaZero uses self-play loops to train a neural network evaluation
function from scratch.
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Code

Many websites contain useful resources on MCTS, including example code (see
Listing 5.1).4 The pseudocode is from an example Tic Tac Toe program (only the
main methods are shown). The MCTS algorithm can be coded in many different
ways. Listing 5.1 [157] follows the survey paper of Browne et al. [108]. The four
main operations of MCTS are clearly indicated.

5.2.2 Policies

At the end of the search, after the required number of iterations has been performed,
or when time is up, MCTS returns the value and the action with the highest visit
count.5 The action of this initial state s0 constitutes the policy π(s0) (Sect. 3.2.1).

It should be pointed out that there are multiple policies in MCTS, and the word
“policy” is used to describe these different kinds. During the MCTS look-ahead
simulation a second policy was used. The actions selected by the selection rule in the
tree form a selection policy. Additionally, the actions in the playout phase are also a
policy. This third type of policy is sometimes called the default policy.

5.2.3 Example

Let us illustrate the working of MCTS with an example. Figure 5.3 gives an example
of a few MCTS iterations. (The UCT formula is described in the next subsection.) In
the example we see how MCTS traverses the state space in iterations, how the UCT
formula adapts between exploiting high win values and exploring unseen parts of the
tree, and how the statistics are averaged in the backpropagation phase.

5.2.4 UCT Selection Rule

The adaptive exploration/exploitation behavior of MCTS is governed by the selection
rule. One of the most popular selection rules is the UCT formula.

UCT was introduced in 2006 by Kocsis and Szepesvári [373]. The paper provides
a theoretical guarantee of eventual convergence to the minimax value. The selection

4 https://int8.io/monte-carlo-tree-search-beginners-guide/

5 An alternative would be to return the action with the highest win rate. However, the visit count
takes into account the win rate (through UCT) and the number of simulations on which it is based.
A high win rate may be based on a low number of simulations, and will thus be high variance. High
visit count will be low variance. High visit count implies high win-rate with high confidence, high
win rate may be low confidence [108].

https://int8.io/monte-carlo-tree-search-beginners-guide/
https://int8.io/monte-carlo-tree-search-beginners-guide/
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Fig. 5.3 MCTS starts at the root, does not select a move because there are no children in the tree,
but expands a random child. Assume a is expanded. Then a random playout is performed at node a.
Assume node d is the first node in the playout. In this tiny state space, the random path that is played
out consists only of node d and is a terminal node. The value at node d is a win, so backpropagation
increments all win values of the path to the root by 1 (nodes a, r) and also the visit counts. The
second iteration starts at root r , where there are unexpanded children, so it expands a node, which
is node b. At b a playout is performed, which ends up at, say, e, whose value is a loss. This gets
propagated (no win values change, and the visit counts of b, r are incremented). Next, the third
iteration starts. At the root all children are expanded, so we select a child. We select a since its UCT
value is 1/1+ 1×

√
ln 2/1 = 1.83, and b’s value is 0/1+ 1×

√
ln 2/1 = 0.83. There are unexpanded

children so it expands a node, assume it picks node c, a win. The values are updated (a’s win and
visit count are incremented to 2 and 2, r’s to 2 and 3). Next, the fourth iteration selects node a since
the UCT value of a is 2/2 + 1 ×

√
ln 3/2 = 1.63 and b is 0/1 + 1 ×

√
ln 3/1 = 1.04. It finds that

there are unexpanded children of a in the tree, so it expands child d, a win, and updates the win and
visit values of d, a, and r accordingly. It continues with more iterations until time is up.

rule was named UCT, for Upper Confidence bounds for multi-armed bandits applied
to Trees.

The exploration/exploitation trade-off is central in many reinforcement learning
algorithms. The selection rule determines the way in which the current values of the
children influence which parts of the tree will be explored more. The UCT formula is

UCT( j) =
wj

nj
+ Cp

√
ln n
nj
,

where wj is the number of wins in child j, nj is the number of times child j has been
visited, n is the number of times the parent node has been visited, and Cp ≥ 0 is a
constant (the tunable exploration/exploitation parameter). The first term in the UCT
equation, the win rate, is the exploitation term. A child with a high win rate receives
through this term an exploitation bonus. The second term is for exploration. A child
that has been visited infrequently has an exploration bonus. The level of exploration
can be adjusted by the Cp constant. A low Cp does little exploration; a high Cp has
more exploration. Section 5.3.1 goes deeper into the choice for values for Cp. The
selection rule then is to select the child with the highest UCT sum (the standard
argmax function).
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Fig. 5.4 A multi-armed bandit

Fig. 5.5 Explore or exploit? [763]

The UCT formula balances win rate (wj

n j
) and “newness” (

√
ln n
n j

) in the selection of
nodes to expand.6 Many alternative selection rules have been proposed. Alternatives
for UCT are variants such as Auer’s UCB1 [22, 23, 24] and P-UCT [561, 440]. Most
rules are based on bandit theory, which we will briefly touch upon next.

Multi-armed Bandit Problem

The work on UCT and upper confidence bounds (UCB) is based on bandit theory, a
topic well studied in the field of stochastic scheduling and decision theory [23, 357,
127]. The theory provides a systematic means to optimize the search strategies to
explore more promising parts of the tree, while still ensuring exploration. Seminal
work has been done by Lai [394, 395], proving important optimality results.

A multi-armed bandit is a mathematical model whose name refers to a casino slot
machine, but with more than one arm (Fig. 5.4). Each arm can have a different payout.

6 The square-root term is a measure of the variance (uncertainty) of the action value. The use of
the natural logarithm ensures that, since increases get smaller over time, old actions are selected
less frequently. However, since logarithm values are unbounded, eventually all actions will be
selected [659].
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The probability distribution of the payout of the arms is also not known. As arms
are played, the player gets more information as to their payout probability. However,
each play also costs money. The multi-armed bandit problem then is to select the best
arm in as few tries as possible (Fig. 5.5). Multi-armed bandit theory thus analyzes
situations of short-term cost versus long-term gain.

Consider the following situation: One arm gives 10 dollars with probability 0.1,
while another gives 1000 dollars with probability 0.002. After 50 tries, the first arm
probably yielded some win, whereas the second probably did not. You may then want
to play mostly the first arm, but this is not optimal in the long run, since the expected
reward of the second one is actually twice as high. But to learn this, you will need to
sample the second arm for quite a while.

Multi-armed bandits have a classic reinforcement learning exploitation/exploration
trade-off: should I play the arm that I know to give high payout so far, or should I play
arms whose payout I do not know but may have higher payout? In a paper Lai and
Robbins [394] construct an optimal selection policy (optimal in the sense that it has
maximum convergence rate to the arm with the highest mean) for a case where the
reward distributions of the arms is known. An active field of research subsequently
studied relaxations of this condition.

In MCTS the multi-armed bandit problem is applied in a recursive setting, in a
tree of decisions. Each state is a bandit, and each action (child) is an arm.

5.2.5 The Impact of MCTS

Before 2006,mainstream game programming researchwas based on heuristic planning.
The minimax backup rule was the main paradigm, spawning a large effort to formalize
and code heuristic human knowledge. The conventional wisdom was that human
knowledge should be captured in heuristics, and that no move should be missed (due
to the tactical nature of the popular perfect-information games that were used at the
time). There was no overarching principle behind the many heuristic enhancements,
except that they should be efficient to code, and a means to make the search more
selective should be tried, in order to overcome the horizon problem.

When MCTS was introduced, it provided an elegant framework for selective
search, amenable to theoretical analysis and successful in practice. MCTS follows a
different, non-exponential paradigm. Minimax is based on searching all successor
states and is an inherently exponential tree searcher, with a

√
wd best-case time

complexity for alpha-beta. MCTS is a sampling algorithm. It searches paths from the
root to the terminals, not trees. This non-exponential principle circumvents the need
for the plethora of heuristic search enhancements trying to curtail the exponential
time complexity of minimax. Equally important, the sampling also removed the need
for heuristic evaluation.

The success of the new approach of selective playout sampling created a paradigm
shift in the world of computer game playing. In Go, and in many other games, it
turned out that some moves can be missed, or rather, that most moves can be missed,
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Fig. 5.6 Performance of MCTS programs [235]

as long as on average a reliable picture of the state space emerges. The paradigm
changed from an exponential O(wd) to a polynomial O(d) complexity. Exponential
worked for Chess; polynomial worked for Go.7 The new paradigm worked so well
that no human knowledge in the form of heuristics was needed (or at least, initially).

The dominant language of the field changed with the introduction of MCTS. The
graph-based language of nodes, leaves, and strategies changed to state, action, and
policy.

Applications of MCTS

The introduction of MCTS improved performance of Go programs considerably,
from medium amateur to strong amateur. Where heuristics-based GNU Go played
around 10 kyu, Monte Carlo programs progressed to 2-3 dan8 in a few years’ time.

On the small board, 9 × 9, Go programs achieved very strong play. Figure 5.6
shows a graph of the improvements in the performance of Go programs on the large
19 × 19 board [235]. Performance did not improve much beyond the 4-5 dan level,
despite much effort by researchers. It was thought that perhaps the large action space
of the 19 × 19 board was too hard for MCTS. Many enhancements were considered,
for the playout phase, and for the selection. One of the enhancements that was tried
was the introduction of neural nets. As we will see in Chap. 7, in 2015 this became
successful.

7 In practice, both minimax and MCTS are made into anytime algorithms that produce a best move
when stopped. For minimax, iterative deepening transforms it into an anytime algorithm; for MCTS,
the algorithm is already an anytime algorithm that performs an iteration of playouts.
8 Absolute beginners in Go start at 30 kyu, progressing to 10 kyu, and advancing to 1 kyu. Stronger
amateur players then achieve 1 dan, progressing to 7 dan, the highest amateur rating for Go.
Professional Go players have a rating from 1 dan to 9 dan, written as 1p–9p.
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Name Principle Applicability Effectiveness
expl/expl expl/expl/N small/large searches all MCTS
RAVE statistics sharing early phase all MCTS
play-out db small patterns domain specific domain dependent
adaptive expl/expl variable Cp general all MCTS
parallelism parallel search general all MCTS

Table 5.3 MCTS enhancements

MCTS revolutionized the world of heuristic search. Previously, in order to achieve
best-first search, one had to find a domain specific heuristic to guide the search in a
smart way. With MCTS this was no longer necessary. Now a general method existed
that could find the promising parts of the search without a domain-specific heuristic,
just by using statistics of the search itself.

MCTS quickly proved successful in other games, both two agent and single agent:
for video games [130], for single player applications [584], and for many other
games such as EinStein würfelt nicht [429], Settlers of Catan [666], Havannah [428],
Amazons [367], and mathematical games such as the Voronoi game [91].

5.3 *MCTS Enhancements

Basic MCTS already showed much promise, and researchers immediately found
ways to improve performance of the basic algorithm further. They focused on action
selection and on playout. We will discuss some of these enhancements. Table 5.3
shows the MCTS enhancements that we will discuss.

First we will discuss tuning of Cp, the exploration/exploitation parameter, and
then we will discuss RAVE, a method to speed up the distribution of statistics at the
early stage of an MCTS search. After that, we will discuss playout databases, adaptive
Cp , and parallelism.

5.3.1 Exploration/Exploitation

The search process of MCTS is guided by the statistics values in the tree. MCTS
discovers during the search where the promising parts of the tree are. The tree
expansion of MCTS is an inherently variable-depth and variable-width search process.
To illustrate this we show a picture of a snapshot of the search tree of an MCTS
optimization from [388, 722]. In Fig. 5.7 we see that some parts of the tree are
searched more deeply than others. The tree in the illustration is part of an expression
optimization problem in a symbolic algebra system [721].

An important element of MCTS is the exploration/exploitation trade-off that can
be tuned with the Cp parameter. The effectiveness of MCTS depends on the choice
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Fig. 5.7 Adaptive MCTS tree [388]

of this parameter. Typical initial choices for Go programs are Cp = 1 or Cp = 0.1;
programs that use RAVE found Cp = 0 to works best [108], although in AlphaGo
we will see highly explorative choices such as Cp = 5. In general, when compute
power is low, Cp should be low, and when more compute power is available, more
exploration (higher Cp) is advisable.

Kuipers et al. [388, 722] have performed experiments to plot the relation between
Cp and the number of MCTS node expansions N . When Cp is small, MCTS favors
parts of the tree that have been visited before and are known to be good; when Cp

is large, unvisited parts of the tree are favored. Figure 5.8 shows four plots of an
optimization for a large symbolic algebra polynomial. The plots show results from a
large number of optimization runs, all starting with a different random seed. On the
y-axis the number of operations of the optimized polynomial is shown; the lower this
number is, the better. The lowest number found is close to 4000. This minimum is
achieved in the case of N = 3000 iterations for a value of Cp with 0.7 ≤ Cp ≤ 1.2.
Dots above this minimum represent a suboptimal search result.

For 300 iterations per data point (left upper panel), some structure is visible, with
a minimum emerging at Cp ≈ 0.4. With more tree expansions (see the other three
panels) the picture becomes clearer, and the value for Cp for which the best answers
are found becomes higher; the picture appears to shift to the right. For low numbers of
tree expansions (see again upper left panel) there is almost no discernible advantage
of setting the exploration/exploitation parameter at a certain value. For 1000 iterations
(see upper right panel) MCTS works best when exploitative (the left part of the plot
achieves the lowest number of operations). As the number of iterations N is larger
(the two lower panels) MCTS achieves better results when its selection policy is more
explorative, to try to get out of local minima. For the graphs with iterations of 3000
and 10000 the range of good results for Cp becomes wider, indicating that the choice
between exploration/exploitation becomes less critical.

For small values of Cp, such that MCTS behaves exploitatively, the method gets
trapped in one of the local minima as can be seen from scattered dots that form
“lines” in the left-hand sides of the four panels. For large values of Cp, such that
MCTS is more explorative, many of the searches do not lead to the global minimum
as can be seen from the cloud of points on the right-hand side of the four panels.
For intermediate values of Cp ≈ 1, MCTS balances well between exploitation and



5.3 *MCTS Enhancements 127

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

Fig. 5.8 Scatter plots ofCp for N = 300, 1000, 3000, and 10,000 node expansions per MCTS run.
Each dot is one MCTS run to optimize a large polynomial. Lower is better. Exploitation (small Cp )
works best in small trees (N = 300), exploration in large trees (N = 10, 000) [388]

exploration and finds almost always an ordering that is very close to the best one
known [388, 722].

5.3.2 Selection: RAVE

We will now look at another enhancement. One of the best known enhancements to
MCTS is RAVE, or rapid action value estimation. RAVE addresses the problem that
initially, at the start of the search, all visit and win rate counts of the nodes are zero
and MCTS is expanding with little guidance of where to go. The early part of MCTS
thus unfolds in the dark. The sooner search information is available throughout the
tree, the better the children that will be selected and the more efficient the search will
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be. Two closely related techniques have been developed: all moves as first (AMAF)
and rapid action value estimation (RAVE). They allow for the node statistics (win
count and visit count) to be updated more quickly.

Already in [109] Brügmann gives the first description of AMAF in his Monte
Carlo Go. Gelly and Silver [236] report on the use of AMAF in MCTS, combining
it with tree search and UCT, in a Go program. Helmbold and Parker-Wood [288]
also find AMAF to be effective in Go. An AMAF update of the win and visit counts
updates not only the counts of nodes on the playout path to the root of the MCTS tree,
but also siblings of those nodes that occurred at any position in the playout. Statistics
are updated for all actions of a state that occurred in the playout. Since playouts tend
to touch about half the board for a side, this means that many extra nodes in the
MCTS tree are updated by AMAF. AMAF works in the backup operation, in order
to influence node selection in the UCT formula. Through AMAF many more nodes
receive the statistics, allowing UCT to make a more informed exploration/exploitation
decision. AMAF is learning off-policy.

Being off-policy, the cost of AMAF is a loss of precision. Branching out the win
and visit statistics to nodes that are not exactly on the path, but are loosely related,
reduces the precision of the algorithm. A better situation would be to only use AMAF
at the start of the search, as warm up, and then to not use AMAF anymore when
MCTS has sufficient statistics to work well. This is the approach that RAVE follows.
At the start it use AMAF-like spreading of updates, whose use is governed by a
parameter that decreases as nodes are expanded. See [288, 129, 108] for a more
in-depth discussion of AMAF and its variants, and [236, 238] for their variant RAVE.
Gelly and Silver further extend the UCT formula to take advantage of prior knowledge,
making use of pattern databases that are trained from grandmaster games.

In RAVE the nodes whose statistics are updated are not just the nodes that were
selected by the policy. RAVE causes limited off-policy learning to occur in MCTS.

5.3.3 Playout: Pattern Database

Another enhancement concerns the playout phase. Sinnce the playout phase chooses
moves randomly, playouts are quick and no heuristic has to be devised. However,
should such quick heuristics exist, they will almost surely achieve better play than
random moves.

Most Go programs replace random playouts by heuristics or databases of small
(often 3×3) patterns. The patterns are learned off-line by supervised machine learning
from grandmaster games. These patterns check each position in the 3 × 3 pattern
around where the last move was played.

Gelly et al. [239, 237] describe how pattern databases are used for better playouts
in MoGo, achieving grandmaster performance on the small 9 × 9 Go board.
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5.3.4 Adaptive Exploitation/Exploration

The Cp parameter of MCTS governs the exploration/exploitation trade-off. Ruijl et
al. [568] describe a scheme in which Cp decreases towards zero over the course of the
search, starting out favoring exploration, and becoming more exploitative towards the
end of the search. This focuses search effort towards building deeper trees towards
the end. This is beneficial in an application where large formulas are optimized with
MCTS [568, 569, 567].

Such adaptive parameters are also used in simulated annealing, ε-greedy explo-
ration, and other reinforcement learning methods.

5.3.5 Ensembles and Parallelism

One way to improve performance without actually having to change the algorithm
is to parallelize it. A parallel algorithm can run faster when parallel hardware is
available, such as a multi-core or cluster computer.

MCTS consists of many search iterations starting at the root. These searches are
semi-independent. Through the win and visit counts the iterations communicate
search results. The searches can in principle be run independently, altough the
individual iterations miss out on some of the accumulated win and visit statistics
in the other iterations. Nevertheless, MCTS appears quite well suited for speedup
through parallelization. Indeed, most large Go programs run the iterations in parallel.

Traditionally, the literature identifies three approaches to parallelization: root
parallelism, tree parallelism, and leaf parallelism [131, 454]. In root parallelism,
processors perform MCTS searches independently, not sharing a tree (thus reducing
synchronization and communication, at the cost of less efficient searches because of
less win/visit statistics).

In tree parallelism the tree is shared, at the cost of more synchronization and
communication, but also leading to a more efficient search [614].

Leaf parallelism again shares no information, and performs independent playouts
in parallel [556].

Mirsoleimani et al. [452, 456] provide a unified view on tree and root parallelism,
solving some of its problems, and allowing hybrid versions of root and tree parallelism
to be created with pipeline parallel MCTS.

Although root parallelism may seem inefficient due to the lack of sharing of
information, there is an interesting relationwith ensemble search. Fern andLewis [208]
and Mirsoleimani et al. [451] study ensembles of independent MCTS searches, in
which the tree is searched independently, in relation to exploration. Ensembles of
MCTS searches explore more of the tree than a single MCTS search does, because
the searches are independent. Root parallel searches are also independent; they share
no information, just as ensemble search. Thus, if one would like to achieve a certain
exploration/exploitation balance in a parallel setting, all one has to do is to use root
parallelism with a reduced Cp parameter. The reduced Cp dials back the exploration
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of each individual search, and one gets more exploration inherent in the independent
(ensemble or parallel) searches.

5.3.6 Rollout Algorithms

We are at the end of this section on MCTS enhancements. There is a final observation
to be made, which is not an enhancement, but more a philosophical curiosity.

Alpha-beta and MCTS are usually regarded as algorithms from different classes,
of an almost incomparable nature. Alpha-beta is a recursive depth-first tree traversal
algorithm. MCTS is a path-traversal algorithm, iteratively invoked until the search
budget is exhausted, starting from the root and returning to it after each pass.
Alpha-beta is rigid left-to-right; MCTS is inherently adaptive and selective, using
UCT.

MCTS is part of a family of rollout algorithms [73]. In rollout algorithms the
starting point is a base policy, whose performance is evaluated in some way, possibly
by simulation. Based on that evaluation, an improved policy is obtained by one-step
look-ahead.

In 1995, Rivest [555] published an iterative approach for approximation of the
minimax value, with good results. Twenty years later, inspired byMCTS, Huang [311]
presented a rollout formulation (path-based) of alpha-beta. In this formulation the
algorithmic structure of the rollout version of alpha-beta and MCTS look strikingly
similar. The two differences are the selection rule (trial) and the type of values that are
backed up (error). Alpha-beta has a left-first selection rule; MCTS selects the child
with the highest UCT value. Alpha-beta backs up upper bounds and lower bounds;
MCTS backs up node counts and win counts.

Listing 5.2 shows MCTS in compact pseudo-Python (after [311]). Listing 5.3
shows alpha-beta rollout code in pseudo-Python (after [311]).9

Huang’s formulation is important because it elegantly captures the difference
between these two important algorithms in a single algorithmic framework. His
formulation also highlights that the two algorithms have more in common than
previously assumed, even though they come from different paradigms.

5.4 Practice

Below are some questions to check your understanding of this chapter. Each question
is a closed question where a simple, one sentence answer is possible based on the
text in this chapter.

9 Note that the code is pseudo-Python. It looks like Python, but, for the sake of compactness, some
essential functions are missing, such as initializations of counters and bounds, tree manipulation
code, and max and min functions for all children. The listings contain some code duplication to
highlight similarity of algorithmic structure.
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# python-like pseudo-code of MCTS. After [Huang 2015]
def mcts(root, budget):
while root.n < budget:

g = rollout(root)
return g

def rollout(s):
if s.isleaf():

g = playout(s)
elif s.ismax():

c_select = s.argmax_c(c.avg + cp * sqrt(log(s.n)/(2*c.n)))
g = rollout(c_select)
s.avg = s.n/(s.n+1)*s.avg + 1/(s.n+1)*g
s.n = s.n + 1

elif s.ismin():
c_select = s.argmin_c(c.avg - cp * sqrt(log(s.n)/(2*c.n)))
g = rollout(c_select)
s.avg = s.n/(s.n+1)*s.avg + 1/(s.n+1)*g
s.n = s.n + 1

return g

Listing 5.2 Rollout MCTS in pseudo-Python [311]

# python-like pseudo-code of alpha-beta. After [Huang 2015]
def alphabeta(root):
# all bounds should be initialized to (-inf, +inf) (not shown)
while root.lb < root.ub:

rollout(root, root.lb, root.ub)
return root.lower

def rollout(s, alpha, beta):
if s.isleaf():

s.lb = s.playout()
s.ub = s.playout()

elif s.ismax():
c_select = first([c for c in s.child() if max(alpha, c.lb) <

min(beta, c.ub)])
rollout(c_select, max(alpha, c_select.lb), min(beta, c_select

.ub))
s.lb = max([c.lb for c in s.child()])
s.ub = max([c.ub for c in s.child()])

elif s.ismin():
c_select = first([c for c in s.child() if max(alpha, c.lb) <

min(beta, c.ub)])
rollout(c_select , max(alpha, c_select.lb), min(beta, c_select

.ub))
s.lb = min([c.lb for c in s.child()])
s.ub = min([c.ub for c in s.child()])

return

Listing 5.3 Rollout alpha-beta in pseudo-Python [311]
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Questions

1. How are Go players ranked?
2. What is the difference between tactics and strategy in games?
3. What is the difference between exponential and polynomial time complexity? Can

you name an algorithm for each?
4. What are the four steps of MCTS?
5. Describe two advantages of MCTS over rigid heuristic planning.
6. How is MCTS recursive?
7. Describe the function of each of the four operations of MCTS.
8. Give the UCT formula.
9. How does UCT achieve trading off exploration and exploitation? Which inputs

does it use?
10. When Cp is small, does MCTS explore more or exploit more?
11. For small numbers of node expansions, would you prefer more exploration or

more exploitation?
12. What does RAVE do?
13. What is the role of pattern databases in the playout phase?
14. Give three ways in which the performance of MCTS can be enhanced.
15. What is a rollout algorithm?

Exercises

For the exercises in this chapter we will use two code bases: Browne et al. [108] and
Michi. The MCTS implementation of Browne is simple, clear, and well suited to
learn MCTS with. The example code implements Othello and Nim, but not Go. The
Michi implementation does implement Go. It is a minimalist implementation of an
MCTS Go program.

1. Implement MCTS, for example from here.10 Familiarize yourself with the code,
and implement a game of Othello.

2. Study the impact of search effort. Make a graph of Elo rating on the y-axis and N
the number of node expansions on the x-axis (play different N numbers of node
expansions against each other).

3. Study the impact of exploration and exploitation. For a fixed search budget, plot
Elo rating for four different Cp values: {0.1, 0.7, 1.0, 3.0}.

4. Implement a Hex game player with MCTS. See the Hex page11 for information.
See also [106, 280, 314].

5. Go to Michi12 and download the code. Play a game against the computer on 9 × 9
and on 19 × 19. Who won? Is your computer fast enough for the big board?

6. Do the preceding Othello exercises (1–3) also for 9 × 9 Go.

10 https://int8.io/monte-carlo-tree-search-beginners-guide/

11 https://www.maths.ed.ac.uk/~csangwin/hex/index.html

12 https://github.com/pasky/michi

https://int8.io/monte-carlo-tree-search-beginners-guide/
https://www.maths.ed.ac.uk/~csangwin/hex/index.html
https://github.com/pasky/michi
https://int8.io/monte-carlo-tree-search-beginners-guide/
https://www.maths.ed.ac.uk/~csangwin/hex/index.html
https://github.com/pasky/michi
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Summary

In this chapter the dual challenges of (1) rigid search and (2) lack of an efficient
heuristic evaluation function were addressed. We introduced a new paradigm, the
adaptive sampling paradigm, with the MCTS algorithm. Where minimax needed
enhancements and tweaks to focus the search effort on the important part of the state
space, MCTS is inherently selective. The most popular selection rule is UCT, which
provides a good exploration/exploitation trade-off. UCT is based on a large body of
bandit theory.

The development of MCTS was driven by Go, which emerged as the new
Drosophila of AI, after Deep Blue beat Kasparov in Chess.

The fact that MCTS does not need a heuristic evaluation function allows it to work
for Go, and for other domains for which no efficient heuristic function was found.
MCTS caused a breakthrough in Go performance, achieving master level play on the
small 9 × 9 board.

Traditionally, MCTS has four operations: select, expand, playout, and backup
(although we also showed a more compact rollout formulation, providing a link to
alpha-beta [311]).

As before, enhancements are important to achieve the highest possible performance.
Two well-known enhancements are RAVE, to speed up the propagation of node
statistics in the first part of the search, and databases of small patterns in the playout
operation.

The previous chapters focused on model-based reinforcement learning. Heuristic
planning and adaptive sampling need a simulator with the rules of the game as the
transition function.

Historical and Bibliographical Notes

MCTS was first developed for Go. Soon other games and optimization applications
were also found to benefit from the flexible adaptivity of MCTS and especially from
the fact that no domain-specific heuristic evaluation function was needed. See for
some examples [108, 20, 130, 630, 388, 129, 466, 467].

A highly cited survey on MCTS is Browne et al. [108]. It has more than 200
references to papers on MCTS and provided a wealth of knowledge on MCTS, highly
recommended. Coulom introduced the MCTS algorithm [151], and he implemented
it in his program Crazy Stone. Gelly et al. wrote another Monte Carlo-based program,
MoGo [239, 235], which was successful in tournaments against other programs, and
against human Go players. Gelly and Silver published an influential paper on pattern
databases and AMAF/RAVE [236, 238].

Of prime importance in MCTS is the selection rule, which gives it adaptive
selectivity. UCB1 and UCT are selection rules based on bandit theory, derived
in [373, 22]. In their seminal 2006 paper, Kocsis and Szepesvári introduce UCT [373].
Most Go programs use some form of parallel search. There has been quite some
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research into parallelization of MCTS; see, e.g., Chaslot et al. and Mirsoleimani
et al. [131, 456]. Ensemble MCTS is related to parallel MCTS and exploration;
see [208].

On-line there are many resources to be found for programming a computer Go
program. At Senseis there is much information on how to write your own Go
program.13

13 https://senseis.xmp.net/?ComputerGoProgramming

https://senseis.xmp.net/?ComputerGoProgramming
https://senseis.xmp.net/?ComputerGoProgramming


Chapter 6
Function Approximation

The previous chapter featured evaluation by random playouts. In this chapter we try
to improve upon random playouts, using function approximation methods. The aim of
this chapter is ambitious: we focus on large, high-dimensional, end-to-end, problems;
actions must be found for states without hand-crafted intermediate heuristic features.

Deep learning is a method to approximate an objective function by automated
discovery of features. This objective function can be a regression function, a classifier,
a value function, or a policy function. Classification functions are used in supervised
image recognition tasks, and value and policy functions are used in reinforcement
learning in games.

Deep learning has been quite succesful in image recognition, yielding methods
that classify images better than humans. In games, deep learning has found policy
functions that play vintage Atari arcade games as good or better than humans. Deep
learning is a driving force of the AI revolution.

End-to-end learning means that we learn output labels and actions directly from
raw pixel inputs, un-preprocessed, without intermediate hand-crafted heuristics.
End-to-end learning is computationally intensive. Progress has been made possible
by advances in compute power in CPUs and especially in GPUs around the turn of
the millennium. Furthermore, around that time large datasets of hand-labeled data
were created, providing the necessary training data. Finally, algorithmic advances
solved key problems in deep learning. Together with the increase in compute power
and big data these developments enabled the deep learning revolution.

To quote one of the central works of this area, Mnih et al. [461]: “Recent
breakthroughs in computer vision and speech recognition have relied on efficiently
training deep neural networks on very large training sets. The most successful
approaches are trained directly from the raw inputs, using lightweight updates based
on stochastic gradient descent. By feeding sufficient data into deep neural networks,
it is often possible to learn better representations than hand crafted features.”

135
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Core Problem

• Can we find end-to-end value/policy functions for high-dimensional problems?

Core Concepts

• Automated feature discovery through deep learning
• Convolutional neural network (CNN) and deep Q-network (DQN)
• Overfitting and stable learning

Many of the advances in deep reinforcement learning started in supervised learning.
Therefore the first part of this chapter is devoted to an introduction to the advances
in deep supervised learning. A good understanding of deep learning is important in
modern reinforcement learning; we will spend quite some effort on this topic.

6.1 Deep Supervised Learning

Towards the end of Chap. 3, in Sect. 3.3.1 we discussed ways to approximate
functions when the state space becomes so large that it is unlikely that states,
when tested, will have been seen before in training. Statistical learning theory
provides a framework for machine learning methods such as supervised learning and
reinforcement learning [572, 227].

Supervised learning is the task of learning a regression or classification function
that maps an input to an output based on example input-output pairs [572, 250, 81].
Our goal is to solve the inverse function problem: find a function to fit its outputs. For
example, the training set may be a set of pictures, labeled with a description, such as
CAT or DOG. Because the learning process learns a function from an explicit set of
labeled training data it is called supervised, since the labels supervise the learning
process.

6.1.1 Generalization and Features

Supervised learning is a basic and widely studied problem in artificial intelligence.
A wide range of algorithms exist for supervised learning: support vector machines,
linear regression, Bayesian classification, decision trees, random forests, nearest
neighbor, and artificial neural networks, to name just a few [572, 81, 272].

Since around 2010 artificial neural networks have achieved impressive results in
image recognition, speech recognition, and game playing. We will focus on deep
neural networks in this chapter.
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Chapter Algorithm Select Backup Eval
Chap. 4 alpha-beta left to right minimax heuristic
Chap. 5 MCTS adaptive average sample
Chap. 6 DQN - - generalize
Chap. 7 self-play adaptive average generalize

Table 6.1 Heuristic-Sample-Generalize

We will first discuss learning as a generalization task, and then how generalization
can be viewed as a feature discovery task.

Learning as Generalization from Training Set to Test Set

Learning is the adaptation of behavior from experience. Supervised learning is closely
related to generalization, which is the formulation of common properties in instances
of data. Table 6.1 shows (again) the main paradigms of this book, to show how
generalization is contrasted to the other paradigms.

Supervised learning learns a continuous regression or a discrete classification
function. Regression finds the relation between examples and a continuous variable;
classification finds the relation between examples and a set of discrete classes.1

A standard method in machine learning to assess the quality of a categorization
algorithm is to divide the dataset into a training part and a test part (k-fold cross
validation) [81]. A typical split is 90% of the data for the training set, and the
remaining 10% for the test set. The algorithm is trained on examples from the
training part. The quality of the resulting approximation function is then tested on
the remaining (unseen) 10%, to see how well it generalizes. If the percentage of
correct predictions on the test set is about the same as on the training set, then the
approximation generalizes well to the test set. If not, the training process may have
underfitted or overfitted (captured too little of the signal or too much of the noise, see
Sect. 6.1.7).

Deep learning provides methods to generalize over data to approximate regression
and classification functions. It does so by discovering common features. Let us see
how this is achieved.

Generalization as Feature Discovery

Generalization can be achieved through the discovery of common features. Tradi-
tionally, feature discovery is a labor-intensive task. Common features in a dataset are
painstakingly identified by hand, by one by one looking at the examples in the dataset,
and by writing small algorithms that recognize the features. For image data, such

1 Also in continuous regression problems the test examples will not be seen at training time, and
approximation is necessary.
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hand-identified features are typically simple features such as lines, squares, circles,
and angles. These features can then be used in decision trees to construct recognizers
to classify an image.

As we shall see in the next subsections, deep learning has allowed this manual
process to be automated. We have just described machine learning as a generalization
task. By finding commonalities we can group the instances into a smaller number of
higher-level concepts. These concepts are more abstract, more general, than the many
lower-level instances.2

In the context of image recognition the commonalities are called features, and the
process of learning higher-level abstractions is called representation learning [405].
Deep nets can perform feature recognition through a layered hierarchy of increasingly
abstract representations [293, 405]. Today deep learning is one of the core technologies
that is used in automated function approximation.

From a scientific point of view, the hand crafting and hand tuning is undesirable as
it is hard to reproduce. Hand crafting depends on expert knowledge, in contrast to the
training of approximators by an optimization algorithm such as stochastic gradient
descent, which can be reproduced easily by running the algorithm again.

Furthermore, and most importantly, the hand-crafted heuristics do not generalize
well to other domains, whereas deep feature recognizers have been shown to work
well in many domains (although they typically have to be retrained for each domain).

Finally, there may be problem domains where our domain intuition fails to come
up with efficient features. We may not understand our own human interpretations
well enough to come up with efficient algorithms. This was the case in Go, as we saw
in the previous chapter.

End-to-End Learning

End-to-end learning, or classification directly from high-dimensional raw pixel data, is
computationally quite demanding, as opposed to learning based on intermediate (lower
dimensional) hand-crafted features. You may recall that in Chap. 4 heuristic value
functions were used to search the large state spaces of Chess and Checkers (Sect. 4.1.3).
Automated tuning of features was discussed as a hybrid method between hand-crafted
heuristic functions and end-to-end feature learning. The features themselves are
still hand crafted, but the coefficients (weights) ci of the features in the polynomial
evaluation function h(s) = c1 × f1(s) + c2 × f2(s) + c3 × f3(s) + . . . + cn × fn(s)
are learned by supervised learning. The difference is that the features in the Chess
evaluation function are manually designed heuristics, combined in a linear function
whose coefficients are manually tuned, whereas the features in a deep net are trained
(generalized) on a large set of examples in an automatic training process.

We will now see in more detail how neural networks can perform automated
feature discovery. First we will describe the general architecture for shallow artificial
neural networks.

2 Feature discovery is related to dimensionality reduction, a technique that can be used for
visualization of complex data [564, 672, 433].
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Fig. 6.1 Biological neuron [732]

6.1.2 Shallow Neural Network

The architecture of artificial neural networks is inspired by the architecture of
biological neural networks, such as the human brain. Neural networks consist of
neural core cells that are connected by nerve cells (see, for example, [49]). Figure 6.1
shows a drawing of a biological neuron, with two nuclei, an axon, and dendrites [732].

Figure 6.2 shows a simple fully connnected artificial neural network, with an input
layer, an output layer, and a single hidden layer. A neural network with a single hidden
layer (or a few, 2–3) is called shallow. When the network has more hidden layers, it is
called deep.

Just as computer Chess, neural networks research has a long history, andmuchwork
was done before they were successful. Already in 1943 McCulloch and Pitts [444]
provided a computational model for neural networks. The history of the development
of neural networks is quite interesting and rich, with high ups and deep downs.
Training neural networks is a problem that has been studied by many researchers. The
2018 Turing award was awarded to Bengio, Hinton, and LeCun for their work in this
area (Fig. 2.3). Section 6.5 provides pointers to some of the literature.

The most popular training method is based on gradient descent, of which the
stochastic version performs very well in deep neural networks. Much research has
been done on algorithms for efficient gradient descent [756]. Stochastic gradient
descent (SGD) and backpropagation have allowed the training of multi-layer networks,
paving the way for deep learning’s success.

Stochastic Gradient Descent and Backpropagation

We will now discuss the networks and their training algorithms in more detail.
Neural networks consist of neurons and connections, typically organized in layers

(as in Fig. 6.2). The neurons act as functions that process their input signal as a
weighted combination of inputs, producing an output signal. This function is called
an activation function. Popular activation functions are the rectified linear unit (ReLU:
partly linear, partly zero), the hyperbolic tangent, and the sigmoid or logistic function

1
1+e−x (these will be discussed in more detail shortly). The neurons are connected by
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Fig. 6.2 A shallow neural network

Fig. 6.3 Some MNIST images

weights. At each neuron j the incoming weights i j are summed
∑

and then processed
by the activation function σ. The output o of neuron j is therefore: oj = σ(

∑
i xiwi j)

for weight i j of predecessor neuron xi . The outputs of this layer of neurons are fed to
the inputs for the weights of the next layer.

In supervised learning, a network is trained on a set of example pairs (x, z): inputs
x and labels, or targets, z. Typical examples are images of pictures or digits, in which
case the labels are the correct digit (Fig. 6.3).

The neural network is a parameterized function fθ (x) → y that converts input to
output. The behavior depends on the parameters θ. Training the network is adjusting
the weights such that the required input-output relation is achieved. This is done by
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minimizing the error (or loss) function that calculates the difference between the
output y and the network target z.

The training process consists of training epochs, individual passes in which the
network weights are optimized towards the goal. When training starts, the weights of
the network are initialized to small random numbers. Each epoch consists of a forward
(recognition, usage) pass and a backward (training, adjustment) pass. The forward
pass is just the regular recognition operation for which the network is designed. The
input layer is exposed to the input (e.g., the image), which is then propagated through
the network to the output layers, using the weights and activation functions. The
output layer provides the answer, by having a high value at the neuron corresponding
to the right label (such as CAT or DOG, or the correct number).

The backward pass uses the difference between the forward recognition outcome
and the true label. At the output layer the propagated value y is compared with
the other part of the example pair, the label z. The difference with the label is
calculated, yielding the error. Two common error functions are the mean squared
error 1

n

∑n
i (zi − yi)

2 (for regression) and the cross-entropy error −
∑M

i zi log yi (for
classification of M classes). See, for example, Goodfellow et al. [250] for much more
on error functions.

Training stops when the error function has been reduced below a certain threshold
for a single example, or when the loss on an entire validation set has dropped
sufficiently. More elaborate stopping criteria will be discussed later in relation to
overfitting.

Then, in the backward phase, this error is propagated back to the input layer,
adjusting the weights in the direction so that the error becomes smaller. This method
uses the gradient over the weights, and is called gradient descent.

Most neural nets are trained using a stochastic version of gradient descent, or
SGD [642], that samples the gradients. SGD speeds up the process and introduces
some noise, reducing overfitting. Goodfellow et al. [250] provide more details.

Especially in image and speech recognition impressive results have been reported
by deep networks [57]. Popular variants of SGD are AdaGrad [189] and Adam [365],
methods that adaptively change the learning rate and momentum of the backpropaga-
tion. The theory and practice of gradient descent algorithms is quite elaborate and
subtle. Many articles and books have been written on the subject of gradient descent;
see, for example [250, 279, 294, 82, 405].

Now that we have discussed essential concepts of shallow neural networks, we
will turn to deep learning

6.1.3 Deep Learning

There has been quite some theoretical work on the question of which functions can
be represented with neural networks.3 Some functions can only be represented with

3 The universal approximation theorem states that a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate a wide variety of continuous functions [156].
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Fig. 6.4 Layers of features of increasing complexity [409]

an architecture of at least a certain depth [62, 61, 276]. For complex tasks such as
image recognition single-layer networks do not perform well, or need preprocessing
with hand-coded feature recognizers. A breakthrough in end-to-end (direct image)
recognition was achieved only when multi-layer networks were introduced and when
ways were found to train them efficiently [602, 405].

LeCun, Bengio, and Hinton [405], explain how multiple hidden layers in networks
learn increasingly abstract representations. In deep learning, each layer transforms
its input data into a more abstract representation. The hierarchy of network layers
together can recognize a hierarchy of low-to-high level concepts [405, 409]. For
example, in face recognition (Fig. 6.4) the first hidden layer may encode edges; the
second layer then composes and encodes simple structures of edges; the third layer
may encode higher-level concepts such as noses or eyes; and the fourth layer may
work at the abstraction level of a face. Deep feature learning finds what to abstract at
which level on its own [60], and can come up with classes of intermediate concepts,
that work, but look counterintuitive upon inspection by humans.

For deep learning architectures to perform recognition tasks at a level comparable
to human performance, a number of problems had to be solved, that we will now
discuss.

Although it states that simple neural networks can represent a variety of interesting functions when
given appropriate parameters, the theorem does not say how those parameters can be learned.
Learning may take very long, and may take an impractical number of neurons in the hidden layer.
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Fig. 6.5 Three fully connected hidden layers [574]

6.1.4 Scaling Up

The development of deep learning benefitted greatly from efforts in handwriting
recognition. The standard test set for handwriting recognition was MNIST (for
Modified National Institute of Standards and Technology). Standard MNIST images
are low-resolution x × y = 32×32 pixel images of single handwritten digits (Fig. 6.3).
Of course, researchers wanted to process more complex scenes than single digits, and
higher-resolution images. To achieve higher accuracy, and to process more complex
scenes, networks needed to grow in size and complexity.

There are three ways in which networks can grow. We assume that the layers have
the same width as the input size. First, the width x × y = n of the network can be
increased, by having more neurons in each layer. Second, the depth d of the network
can be increased, by having more layers. And third, the complexity of the network
can be increased, by using a more complex type of processing at the neurons, and a
different interconnection structure.

As you might expect, all three were necessary, in unexpected and nontrivial ways.

Increasing Width: Slow Learning and Overfitting

Simply increasing the width n of a fully connected network of depth d increases the
network size s = n2 × d. This is not a scalable solution (Fig. 6.5). More width creates
three problems. First, in a fully connected network it causes a quadratic increase
in weights and the same holds for the training time. Second, overfitting becomes a
problem, since after increasing the capacity of the network, the (quadratically higher)
number of parameters n2 × d may become greater than the number of observations,
in which case the network will overfit: it will perfectly memorize training examples,
and be unable to correctly generalize to different test examples. Figure 6.6 illustrates
overfitting, which will be described more fully in Sect. 6.1.7. Third, only increasing
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Fig. 6.6 Overfitting: does the curvy red line or the straight dashed blue line generalize the information
in the data points best?

the width does not address the problem that some complex functions can only be
approximated with a network of a certain depth [62, 61, 276].

Increasing Depth to Prevent Weights Increase

Increasing the width of a fully connected network runs into problems since the number
of weights increases quadratically. Let us look what happens when we increase the
depth d of the network.

As the depth increases, the number of weights s = n2 × d increases linearly
(Fig. 6.5) and so does the training time. The overfitting problem also increases linearly.
And, complicated functions can be approximated better by the deeper network.

Therefore, increasing the depth of the network is a way forward. However, it does
not solve all our problems. If we want to approximate a function, especially one with
a high-dimensional input such as for higher-definition images, then at least our input
layer has to have a correspondingly high number of inputs. So, we still have not
completely solved the problem of the increasing number of weights of fully connected
networks. The number of weights just keeps increasing with high-resolution input,
causing long training times, overfitting, and exploding and vanishing gradients (to be
discussed shortly).

For our solution we need the third element: a different connection structure.
Therefore, instead of fully connected networks, we will now look at convolutional
networks, and related improvements.
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Fig. 6.7 Convolutional filters [250]

6.1.5 Convolutional Neural Nets

As we wish to process higher-resolution images, increasing n or d increases the
number of weights too rapidly, leading to unacceptably long training times and
overfitting when the network is fully connected.

The solution lies in the third element: using a different (sparse) interconnection
structure. Convolutional neural nets (CNNs) take their inspiration from biology. Early
work on monkey and cat visual cortexes indicated that neurons respond to small
regions in the visual field [316, 317]. The visual cortex in animals and humans is not
fully connected, but locally connected, in a receptive field.

The connectivity pattern of CNNs resembles the animal visual cortex [316, 439].
A CNN consists of convolutional operators or filters. A typical convolution operator
has a small receptive field (it only connects to a limited number of neurons, say
5 × 5), whereas a fully connected neuron connects to all neurons in the layer below.
Convolutional filters detect the presence of local patterns, or features. The next layer
therefore acts as a feature map. A CNN layer can be seen as a set of learnable filters
(or kernels), invariant for local transformations [250].

Convolutional Filter

In Fig. 6.7 we see an example filter. Filters can be used to identify certain features.
Features are basic elements such as edges, straight lines, round lines, curves, and
colors. To work as a curve detector, the filter should have a pixel structure with high
values indicating a shape of a curve. By then multiplying and adding these filter
values with the pixel values, we can detect if the shape is present. The sum of the
multiplications in the input image will be large if there is a shape that resembles the
curve in the filter.
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Now this filter can only detect a certain shape of curve. Other filters can detect
other shapes. A filter layer can be visualized in an activation map, showing where a
specific filter (layer) fires. Larger activation maps can recognize more elements in the
input image. Adding more filters increases the size of the network, which effectively
is a large activation map. The filters in the first network layer process (“convolve”)
the input image and fire (have high values) when a specific feature it is built to detect
is in the input image. Training a convolutional net is training a filter that consists of
layers of subfilters.

By going through the convolutional layers of the network, increasingly complex
features can be represented in the activation maps.

Before the CNN starts, the weights or filter values are initialized to random values.
The filters in the lower layers are “empty”; they are not trained to look for edges and
curves. The filters in the higher layers are not yet trained for eyes and mouths. During
training, the filters in these layers take on their task as recognizers for respective
representations.

Once they are trained, they can be used for as many recognition tasks as needed.
A recognition task consists of a single quick forward pass through the network.

Let us spend some more time on understanding these filters.

Shared Weights

In CNNs the filter parameters are shared in a layer. Each layer thus defines a filter
operation. A filter is defined by few parameters but is applied to many pixels of the
image; each filter is replicated across the entire visual field. These replicated units
share the same parameterization (weight vector and bias) and form a feature map.
This means that all the neurons in a given convolutional layer respond to the same
feature within their specific response field. Replicating units in this way allows for
features to be detected regardless of their position in the visual field, thus constituting
the property of translation invariance.

This weight sharing is also important to prevent an increase in the number of
weights in deep and wide nets, and to prevent overfitting, as we shall see later on.

Real-world images consist of repetitions of many smaller elements. Due to this
so-called translation invariance, the same patterns reappear throughout an image.
CNNs can take advantage of this. The weights of the links are shared, resulting in
a large reduction in the number of weights that have to be trained. Mathematically
CNNs are constraints on what the weight values can be (some zero, some have to be
equal). This is a significant advantage of CNNs, since the computational requirements
of training the weights of many fully connected layers would be prohibitive. In
addition, statistical strength is gained, since the effective data per weight increases.

Deep CNNs work well in image recognition tasks, for visual filtering operations
in spatial dependencies, and for feature recognition (edges, shapes) [406].4

4 Interestingly, this paper was already published in 1989. The deep learning revolution happened
twenty years later, when publicly available datasets, more efficient algorithms, and more compute
power in the form of GPUs were available.
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Fig. 6.8 Max and average 2 × 2 pooling [250]

CNN Architecture

Convolutions recognize features—the deeper the network, the more complex the
features. A typical CNN architecture consists of a number of stacked convolutional
layers. In the final layers, fully connected layers are used to then classify the inputs.

In the convolutional layers, by connecting only locally, the number of weights
is dramatically reduced in comparison with a fully connected net. The ability of a
single neuron in a CNN to recognize different features, however, is less than that of a
fully connected neuron.

By stacking many such locally connected layers on top of each other we can
achieve the desired nonlinear filters whose joint effect becomes increasingly global,
as more layers are added.5 The neurons become responsive to a larger region of pixel
space, so that the network first creates representations of small parts of the input, and
from these representations create larger areas. By stacking convolutional layers on
top of each other, they can recognize and represent increasingly complex concepts
without an explosion of weights.

Max Pooling

A furthermethod for reducing the number ofweights is pooling. Pooling is an operation
related to convolving. Pooling is a kind of nonlinear downsampling (expressing the
information in lower resolution with fewer bits). Typically, a 2 × 2 block is down
sampled to a scalar value (Fig. 6.8). Pooling reduces the dimension of the network.
The most frequently used form is max pooling. It is an important component for
object detection [142] and is an integral part of most CNN architectures.

Max pooling also allows small translations, such as shifting the cat by a few pixels,
or scaling, such as putting the cat closer to the camera.

5 Nonlinearity is essential. If all neurons performed linearly, then there would be no need for layers.
Linear recognition functions cannot discriminate between cats and dogs.
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Fig. 6.9 Convolutional network example architecture [574]

A typical CNN architecture consists of an architectures of multiple layers of
convolution, max pooling, and ReLU layers, topped off by a fully connected layer
(Fig. 6.9).6 Section 6.2.1 will discuss more concrete examples of well-known CNN
architectures.

6.1.6 Exploding and Vanishing Gradients

The deep convolutional architectures solved the problem of processing higher-
resolution and more complex scenes by controlling the number of weights organized
in layers of filters. However, the deep architectures brought a new problem. The
popular training algorithm, backpropagation, in combination with the conventional
sigmoid activation function and deep networks, suffers from the vanishing gradient
problem.

Gradients

The vanishing gradient problem was one of the problems that held back progress in
multi-level neural networks for some time.

The backpropagation algorithm computes the gradient of the error function by the
chain rule of composite functions. Originally, most neural networks used the sigmoid
function as their activation function. The problem is that the derivative of the sigmoid
function 1

1+e−x on the domain [0, 1] is a value between 0 and 0.25. Backpropagation
multiplies these values with the weights for each layer, starting from the output layer
and working backwards to the input layer. Each time that a value between 0 and 0.25
is multiplied by the weights, the derivative gets smaller, approaching zero for the
deepest layers. Long products of many layers thus yield a low gradient value at the

6 Often with a soft-max function. The soft-max function normalizes an input vector of real numbers
to a probability distribution [0, 1].
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Fig. 6.10 Sigmoid and ReLU

deep layers. This means that neurons in the earlier layers learn much more slowly
than neurons in later layers [297, 296].

The result is that gradient descent with a traditional activation function (sigmoid or
tanh) cannot learn over many layers. For the deepest layers the gradients are vanishing
to zero, negating the use that an extra layer would give.

The gradient in deep neural networks is unstable, tending to either explode or
vanish in earlier layers. This instability was a fundamental problem for gradient-based
learning in deep neural networks.

Multiple solutions to the vanishing gradient problem have been found. One solution
is to model the network as a multi-level hierarchy of networks pretrained one level at
a time [599]. Hinton’s work on training deep networks addresses this problem [293].

Let us look at two more solutions.

ReLU

Since the problem of vanishing gradients is caused by the derivative of the activation
function, alternative functions were proposed. Traditionally the activation function
of neurons is a well-differentiable function such as tanh or the sigmoid function. A
simpler activation functions is the ReLU function (short for rectified linear unit). The
definition of ReLU is f (x) = max(0, x). Over the positive part of its input ReLU is
linear, otherwise it is zero. See Fig. 6.10. ReLU is a simple function that is quick
to calculate, is nonlinear, and removes negative values from the activations [386].
The major advantage of ReLU is that in deep networks it suffers much less from
the vanishing gradient problem. Deep ReLU networks are much easier to train than
sigmoid networks.7

7 The derivative of the ReLU function has a discontinuity. This discontinuity has led to the
introduction of soft-ReLU, which replaces the sharp transition from 0 to linear with a small smooth
part.
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Batch Normalization

Another solution to the vanishing gradient problem is batch normalization. Batch
normalization periodically rescales the data. It performs a batch standardization and
assures that each batch is in a safe area, taking the gradients away from the zero, the
one, or infinity. This technique was introduced in [328]. At the cost of some extra
computation, the effect of periodical normalization is manyfold. Training is sped
up, overfitting is reduced, and, finally, the vanishing gradient problem is reduced
substantially, since gradient values are normalized.

Batch normalization is at the moment the most powerful method to prevent
overfitting.

6.1.7 Overfitting

Overfitting is amajor problem in large neural networks. The intuition behind overfitting
(and underfitting) is as follows. Let us assume that the training data represents a
noisy signal, as most data generated by measurements of natural processes does. The
learning process performs well, when the signal from the training data is learned, and
the noise is disregarded. Only then will it generalize well to the test data. Underfitting
occurs when the capacity of the network is too small to learn, model, or represent the
signal, and a crude approximation results. Overfitting occurs when the capacity is so
large that it learns even the noise in the training data (Fig. 6.6). Both underfitting and
overfitting result in limited accuracy at test time.

Since the number of weights in deep networks is often in the millions, it is easily
greater than the number of observations. In such a situation overfitting is a problem
that reduces the generalization performance of the network. Overfitting is said to have
happened when a trained model corresponds too closely to a particular dataset, and
fails to reliably predict a future observation. The network has been fit to the particular
training set, the signal and the noise, but not to the underlying structure of the data.
Overfitting occurs frequently when a model has more parameters than the training
dataset has examples.

Figure 6.6 illustrates this problem. The red curvy line perfectly fits all data points,
but is unlikely to perform well on a separate test set. The dashed straight line is more
likely to have caught the essence of the training domain, even though it misses some
of the data points.

Overfitting can be prevented in a number of ways, some of which are aimed at
restoring the balance between the number of network parameters and the number of
training examples. We will discuss data augmentation and capacity reduction.

Another approach is to look at the the training process. Examples are regularization,
early stopping, dropouts, and batch normalization.
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Data Augmentation

Overfitting occurs when there are more parameters in the network than examples
to train on. One possible solution is to increase the amount of data. This method is
called data augmentation. The training dataset is increased through manipulations
such as rotations, reflections, noise, rescaling, etc. A disadvantage of this method is
that the computational cost of training increases.

Capacity Reduction

Another easy solution to overfitting lies in the realization that overfitting is a result
of the network having too large a capacity; the network has too many parameters. A
cheap way of preventing this situation is to reduce the capacity of the network, by
reducing the width and depth of the network.

L1 and L2 Regularization

A standard method to try when we suspect that the network is overfitting, is regu-
larization. Regularization involves adding an extra term to the loss function. The
regularization term forces the network to not be too complex. The term penalizes the
model for using too high weight values. This limits flexibility, but also encourages
building solutions based on multiple features. Two popular versions of this method
are L1 and L2 regularization [487, 250]. For different situations different preferred
methods exist.

Early Stopping

Perhaps the easiest solution to overfitting is the early stopping solution. Early stopping
is based on the observation that overfitting can be regarded as a consequence of
so-called overtraining (training that progresses beyond the signal, into the noise).
By terminating the training process earlier, for example by using a higher stopping
threshold for the error function, we can prevent overfitting from occurring [121].

Finding the right moment to stop may take some experimenting [533, 534]. A
convenient and popular way is to add a third set to the training set/test set duo which
then becomes a training set, a test set, and a holdout validation set. The role of the
training set and the test set remains the same. However, after each training epoch, the
network is evaluated against the holdout validation set, to see if under- or overfitting
occurs, and if we should stop training. Finally, the test set is used in the familiar
former role to see how well the trained network generalizes to unseen instances. In
this way, overfitting can be prevented dynamically during training [534, 81, 250].
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Dropout

A popular method to reduce overfitting is to introduce dropout layers into the networks.
Dropout reduces the effective capacity of the network by stochastically dropping a
certain percentage of neurons from the backpropagation process [295, 643]. Dropout
is an effective and computationally efficient method to reduce overfitting [250].

Batch Normalization

Batch normalization periodically normalizes the data [328], as we just mentioned.
This has many benefits, including a reduction of overfitting.

6.1.8 Datasets and Networks

Now that we have discussed in depth the deep learning algorithms and their challenges
and solutions, it is time to look at datasets and methods that have been instrumental
in the progress of the field.

The algorithmic advances that were discussed in Sect. 6.1.2 were facilitated by the
availability of large training sets of labeled examples. Deep learning has benefited
from a number of Drosophilas. A well-known repository of datasets is the University
of California at Irvine Machine Learning repository UCI.8

The MNIST database may well be the best known of these datasets. MNIST is a
database of 60,000 handwritten digits provided by the National Institute of Standards
and Technology. The original MNIST database is available at MNIST.9 CIFAR is
one of the most widely used set of images in machine learning and vision [385].
CIFAR-10 has also 60,000 images in 10 classes: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. Another major data set of central importance
to deep learning is ImageNet [207, 172].10 It is a collection of more than 14 million
URLs of images that have been hand annotated with the objects that are in the picture.
It contains more than 20,000 categories. A typical category contains several hundred
training images.

The importance of ImageNet for the progress in AI is large. The availability
of labeled images allowed algorithms to learn, and new algorithms to be created.
ImageNet was conceived by Fei-Fei Li in 2006, and in later years she developed it
further. Since 2010 ImageNet runs an annual software contest, the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [172]. Since 2012 ILSVRC has been
won by deep networks, starting the deep learning boom in science and industry.

8 https://archive.ics.uci.edu/ml/index.php

9 http://yann.lecun.com/exdb/mnist/

10 http://www.image-net.org

https://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
http://www.image-net.org
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We will now mention some influential networks architectures. We will start with
Yann LeCun’s LeNet-5.

LeNet-5

Towards the end of the 1990s the work on neural networks moved into deep learning,
a term coined by Dechter in [171]. Some twenty years after the introduction of deep
convolutional neural nets by LeCun et al. [407] CNNs became highly popular. This
paper introduced the architecture LeNet-5. LeNet-5 is a 7-layer convolutional neural
net trained to classify handwritten MNIST digits from 32 × 32 pixel images. It is
a successful network that was used commercially to recognize digits in banking
checks. The paper has a thorough comparison of LeNet-5 with other methods such as
principal component analysis (PCA).

At GitHub a modern Keras implementation of LeNet is available (and also of
AlexNet and VGG).11 The code straightforwardly lists the layer definitions, shown in
Listing 6.1.

AlexNet

In 2012 Krizhevsky et al. published the AlexNet architecture [386] with breakthrough
performance on the ImageNet dataset of 85% accuracy. They used a deep network of
8 layers. The first 5 layers were convolutional layers, some with max pooling, and 3
layers were fully connected layers. Krizhevsky et al. overcame problems of vanishing
gradients and overfitting with ReLU, data augmentation, and L2 regularization, and
effectively used the power of GPUs to train a large network. Their work caused many
follow-up works showing even better performance, and attracted much attention,
setting off the general interest in deep learning.

As we shall see shortly, deep networks have since grown further in size, with
more layers, and different learning algorithms and connection structures. The number
of weights in such networks is often in the millions, greater than the number of
observations on which the network is trained. This makes overfitting an important
problem, and many of the methods that we discussed previously have been developed
because of these larger networks.

Crafting Neural Architectures

There is a flip side to the advantages of automated feature discovery with deep
learning, since for many domains much time has to be spent finding a neural network
architecture for the domain that works, before the training process results in features

11 https://github.com/eweill/keras-deepcv/tree/master/models/classification

https://github.com/eweill/keras-deepcv/tree/master/models/classification
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def lenet_model(img_shape=(28, 28, 1), n_classes=10, l2_reg=0.,
weights=None):

# Initialize model
lenet = Sequential()

# 2 sets of CRP (Convolution , RELU, Pooling)
lenet.add(Conv2D(20, (5, 5), padding="same",

input_shape=img_shape , kernel_regularizer=l2(
l2_reg)))

lenet.add(Activation("relu"))
lenet.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

lenet.add(Conv2D(50, (5, 5), padding="same",
kernel_regularizer=l2(l2_reg)))

lenet.add(Activation("relu"))
lenet.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# Fully connected layers (w/ RELU)
lenet.add(Flatten())
lenet.add(Dense(500, kernel_regularizer=l2(l2_reg)))
lenet.add(Activation("relu"))

# Softmax (for classification)
lenet.add(Dense(n_classes , kernel_regularizer=l2(l2_reg))

)
lenet.add(Activation("softmax"))

if weights is not None:
lenet.load_weights(weights)

# Return the constructed network
return lenet

Listing 6.1 LeNet-5 code in Keras [407, 751]

that perform well. Some of the time previously spent hand crafting heuristic features
is now spent hand crafting network architectures to automatically learn the features.12

TensorFlow

The deep learning breakthrough was caused by the co-occurrence of three major
developments: (1) algorithmic advances that solved key problems in deep learning,

12Of course, research has now focused on ways to automate the hand crafting of network architectures.
Section 7.3.3 describes ways to automatically generate appropriate network architectures for different
domains in neural architecture search.
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(2) the availability of large datasets of labeled training data, and (3) the availability of
computational power (GPU).

The most expensive operations in image processing and neural network training
are essentially operations on matrices. Matrix operations are some of the most well-
studied problems in computer science. Their algorithmic structure is well understood,
and for basic linear algebra operations high-performance parallel implementations
for CPUs exist, such as the BLAS [180, 138].

Graphical processing units, or GPUs, were originally developed for fast processing
of image and video data, largely driven by the video gaming industry. Modern GPUs
consist of thousands of processing units optimized to process linear algebra matrix
operations in parallel [578, 426, 641], offering matrix performance that is orders of
magnitude faster than CPUs [493, 143, 662].

Neural network training packages support GPU parallelism. Well-known dedicated
deep learning packages are Berkeley’s Caffe [334], Facebook’s PyTorch [508],
Theano [64] which has been subsumed by Google’s TensorFlow [1, 2], and its user-
friendly add-on Keras [139]. Most packages have Python interfaces. Some machine
learning and mathematical packages also offer deep learning tools, such as MATLAB
and R.

TensorFlow provides high-quality implementations of many machine learning and
neural network algorithms and operations. (A tensor is a multi-dimensional array,
often used for transformations.) The programming concept of TensorFlow takes some
getting used to. Programs are constructed as a data-flow graph in which the sequence
of tensors defines the operations. A higher level, easier, interface is provided by Keras.
Keras comes with TensorFlow, and is recommended for learning the packages.

Implementing a full working deep learning algorithm that performs well on a new
problem is a challenging task. Many problems of backpropagation, gradient descent,
overfitting, vanishing gradients, and numerical stability have to be solved. It is because
of the free availability of high-quality deep learningmethods that somuch progress has
been made in recent years. Advances in image recognition, speech recognition, game
playing, automated translation, and autonomous vehicles are made possible in large
part by these software suites. The free availability of high-quality implementations
may be the fourth reason for the deep learning breakthrough. Appendix A contains
overviews of machine learning packages.

Conclusion

We have discussed in depth methods for deep supervised learning. This has been
a long section; many problems had to be overcome to achieve end-to-end learning.
The deep learning breakthrough in image recognition was made possible only by the
convergence of better algorithms, computational power, and large labeled datasets.
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Name Principle Applicability Effectiveness
AlexNet CNN image improve
inception net inside net image improve
residual skip links image improve
GAN generative-adversarial image robustness
RNN/LSTM state sequential proc sequences

Table 6.2 Advanced network architectures

6.2 *Advanced Network Architectures

The breakthroughs in deep learning have promptedmuch further research in fascinating
areas. Let us now look deeper at more advanced deep learning methods. Table 6.2
shows advanced network architectures that we will discuss. This is a starred section,
with more advanced material, which may be skipped when in a hurry.

Much of the work in supervised learning is driven by image recognition tasks.
Just as in game playing, the availability of clear benchmarks and competitions has
facilitated progress. The ImageNet database [172, 571] has been at the center of this
field. Guo et al. provide a review of the state of the art of visual recognition [268].

6.2.1 Examples of Concrete Convolutional Networks

As we saw, after the turn of the millennium two important developments happened:
large databases of (hand) labeled images became available, and powerful GPUs
became available and were used for training neural networks. Together, these two
developments allowed major improvements in training speed and accuracy. Let us
start by having a closer look at AlexNet.

AlexNet

The 2012 ImageNet database as used by AlexNet has 14 million labeled images. The
network featured a highly optimized 2D two-GPU implementation of 5 convolutional
layers and 3 fully connected layers. The filters in the convolutional layers are 11 × 11
in size.

The neurons use a ReLU activation function. In AlexNet images were scaled to
256× 256 RGB pixels. The size of the network was large, with 60 million parameters.
This causes considerable overfitting. AlexNet used data augmentation and dropouts
to prevent overfitting.

Krizhevsky et al. won the 2012 ImageNet competition with an error rate of 15%,
significantly better than the number two, who achieved 26%. Although there were
earlier reports of CNNs that were successful in applications such as bioinformatics and
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Fig. 6.11 ZFnet layers [774]

Chinese handwriting recognition, it was this convincing win of the 2012 ImageNet
competition for which AlexNet has become well known.

AlexNet has become an important network architecture for research. Many
resources are available for AlexNet. The original AlexNet code is available on GitHub
at AlexNet.13 Berkeley’s Caffe project maintains a “model zoo” where multiple
trained models are available, complete with Caffe code that can be studied. The
AlexNet Caffe model is available on GitHub at BVLC AlexNet.14 Also, as mentioned
before, a Keras implementation of AlexNet, LeNet, and VGG is available at Models
Keras.15

ZFnet

A year later a paper by Zeiler and Fergus [774] improved upon AlexNet. Their network
has become known as ZFnet. The work also provided an enlightening explanation
about how convolutional nets work, including a visualization of the inner layers
(Fig. 6.11). In a sense, this allows a look into the brain of the neural net, to see what
features it recognizes at which layer. Afterwards many papers have provided these
kinds of insights into the hidden layers of their network.

Deep network layers learn a hierarchy of abstract features. The layers learn concepts
of increasing generality [60, 405], creating a hierarchy of abstract concepts. The look
into the “brains” of the net does not yield pictures that are easy to interpret. How

13 https://github.com/akrizhevsky/cuda-convnet2

14 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

15 https://github.com/eweill/keras-deepcv/tree/master/models/classification

https://github.com/akrizhevsky/cuda-convnet2
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/eweill/keras-deepcv/tree/master/models/classification
https://github.com/eweill/keras-deepcv/tree/master/models/classification
https://github.com/akrizhevsky/cuda-convnet2
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/eweill/keras-deepcv/tree/master/models/classification
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Fig. 6.12 Residual cell [281]

general are the concepts learned by self-play? What do they “look” like, can they be
represented as a two-dimensional picture for us to interpret? A deeper understanding
of these concepts might enable us to learn more complex representations, and thus
achieve better local minima in the error function [520, 744]. Montavon et al. [468]
provides an tutorial on methods for interpreting deep nets.

VGG

Simonyan and Zisserman [631] followed a different philosophy than AlexNet and
ZFnet, with small filters (3 × 3) and a deep hierarchy of 16-19 layers. Their VGG net
was also successful. VGG faithfully implements the idea behind deep nets as needing
many layers (16) in order to build a hierarchical representation of visual data [405].

GoogLeNet

A further notable network is GoogLeNet [663], which is even deeper, with 22 layers.
The new architecture and algorithms perform better than AlexNet, yet have 12 times
fewer parameters, showing how strong the new architecture and algorithms are.
The GoogLeNet architecture is about sparse networks, allowing a deeper network
without increasing the total number of parameters. The network is built around
inception modules. In previous architectures, convolutional layers were stacked
sequentially on top of each other. Inception modules are small networks inside a
network, where different sized convolutions are placed in parallel to each other.
Through the inception modules sparse network structures were achieved, reducing
training time. In addition to the inception modules, batch normalization was used to
prevent vanishing gradients [664] and dropouts for regularization.
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Fig. 6.13 Residual net [281]

Residual Networks

After inception modules, another important innovation is the residual network
architecture, or ResNets. This was introduced in the 2015 ImageNet challenge, which
He et al. won with a very low error rate of 3.57%. This error rate is actually lower than
what most humans achieve: 5-10% [281]. ResNet has no fewer than 152 layers, and, as
before, this is achieved through a simpler architecture with fewer connections (fewer
parameters than VGG). The problem of vanishing gradients, which deep networks
suffer from, is addressed with intermediate normalization steps.

The main contribution of ResNets is based on the following observation. The
authors found that when adding more layers to their net, they were obtaining lower
training accuracy. This is counterintuitive, since more parameters should allow the
net to achieve at least the accuracy of the shallower net. The deep network suffered
from degrading training accuracy due to reasons related to overfitting [281].

Residual nets introduce skip links to cure this degradation (Fig. 6.12). Skip links
are connections skipping one or more layers, allowing the training to go directly to
other layers reducing the effective depth of the network (Fig. 6.13). Skip links create
a mixture of a shallow and a deep network, preventing the accuracy degradation and
vanishing gradients of deep networks. Furthermore, He et al. note that normal layers
have a harder time learning of an identity function, than learning a mapping to 0, and
the skip layers allow the net to more easily learn an identity function.

Following up on ResNets, DenseNets were devised, building on the main insight
behind residual nets, and achieving even more impressive results [312].

These architectural innovations have again caused important performance im-
provements. As a result, image recognition tasks now frequently exceed human
performance [268, 178]. This is an active area of research, and better architectures
are presented at the major machine learning conferences each year.
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Fig. 6.14 Deep fake [769]

6.2.2 Generative and Sequential Architectures

In addition to mainstream image recognition architectures, there are other architectural
innovations of different kinds of networks.

Generative Adversarial Networks

An active research area is deep generative modeling. Generative models are models
from which a new example can be sampled. (A contrast to generative models are the
regular discriminative models, which output a label, for classification. In a sense, a
generative model is a discriminative model, but backwards.) There are several classes
of generative models. An important and popular class that has made quite an impact
is the generative adversarial network, or GAN [251].

It was found that if an image is slightly perturbed, and imperceptibly to the human
eye, deep networks can easily be fooled to characterize an image as the wrong
category [665]. This brittleness is known as the one-pixel problem [651, 665]. Deep
networks are susceptible to adversarial attacks. The one-pixel problem has spawned
an active area of research to understand this problem, and to make image recognizers
more robust. (Adversarial attacks are also relevant to deep reinforcement learning;
Sect. 7.1.4.)



6.2 *Advanced Network Architectures 161

Fig. 6.15 Deep dream [356]

GANs are generative models that generate adversarial examples. The purpose of
adversarial examples is to fool the discriminator (recognizer). They are designed to
cause a wrong classification. In GANs one network, the generator, generates an image,
and a second network, the discriminator, tries to recognize the image. The goal for
the generator is to mislead the discriminator, in order to make better discriminators.

In addition to making recognizers more robust against the one-pixel problem, one
of the other uses of generative networks is to generate artificial photo-realistic images
such as deep fake images [769]; see Fig. 6.14 and deep dreaming, Fig. 6.1516 [356].
GANs have significantly increased our theoretical understanding of supervised
training.

6.2.3 Sequential Processing

Image recognition has had a large impact on network architectures, leading to
innovations in network architectures such as convolutional nets.

Other applications, such as time series analysis and speech recognition, have
also caused new architectures to be created. Image recognition is a single-time-step
modeling task. In contrast, speech recognition, text mining, and time series analysis
concern sequential data that must be modeled. Such sequences can be modeled by
recurrent neural nets. Some of the better known recurrent neural nets are Hopfield

16 Deep Dream Generator https://deepdreamgenerator.com

https://deepdreamgenerator.com
https://deepdreamgenerator.com
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Fig. 6.16 RNN xt is an input vector, ht is the output/prediction, and A is the RNN [494]

Fig. 6.17 Time-unrolled RNN neuron, with a tanh activation function; shown are the previous and
next time steps as well [494]

Fig. 6.18 RNN unrolled in time [494]

networks [303], recurrent neural nets (RNN) [72, 209], and long short-term memory
(LSTM) [298].

Figure 6.16 shows a basic recurrent neural network. An RNN neuron is the same as
a normal neuron, with input, output, and activation function. However, RNN neurons
have an extra pair of looping input/output connections. Figure 6.17 shows the internal
structure of an RNN neuron (a tanh activation function) with their loop connections
unrolled as previous and next time steps. Through this structure, the values of the
parameters in an RNN can evolve. In effect, RNNs have a kind of variable-like state.

To understand how RNNs work, it helps to unroll the network, as has been done in
Figs. 6.17 and 6.18. The recurrent neuron loops have been drawn as a straight line to
show the network in a deep layered style, with connections between the layers. In
reality the layers are time steps in the processing of the recurrent connections. In a
sense, an RNN is a deep neural net folded into a single layer of recurrent neurons.

Where deep convolutional networks are successful in image classification, RNNs
are used for more demanding tasks, such as captioning challenges. In a captioning
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Fig. 6.19 Captioning tasks [135]

task the network is shown a picture, and then has to come up with a textual description
that makes sense [729]. Figure 6.19 gives examples of captioning tasks, from Chen
et al. [135].

Captioning tasks are hard, and a computer succeeding in “seeing” an image and
“interpreting” it with a caption that makes sense, describing what can be seen on the
picture, can be a startling experience. Seeing one’s own RNN learning to generate the
first appropriate descriptions of images can be a satisfying experience for machine
learning researchers (see the exercises at the end of this chapter). Interestingly, simple
models can deliver surprisingly good results.

A step up from image captioning is video captioning, where a description has to
be generated for a sequence of images [720].

The main innovation of recurrent nets is that they allow us to work with sequences
of vectors. Figure 6.20 shows different combinations of sequences that we will discuss
now. There can be sequences in the input, in the output, or in both. Karpathy has written
an accessible and well-illustrated blog on the different RNN configurations [354].
The figure shows different rectangles. Each rectangle is a vector. Arrows represent
computations, such as matrix multiply. Input vectors are in red, output vectors are in
blue, and green vectors hold the state. Following Karpathy [354], from left to right
we see:
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Fig. 6.20 RNN configurations [354]

1. One to one, the standard network without RNN. This network maps a fixed-sized
input to fixed-sized output, such as an image classification task (picture in/class
out).

2. One to many adds a sequence in the output. This can be an image captioning task
that takes an image and outputs a sentence of words.

3. Many to one is the opposite, with a sequence in the input. Think for example of
sentiment analysis (a sentence is classified for words with negative or positive
emotional meaning).

4. Many to many has both a sequence for input and a sequence for output. This can
be the case in machine translation, where a sentence in English is read and then a
sentence in French is produced.

5. Many to many is a related but different situation, with synchronized input and
output sequences. This can be the case in video classification where each frame of
the video should be labeled.

State

Time series prediction is a difficult problem, for which sequential processing is well
suited. Sequential networks are more powerful than fixed networks, which can only
process a predetermined number of steps. Moreover, where normal deep networks
represent a single stateless mathematical function mapping from input to output,
RNNs combine the input vector together with the state from the previous time step to
produce a new state vector, to be fed into the next time step. In this particular sense
RNNs have state. The fact that RNNs have such state in addition to a learned function
brings them closer to a conventional imperative computer program (such as a Python
program with variables) [713, 4]. An RNN can be interpreted as a fixed program with
certain inputs and some internal variables. In this way, RNNs are simple computer
programs that do not have to be programmed, but learn their functionality by training.
RNNs are appealing for building intelligent systems [241]. This is an active area of
research.
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Fig. 6.21 LSTM [354]

Many different successful applications for recurrent neural networks have been
found. Graves et al. describe speech to text processing [257]. Machine translation
is described by Sutskever et al. [656]. Earlier work described text generation [654].
RNNs for video classification are described by Donahue et al. [179]. Mnih et al.
describe RNNs for visual attention [460].

Long Short-Term Memory

Time series prediction is more complex than conventional regression or classification.
It adds the complexity of a sequence dependence among the input variables.

LSTM (long short-term memory) is a more powerful type of neuron designed to
handle sequences. Figure 6.21 shows the LSTMmodule, allowing comparisonwith the
simple RNN of Fig. 6.17. LSTMs are designed for sequential problems, such as time
series, and planning. LSTMs were introduces by Hochreiter and Schmidhuber [298].

RNN training suffers from the vanishing gradient problem. For short-term se-
quences this problem may be controllable by the same methods as for deep CNN
(Sect. 6.1.6). For long-term remembering LSTM are better suited.

LSTM building blocks avoid the vanishing gradient problem by introducing skip
connections that insert unchanged gradients between layers, just like residual nets.
The skip links make LSTMS less susceptible to the vanishing gradient problem; this
makes LSTMs better suited for large architectures.

LSTMs are frequently used to solve diverse problems [603, 256, 261, 242].
Researchers have experimented with LSTMs for creating hybrid architectures that
combine planning and learning, with some initial success [629]; see also Sect. 7.3.5.

Conclusion

There has been a wealth of research into deep neural networks for image recognition
(and beyond).Many complex deep architectures were created, and achieved impressive
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recognition results. Research on generative adversarial networks and sequence
processing is a highly active area of supervised learning research.

Let us now go on to the main topic of this book, deep reinforcement learning, to
see how deep learning methods work there.

6.3 Deep Reinforcement Learning

Deep reinforcement learning has shown inspiring results in artificial intelligence.
Before the successes, there were quite some obstacles that had to be overcome.
Methods from supervised learning were not as easy to transfer to reinforcement
learning as some had hoped. There are challenges in generalization and learning
convergence. In this section we will discuss these problems and the methods that have
been found to address them. Table 6.3 summarizes some of the differences between
supervised learning and reinforcement learning.

The need for deep reinforcement learning came out of the wish for improving
performance beyond heuristics and sampling, beyond what can be achieved with
(automated tuning of) hand-crafted features. End-to-end learning requires training
in high-dimensional state spaces, far exceeding the capabilities of exact or heuristic
planning methods, or of shallow networks or other conventional machine learning
methods.

Let us now start at the beginning, with the need for end-to-end learning in a
reinforcement learning context.

6.3.1 End-to-End Reinforcement Learning

The state space of problems for which hand-crafted features have been created is
typically of manageable size. Much of the complexity of the problem domain is
abstracted away by the hand-crafted heuristics. The heuristics translate raw board
features into a small number of heuristic parameters, converting a high-dimensional
state space to a low-dimensional state space. End-to-end learning does away with the
hand-crafted heuristics, and takes the problem of learning from the raw inputs head on.
The computational complexity of end-to-end learning problems is correspondingly
higher.

In the previous section we saw the problems that had to be overcome in supervised
learning to achieve end-to-end learning. Only after convolutional neural networks
had been invented, and after solutions for overfitting and vanishing gradients had
been found, did deep end-to-end supervised learning work.

In reinforcement learning a similar situation exists. Here the problem was the
quality of the generalization and the convergence of the training process. Let us now
see why stable deep reinforcement learning is such a difficult problem.
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Supervised learning Reinforcement learning
(example-label) or (example-number) pair (state-action) or (state-reward) pair
database of ground truths environment gives reward
static learning process interactive learning process
fixed set of examples changing and interdependent set of examples
dense: ground truth for all examples sparse: rewards for some examples

Table 6.3 Supervised vs. reinforcement learning

Reinforcement learning is a form of machine learning, where just as in supervised
learning, a function is learned from examples through generalization. The way in
which these examples are presented to the learning algorithm, however, is different.17

First, supervised learning infers functions from a database of example-label pairs,
where the ground truth is given. Reinforcement learning infers a function for state-
action pairs (for the policy function) or state-reward pairs (for the value function). It
has no fixed database of examples with ground truths. Positive or negative rewards are
only provided after interaction with an environment. Actions by the agent determine
the response from the environment. This interaction influences the learning process.
The set of examples is not fixed, and may change from learning process to learning
process. See Table 6.3 for a summary.

The second difference is that in supervised learning ground truths are present for
all example-label pairs. The state space is dense. In reinforcement learning problems
the state space is often sparse, the outcome of an action may only be known after
many further steps, and the rewards are only available for some of the state-action
pairs. For other state-action pairs the value or policy has to be inferred, propagated
over a long distance of intermediate states before the reward of a state-action pair is
known. This gives rise to the credit assignment problem, and, as we shall see next, to
generalization problems and to learning instability.

Much research into the stability of reinforcement learning has been performed.
We will discuss generalization to test sets, correlation between states, fluctuations in
the data distribution, and the deadly triad.

Generalization to Test Set

The first problem we will look into is generalization. This problem concerns the
ability to generalize training results to the test set.

Recall that a basic assumption for convergence in Q-learning and other reinforce-
ment learning algorithms is that state-action pairs are sampled often enough. Clearly,
this is not the case in large state spaces with sparse rewards, especially not when

17 Also note that the functions to be learned are different. In supervised learning a classification or a
regression function is typically learned. In reinforcement learning a policy or a value function is
learned.
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Fig. 6.22 Agent/environment loop [659]

Fig. 6.23 Feedback loop

test samples are not part of the training set. The coverage of the training set can be
problem. Even worse, the state-action pairs are not randomly distributed.

In supervised learning, data samples (states) are independent and are assumed to
be distributed evenly over the state space. In the database of static images, there is
no relation between subsequent images, and examples are independently sampled.
Each image is separate (in contrast to a movie, where many inter-temporal relations
between frames are present).

In model-based reinforcement learning a sequence of states is generated by a
simulator or game playing program in an agent/environment loop (Fig. 6.22). The
features of the states are often correlated, differing only by a single action, one move
or one stone. Subsequent samples are correlated. Such a correlated training set may
be myopic, covering only a part of the state space. The training set will not work
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well with standard supervised training algorithms. The algorithms may get stuck
in local minima, and cycles may occur, which may turn into a feedback loop when
state-action pairs and values are mixed due to function approximation (Fig. 6.23
illustrates a feedback loop in another domain).

To illustrate myopic learning, let us consider an example of correlated training in
Chess. Imagine a program in which training got stuck in a loop with center control
problems. Such a program knows much about center control but little about king
safety, and therefore plays badly if it encounters a differently trained agent that can
outplay it in the king safety domain. We can try to counter this effect, as we will see
soon.

The low sample rate and correlations between subsequent states cause generaliza-
tion problems. The end result is that deep reinforcement learning algorithms that are
trained on sparse, correlated end-to-end states may not generalize well when they are
tested on new problem instances.

In addition to the problems of loops and local optima, learning from correlated
consecutive samples is inefficient. Little new information is contained in two states
that are almost the same. The low learning efficiency translates into a smaller effective
dataset; much training is done, yet little is learned. Randomizing the samples breaks
these correlations and therefore reduces the probability of getting stuck.

Fluctuating Data Distribution

A further consequence of how samples are generated is that in reinforcement learning
the data distribution may be fluctuating. In supervised learning the data set is fixed. In
reinforcement learning output signals from the environment are infrequent or derived
from other states, and may thus be “polluted” by old values, and are calculated using
values that may be approximations.

Since in reinforcement learning training examples are generated in interaction with
the environment, unstable training processes have consequences for the set of training
examples. In reinforcement learning the size of the training set may vary, or may be
infinite, as the training process itself influences which examples are generated.

This has two consequences, one undesired, one desired. In the short term, learning
new behaviors may cause myopia or may get stuck locally by feeding on its own
behavior as described in on-policy learning. This short-term training behavior can be
smoothed with a replay buffer by providing data from a larger landscape [461].

In the longer term, learning new behaviors may actually be desirable. Forgetting
bad behaviors can also be a way to escape ineffective parts of the state space. Thus,
the replay buffer should not be too large. In Chap. 7 we will learn more about this in
the context of self-play.

Function approximationmay also cause problems with divergent training processes.
For this, let us have a closer look at the so-called deadly triad.
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Convergent Training: Deadly Triad

The learning process of deep reinforcement learning itself can be divergent.
The learning of Q-values may diverge, even if we assume that state-action

pairs are sampled frequently enough. Tsitsiklis and Van Roy [699] showed in
1997 that combining off-policy reinforcement learning with nonlinear function
approximaters (such as neural networks) could cause Q-values to diverge. Sutton
and Barto [659] summarize three main reasons for divergent training: function
approximation, bootstrapping, and off-policy learning. Together, these form the
so-called deadly triad of instability. When these three techniques are combined,
training can diverge, and value estimates can become unbounded.18

Function approximation may attribute values to states inaccurately. Whereas exact
methods are designed to recognize individual states, neural networks are designed
to recognize individual features of states. These features may be shared by different
states, and values attributed to those features are shared also by other states. Function
approximation may cause confusion or misidentification of states. In a reinforcement
learning process where new states are generated on the fly, this sharing of values
among states may cause loops or other forms of instability. If the accuracy of the
approximation of the true function values is good enough, then states may be identified
well enough to prevent most loops or divergent training processes.

Bootstrapping of values increases the efficiency of the training because values do
not have to be calculated from the start, since previously calculated values are reused.
Bootstrapping is at the basis of the recursive Bellman equation, of temporal difference,
and of Q-learning. However, errors or biases in initial values may persist, and even
spill over to other states as values are propagated, and error values become correlated
between states. With function approximation, inaccuracies in values are almost
guaranteed. Bootstrapping and function approximation can thus lead to divergent
learning, and to training loops getting stuck in one area of the state space.

Off-policy learning uses a behavior policy that is different from the target policy
that we are optimizing (Sect. 3.3.5). When the behavior policy is improved, the
off-policy values may not ne improved, and the algorithm may not converge. Off-
policy learning converges independently from the behavior policy, and converges
generally less well than on-policy learning, especially when combined with function
approximation [659].

The consequence of the deadly triad is that divergence may occur. In a divergent
learning process Q-values do not converge, but diverge.19

18 Actually, as Tsitsiklis and Van Roy [699] showed, already two of the three may be enough for
instability. All three together increases the chance of divergent training more, unless special measures
are taken.
19 The deadly triad suggests us to use on-policy instead of off-policy learning, to improve the training
convergence. However, when learning on-policy the target network determines the next data sample
to be trained on. Mnih et al. [461] give an example of how on-policy learning also leads to training
divergence. Assume that the maximizing action is to move left. With on-policy learning the training
samples will be dominated by samples from the left-hand side; if, for some reason, the maximizing
action then switches to the right, then the training distribution will also switch. In this way unwanted
feedback loops may arise and the network will get stuck in self-reinforcing features.
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For some time, most further research in reinforcement learning focused on linear
function approximators, which have better convergence guarantees. Later, after the
first positive results of DQN [461], experimental studies were performed to find
out under which circumstances convergence in the face of the deadly triad can be
achieved, causing many further techniques to be developed (Sect. 6.4).

Conclusion

The preceding challenges to achieve stable deep reinforcement learning might be
summarized as problems of coverage, correlation, and convergence: a lack of coverage
of the state space, too much correlation between subsequent states, and problematic
convergence in training due to the deadly triad.

Although the theory suggests reasons why function approximation may preclude
stable reinforcement learning, there were early indications to the contrary that stable
training was possible in practice. TD-Gammon [675] used self-play reinforcement
learning, achieving stable learning in a shallow network. Perhaps some form of stable
reinforcement learning was possible, at least in a shallow network? TD-Gammon’s
training used a temporal difference algorithm similar to Q-learning, approximating
the value function with a network with one hidden layer, based on heuristic features.

TD-Gammon’s success prompted attempts with TD learning in Checkers [133]
and Go [655, 144]. Unfortunately the success could not be replicated in these games,
and it was believed for some time that Backgammon was a special case well suited for
reinforcement learning and self-play [530, 606]. One suggestion was that perhaps the
randomness of the dice rolls helped exploration and smoothing of the value function
of the state space.

However, there were further reports of early successful applications of deep neural
networks in a reinforcement learning setting, suggesting that stable deep reinforcement
learning is possible [283, 576], prompting more work. The results in Atari (2013)
and Go (2016) as well as further studies [710] have now provided clear indications
that both stable training and generalizing reinforcement learning are indeed possible,
and why.

So far, we have discussed reasons why deep reinforcement learning processes may
suffer from instability. Deep reinforcement learning is a process where the training
examples are influenced by the training process itself, introducing the possibility of
divergent or self-reinforcing learning. We have also seen that, despite these reasons,
some papers reported stable learning (in addition to TD-Gammon’s success with
shallow reinforcement learning).

As noted before, attempts to follow up on TD-gammon’s success with neural
nets and self-play in Checkers and Go were not successful at first. We will now
discuss results where stable deep reinforcement learning was achieved on end-to-end
reinforcement learning of Atari 2600 games on the Atari Learning Environment
benchmark set (ALE) [53].
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Fig. 6.24 Atari 2600 console

6.3.2 Atari 2600 Games

Let us look in more detail into the Atari 2600 experiments.
Learning actions directly from high-dimensional sensory inputs such as sound

and vision is one of the long-standing challenges of artificial intelligence. In 2013,
one year after the AlexNet success in supervised learning, a paper was published
that took reinforcement learning a major step further. Mnih et al. [461] published a
work on end-to-end reinforcement policy learning in Atari games. Their approach is
end-to-end in the sense that they learn joystick actions directly from the visual state,
the raw pixels, without an intermediate step of hand-crafted heuristic features. The
network architecture and training algorithm were named DQN, for Deep Q-Network.

Mnih et al. applied deep learning to play 1980s arcade Atari 2600 games, such
as Space Invaders, Pong, and Breakout, directly from the raw television screen
pixels [53]. Figure 6.24 shows a picture of an Atari 2600 console.

Being able to close the loop from pixels to policy is a major achievement. In their
original 2013 workshop paper Mnih et al. [461] were able to achieve human-level
play for six games. In a follow-up article in 2015 they improved on their work and
were able to achieve a level of play equal to humans for 49 of the games that were in
the test set [462].

It should be noted that there are a few Atari games that proved difficult to achieve
strong play at. Notably games that required more long-range planning because long
stretches of the game do not give rewards, such as Montezuma’s Revenge, were a
problem. Delayed credit assignment over long periods is still hard. In 2020 a paper
was published with success in 57 games using a meta-controller for learning in the
different games [28].

In summary, a single architecture was able to successfully learn control policies
for many different games. Minimal prior knowledge was used, and the neural network
only processed the pixels and the game score. The same network architecture and
training procedure was used on each game, although a network trained for one game
could not play another game well.
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Fig. 6.25 Screenshots of 4 Atari Games (Breakout, Pong, Montezuma’s Revenge, and Private Eye)

Arcade Learning Environment

The results by Mnih et al. stimulated much further work in the area of deep
reinforcement learning. Successful end-to-end reinforcement learning created much
interest among researchers, and many related algorithms were developed. Let us look
into their methods and experiments.

The games that were used for DQN are from a standard benchmark set, the Arcade
Learning Environment (ALE) [53]. ALE is a test-bed designed to provide challenging
reinforcement learning tasks. Among other things it contains an emulator of the Atari
2600 console. ALE presents agents with a high-dimensional20 visual input (210×160
RGB video at 60 Hz) of tasks that were designed to be interesting and challenging for
human players (Fig. 6.25). The game cartridge ROM typically holds the game code
(2-4 kB), while the console memory is small, just 128 bytes. This is not a typo, the
console memory really is only 128 bytes. The actions can be input via a joystick, and
a fire button (18 actions).

The original experiments were performed with seven Atari games. Training was
performed on 50 million frames in total.

In their 2013 work [461] the neural network performed better than an expert human
player on Breakout, Enduro, and Pong. On Seaqest, Q*Bert, and Space Invaders
performance was far below that of a human. In these games a strategy must be found
that extends over longer time periods. In their 2015 work [462] the net performed

20 That is, high dimensional for machine learning. 210 × 160 pixels is not exactly high-definition
video quality.
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Fig. 6.26 DQN architecture [320]

better than human-level play in 29 of 49 Atari games. Again, games with longer credit
delay were more difficult.

Let us look in more detail at the network architecture of the 2013 experiments.

Network Architecture

The Atari task is a control task: the network trains a behavior policy directly from
pixel frame input. The task of processing raw frames involves a high computational
load. Therefore, the 2013 training architecture contains a number of reduction steps.
The network that is used consists of three hidden layers, which is simpler than what is
used in most supervised learning tasks. Figure 6.26 shows the architecture of DQN.

The images are high-dimensional data. Since working with the full resolution
of 210 × 160 with 128 colors at 60 frames per second would be computationally
too intensive, the images are preprocessed. The 210 × 160 with 128 color palette
is reduced to gray scale and 110 × 84 pixels cropped to 84 × 84. The first hidden
layer convolves 16 8 × 8 filters with stride 4 and ReLU neurons. The second hidden
layer convolves 32 4 × 4 filters with stride 2 and ReLU neurons. The third hidden
layer is fully connected and consists of 256 ReLU neurons. The output layer is also
fully connected with one output per action (18 actions for the joystick). The outputs
correspond to the Q-values of the individual action. The network receives the change
in game score as a number from the emulator, and derivative updates are reprocessed
to {−1, 0,+1} to indicate decrease, no change, or improvement of the score (Huber
loss [38]).

To reduce computational demands further, frame skipping was employed. Only
one in every 3–4 frames was used, depending on the game. For history, the net takes
as input the last four resulting frames, allowing movement to be seen by the net. As
optimizer RMSprop was used. A variant of ε-greedy is used, that starts with an ε of
1.0 (exploring) going down to 0.1 (90% exploiting).

The network architecture consists of convolutional layers and a fully connected
layer. Recall that convolutional nets are shift-invariant feature recognizers. Fully
connected nets allow n×m mapping. The feature recognizers together with the n×m
mapping allow mapping of any feature (shape) to any action.
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6.3.3 Decorrelating States

Let us now look in more detail at how stable learning was achieved. The focus of DQN
is on breaking correlations between states. The DQN algorithm has two methods to
achieve this: experience replay and infrequent weight updates. We will first look at
experience replay.

Experience Replay

Recall that in reinforcement learning training samples are created in a sequence of
interactions with an environment, and that subsequent training states are correlated.
Thus the network is trained on too many samples in a certain area, and other parts
of the state space remain unexplored. Furthermore, through function approximation,
some behavior may be forgotten. When an agent reaches a new level in a game that is
different from previous levels, the agent may forget how to play the other level.

DQN uses experience replay, with a replay buffer [420], a cache of previously
explored states.21 The goal is to increase the independence of training examples, by
sampling training examples from this buffer. The next state to be trained on is no
longer a direct successor of the current state, but one in a long history of previous
states. In this way the replay buffer spreads out the learning over all seen states
by sampling a batch of states at random, breaking temporal correlations between
samples.

Experience replay improves on standard Q-learning in two respects, using random-
ization of the order in which samples are used to (1) break the correlations between
consecutive samples; (2) prevent unwanted feedback loops, which would arise when
the game makes moves in a certain area that it does not escape from, getting stuck in
local areas of the state space. By averaging the behavior distribution over the previous
states, experience replay smooths out training and avoids oscillations or local minima
in the parameters.

Note that training by experience replay is a form of off-policy learning, since the
target parameters are different from those used to generate the sample.22 Off-policy
learning is one of the three elements of the deadly triad. It is curious to see that this
solution to stable learning is to use more of one of the causes of the deadly triad.

In practice, experience replay stores the last N examples in the replay memory, and
samples uniformly when performing updates. A typical number for N is 106 [777]. A
form of importance sampling might differentiate important transitions. Experience
replay works well in practice in Atari [462]. However, further analysis of replay
buffers has pointed to possible problems. Zhang et al. [777] study the deadly triad
with experience replay, and find that larger networks resulted in more instabilities, but

21 Originally experience replay is a biologically inspired mechanism [442, 495, 421].
22 But since DQN uses ε -greedy exploration, in a percentage of the actions the behavior policy is
used. DQN is a mix between on-policy and off-policy learning.
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also that longer multi-step returns yielded fewer unrealistically high reward values.
Indeed, in Sect. 6.4 we will see many further enhancements.

Infrequent Weight Updates

The second improvement in DQN is infrequent weight updates. Infrequent updates
of the target weight values also reduce correlations and oscillations caused by loops
and self-reinforcing features. This method works by using a separate network for
generating the targets of the update of the Q value. Every x updates, the network Q is
cloned to obtain a target network Q̂, which is used for generating the targets for the
following x updates to Q.

This second network improves the stability of Q learning, where normally an update
that increases Q(st, at ) often increases Q(st+1, a) for all a. This also increases the
target, quite possibly leading to oscillations and divergence of the policy. Generating
the targets using an older set of parameters adds a delay between the time an update
to Q is made and the time the update changes the targets, breaking the feedback loop
or at least making oscillations less likely.

6.3.4 Conclusion

It should be noted that the fundamental reasons for instability in reinforcement
learning with function approximation still exist; the deadly triad has not evaporated
into thin air, and states are still generated in an agent/environment loop. DQN
and related algorithms have achieved stable learning for some games. Van Hasselt
et al. [710] mention that divergence can be mitigated by using separate networks
for bootstrapping, using multi-step returns, and prioritizing replay to reduce the
overestimation bias. Many further advances to DQN have been found, as we will
discuss further in Sect. 6.4.

The topic of this chapter is how deep learning enabled automated feature discovery
to achieve true end-to-end machine learning, from pixels to labels and actions. We
have seen how a combination of new algorithms, large training sets, and GPU compute
power has enabled researchers to achieve breakthroughs in image recognition and
game playing. These breakthroughs have resulted in applications that we use in our
daily lives, and have inspired much further research (Sect. 6.4).

Let us take a step back and reflect on what has been achieved in supervised and
reinforcement learning.

End-to-End Behavior Training

Both the works on Atari and ImageNet succeed in end-to-end training. It is interesting
to compare end-to-end training in supervised and in reinforcement learning. The
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breakthroughs in image recognition with AlexNet [386] and other ILSVRC works
rely on training on large labeled training sets. In these and later works, networks are
trained directly from the raw inputs, using updates by stochastic gradient descent. The
layered representations that are learned in this way are typically better representations
than hand-crafted or heuristic features.

Mnih et al. learned an end-to-end behavior policy from raw visual input, also
without any heuristics or intermediate features. The Atari 2600 games are games of
skill. The games are difficult for humans, because they require dexterity and quick
hand-eye coordination. Playing the games builds reflexes. The games are not so
much designed as games of strategy (such as Chess, Checkers, Go, Backgammon,
or Othello) where credit assignment is long and small differences between states
can have large consequences, and where planning algorithms shine. The Atari 2600
games are reflex games (thinking fast, not slow) with mostly short temporal credit
assignment, that could be learned with a surprisingly simple neural network. In this
sense, the problem of playing Atari well is not unlike an image database categorization
problem: both problems are to find the right answer (out of a small set) that matches
an input consisting of a set of pixels. Apparently, mapping pixels to categories is not
that different from mapping pixels to joystick actions, when the credit assignment
problem has been overcome (see also the observations in [355]).

The algorithmic feat of breaking through the divergence and oscillation of
reinforcement learning with feedback loops and off-policy function approximation, is
highly imaginative, and has stimulated much subsequent research. Many blogs have
been written on replicating the result, which is still not an easy task [38].

We will now turn to further developments of advanced deep reinforcement learning
algorithms to address these challenges.

6.4 *Deep Reinforcement Learning Enhancements

Aswe have seen in Sect. 6.3.1, the stability of the training process is themain challenge
in deep reinforcement learning. DQN showed that experience replay improves the
training stability, enabling end-to-end learning in Atari. The Atari results have
spawned much activity among reinforcement learning researchers to improve training
stability further, and many refinements of experience replay have been devised. The
algorithms in this section all aim to address the problems of coverage, correlation,
and convergence, and largely succeed in doing so.

Many of the topics that are covered by the enhancements are older ideas that
work well in deep reinforcement learning. DQN applies random sampling of its
replay buffer, and one of the first enhancements was prioritized sampling [596]. It
was found that DQN, being an off-policy algorithm, typically overestimates action
values (due to the max operation). Double DQN addresses overestimation [711], and
dueling DDQN introduces the advantage function to standardize action values [747].
Two effective actor-critic algorithms were introduced: A3C [459] and PPO [610].
The effect of random noise on exploration was tested [224], and distributional DQN
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Name Principle Applicability Effectiveness
double DQN de-overestimate values DQN convergence
prioritized experience decorrelation replay buffer convergence
distributional probability distr deep RL generalization
random noise parametric noise deep RL more exploration
actor-critic value/policy interleave A3C, PPO, dueling stability, parallel

Table 6.4 Deep reinforcement learning enhancements

showed that networks that use probability distributions work better than networks
that only use expected values [52].

In this section we will discuss these enhancements. Table 6.4 gives an overview of
some of the deep reinforcement learning enhancements. The enhancements improve
generalization to the test set and convergence of the training process. Just as we
saw in Chap. 4 with heuristic planning, the basic concepts and algorithms in deep
reinforcement learning are simple. And just as in heuristic planning, the basic ideas
offer much room for further enhancement, to achieve better performance [594].
Interestingly, many of these enhancements are independent: the concepts do not
interfere and can be used together.

In 2017 Hessel et al. published the Rainbow paper [290], in which they combined
seven important enhancements. The paper is so called because the major graph
showing the cumulative performance over 57 Atari games of the seven enhancements
is multi-colored (Fig. 6.27).

The Rainbow paper summarizes some of them, and this section provides an
overview of ideas and enhancements. The enhancements all use the same or similar
benchmarks (ALE or Gym), and most algorithm implementations can be found on the
OpenAI Gym GitHub site in the baselines.23 This has stimulated research, resulting
in the current abundance of ideas and algorithms, of which many play an important
role in further research.

Reducing Correlation

The baseline algorithm of the methods described is DQN. The original DQN
architecture is based on a simple neural network with two hidden convolutional
layers and one fully connected hidden layer, a fully connected output layer,24 and
ε-greedy exploration. DQN further uses a combination of four techniques [461, 462]:
an experience replay buffer for randomized sampling to break consecutive state
correlations, a separate target weight network to break target value correlations,
clipping rewards to {−1, 0,+1}, and skipping frames and reducing pixel resolution to
reduce the computational load.

The following algorithms improve on various aspects of DQN.

23 https://github.com/openai/baselines

24 The 2015 architecture uses three hidden convolutional layers [462]

https://github.com/openai/baselines
https://github.com/openai/baselines
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Fig. 6.27 Rainbow graph: performance over 57 Atari games [290]

6.4.1 Overestimation

Van Hasselt et al. introduce double deep Q learning (DDQN) [711]. DDQN is based
on the observation that Q-learning may overestimate action values. They find that,
in practice, such overestimations are common. On Atari 2600 games, due to the use
of a deep neural network, DQN suffers from substantial over-estimations. Earlier
Hasselt et al. [275] introduced the double Q learning algorithm in a tabular setting.
The later paper shows that this idea also works with a large deep network. This
DDQN algorithm not only reduces the overestimations but also leads to much better
performance on several games.

DDQN was tested on 49 Atari games and achieved about twice the average score
of DQN with the same hyperparameters, and four times the average DQN score with
tuned hyperparameters [711].

6.4.2 Prioritized Experience Replay

Prioritized experience replay, or PEX, was introduced by Schaul et al. [596]. In the
Rainbow paper its results are shown in combination with DDQN.
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Recall that in DQN experience replay lets agents reuse examples from the past. In
DQN experience transitions are uniformly sampled from a replay memory. Therefore,
actions are simply replayed at the same frequency that theywere originally experienced,
regardless of their significance. Schaul et al. develop a framework for prioritizing
experience. Important actions are replayed more frequently, and therefore learning
efficiency is improved.

Schaul et al. use standard proportional prioritized replay, where the absolute
TD error is used to prioritize actions. This can be computed in the distributional
setting, using the mean action values. In the Rainbow paper all distributional variants
prioritize actions by the Kullback-Leibler loss [290].

6.4.3 Advantage Function

Vanilla DQN uses a single neural network as function approximator. Dueling
DDQN [747] improves on this architecture by using two separate estimators: a
value function and an advantage function. An advantage function computes the
difference between the value of an action and the value of the state. In this way
it standardizes on a baseline for the actions of a state [262]. This allows better
learning across actions. Results show that the advantage function leads to better
policy evaluation when there are many similar valued actions.

6.4.4 Distributional DQN

DQN learns a single value, the estimated mean of the state value. Distributional
Q-learning [52] learns a categorical probability distribution of discounted returns,
instead of estimating the mean. This is in contrast to most reinforcement learning
algorithms that model only the expectation of this value. Bellemare et al. use the
distributional perspective to design a new algorithm which applies Bellman’s equation
to the learning of approximate distributions. Performance results of distributional
DQN on Atari are good, showing the importance of the distributional perspective.
Other relevant research into distributional perspectives is byMoerland et al. [463, 464].

Distributional reinforcement learning is an interesting and promising approach.
Dabney et al. [158] report on experiments with mice that showed correspondence
between distribution reinforcement learning algorithms and the dopamine levels in
mice. It is hypothesized that the brain represents possible future rewards not as a
single expected value, but as a probability distribution.
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6.4.5 Noisy DQN

Noisy DQN [224] uses stochastic network layers for exploration. In NoisyNet
parametric noise is added to the weights. This noise induces randomness in the
agent’s policy, increasing exploration. The parameters of the noise are learned with
gradient descent along with the remaining network weights. The authors replace the
standard exploration heuristics for A3C, DQN, and dueling agents (entropy reward
and ε-greedy) with NoisyNet. The better exploration yields substantially higher scores
for Atari.

6.4.6 R2D2

R2D2 [352] stands for Recurrent ReplayDistributedDQN, and is built upon prioritized
distributed replay and 5-step double Q-learning. It uses a dueling network architecture
and an LSTM layer after the convolutional stack, see also [746, 263]. The RNN uses
the recurrent state to exploit long-term temporal dependencies. They also find that
RNN allows for better representation learning. R2D2 achieved good results on the 57
Atari games [352].

A recent benchmark achievement has been published as Agent57, the first deep
reinforcement learning program that achieves a score higher than the human baseline
on all 57 Atari 2600 games. Agent57 uses a meta-controller that adapts long- and
short-term behavior of the agent, training for a range of policies, from very exploitative
to very explorative [536].

6.4.7 Actor-Critic Approaches

Q-learning and value-based methods work well for discrete problem domains such
as games. For continuous problem domains, such as robotics, policy methods are
preferred. A challenge in policy methods is to find a reliable estimator for the quality
of actions. A good way to achieve an accurate sense of the quality of actions is
through the interleaving of value and policy methods, in an actor-critic approach (see
also Sect. 3.3.3). There have been exciting advances in actor-critic, and some of the
best performing algorithms on both games and robotics, such as PPO, are actor-critic.

Policy gradientmethods caused recent breakthroughs in using deep neural networks
for control, from video games, to 3D movement, to board games. Getting good results
with policy gradient methods is challenging. They are sensitive to the choice of step
size—too small, and progress is slow; too large and the signal is overwhelmed by the
noise. When they lack good value estimates of the actions, they can have very poor
sample efficiency, taking millions of time steps to learn simple tasks [609].

We will describe two main actor-critic algorithms: A3C and PPO.
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A3C

A3C stands for Asynchronous Advantage Actor Critic [459] and is a parallel imple-
mentation of Advantage Actor-Critic (A2C), an actor-critic algorithm that uses the
advantage function [659, 262].

In reinforcement learning, the amount of computational effort required for training
is often substantial, and can be a prohibiting factor in achieving good results. Although
the speedup provided by GPUs enabled much progress, the training times are still
large. One way to speed up algorithms is to run parts of the search effort on multiple
computers in parallel. Mnih et al. [459] present a method for parallel asynchronous
gradient descent. The method allows implementation of different reinforcement
learning variants, and related algorithms. One of these, an actor-critic algorithm
called A3C, performs well.

A3C uses a multi-step bootstrap target [659, 658]. One of the effects of actor-critic
is that it stabilizes training, just as experience replay. The parallel actor learners
stabilize the controllers. The parallelism also decorrelates the samples into a more
stationary process, since the parallel agents experience a variety of unrelated states.
The Rainbow experiments include A3C and show its performance against advanced
DQN algorithms, and in combination.

Proximal Policy Optimization

Another actor-critic algorithm is proximal policy optimization, or PPO [610]. PPO
is an important algorithm that is successful in discrete action spaces (games) and
continuous action spaces (robotics). PPO was not part of the Rainbow paper, which
focuses mostly on value-based methods.

As we have seen [187] policy gradient estimates can have high variance and
they can be sensitive to the settings of their hyperparameters. After the gradient is
calculated, choosing the step size can be difficult: too small, and the algorithm is slow
and sample inefficient; too large, and the algorithm overshoots and does not find the
optimum. Several approaches have been proposed to make policy gradient algorithms
more robust. One is to constrain the updates to a region, the so-called trust region.
The trust region restricts the amount by which any update is allowed to change the
policy. This approach is used in trust region policy optimization (TRPO [609]). In
every iteration TRPO collects a batch of data and optimizes the surrogate loss subject
to a constraint on how much the policy is allowed to change, expressed in terms of the
Kullback-Leibler divergence. TRPO performs well, but uses expensive second-order
derivative calculations, and a more efficient approach was sought.

Proximal policy optimization [610] is motivated by the same question as TRPO:
how can we take the largest possible improvement step on a policy using the data
we currently have, without stepping so far that we accidentally cause performance
collapse. Where TRPO tries to solve this problem with a complex second-order
method, PPO is a family of first-order methods to keep new policies close to the old.
PPO methods are simpler to implement than TRPO, while performing as well in
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practice [284]. PPO trains a stochastic policy on-policy, in contrast to DQN, which is
off-policy. This means that it explores by sampling actions according to the latest
version of its stochastic policy.

While simpler than TRPO, the implementation of PPO is still complicated. OpenAI
provides an implementation in its baseline.25

6.4.8 Enhancements in the Context of Game Playing Programs

To close this section on reinforcement learning enhancements, and to close this long
chapter on deep learning, let us take a step back and look from a historical perspective
at learning in games. We will look at how the various methods have been used in the
context of game playing programs. We will discuss examples of database, supervised,
and reinforcement learning. Some of the programs that we discuss will apply a form
of self-play, a topic that will de explored more deeply in the next chapter.

Note that the simple minimax procedure already performs a kind of self-play. In
minimax we determine our best move by calculating our opponent’s best reply, which
is based on our best reply, etc. In TD-Gammon and AlphaGo Zero style self-play
we use a search-eval player to train our own evaluation function, by playing a small
tournament against ourselves.

However, it can be difficult to get self-learning to work, because of instability in
deep reinforcement learning training algorithms. When a supervised learning system
does not learn, then we can try to find out why it is not learning certain examples by
checking them one by one. A self-learning reinforcement learning system produces
its own training examples, it can be unstable, and it can be hard to find out why a
system is not learning, when there is no database of known knowledge that the system
should have learned.

Therefore, we will see many examples of database learning, before we see self-play
appear in game playing programs.

Earlier Works

Already in 1959 Samuel [577] introduced the idea of learning by self-play in his
Checkers program. The coefficients of the heuristic function were updated towards
the value of the search after black and white had each played one move. Today, more
and more programs are based on end-to-end learning.

We will now have a look at previous game playing programs that used supervised
and reinforcement learning. Table 6.5 lists notable works. The first column contains
the name of the program, if given in the paper. The second column lists which game(s)
the program plays. The third column is the planning algorithm, if applicable. The
fourth column is the training algorithm, if applicable. CNN stands for convolutional

25 https://openai.com/blog/openai-baselines-ppo/#ppo

https://openai.com/blog/openai-baselines-ppo/#ppo
https://openai.com/blog/openai-baselines-ppo/#ppo
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Program Game Plan Learn Data Net Eval Reference
Samuel Check. AlphaB. coeff. self-play - coeff. feat. Samuel 1959 [577]
Chinook Check. AlphaB. - endgames - heur. feat. Schaeffer 1992 [590]
Logistello Othello AlphaB. regress. patterns - coeff. pat. Buro 1995 [113]
Deep Blue Chess AlphaB. coeff. manual - coeff. feat. Hsu 1990 [310]
NeuroCh. Chess AlphaB. TD(0) db/self-play 1 layer coeff. feat. Thrun 1995 [686]
Neurogam. B.gam. - FCN games db 1 layer coeff. feat. Tesauro 1989 [673]
TD-gam. B.gam. AlphaB. TD(λ) self-play 1 layer end to end Tesauro 1995 [675]
- Go - TD(0) self-play 2 layer end to end Schraudolph [606]
MoGo Go MCTS TD(0) self-play - coeff/shape Gelly 2008 [239]
NeuroGo Go - FCN games db 1 layer coeff. feat. Enzenberger [199]
Blondie24 Check. AlphaB. FCN evo play 3 layer end to end Fogel 2001 [221]
Giraffe Chess AlphaB. CNN self-play 3 layer end to end Lai 2015 [393]
DeepChess Chess AlphaB. FCN games db 4 layer end to end David 2016 [160]
- Atari - CNN DQN 3 layer end to end Mnih 2013 [461]
ExIt Hex MCTS CNN self-play 15 layer end to end Anthony 2017 [15]
- Go MCTS CNN games db 5 layer end to end Clark 2015 [145]
DarkForest Go MCTS CNN games db 12 layer end to end Tian 2015 [691]
AlphaGo Go MCTS CNN games db π:12C/1F end to end Silver 2016 [623]

self-play v:13C/1F
AlphaGo Z. Go MCTS ResNet self-play 20 block end to end Silver 2017 [626]

heads:π, v
Go 20 block

AlphaZero Chess MCTS ResNet self-play heads:π, v end to end Silver 2018 [625]
Shogi

Table 6.5 Evolution of planning, learning, and self-play in game playing programs

neural net, and FCN for fully connected net. The fifth column describes the data with
which the learning took place. For supervised learning this is typically a database
of grandmaster games, and for reinforcement learning a self-play loop is used, or
databases with self-played games. The sixth column is the network architecture. Only
the hidden layers are counted. For the older papers this is often a small number of
hidden layers. After the advent of the use of GPUs in 2012 larger nets became feasible.
The seventh column lists the evaluation method. This can be a linear combination
of heuristic features, a system where the network learns the coefficients of heuristic
features, or a full end-to-end learning system from raw board input. Last is a reference
to a major work describing the approach of the program. Only the name of the first
author is mentioned. Some programs were developed over many years by different
authors. Please refer to the original papers for the often fascinating histories.

We will now discuss how the methods of these earlier programs developed.

Learning Shapes and Patterns

Game playing programs have been using many types of machine learning to improve
the quality of play. For this reason, many early works focused on learning shapes and
patterns. This learning was typically off-line, using months and months of training
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time. The Checkers program Chinook employed an end-game database that contained
all board positions with 8 or fewer pieces. As soon as the database was reached by the
search, perfect knowledge was available. The end-game database greatly contributed
to the strength of Chinook [591]. In Chess, Deep Blue had a database that was
accessed as soon as 5 or fewer pieces were on the board [119].

In Go, the emphasis of databases is on small local patterns. Stoutamire used
hashed sets of patterns to find good and bad shapes [647]. Van der Werf used neural
networks and automatic feature extraction to predict good local moves from game
records [709, 708].

Supervised Learning

Many researchers have tried supervised learning with databases of grandmaster games.
Tesauro’s 1989 Neurogammon achieved good results in Backgammon with supervised
learning of the coefficients of an evaluation function of handcrafted features. He used
a single hidden layer [674].

In Go, Enderton used neural networks in the search in his Go program Golem,
for move ordering and for forward pruning of selective search [198]. Enzenberger’s
NeuroGo used a neural network for position evaluation [199].

Much later, Maddison et al. published work on a 12-layer convolutional neural
net for move prediction in Go [435], laying a foundation for the supervised learning
of AlphaGo. Facebook’s AI Research lab created Darkforest for end-to-end deep
learning of Go positions and MCTS [691].

Reinforcement Learning

Supervised learning, as in Neurogammon, uses a database to learn from good moves.
After the success with supervised learning in Neurogammon, Tesauro tried temporal
difference learning from the raw board in a small neural network in 1992. This was
further augmented with expert designed features, resulting in play at world class level.
TD-Gammon’s success was the first widely published success of self-play [676, 677].

In Go Schraudolph et al. [606] used temporal difference to learn position evaluation
from board networks. They note that to be successful, networks should reflect the
spatial organization of the input signals. Huang et al. [315] used self-play of 16
different players to learn opening strategies in Go.

Silver, in his PhD thesis [622], applied reinforcement learning to search in Go, and
Silver et al. [627] and Gelly and Silver [237, 236, 235] studied reinforcement learning
of local shape patterns. Silver et al. [628] further combined temporal difference
learning in MCTS.

In Chess, Thrun’s NeuroChess [686] tried temporal difference feature learning.
Inspired by the progress in deep learning, in 2015 Matthew Lai tried end-to-end
learning inChess: hewent beyond evaluation functionweight tuningwithGiraffe [393],
using DQN, and self-play, including feature extraction and pattern recognition for
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end-to-end reinforcement learning. Giraffe reached master-level play. Lai later joined
the AlphaZero team.

In some of the early works the small size of the networks limited success. In others
the temporal difference learning or self-play is based on hand-crafted or heuristic
features of the state space, possibly introducing bias or errors. End-to-end learning
from the raw board or pixels requires more computational power. When first done
successfully end-to-end (AlexNet [386], Atari [461, 462]) the papers generated much
research interest.

Concurrent to the work by the AlphaGo team, Anthony et al. [15] worked on a
similar idea for tabula rasa learning based on self-play, combining MCTS and DQN.
The name of their work is ExIt, for Expert Iteration. They did not use Go, but Hex, a
simpler game, to show their methods. They do make the link with Kahneman’s work
explicit, even in the title of their paper.

The relation between planning and training is also studied in model-based and
model-free reinforcement learning (Sect. 3.3.4). The interplay between planning and
training, and especially of model-based and model-free approaches, is an active area
of research [15, 750, 506, 733, 414, 749].

6.4.9 Conclusion

Progress has been made in deep reinforcement learning by many researchers in a
short period of time. The actor-critic algorithms and the Rainbow paper algorithms
illustrate how much our understanding of deep reinforcement learning has improved.
As in heuristic planning and in supervised learning, the presence of clear benchmarks
was instrumental for progress. Researchers were able to see clearly which ideas
worked, and to check if their intuition and understanding were correct. The earlier
game playing programs, OpenAI’s Gym [98], and the ALE [53] are responsible to a
great extent for enabling this progress.

The next chapter will look deeper into self-play, a kind of reinforcement learning
in which the environment is played also by the agent, and which takes performance
of deep reinforcement learning to another level.

6.5 Practice

Below are some questions to check your understanding of this chapter. Each question
is a closed question where a simple, one sentence answer is possible.

Questions

1. What is the difference between supervised learning and reinforcement learning?
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2. What is the difference between a shallow network and a deep network?
3. Why is function approximation important in game playing?
4. What phases does a learning epoch have? What happens in each phase?
5. What is the difference between heuristic features and learned features?
6. What is MNIST? What is ImageNet? What is TensorFlow?
7. Name three factors that were essential for the deep learning breakthrough, and

why.
8. What is end-to-end learning? Do you know an alternative?What are the advantages

of each?
9. What is underfitting, and what causes it? What is overfitting, and what causes it?

How can you see if you have overfitting?
10. Name three ways to prevent overfitting.
11. What is the difference between a fully connected network and a convolutional

neural network?
12. What is max pooling?
13. Why are shared weights advantageous?
14. Describe the vanishing gradient problem. What are ReLU units?
15. Why is deep reinforcement learning more susceptible to unstable learning than

deep supervised learning?
16. What is the deadly triad?
17. Why may reinforcement learning with function approximation be unstable?
18. What is the role of the replay buffer?
19. How can correlation between states lead to bad generalization?
20. How did AlexNet advance the state of the art in deep learning?
21. Name three architectural innovations/characteristics of AlexNet.
22. What is an inception modules? What is a residual network? What is the relation

between the two?
23. What is a GAN?
24. What is an RNN, and how is it different from a deeply layered network?
25. What are the advantages of LSTM?
26. Why is the Rainbow paper so named, and what is the main message?
27. Why is PPO an actor-critic method?

Exercises

Let us now start with some exercises. Install TensorFlow and Keras (go to the
TensorFlow page).26 The exercises below are meant to be done in Keras.

1. Download and install TensorFlow and Keras. Check if everything is working by
executing the MNIST training example. Choose the default training dataset. Run
it on the training set, and then test the trained network on a testset. How well does
it predict?

26 https://www.tensorflow.org

https://www.tensorflow.org
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2. Which optimizer does the MNIST example use? Try a different optimizer, an
adaptive optimizer such as Adam, and compare it with simple Backprop. Does
training speed improve?

3. OpenML is a research project to compare different machine learning algorithms
with different datasets. Go to OpenML and download different datasets to see
which problems may be harder to learn.27

4. The learning rate is a crucial hyperparameter. Always tune this one first. You may
find that learning goes slowly. Try to increase the training speed by increasing the
different learning rates. Does performance increase? Does the error function drop
faster or slower? Can you explain your observations?

5. Explore options for cloud processing. The cloud provides ample compute power at
cheap prices, often with free student or sign up bonuses. Go to AWS, the Google
Cloud, Colab, or Microsoft Azure, and explore ways to speed up your learning.

6. One of the biggest problems of supervised learning is overfitting. Can you check if
over- or underfitting occurred in your experiments? Create an experiment in which
you force overfitting to occur. What will you do: change the size of the network,
change the algorithm (change CNN, ReLU, dropout), or change a parameter
(learning rate, dropout percentage, training time)? How can you see if overfitting
has occurred? When has it been reduced?

Atari DQN Code

The Atari papers come with source code. The original DQN code from [462] is at
Atari DQN.28 This code is the original code, in the programming language Lua,
without new developments. Before you start working with this code, it should be
noted that DQN can be difficult to get working. There are many details to get right.
In addition, the experiments often have to run for a long time, which means that
debugging and improving is slow if you have just one GPU.

A better start is the TensorFlow implementation in Python of DQN for the Atari
game Breakout, at Atari Breakout Code.29 This will get you up to speed more quickly.
The code is readable, and follows the concepts discussed in this chapter. However,
the code is too large to cover in detail here.

To get really started with deep reinforcement learning, we suggest to use DQN
and many of the other algorithms that are available at the OpenAI Keras RL library
at Keras RL30 [528, 241].

27 https://www.openml.org

28 https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

29 https://github.com/floodsung/DQN-Atari-Tensorflow

30 https://github.com/keras-rl/keras-rl

https://www.openml.org
https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/keras-rl/keras-rl
https://www.openml.org
https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/keras-rl/keras-rl


6.5 Practice 189

Fig. 6.28 Cartpole experiment [659]

Cartpole

OpenAI provides baseline implementations of important reinforcement learning
algorithms [173]. A good implementation of DQN for the Atari Learning Environment
is available. Installation instructions for Linux and macOS are provided.

Cartpole is a basic experiment in which an agent must learn to balance a stick on a
cart by reinforcement learning. A nice video of a Cartpole experiment is Cartpole
Video31 (this is a real-life cartpole, as opposed to the simulated cartpole that is most
often used in reinforcement learning experiments; Fig. 6.28). At OpenAI Cartpole
baseline32 working example code for the Cartpole experiment is available.

The high-level code is simple, as Listing 6.2 shows. To really understand what
is going on you have to look into the implementations of deepq.learn, which
implements DQN in a few hundred lines of code.

More Exercises

For the following exercises, if you have not done so, download and install Gym.

1. Go to the Mountain Car example, and run it. Experiment with different learning
settings to understand their effect on the learning.

2. Try the same for Cartpole.
3. Install ALE. Train a player for Space Invaders. Did the training process work well?

How do you find out if the trained player is a good player? Can you compute an
Elo rating?

4. Identify the replay buffer in the code. Reduce the size, or otherwise turn it off. Does
DQN still converge, what does it do to the quality of the player that is trained?

31 https://www.youtube.com/watch?v=5Q14EjnOJZc

32 https://github.com/openai/baselines/tree/master/baselines/deepq

https://www.youtube.com/watch?v=5Q14EjnOJZc
https://www.youtube.com/watch?v=5Q14EjnOJZc
https://github.com/openai/baselines/tree/master/baselines/deepq
https://github.com/openai/baselines/tree/master/baselines/deepq
https://www.youtube.com/watch?v=5Q14EjnOJZc
https://github.com/openai/baselines/tree/master/baselines/deepq
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import gym

from baselines import deepq

def callback(lcl, _glb):
# stop training if reward exceeds 199
is_solved = lcl[’t’] > 100 and

sum(lcl[’episode_rewards’][-101:-1]) / 100 >= 199
return is_solved

def main():
env = gym.make("CartPole-v0")
act = deepq.learn(

env,
network=’mlp’,
lr=1e-3,
total_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback

)
print("Saving model to cartpole_model.pkl")
act.save("cartpole_model.pkl")

if __name__ == ’__main__’:
main()

Listing 6.2 Cartpole code [173]

5. *Try a few other Atari games. Does DQN train well? Try Montezuma’s Revenge.
Does DQN work well? Have a look at the alternative deep reinforcement methods.
How could you improve DQN to play well in Montezuma’s Revenge? (This is a
hard research question; see also [28].)

Stable Baselines

The Gym GitHub repository OpenAI Baselines33 contains implementations of many
algorithms covered here. You can easily download them and experiment to gain an
insight into their behavior. Stable Baselines is a fork of the OpenAI algorithms; it has
more documentation and other features. It can be found at Stable Baselines,34 and
the documentation is at Docs.35 An implementation of the Rainbow paper in Torch

33 https://github.com/openai/baselines

34 https://github.com/hill-a/stable-baselines

35 https://stable-baselines.readthedocs.io/en/master/

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/
https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/
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is available here.36 The RL Baselines Zoo even provides a collection of pretrained
agents, at Zoo.37

The open availability of TensorFlow, Keras, ImageNet, and OpenAI Gym/ALE
allows for easy replication and, importantly, improvement of the works covered in this
chapter. Keras implementations of VGG, ResNet are available in Keras.applications
(see Keras Applications).38 AlexNet is here: AlexNet,39 GoogLeNet is here:
GoogLeNet.40

*Advanced Exercises

Due to the advanced nature of some parts of this chapter, the following exercises are
large, project sized. These topics and these exercises are fascinating, but answering
these questions may require a substantial amount of research and work (potentially
thesis size).

1. Reproduce the basic AlexNet, VGG, and ResNet results on ImageNet in Keras. Do
deeper ResNets give better results? How do deeper ResNet impact training time?

2. Read GAN papers on how to generate artificial images [251, 356, 695]. Try to
generate fake cat and dog images. Can you also use a discriminator to separate
real images from fakes?

3. Use an RNN to perform a captioning challenge in ImageNet.
4. Read the Rainbow paper [290]. Go to the OpenAI baselines and download and

run the code and perform an ablation study, leaving out the constituting methods
one by one.

Summary

In this chapter we faced the challenge of finding function approximators for large,
high-dimensional, state spaces. Deep learning allowed automated feature discovery
for end-to-end learning. The field of function approximation with neural networks is
large, rich, and deep. This chapter can only give a glimpse of the work that has been
done.

The goal of function approximation is to find a reliable value function for large
state spaces, so large that test examples have not been seen during training. In this
way, the function approximators of this chapter are an alternative to the heuristic
feature function of Chap. 4 and the averaged random values of Chap. 5.

36 https://github.com/Kaixhin/Rainbow

37 https://github.com/araffin/rl-baselines-zoo

38 https://keras.io/applications/

39 https://gist.github.com/JBed

40 https://gist.github.com/joelouismarino

https://github.com/Kaixhin/Rainbow
https://github.com/araffin/rl-baselines-zoo
https://keras.io/applications/
https://gist.github.com/JBed
https://gist.github.com/joelouismarino
https://github.com/Kaixhin/Rainbow
https://github.com/araffin/rl-baselines-zoo
https://keras.io/applications/
https://gist.github.com/JBed
https://gist.github.com/joelouismarino
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Training deep networks is not easy. Among the problems to be overcome are
efficient training methods, overfitting, and vanishing gradients. Many solutions have
been discussed, from ReLU, batch normalization (to prevent vanishing gradients) to
dropouts (to prevent overfitting) to convolutional layers (to both reduce the number of
weights and allow efficient translations and rotations) and we have discussed training
methods such as stochastic gradient descent.

Function approximation blossomed when large labeled datasets became available
and when the necessary computational power in the form of GPUs arrived. In addition
to the datasets, easy-to-use free software packages such as TensorFlow and Keras
have lowered the barrier of entry for research significantly. These packages have
played a large role in the success of the field.

We also discussed deep reinforcement learning, where correlations between states
cause divergent and unstable learning.

Deep supervised learning constructs complex features from example databases.
The examples in these databases are independent, and training converges towards
an optimum. In reinforcement learning states are correlated and the training process
easily diverges. Two techniques, replay buffer and infrequent weight updates, have
been introduced to decouple states enough to allow the training to converge.

Mnih et al. state the following in their paper [462]: “a single architecture can
successfully learn control policies in a range of different environments with only very
minimal prior knowledge, receiving only the pixels and the game score as inputs, and
using the same algorithm, network architecture and hyperparameters on each game,
privy only to the inputs a human player would have.” This architecture, DQN, was
demonstrated on Atari games to achieve end-to-end learning from the raw pixels on a
wide variety of games that are challenging for humans.

For better feature discovery new methods such as VGG and ResNet have been
introduced, achieving very high levels of performance on image recognition tasks.
Recurrent neural nets, or LSTMs, are well suited for sequence processing, such as
caption generation.

For reinforcement learning, many methods have been devised to improve gen-
eralization and to reduce divergence, and thus solve problems related to coverage,
correlation, and convergence. The methods typically use two networks to break
possible oscillations between the search and the target values, and they use a form of
replay buffers. Many variants for better generalization and more stability have been
developed since DQN, as the aptly named Rainbow paper documents. Among the
promising methods are actor-critic methods, such as PPO.

Historical and Bibliographical Notes

Learning in Games

In game playing, the advantages of neural networks for function approximation were
recognized early. Although the best known success of neural networks in games is
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undoubtedly AlphaGo, there has also been interesting work performedwith supervised
learning in games. Before we move deep reinforcement learning and AlphaGo, let us
briefly look at the earlier approaches that have been tried.

Twenty years before AlexNet, in 1990, Tesauro published a paper on Neurogam-
mon [674], his program for playing Backgammon. Neurogammon used supervised
learning to train the coefficients of human-designed heuristic input features, by using
400 example games played by Tesauro himself. A later version of Neurogammon,
TD-Gammon, used reinforcement learning to train the same heuristic input features.
TD-Gammon achieved world-class human tournament level play [675, 676].

In 1996 Enzenberger created the NeuroGo [199] Go playing program. NeuroGo
uses temporal difference learning and backpropagation to train the coefficients of
manually crafted heuristics features. Its performance did not surpass that of heuristic
programs of its time. In 1990 there was insufficient computer power for training of
large networks, nor were there large databases of example games to achieve strong
play.

In 1999 Chellapilla and Fogel [133, 221] used a fully connected network to evolve
board features in Checkers, achieving good results. Maddison et al. [435] show
how convolutional neural nets can be used in the context of Go to generate moves.
Sutskever and Nair [655] used CNNs to learn from Go expert games.

Convolutional neural nets were also used in Go by Clark and Storkey [144, 145],
who had used a CNN for supervised learning from a database of human professional
games, showing that it outperformed GNU Go and scored wins against Fuego. David
et al. [160] report on end-to-end deep learning in Chess, achieving results on par with
Falcon and Crafty, two alpha-beta-based programs.

Deep Learning

Good review papers on deep learning are [602, 405]. In 1958 Rosenblatt [560]
introduced the perceptron, a simple neural network for pattern recognition.

Much work has been done to formulate this backpropagation algorithm [756].
It allowed the training of multi-layer networks, paving the way for deep learning’s
success. In the 1980s McClelland and Rumelhart published an influential work
coining the terms parallel distributed processing and connectionism [570]. However,
support vector machines and other simpler classifiers became popular [88, 637].
They were easier to reason about and performed better [563]. Later, max pooling
was introduced, and GPU methods were created to speed up backpropagation. The
performance of neural nets was further plagued by the vanishing gradient problem,
especially in deeper networks.

Among many other contributions to both the theory and practice of deep learning,
Schmidhuber devised a hierarchy of networks that were pretrained one network at a
time, to overcome this problem [599]. Other methods were later designed, such as
ReLU threshold functions and batch renormalization [328].

There are many books on Keras and TensorFlow; see, e.g., [241].
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NeuroGo [199] and Neurogammon [674] used small nets to learn the coefficients
of heuristic evaluation functions of the state. They were written at a time when
little compute power was available, nor had the necessary advances in deep learning
training algorithms occurred, to learn features directly from the state.

Silver et al. [628] discuss the use of temporal difference search in Go, comparing
MCTS with TD reinforcement learning. Matthew Lai [393] experiments with DQN
in Chess.

Experience replay is an important technique for the success of deep reinforcement
learning [461]. Related ideas can be traced to earlier works. Gradient TD methods
have been proven to converge for evaluating a fixed policy with a non-linear value
approximator [75]. Relaxing the fixed control policy in neural fitted Q learning
algorithm (NFQ) has been reported to work for nonlinear control with deep net-
works [552]. NFQ builds on work on stable function approximation [252, 203] and
experience replay [420], and more recently on least-squares policy iteration [392].

Pattern recognition research has created a wealth of machine learning algorithms,
of which deep learning is just one. Other well-known and successful approaches are
principal component analysis, decision trees, random forests, support vector machines,
k-means clustering, Bayesian networks, Kalman filters, and hidden Markov models.
Each of these methods works well in different situations. Good reference works on
these methods are [81, 358], or more practically oriented works such as [241, 471].

Pointers to further work on recurrent networks (RNN and LSTM) can be
found in [261, 256]. Important work on RNNs has been done by Sutskever [653],
Mikolov [449], and Graves [254]. A more detailed explanation of LSTMs can be
found in [298, 354].

For more theory on deep supervised learning the book by Goodfellow et al.
is indispensable [250]. Goodfellow et al. [251] introduced generative adversarial
networks, which spawned much follow-up research including dreamlike (but also
curiously realistic) fake images.41 Huang et al. [313] apply adversarial attacks to
reinforcement learning policies.

41 Perhaps GANs are the answer to the question posed by Philip K. Dick in one of his science fiction
stories: “Do Androids Dream of Electric Sheep?” [174].



Chapter 7
Self-Play

This chapter is devoted to AlphaGo-style self-play. Self-play is an intuitively appealing
AI method that has long been used by AI researchers in various forms, as we saw at the
end of the previous chapter. The 2016 results showed, many years after TD-Gammon,
how self-play can achieve world champion level play in a highly complex game.
Self-play, as it is used in AlphaGo, combines MCTS and deep reinforcement learning,
using approaches from both symbolic AI and connectionist AI.

In this chapter planning and learning come together. The previous chapter showed
us how deep learning can achieve very high performance in image classification and
Atari game play. In Chap. 5 we saw how the UCT formula provided effective adaptive
node selection. Chapter 4 taught us the basics of searching large state spaces: the
search-eval architecture, and enhancements.

We will now see how to combine these methods in a self-learning reinforcement
learning system that is able to beat the strongest human Go players. This chapter
covers self-play, the AlphaGo results, and future developments. The main problem
that we discuss is how to achieve stable, high performance, self-play, in a very
challenging state space.

First, we will explain the basic principle of self-play, and the reasons why stable
self-play is difficult to achieve. We will also see that self-play is faster than pretraining
with human grandmaster games, and why.

Second, we will look in more detail at the architecture of self-play programs. The
AlphaGo experiments actually consist of a sequence of three programs. We will look
at the designs of all three programs and at the experiments.

Third, we will look at future work. The AlphaGo results inspired much further
work. At the end of the chapter we will look in more detail at directions for future
research.

195
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Program Planning Learning Input/output Achievement
AlphaGo MCTS supervised & reinforcement Go beat human champions
AlphaGo Zero MCTS self-play Go learn tabula rasa
AlphaZero MCTS self-play Go, Chess, Shogi generalize three games

Table 7.1 AlphaGo, AlphaGo Zero, and AlphaZero

Core Problems

• How can we create training examples that allow training beyond the level of play
of human grandmasters?

• How can we use function approximation to improve adaptive sampling?

Core Concepts

• Stable self-play: coverage, correlation, and convergence
• Curriculum learning

A Note on Names

In this chapter we will discuss three related programs, all with names that confusingly
start with Alpha, and all developed by related researchers. Each program achieved an
AI milestone that was published in a top journal. The programs are AlphaGo [623],
AlphaGo Zero [626], and AlphaZero [625]; see Table 7.1.1 We will discuss in this
chapter which methods were used and which advances in reinforcement learning
were achieved. These advances are mostly related to self-play. We will also discuss
further developments related to self-play.

The main publications on the three Alpha-? programs are [623, 626, 625].
Appendix B contains more technical details of the three systems.

We will now first describe self-play, as it is used in AlphaGo Zero, the strongest
Go program on Earth.

7.1 Self-Play Architecture

We have seen in Sect. 6.4.8 that self-play has a long history in game playing programs
(Table 6.5). As we mentioned in the previous chapter, self-play is quintessential
artificial intelligence: a system that can teach itself to become more intelligent. By

1 Work on a fourth program, AlphaStar, for StarCraft, is also under way [725]; see Sect. 8.2.4.
Furthermore, a related program, AlphaFold, is successful in protein folding [490].
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Fig. 7.1 Minimax tree and agent/environment loop

crafting a system in which intelligence emerges out of basic interactions, tabula rasa,
from a blank slate, self-play comes very close to the original inspiration of the field.

Interestingly, if we go back to the original search-eval architecture, even simple
minimax programs perform a kind of self-play, or self-lookahead (Fig. 7.1 left panel):
since minimax uses the same algorithm for player and opponent it plays itself to find
out what the best move is. MCTS also uses self-play in this way to find the best move.

7.1.1 Self-Play Learning

The kind of self-play that we discuss in this chapter goes a step further than finding
the best move, however, and is used to create an entire self-learning program. Let us
look at the familiar reinforcement learning loop of Fig. 7.1 (right panel). In this figure
the agent learns a good policy by querying the environment (which actions are good
in which states). In reinforcement learning, the environment is our opponent. If we
perform the same trick as earlier in minimax, and replace the environment algorithm
by the same agent algorithm then we have a self-learning “self-agent” system, a
dragon biting its own tail.

The self-play design of AlphaGo Zero combines these two kinds of self-play: we
add look-ahead to agent-self-learning and get a system that improves, through MCTS,
its own training input.

We get a system as shown in Fig. 7.2: an agent system in which the training
examples are generated by using the same system as the opponent. In each iteration a
searcher creates higher-quality actions. MCTS improves the quality of the training
examples in each iteration (left panel), and the net is trained with these better examples,
improving its quality (right panel). By letting such a self-learning system play for a
while it will teach itself an increasingly advanced level of play all the way to world
champion.

This kind of self-play is used in AlphaGo Zero. The output of MCTS is used as
input for the training of the network that is used as the evalution function in that same
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search eval

train
examples new net

reward

net0

net1

net2

net3

. . .

MCTS

MCTS

MCTS

MCTS

Fig. 7.2 Self-play loop improving quality of net

MCTS. An extra loop is wrapped around the search-eval functions to keep training
the network with the game results, creating a learning curriculum.

To summarize, AlphaGo Zero self-play consists of the following elements:

1. Search: MCTS look-ahead using a policy input for selection and a value input for
backup providing stronger examples

2. Eval: a neural network providing a policy output and a value output to be used in
the search

3. Train: a training algorithm to improve the neural network with samples from the
played games

R. Repeat the 3 steps to perform a self-play training curriculum

Self-Learning

Conceptually self-play is as simple as it is elegant: a training loop around a standard
search-eval player with a neural network as evaluation function. Figure 7.3 and
Listing 7.1 show the self-play loop in more detail. The numbers in the diagram refer
to the line numbers in the pseudocode.

Let us perform an outside-in walk-through of this system using the code in
Listing 7.1.

Line 1 is the main self-play loop. It controls how long the execution of the
curriculum of self-play tournaments will continue. Line 2 executes the training
episodes, consisting of tournaments of self-play games. Line 4 plays such a game
to create (state, action) pairs for each move, and the outcome of the game. Line 5
calls MCTS to generate an action in each state. MCTS performs the simulations
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1 for tourn in range (1, max_tourns): # curric. of max_tourns
tournaments

2 for game in range(1, max_games): # play a tourn. of max_games
games;

3 trim(triples) # if buffer full: replace old entries
4 while not game_over(): # generate the states of one game
5 game_pairs += mcts(eval(net)) # move is a (state,

action) pair
6 triples += add(games_pairs , game_outcome(game_pairs))

# add to buf
7 net = train(net, triples) # retrain with (state,action,outc)

triples

Listing 7.1 Self-play pseudocode

5 game_pairs← mcts 5 pol/val← eval(net(state))

7 net← train(net, triples)
6 triples 1 tourn: iterate with new net

policy/value

state

2/4 game_pairs

Fig. 7.3 A diagram of self-play

where it uses the policy net in UCT selection, and the value net at the MCTS leaves.
Line 6 adds the outcome of each game to the (state, action)-pairs, to make the (state,
action, outcome)-triples for the network to train on. Note that since the network is a
two-headed policy/value net, both an action and an outcome are needed for network
training. On the last line this triples-buffer is then used to train the network. The newly
trained network is used in the next self-play iteration as the evaluation function by the
searcher. With this net another tournament is played, using the searcher’s look-ahead
to generate a next batch of higher-quality examples, resulting in a sequence of stronger
and stronger networks (Fig. 7.2 right panel).

Levels of Abstraction

The self-play loop looks elegant and simple, but contains an ingenious interplay
of learning at different levels of abstraction. The levels of abstraction of AlphaGo
Zero-like self-play are shown in Fig. 7.4. Looking at the figure for a moment can help
us better understand self-play.

The structure of self-play is a straightforward onion-like system of functions (or
loops) wrapped around each other (Fig. 7.4). The arrows in the figure point to the
lower functions that are used by the higher function to generate the training examples.
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1. curriculum

2. tournament 7. train

4. game

5. move

5. MCTS

5. eval

policy

value

Fig. 7.4 Levels in self-play

The dashed lines indicate the policy/value network, and its training. The numbers in
the figure correspond to the line numbers in Listing 7.1.

We can also peel the onion by looking outside-in at the data that is generated.
Starting at the top, a self-play curriculum consists of tournaments. At the end of a
curriculum a trained player is ready to be used. Each tournament consists of games
(25,000 in AlphaGo Zero); at the end of the tournament the buffer is filled with
example positions to train the network further. Each game consists of positions and
moves; at the end of a game the outcome can be added to the moves (state, action)
ready to be added to the buffer. Each move is computed by an MCTS search; at the
end of the search a best action is returned, to be added to the list of pairs of the game
buffer. Each MCTS search consists of simulations (1600 in AlphaGo Zero); at the
end of each simulation another node is added to the MCTS tree.

Triple Recursion

The neural network of AlphaGo Zero is a single residual network with 19 hidden
layers and two output layers: a value head and a policy head. Compared with the
original AlphaGo, which had three networks, a striking element of AlphaGo Zero is
the simplicity of this network architecture.

The policy and value are calculated in AlphaGo Zero using a single network. The
relationship between the two heads goes back to Chap. 3, where policy functions
and value functions were introduced. Policy and value are intimately related (good
actions have high values and vice versa).

The simple and elegant network architecture allows a recursive, self-play training
method. The training is triply recursive: it uses its own code three times. (1) The
program self-improves the player in a curriculum of tournaments. (2) In each
tournament the players perform self-play games, generating examples that are used to
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train the evaluation function. (3) In each game MCTS uses the same opponent model
in its look-ahead, for itself and for the opponent, just as minimax. Listing 7.1 and
Fig. 7.3 provide the code and the conceptual picture of this triply recursive training
structure in line 1, line 2, and line 5 (the third level of recursion is implicit inside the
MCTS look-ahead).

7.1.2 Self-Play and Search-Eval

Now that we have seen how it works conceptually, let us have a look at which
techniques are used in self-play. All methods of the previous chapters come together
in self-play. From Chap. 3 we see the concepts of policy and value functions.
From Chap. 4 we see the search-eval architecture and we see shape enhancements
and pattern databases. From Chap. 5 we see MCTS. From Chap. 6 we see deep
supervised database learning, value function approximation, advanced generalization,
exploration, and decorrelation techniques.

Self-play programs have a search function and an evaluation function just like
all game playing programs. In AlphaGo Zero the search function is MCTS, and the
evaluation function is a deep network. They are used in two phases: a training phase
and a usage phase.

Evaluation

The eval function in end-to-end self-play is a deep neural net. The function approxi-
mator is trained, and is then queried during play (usage phase). Thus, eval has two
roles:

1. While in the training phase, the eval network is the learning element of the self-play
scheme

2. While in the usage phase, eval is a policy/value function to be queried for the
policy and the value of the state

MCTS is an on-policy algorithm that makes use of guidance in two places: in the
downward action selection and in the upward value backup. In AlphaGo Zero the
function approximator returns both elements: a policy for the action selection and a
value for the value backup. The neural network has two output layers, or heads: a
policy head and a value head. The policy head of the net is used in the UCT action
selection, and the value head of the net is used in the backpropagation of the leaf
values of the MCTS tree. (These are the first and the last MCTS operation in Fig. 7.5.)
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Fig. 7.5 Monte Carlo Tree Search [108]

Search

In self-play the search function also has two roles: to look ahead to generate examples
in the training phase and to look ahead during actual play (usage phase). For both
roles the look-ahead algorithm does exactly the same thing. It is only its role in the
self-play scheme that is different during training and use:

1. While in the training phase, the search function generates the examples for the
training. By looking ahead, it generates better quality examples for the training.

2. While in the usage phase, when self-play training has finished and the program is
used for normal game play, the search function performs look-ahead using the net
to find the best action in actual play.

The two phases are similar to the training and test phases in supervised learning.
We should note that the MCTS that is used in the three Alpha-? programs differs

from the MCTS from Chap. 5. MCTS is used inside the training loop, as an integral
part of the self-generation of training examples, to enhance the quality of the examples
for every self-play iteration.

Also, in the ?-Zero programs MCTS backups rely fully on the value function
approximator; no playout is performed anymore. Only the selective statistics-based
exploration/exploitation trade-off of MCTS is left. The MC part in the name of MCTS,
which stands for the Monte Carlo playouts, really has become a misnomer for this
network-guided tree searcher.

Furthermore, selection in self-play MCTS is different. UCT-based node selection
now also uses the input from the policy head of the trained function approximators,
in addition to the win rate and newness. Likewise, random playouts at the leaves are
replaced by the value head of the deep function approximator. What remains is that
through the UCT mechanism MCTS can focus its search effort greedily on the part
with the highest win rate, while at the same time balancing exploration of parts of the
tree that are underexplored.
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The formula that is used to incorporate input from the policy head of the deep
network is a variant of P-UCT [626, 466, 561, 440]. Let us compare P-UCT with
UCT in order to see the difference. The original2 UCT formula is [373]

UCT(a) =
wa

na
+ Cp

√
ln n
na

.

The P-UCT formula adds the policy head π(s, a):

UCT(a) =
wa

na
+ Cpπ(s, a)

√
n

1 + na
.

P-UCT adds the π(s, a) term specifying the policy function of the action a to the
exploration part of the UCT formula.3

Dual-Headed Network

Let us look at a few concrete facts and numbers about the AlphaGo Zero self-play
implementation, to get a feeling for the complexity of the problem [626].

AlphaGoZero uses a dual-headed residual network. Policy and value loss contribute
equally to the loss function. The network is trained with SGD. L2 regularization is
used to reduce overfitting. The network has 19 hidden layers, and an input layer and
two output layers, one for the value v estimation and one for the policy π distribution.
The size of the mini-batch for updates is 2048. This batch is distributed over 64 GPU
workers, each with 32 data entries. The mini-batch is sampled uniformly over the last
500,000 self-play games (replay buffer). The learning rate started at 0.01 and went
down to 0.0001 during self-play.

For search AlphaGo Zero uses a version of on-policy MCTS that does not use
random playouts anymore, Dirichlet noise is added to the P-UCT value at the root
node, to ensure that all moves may be tried, increasing exploration. The Cp value of
MCTS in AlphaGo is 5, heavily favoring exploration. In AlphaGo Zero the value
depends on the stage in the learning; it grows during self-play. In each self-play
iteration 25,000 games are played. For each move, MCTS performs 1600 simulations.
In total over a three-day course of training 4.9 million games were played, after which
AlphaGo Zero outperformed the previous version, AlphaGo.

More details can be found in Appendix B.2.

2 Substituting a for the action for ease of comparison with the P-UCT terminology, where UCT
originally uses n j for the visit count of child j.
3 Note the small difference under the square root (no logarithm; and addition of 1 in the denominator)
also change the UCT function profile somewhat, ensuring correct behavior at unvisited actions [466].
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7.1.3 Stable Self-Play through Exploration

Self-play has a long history in AI, yet the most recent successful self-play approach
for training a machine learning system was TD-Gammon, 30 years ago. Now that
we have seen the architecture of self-play, let us look at the performance and the
challenges in achieving a strong level of play.

Self-play uses two forms of reinforcement learning: MCTS in both downward
action selection and value backup, and DQN-like reinforcement learning to train the
neural network with the MCTS results. One could say that self-play is reinforcement
learning squared. The double reliance on reinforcement learning puts the quality of
the generalization and convergence in the center, which may be the reason why it
took so many years to achieve high-performance self-learning self-play.

Since all learning is by reinforcement, the training process must now be even more
stable. The slightest problem in overfitting or correlation between states can throw
off the coverage, correlation, and convergence. AlphaGo Zero uses various forms of
exploration to achive stable learning. Let us summarize how stability is achieved.

• Coverage of the state space is improved by playing a (very) high number of games.
The quality of the states is further improved by MCTS look-ahead. MCTS searches
the state space for good training samples, improving the quality and diversity of
the covered states. The exploration part of MCTS should make sure that enough
new and unexplored parts of the state space are covered. Dirichlet noise is added
at the root node and the Cp parameter in the P-UCT formula, that controls the
level of exploration, has been set sufficiently high, around 4-5 (see also Sect. 5.3.1
and Appendix B.1).

• Correlation between subsequent states is reduced through the use of experience
replay buffers and MCTS look-ahead, as in DQN and Rainbow algorithms.

• Convergence of the training is improved by using on-policy MCTS, and by taking
small training steps. Since the learning rate is small there is little risk of divergence,
although now convergence is quite slow and requires many training games.

By using these measures together, stable generalization and convergence are achieved.
Although self-play is conceptually simple, achieving stable and high-quality self-play
required slow training with a large number of games, and quite some tuning. There are
many hyperparameters whose values must be set correctly. Although the values are
published [626], the reasoning behind the values is not always clear. Reproducing the
AlphaGo Zero results is not easy, and much time is spent in tuning and experimenting
by efforts to reproduce the AphaGo Zero approach [531, 649, 679, 689, 775].

7.1.4 Curriculum Learning

As we will soon see in Sect. 7.2, AlphaGo and AlphaGo Zero use different training
methods. AlphaGo uses a combination of supervised learning and reinforcement
learning, while AlphaGo Zero is purely based on self-play. The result of self-play is
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not only better but also faster training, from weeks or even months for AlphaGo to
days for AlphaGo Zero.

Why is self-play faster than a combination of supervised and reinforcement
learning based on games databases? Self-play is faster because it follows a curriculum
of examples that is ordered from easy to hard. This kind of learning is known as
curriculum learning [477, 62, 626]. Let us see why learning an ordered sequence of
examples is faster than learning many difficult concepts at once.

The training curriculum generated by self-players is a curriculum of examples
from easy to hard. In easy examples the training error is small; for hard examples it
is large. Problems that generate small errors train quickly; larger errors take more
epochs to converge. In self-play the targets from the trainer are generated in lock step
with the trainee. Both trainer and trainee grow in playing quality together.

In ordinary deep reinforcement learning the network is trained by solving a
problem in one large step, using a set of examples that are not sorted from easy to
hard. With examples that are not sorted on error value, the program has to achieve
the optimization step from no knowledge to human-level play in one big, unsorted,
leap, by optimizing many times over the samples. Overcoming such a large training
step (from beginner to advanced) costs much training time.

In contrast, in AlphaGo Zero, the network is trained in many small steps, starting
against an opponent that has just as little knowledge as we have ourselves, and will
play moves that are just as easy as we do, which goes quickly. Subsequently, harder
problems are generated and trained for, using the network that has already been
pretrained with the easier examples.

Self-play naturally generates a curriculum with examples from easy to hard. As a
consequence, training times go down and the ultimate playing strength goes up.

Training Speed

A curriculum strategy is faster because the learner spends less time with harder to
predict examples. Weinshall et al. show in a theoretical analysis that curriculum
learning is expected to significantly speed up learning, especially at the beginning
of training [753]. Furthermore, they show that generalization is improved with
curriculum learning, especially when the conditions for learning are hard: when the
task is difficult, when the network is small, or when strong regularization is enforced.
These theoretical result are supported by empirical evidence [62, 438, 202, 58].4

Weinshall et al. also note that curriculum learning is not often used in the real
world, since it is hard to find situations where a teacher can rank the examples from
easy to hard. In most supervised and reinforcement learning settings, there is no
ordering from easy to hard available for the examples. This may have precluded the
widespread adoption of curriculum learning.

4 Also note the link with Hinton’s unsupervised one-by-one pretraining of layers in a deep network,
from simple concepts to complicated concepts [294]



206 7 Self-Play

Correlation Revisited

Having disussed curriculum learning, it is interesting to note the existence of a
paradox concerning correlation. The problem is this: in the previous chapter we have
seen that breaking correlations between examples improves state space coverage,
preventing cycles and local minima, yet now curriculum learning show us that
correlation between the difficulty of states achieves curriculum learning.

So: do we want correlation, or not? There must be enough diversity between states
within each self-play iteration to allow good coverage, preventing myopic learning, to
allow learning to progress in each iteration. Yet, for curriculum learning, examples
should be ordered from easy to hard.

On state features subsequent states should be uncorrelated, but on a larger scale,
on error values, they should be correlated.

In self-play, sorting on error values occurs implicitly by the learning scheme in
which the examples are generated. Within the iterations, MCTS, replay buffer, and
other methods are used to achieve a high level of exploration, as discussed previously.

Active Learning and Related Learning

Curriculum learning is a topic that has been studied outside deep learning as well.
We will discuss three topics: active learning, adversarial attacks, and generative
adversarial networks.

Active learning is a type of machine learning that is in between supervised and
reinforcement learning. Active learning is relevant when labels are in principle
available (as in supervised learning) but at a cost. Active learning performs a kind of
iterative supervised learning, in which the agent can choose to query which labels to
reveal during the learning process. Active learning is related to reinforcement learning
and to curriculum learning, and is for example of interest for studies into recommender
systems, where acquiring more information may come at a cost [616, 565, 159].

In Sect. 6.2.2 we saw that deep learning is susceptible to adversarial attacks,
because of the one-pixel problem. In deep reinforcement learning this problem can
also give rise to unwanted behavior [313]. Gleave et al. [246] study this problem
further, showing the existence of adversarial policies in zero-sum simulated robotics.

Interestingly, recent work in generative adversarial networks (GANs) has suggested
that the good performance of GANs may be due to curriculum learning. The generator
and discriminator work in tandem, and in a well-tuned system generate a sequence of
easy to hard training examples [620, 177]. Since the publication of the AlphaGo Zero
results, and the interest in GANs, curriculum learning has attracted more attention.
An overview of related work can be found in [755].
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Human Learning is Curriculum Learning

Curriculum learning has been studied both in human learning and in deep learning.
Most structured, supervised, human learning is guided by a curriculum [753]. When
a human teacher presents examples, the order in which the examples are presented is
rarely random. Tasks are typically divided by the teacher into smaller subtasks and
ordered from easy to hard. This subtasking is called shaping [387] and studied in
reinforcement learning, e.g., by Graves et al. [255].

Krueger and Dayan [387] note that in human and animal learning, curriculum
learning is able to learn higher concepts that are beyond what can be found by trial
and error. They use the term shaping for the creation of a curriculum of easy and
hard targets.

In human learning children are taught easy concepts first. There is a reason that
children start in first grade, and not in sixth. Using a neural network for language
acquisition, Elman [194] argues for starting small, with a small network, and gradually
increasing the difficulty of training examples and the network size. Multi-stage
curriculum strategies improved generalization and show faster convergence.

Although curriculum learning has been studied in AI and in psychology it has not
been popular in AI since in most training situations it is difficult to find well-sorted
training curricula. However, it has been identified as a key challenge for machine
learning throughout [457, 458, 742]. Due to the self-play results, curriculum learning
is now attracting more interest in AI (see, e.g., [477, 755]).

7.2 AlphaGo

We have now taken an extensive look at self-play, the learning method that is used
in AlphaGo Zero. We have looked at the architecture, we have looked at how stable
learning was achieved, and we have looked at curriculum learning. Self-play builds
on a long history of AI research, from Samuel’s Checkers to Tesauro’s TD-Gammon
to AlphaGo Zero (Table 6.5).

Curiously, there was no straight line from TD-Gammon or the other programs to
AlphaGo Zero’s clean self-play design. First another program was created, AlphaGo,
that used a more complex hybrid design with supervised learning, reinforcement
learning with a database of self-play games, and multiple neural networks. This
complex program beat the human champions. We will now describe the earlier
AlphaGo approach in a starred section, for your comparison and historical insight
and to see the continuity with previous research, although its design has now been
superseded by the more elegant self-play design that achieves tabula rasa learning.
Progress in science does not usually follow straight lines.



208 7 Self-Play

Fig. 7.6 AlphaGo networks [623]

7.2.1 *AlphaGo Architecture

In 2016 AlphaGo beat human world champions. What technology was used in
AlphaGo to achieve such a strong level of play, ten years before most experts had
expected this milestone to be reached?

It turns out that in AlphaGo there was no magic bullet, no single groundbreaking
new technology that had been invented. In AlphaGo existing approaches were
combined, both supervised and reinforcement learning, they were improved and
refined, and a way was found for the different technologies to work together.

The AlphaGo design follows the search-eval architecture. For search, it employs a
version of MCTS. For eval, three neural nets are used: a fast shape policy net for the
MCTS playouts, a slow policy net for UCT exploration/exploitation selection, and
a value net for the leaf values of the MCTS tree. In addition, the slow policy net is
trained by supervised and by reinforcement learning, giving a total of four training
methods for three networks. Figure 7.6 reproduces the familiar AlphaGo networks
picture from [623].

After this high-level description, let us look in more detail into the AlphaGo
methods.

First, wewill discuss the supervised learning in AlphaGo. AlphaGo uses supervised
learning to learn from grandmaster games. A database of 160,000 grandmaster games
is used to train a slower selection policy network by supervised learning (28 million
positions). The positions from grandmaster games consist of a board position and a
best action (the move played by the grandmasters). This policy network is used in the
MCTS selection operation. The supervised learning is used to pretrain the network to
a certain (high) level of play, and then positions from self-play are used to improve it
further.

Second, AlphaGo uses reinforcement learning for three networks: for two separate
policy networks and for a value network. It trains the slow policy network against an
“environment” that really is a database with games that were played against a copy of
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itself. This part of the training, against a database of self-play games, is often simply
called self-play.

Third, a value network is trained based on a database of 30 million self-play
positions. For the MCTS leaf values a mix is used of the value network and of the
outcome of MCTS rollouts using the fast rollout policy network. The mixing of these
values is governed by a new parameter λ. Note that in AlphaGo the random playouts
of MCTS are replaced by playouts using the fast policy net.

Fourth, a game database is used to train a fast policy network by supervised
learning. The fast policy network is trained with positions from separate games to
prevent overfitting and loops due to correlation between subsequent game states.

To summarize, AlphaGo uses the four training methods to train three networks:

1. A “slow” selection policy net, first trained by supervised learning from grand-
master games, then further refined through self-play positions

2. A value net for position evaluation, trained by self-play positions
3. A “fast” rollout policy net trained by supervised learning from human games, used

for MCTS playouts

7.2.2 AlphaGo Results

Let us now have a look in more detail at the performance that this complicated
approach has achieved.

An early version of AlphaGo beat European champion Fan Hui in London in 2015
in a training match, while AlphaGo was still being developed. A year later, after the
program had been developed further, it beat top-ranked Lee Sedol in Seoul in March
2016. In 2017, AlphaGo beat top-ranked Ke Jie in Wuzhen in May 2017.

Figure 7.7 (left panel) shows the Elo rating of AlphaGo compared with other
programs5 and compared with Fan Hui. AlphaGo is clearly superior. The graph
indicates a playing strength of 5p dan. Quite some development and experimentation
were needed for AlphaGo to reach the level of play that it did. Since publication of the
article in 2016, AlphaGo has been further refined, and the performance has continued
to improve. The version playing against Lee Sedol and Ke Jie was significantly
stronger, at 9p dan.

We have seen that AlphaGo has three networks. Therefore, it is instructive to see
how each network influences performance. Figure 7.7 (right panel) shows the impact
of turning some of the three networks off. We see that each network has a significant
contribution, and that the contribution of the networks is independent in the sense
that they all complement and improve each other.

AlphaGo uses a significant amount of compute power, for training, but also
during tournament play time. Therefore, it is interesting to see how more compute
power influences playing strength. Figure 7.8 shows the impact of extra hardware

5 GnuGo is a minimax-based program. Fuego, Pachi, and Zen are conventional MCTS programs
without self-play or a neural net. Pale red is 4 handicap stones.
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Fig. 7.7 AlphaGo Elo rating; Effect of individual networks [623]

Fig. 7.8 Elo rating of Alphago distributed versions [623]

for the distributed version of AlphaGo. Clearly the use of more than one GPU is
advantageous, as is the use of multi-threading. The use of a cluster of machines (dark
blue, distributed) gives an increase in performance of around 200 Elo points. As
preparation for the match against Ke Jie, AlphaGo used TPUs, specially developed
tensor processing units from Google. TPUs are a kind of GPUs that are optimized
for low precision, high throughput matrix operations (where GPUs are optimized for
high-precision operations). Fig. 7.9 shows pictures of a CPU, a GPU, and a TPU.
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Fig. 7.9 CPU, GPU, and TPU

Fig. 7.10 Go playing strength over the years [12]

Playing Strength in Go

At this point it is interesting to compare programming paradigms of the different Go
programs that have been written over the years (Fig. 7.10). The programs fall into
three categories. First are the programs based on heuristic planning, the Chess-style
programs. GNUGo is a well-known example of this group of programs. The heuristics
in these programs are hand-coded. Their level of play was at medium amateur level.
Then come the adaptive sampling MCTS-based programs, which reached strong
amateur level. Examples of these programs are MoGo and Crazy Stone. Finally
come the AlphaGo programs, of MCTS combined with neural nets. They reach
super-human performance. The figure also shows the program Fine Art, by Tencent.

The figure clearly shows how the performance improved with the different
paradigms.



212 7 Self-Play

7.2.3 Impact of AlphaGo

The AlphaGo results have caused quite an impact in AI and beyond. Let us first take
a brief look at how science and society reacted to the AlphaGo breakthrough.

Popular Media

The Lee Sedol match of AlphaGo has had a large impact in the popular media.
The idea of computers being “smarter” than highly intelligent human champions
continued to attract attention, as much as it did in the days of Deep Blue–Kasparov.
Artificial intelligence shot to prominence, and many AI researchers were interviewed
on questions ranging from when we would see self-driving cars to the future of the
human race.

Newspaper articles appeared on AlphaGo, a movie6 was made, and many blogs
were written by enthusiasts on how to build your own AlphaGo and AlphaZero. This,
by the way, turns out to be quite doable on the algorithmic side (see Appendix A for
a list of open-source self-play systems inspired by AlphaGo Zero), but acquiring the
necessary computational power to train the function approximators is a significant
challenge.

Impact on Go

It is interesting to see how human Go players respond to the matches, and to see the
effect on the style of human play. Of course, there was sadness and melancholy when
the human champions lost against the machines at this beautiful game, a hold-out of
the supremacy of human intelligence. However, most reactions were positive, and
not just for the achievement in artificial intelligence. Go players were enthusiastic
about the innovations and new style of play that AlphaGo exhibited. See also the
commentary by Fan Hui and Lee Sedol in Sect. 2.3.5. Players were eager to learn
more about how they could improve their beloved game even more. Books have been
written about the new Go theory that was created (see, for example, Zhou [778]).
Furthermore, the publicity around the matches created much new interest in Go.

Impact on Science

The AlphaGo matches have also had quite an impact on society and science. The
interest from society in artificial intelligence has increased significantly, with compa-
nies and governments investing in research labs. Also within science there has been
much interest in multidisciplinary collaborations, to see how machine learning can

6 https://www.alphagomovie.com

https://www.alphagomovie.com
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transfer to fields ranging from astronomy to the arts. Many collaborations between
artificial intelligence and these fields are emerging.

Impact on AI

On the field of artificial intelligence itself the results have had a large impact as
well. Machine learning has attracted many new talents, and especially reinforcement
learning has benefited. Attendance at scientific conferences has increased manyfold,
to the extent that some conferences started limiting attendance.

The use of the game of Go as a benchmark for intelligence has led to an increased
interest in benchmarking and reproducibility [289, 329, 476, 323]. Popular suites
are ALE [53], Gym [98], ELF [690], StarCraft [703, 374, 727], and Mario [353].
See also the list of frameworks in Appendix A. There is much interest in further
challenges of self-play. The computational demands for learning by self-play are
large. Wu reports on a list of improvements that speed up learning significantly [765].

Weak, Strong, and Ultrastrong AI

At this point it is appropriate to put the AlphaGo achievements in a more historical
perspective. In 1988 Donald Michie defined three types of AI: weak, strong, and
ultrastrong AI [446]. Michie’s criteria were meant to discern various qualities
of machine learning, beyond predictive performance. Michie’s criteria stressed
understanding, or comprehensibility, of learned knowledge. In weak AI the agent
produces improved predictive performance as the amount of data increases. In strong
AI the agent must also provide hypotheses, and explanations. Ultrastrong AI should
be able to teach the hypothesis to a human.

Clearly, most of modern machine learning has only achieved weak AI according
to Michie’s criteria, AlphaGo included. For AI to be truly useful in society, it must
achieve more. The current interest in explainable AI aims to achieve strong AI (see
also Sect. 7.3.5).

7.2.4 AlphaGo Zero Results

After having discussed the AlphaGo results, let us now turn to the playing strength of
its successor, AlphaGo Zero.

Playing Strength

In their paper Silver et al. [626] describe that learning progressed smoothly throughout
the training. AlphaGo Zero outperformed the original AlphaGo after just 36 hours.
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Fig. 7.11 Performance of AlphaGo Zero [626]

The training time for the version of AlphaGo that played Lee Sedol was several
months. Furthermore AlphaGo Zero used a single machine with 4 tensor processing
units, whereas AlphaGo Lee was distributed over many machines and used 48
TPUs. It is noted that the training did not suffer from the oscillations or catastrophic
forgetting that have been noted in previous literature [219, 285]. Figure 7.11 shows
the performance of AlphaGo Zero. Also shown is the performance of the raw network,
without MCTS search. The importance of MCTS is large, around 2000 Elo points.

Tabula Rasa

AlphaGo Zero’s reinforcement learning is truly learning from scratch. The paper
notes that AlphaGo Zero discovered a remarkable level of Go knowledge during its
self-play training process. This knowledge included not only fundamental elements of
human Go knowledge, but also nonstandard strategies beyond the scope of traditional
Go knowledge.

Joseki are standard corner openings that all Go players become familiar with as
they learn to play the game. There are beginner’s and advanced joseki. Over the
course of its learning, AlphaGo Zero did indeed learn beginner to advanced joseki. It
is interesting to study how it did so, as it reveals the progression of AlphaGo Zero’s
Go intelligence. Figure 7.12 shows how the program learned over the course of a
few hours of self-play. Not to anthropomorphize too much, but you can see the little
program getting smarter.

The top row shows five joseki that AlphaGo Zero discovered. The first joseki is
one of the standard beginner’s openings out of Go theory. As we move to the right,
more difficult joseki are learned, with stones being played in looser configurations.

The bottom row shows five joseki favored at different stages of the self-play
training. It starts with a preference for a weak corner move. After 10 more hours of
training, a better 3-3 corner sequence is favored. More training reveals more, and
better, variations.
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Fig. 7.12 AlphaGo Zero is learning joseki [626]

For a human Go player, it is remarkable to see this kind of progression in computer
play, reminding them of the time when they themselves discovered these joseki. With
such evidence of the computer’s learning, it is hard not to anthropomorphize AlphaGo
Zero (think of the computer as a human being).

7.3 *Self-Play Enhancements

We have looked more broadly at self-play, and have seen earlier programs that have
tried self-play. AlphaGo Zero showed the large potential of this method. We will now
look at enhancements to self-play, further developments, and directions for future
research. First we will start with the third Alpha-? program: AlphaZero.

7.3.1 General Play: AlphaZero

After defeating the best human Go players, and after having created the first tabula
rasa self-learning Go computer, a third experiment was created concerning another
long-standing challenge in AI: constructing a general game player. If AlphaGo Zero’s
architecture was able to learn Go from scratch, then perhaps it would be able to
learn any game? A year after the AlphaGo Zero publication, another paper was
published, showing how AlphaGo Zero’s design could also learn to play Chess and
Shogi [625, 624].

This publication showed that self-play was able to teach the same search-eval
architecture (MCTS with 20 ResNet blocks) to learn Go, Chess, and Shogi, thus
achieving a form of general tabula rasa learning, albeit limited to three games. The
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Table 7.2 Different input planes (first set repeated 8 times to capture history) [625]

program, named AlphaZero, beat the strongest conventional players in Go, Chess, and
Shogi (respectively AlphaGo Zero, the program Stockfish, and the program Elmo).

Note that there are differences. The hand-crafted input and output layers of
the networks are different for each game. Table 7.2 shows these differences. The
more complicated move patterns of Chess and Shogi cause the input planes to be
significantly more elaborate than for Go (see the paper for details). Furthermore, the
weights in the trained networks are also different. Strict transfer learning was not
achieved: a trained Shogi net is not able to play Go well.

AlphaZero’s achievement of a general game learning architecture is remarkable for
more than one reason. First, it is remarkable that self-play is so powerful that it can
learn from scratch and become so strong that it beats the current world champions.
Second, it is remarkable that different games can be learned by the same network
architecture. Perhaps, some kind of element of general learning must be present in the
structure of the ResNets of AlphaZero, although the networks that are learned differ
between games: a network trained for Chess cannot play Go well. Third, for Chess
and Shogi all previous strong programs had been based on the heuristic planning
approach of alpha-beta with domain-specific heuristics, but now they are beaten by a
general learning approach using self-play function approximation (see also [544]).

Playing Strength

The Elo rating of AlphaZero in Chess, Shogi, and Go is shown in Fig. 7.13. Also
shown is the Elo rating of the programs Stockfish, Elmo, AlphaGo Zero [626], and
AlphaGo Lee [623].

We can see howAlphaZero is stronger than the other programs, all through learning
by self-play. In Chess, a field that has benefited from work by a large community of
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Fig. 7.13 Elo rating of AlphaZero in Chess, Shogi, and Go [625]

researchers for as long as computers existed, the difference is the smallest. For Shogi
the difference in playing strength is larger.

Interestingly, AlphaZero slightly outperforms AlphaGo Zero. There are small
differences between AlphaZero and AlphaGo Zero. AlphaZero updates the neural
network continually, whereas in AlphaGo Zero the new net is only accepted if it wins
55% of the time against the old network. AlphaZero does not exploit Go symmetries.
The paper does not provide other reasons for the differences.

Go, Chess, and Shogi

That AlphaZero can play three different games with one architecture is surprising.
The three games, though all board games, are quite different. Go is a static game
of strategy. Stones, once placed, do not move, and are rarely captured. Each stone
played is therefore of strategic importance. In Chess the pieces move, it is a dynamic
game where tactics are important, and the possibility of sudden death is an important
element of play: in Chess it is possible to win in the middle of the game by capturing
the king. No such concept exists in Go. Indeed, one element of human Chess play is
to move the king to a safe position to reduce the level of stress in the game. Shogi,
sometimes called Japanese Chess, is even more dynamic. Pieces, once captured,
can be returned to the game, changing loyalty, creating even more complex game
dynamics.7

As all top Chess programs, Stockfish follows the classic search-eval design of alpha-
beta and a heuristic evaluation function, that we have seen in Sunfish (Sect. 4.6.1)
and Deep Blue (Sect. 2.3.3). Among the enhancements of Stockfish are forward
pruning, iterative deepening, transposition tables, quiescence, piece-square tables,
null window, null move, history heuristics, search extensions, search reductions, an
opening book, and an end-game database. Chapter 4 provides explanations on most
of these enhancements. In Stockfish, all these enhancements have been refined, tested,
and tuned, for many years [559].

The state space complexity of Shogi is substantially larger than Chess: 1071

versus 1047. The strongest Shogi programs have recently started defeating human
champions [704]. Elmo, one of these programs, is designed like a Chess program,

7 Pieces are of the same color, but are wedge-shaped, and change orientation when switching sides.
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around alpha-beta search and a heuristic evaluation function, with many tuned and
tested game-dependent enhancements.

It would seem that since the move patterns, the tactics, and the strategies to be
learned are very different, that it would require a different kind of program to play well.
Indeed, this is the conventional approach: a developer crafts a program specifically
for a certain game, incorporating all kinds of game-specific knowledge and heuristics
into the code. For Go, the game is so subtle and difficult that no scientist was able to
find successful heuristics, and knowledge had to be learned by machine learning from
game databases (initially, in AlphaGo) or through self-play (eventually, in AlphaGo
Zero).

The conventional game-specific approach has worked well for Chess, Shogi, and
other games so far. AlphaZero is the first to show that it is possible to be general and
strong.8 Indeed, AlphaZero has shown that the differences in move patterns are not
such that a different kind of program is needed to learn to play well.

One General Architecture

Although it would seem that the different kinds of games require a different program
design, AlphaZero’s results have proven this conventional wisdom wrong, at least
for the learning of three board games. All that needed to be changed were the input
and output layers of the function approximator. The self-play training algorithms,
network architecture, search algorithm, most training hyperparameters,9 and compute
hardware are all the same. The self-play program was then able to learn to play the
game beyond world class level. Perhaps the game dynamics of Go, Chess, and Shogi
are less different than they seemed, but clearly the structure of self-play with ResNets
is general enough to allow it to learn very different nonlinear value/policy functions.

It is this last aspect that makes the results so inspiring from an AI point of view,
since it reminds us of how humans learn to play.

7.3.2 Training as Generalization

We will now look at other generalization methods, in particular, transfer learning.
The goal of machine learning is to build an approximation function based on

examples. Many methods exist to train the approximator. Generalization is the process
minimizing an error function over input examples. In some sense, all training is
generalization.

8 In Sect. 8.2.5 another approach is introduced, general game playing, or GGP. The general programs
created by GGP generally trade off generality for playing strength.
9 The learning rate decay scheme was slightly different for Go than for Chess and Shogi.
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Sample Efficiency

The canonical deep learning case is training from zero knowledge, when the network
parameters are initialized to random numbers. Training methods have been developed
for efficient training yielding the lowest error function in as few training steps as
possible. Since in reinforcement learning each training example is a costly sample
from the environment, achieving high sample efficiency is important.

Model-based methods, such as planning, are more sample efficient than model-free
methods. All they need to do to find a value of a state is to follow the model and
lookup the value of the actions. Compared to planning, deep learning is not very
sample efficient. Model-free methods have no model to follow and need to sample
many states before the value approximates the true value.

Deep reinforcement learning is a model-free method that takes many samples to
learn the features. Furthermore, the learning rate is set low for good convergence
and generalization. In contrast to planning, however, deep learning is able to learn
an evaluation function, which is something that planning cannot do. And although
planning is sample efficient, it is inadequate for traversing exponentially large state
spaces. For that, it needs a good evaluation function. An evaluation that is better than
a heuristic, and better than averaged sampling. Function approximation can learn such
a good function, and self-play can use planning to generate samples of increasing
quality to continuously improve the learning evaluation function.

Self-play is thus not very sample efficient, because of the model-free evaluation
function approximation, and because the model-based planning is stretched to perform
many state space traversals to improve the quality of the learning targets. Without
curriculum learning it would be worse.

Pretraining

Pre-training the network with another related task may increase sample efficiency.
The network weights are no longer randomly initialized, but are such that the error is
lower and training can progress with fewer samples.

Curriculum learning performs a sequence of pretraining steps. In each curriculum
iteration the network is pretrained by the former iteration, creating an easier learning
task with a low error.

Lifelong Machine Learning

It has been observed that most machine learning tasks currently start from zeroknowl-
edge, and subsequently take a long time to learn. In contrast, in human learning
experiments, subjects do not start from zero knowledge, and typically learn a new
task quickly with few samples. Humans already have knowledge of related tasks.
Lifelong machine learning studies methods to retain learned knowledge tasks that are
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trained from different domains over the lifetime of the system [687]. The goal is to
selectively transfer that knowledge when learning a new task [621].

Transfer Learning

Transfer learning aims at improving the process of learning new tasks using the
experience gained by solving similar predecessor problems [532, 688]. As humans,
we make use of our past experience by not only repeating the same task in the future
but also for learning completely new tasks. That is, if the new problem that we try to
solve is similar to a few of our past experiences, it becomes easier for us. Transfer
learning aims to transfer past experience of one or more source tasks and use it to
boost learning in a related target task.

When we want to transfer knowledge, it can be transferred by initializing part of
the network by other weights, for example, by transfering the entire network, and then
retraining, or transferring some of the lower layers of a network.

Multi-task learning

Transfer learning is related to multi-task learning, where one network is optimized for
multiple tasks that are related. The major task can be learned better through using the
experience gained by other tasks. This approach is effective when the tasks have some
commonality. In multi-task learning, related learning tasks are learned at the same
time, whereas in transfer learning they are learned in sequence by different networks.
Multi-task learning improves regularization by requiring the algorithm to perform
well on a related learning task instead of penalizing all overfitting uniformly [204, 19].
The two-headed AlphaGo Zero network optimizes for value and for policy at the
same time in the same network [500, 120]. Multi-task learning has also been applied
to Atari games [360, 359].

Meta-learning

There are many forms of transfer learning [120, 500, 670]. Going beyond transfer
of network parameter values, knowledge transfer can also include hyperparameter
values, network architecture, or learning algorithms. Transfer learning is a form of
meta-learning where the extent of domain adaptation is typically restricted to weight
parameters, where in meta-learning other parts of the algorithm are also involved [95].

Meta-learning is sometimes described as “learning to learn” or selecting the best
learning algorithm for a task. It is related to algorithm selection [551, 362] and
hyperparameter optimization, and also to transfer learning. Although meta-learning
work goes back to the 1980s [597, 175, 59, 95] there has been recent interest in the
field [305, 717, 321], also because of work on zero-shot learning [397, 258, 767]. In
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few-shot or zero-shot learning new concepts are recognized after seeing only a few
problem instances [767, 581, 549].

Normally a classifier is expected to correctly classify at test time new samples
from classes that have been seen during training. A zero-shot classifier has seen no
samples from the classes at training time. To be able to correctly classify the samples
the classifier is given some information about the classes. This can be a natural text
or structured description [305, 558]. RNN and LSTM are often used [546]. The
information can also be a similarity measure between the classes.

This brings us to the question of similarity metrics between problems. High-
dimensional discrete classes can be embedded in a lower-dimensional continuous
vector. The zero-shot classifier can then predict a sample’s position in that space,
and the nearest embedded class is used as the predicted class [228]. In addition to
being a similarity measure, low-dimensional representations also allow visualization,
providing insight into the often high-dimensional state spaces of machine learning
problems [520, 468, 433].

Model-agnostic meta-learning (MAML) is a recent meta-learning approach for
few-shot learning [214]. MAML uses optimization-based meta-learning, and learns
initial network representations that can then be fine-tuned using a few class examples.
This work has spawned more interest in meta-learning [16, 50, 215, 776, 726, 543].
New benchmark suites for research on multi-task and meta learning have been
introduced, Meta World [773] and Meta-dataset [696].

In meta-reinforcement learning Duan et al. [188] introduce RL2, an approach in
which the reinforcement learning algorithm itself is a target of a training process, and
Wang et al. [741] explore the link between meta-learning and reinforcement learning,
by having one reinforcement learning algorithm implement a second reinforcement
learning algorithm.

Let us now look at hyperparameter optimization methods.

7.3.3 Hyperparameter Optimization

Deep learning and self-play systems typically have many hyperparameters, to control
various aspects of the learning process. The AlphaGo Zero paper lists those presented
in Table 7.3.

The effects of some of these hyperparameters may interfere with each other.Finding
the optimal setting for all parameters is a daunting task, best left to machine
optimization.10 Many optimization algorithms have a large set of hyperparameters,
and hyperparameter optimization is an active field of research. Well-known methods
are exhaustive search [302], random search [65, 745], Bayesian optimization [66,

10 Just as finding the best coefficients for an evaluation function of hand-crafted heuristics is best left
to machine learning, and, for that matter, crafting the evaluation features themselves is also best left
to machine learning, and crafting a curriculum of training positions is best left to self-play. Some
would even say that crafting machine learning algorithms is best left to machine learning [492], but
that is a topic for another book [274].
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Hyperparameter Value
self play games per iteration 25000
MCTS simulations 1600
exploration temperature 1 for first 30 moves, 0 afterwards
Dirichlet noise η = 0.03, ε = 0.25
resignation threshold 5%
regularization parameter c = 100.4

mini batch size 2048, 32 per worker
self play positions 500,000
learning rate annealed with momentum 0.9
CE loss/MSE weighting equal in the loss function
optimization checkpoint 1000
self play evaluator 400
win margin for acceptance 55%
network architecture 19 residual blocks

Table 7.3 AlphaGo hyperparameters [626]

324, 685, 638], and evolutionary strategies [27, 112, 504, 715]. Some software
packages for hyperparameter optimization are SMAC11 [324], auto-sklearn12 [210],
Auto-WEKA13 [382], scikit-learn14 [513], irace15 [427], and nevergrad16 [545].

A parameter sweep of AlphaZeroGeneral (Sect. A) is Wang et al. [738, 739].
AlphaGo Zero optimized its hyperparameters with Bayesian optimization, AlphaZero
used the same set of hyperparameters.

Network Architecture

The architecture of the network can also be regarded as a hyperparameter to be
optimized. Among the decisions to make are the number and types of the layers, and
the number and types of the neurons, whether to have ResNet cells, and how they are
connected. Getting the architecture right for your problem can be a time-consuming
problem, perhaps also best left to machine learning.

Neural Architecture Search is an active field of research, using methods that are
related to hyperparameter optimization. Two surveys are [771] and [197]. Random
search, Bayesian optimization [772], evolutionary algorithms [366, 714, 333, 448,
735, 26], and reinforcement learning [781, 521, 30] are popular methods.

11 https://github.com/automl/SMAC3

12 https://automl.github.io/auto-sklearn/stable/

13 http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

14 https://scikit-learn.org/stable/

15 http://iridia.ulb.ac.be/irace/

16 https://code.fb.com/ai-research/nevergrad/
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http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://scikit-learn.org/stable/
http://iridia.ulb.ac.be/irace/
https://code.fb.com/ai-research/nevergrad/
https://github.com/automl/SMAC3
https://automl.github.io/auto-sklearn/stable/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://scikit-learn.org/stable/
http://iridia.ulb.ac.be/irace/
https://code.fb.com/ai-research/nevergrad/
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Network Optimization

An important element of all neural network function approximators is the optimization
algorithm. Stochastic gradient descent has been the optimization algorithm of
choice, although alternatives exist. Recently works report on evolution strategies
as network optimizers, for example when derivates of the error function are not
available [141, 575, 758]. An advantage of evolution strategies is that they are well
suited for parallelization, providing possible speedups for the training phases of
self-play.

Another alternative to SGDnetwork optimization are distributional methods, where
not just the expected value is optimized, but also the variance of the error [52, 463, 464]
(Sect. 6.4.4).

7.3.4 Parallelism

A major problem of self-play is the large computational requirement, which translates
to long training times. Self-play has three obvious areas where parallelism can be
used for speedup. First of all, network training can be sped up. Here GPUs and TPUs
are already used, and TensorFlow and other packages typically include support for
parallel training.

Another option is to parallelize MCTS. We have already seen a few parallel MCTS
approaches, such as tree parallelism and root parallelism, in Sect. 5.3.5. Even though
their use is not trivial, implementation in current self-play can speed up training.

Furthermore, the tournament games of the self-play setup are all independent, and
can be parallelized within the same self-play iteration. This should give an important
speedup of self-play, filling the example buffer in parallel. Advances in this area will
enable more experimentation and more insights into self-play processes.

7.3.5 Further Research

Self-play has been an active area of research in two-agent zero-sum games for many
years. The AlphaZero results have reinforced the power of the paradigm, showing
that TD-Gammon’s success was not an exception. The successes have created much
research interest in fundamental questions and applications of self-play.

However, there remain open questions to be answered. Among them are:

• The learning time for AlphaGo Zero is long; many games are generated to achieve
good coverage, (de-)correlation, and convergence. How can self-play be made
faster?

• Self-play works for two-agent board games. For which other domains can self-
play work? Does self-play also work for other Markov decision problems, or for
non-Markovian problems?
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• Did AlphaGo/DQN self-play kill the deadly triad? How are overfitting and
specialization related in reinforcement learning?

• Why do ResNets perform so well in self-play? Are there other architectures that
work even better?

• Does self-play work well in imperfect-information games such as Bridge, Poker,
and StarCraft?

• Are self-play results easy to transfer? How can concepts that are learned in one
game be transferred to other games? (Note that in AlphaZero each game starts
training from scratch.)

• Evolutionary strategies and related population-based methods have been successful
in some studies. Will they play a role in (general) self-play?

The successes have prompted researchers to look at other domains, beyond two-agent
zero-sum, to see if and how these questions can be answered and similar progress
can be made. We will list some future research directions, noting relevant papers.
We start with different kinds of problems, such as single-agent games, multi-agent
problems, and then we continue with different ideas.

Single-Agent Games

Reinforcement learning is a natural training paradigm for two-agent games. Rein-
forcement learning is also used in multi-agent and imperfect-information games, such
as StarCraft and Poker [285].

However, many optimization problems in science are single-agent optimization
problems, such as navigation, the Traveling Salesperson Problem, the 15 puzzle, and
the Satisfiablity Problem [572]. MCTS and neural networks have been used to solve
single-agent combinatorial problems [466, 569, 728, 635]. Single-agent optimization
problems, where the shortest solution must be found, can have especially sparse state
spaces in which few reward signals are present. Learning in such sparse spaces is
hard. A solution can be to introduce intermediate goals.

The advantage of self-play is that it creates a curriculum learning situation,
which speeds up learning. Approximate reinforcement learning has been applied to
TSP [379, 56, 231]. Xu and Lieberherr [768] also used self-play in combinatorial
optimization. It can be expected that more research into single-agent self-play
approximators will appear, attempting to benefit from the curriculum learning effect
that is inherent in self-play approximators [438].

Multi-agent and Population-Based Methods

Two-agent games are typically competitive (zero-sum) games. Multi-agent games are
often (partly) cooperative. They have been the subject of study for some time [425,
668, 146, 118, 501, 285, 431, 128].

Multi-agent games, real-time strategy games, and multiplayer online battle arenas
model more aspects of real life. They are a logical next step beyond two-person
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zero-sum perfect-information games. Real-time strategy games also feature movement
aspects that are closer to robotics than board games do.

Applying the recent progress in self-play with multi-agent cooperative games will
be quite interesting, as we will see in the next chapter. Combinations of multi-agent
and population-based approaches have shown great progress in StarCraft II and
Defense of the Ancients 2 (DOTA). See Sect. 8.2.1 for more.

Sparse Rewards

Many real-world reinforcement learning problems are sparse problems: the reward
information in state spaces is sparse, and credit assignment can be delayed for a
long time. Furthermore, the action space may be large as well. An example of a
game with sparse rewards is Montezuma’s Revenge, an Atari game in which many
actions can be taken without encountering a reward state or a change in value.
This game requires more advanced strategic reasoning, presenting a challenging
problem for many reinforcement learning methods (Sect. 6.3.2) [499, 538, 3]. The
Go explore algorithm is specifically designed for exploration of sparse or deceptive
reward environment. It uses a combination of remembering previously visited states,
look-ahead, and exploring from promising states. It is reported to perform well in
Montezuma’s Revenge and in Pitfall [192].

Continuous Action Spaces

Many applications have large, continuous action spaces, possibly combined with
imperfect information (see Poker and StarCraft in Sect. 8.2.3). We often encounter
this in real life [418, 466, 184, 580]. Large discrete or continuous action spaces can
be segmented or discretized [191]. Examples are prevalent in robotics, where an arm
movement can be over a continuous angle; a good review of this field is [371].

Hierarchical Reinforcement Learning

One of the main challenges in reinforcement learning is scaling up classic methods to
problems with large action or state spaces. A problem of model-free reinforcement
learning is low sample efficiency; sample generation is slow, or samples are not used
efficiently (see also Sect. 3.3.6).

After having seen how different parameters of the training process can be optimized,
we will look at hierarchical reinforcement learning, a more principled idea to scale
reinforcement learning to larger problem classes, by decomposing large problems
into smaller ones.

Most reinforcement learning problems are specified at a low level of detail. The
steps that we can make are small (move a single piece, perform a single movement
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Fig. 7.14 Model-free and model-based methods [659]

of a robot arm). The advantage is that this allows for precision and optimality. The
disadvantage is the large size of the state space.

In contrast, consider the following problem: In the real world, when we plan a trip
from A to B, we use abstraction to reduce the state space, to be able to reason at a
higher level. We do not reason at the level of footsteps we need to take, but we first
decide on the mode of transportation. Hierarchical reinforcement learning tries to
mimic this idea: conventional reinforcement learning works at the level of a single
state; hierarchical reinforcement learning performs abstraction, solving subproblems
in sequence. Temporal abstraction is described in a paper by Sutton et al. [661].
Despite the appealing intuition, work remains to be done, such as learning hierarchies
automatically, and finding good benchmarks to show clear progress.

Flet-Berliac [218] provides a recent overview of hierarchical reinforcement learn-
ing, noting that planning research into hierarchical methods showed that exponential
improvements in computation cost can be achieved with methods such as hierarchical
task networks [155], macro actions [212], and state abstraction methods [368]. The
promise of hierarchical reinforcement learning is summarized as: (1) to achieve
long-term credit assignment through faster learning and better generalization, (2)
to allow structured exploration by exploring with sub-policies rather than primitive
actions, and (3) to perform transfer learning because different levels of hierarchy can
encompass different knowledge.

Rafati and Noelle [541] learn subgoals in Montezuma’s Revenge. Schaul et
al.’s [595] universal value function approach suggests the use of function approxima-
tion for hierarchical reinforcement learning. Pang et al. [502] describe experiments
with macro actions in StarCraft.

Model-Free and Model-Based Reinforcement Learning

Section 3.3.4 introduced model-free and model-based reinforcement learning, the
inner and the outer loop of Fig. 7.14 [659]. Model-free reinforcement learning is quite
successful. Most work in reinforcement learning is model-free (or flat reinforcement
learning) without a transition model, tree, self-play, or planning (see, e.g., [14]).
However, model-free reinforcement learning has low sample efficiency.
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Long-range credit assignment and hierarchical structures are especially difficult to
fold into flat (model-free) function approximators; some form of model, abstraction,
and strategic reasoning is likely to be necessary. The option to use exact planning
methods will also depend on the dimensionality of the problem. For high-dimensional
problems approximation is a necessity; for low-dimensional problems exact methods
will yield better answers. Can these be combined into a single architecture?

Network architectures can be created that combine planning and learning. RNN
and LSTM networks are well suited for modeling sequential problems. There are
studies on how look-ahead can be performed by neural networks, obviating the need
for the often slow MCTS planning part [265, 264]. Schrittwieser et al. [607] report
on MuZero, a system that combines model-based planning and model-free learning.
MuZero learns a latent model that is used during planning on-line, for board games as
well as Atari games. Kaiser et al. [350] learn a model for Atari games called SimPLe.
Hafner et al. [271] use planning in latent space to learn dynamics in a system called
PlaNet. This is an exciting research direction where more can be expected [743, 524].

Explainable AI

An important emerging research area in machine learning is explainable AI, or XAI.
Explainable AI is closely related to the topics of planning and learning that we
discuss in this book. When a human expert gives a recommendation, the expert
can be questioned, and can explain the reasoning behind the advice. This is a very
desirable property of an agent. Most clients receiving advice, be it financial, medical,
or otherwise, prefer to receive a well-reasoned explanation with their advice, to see if
they feel that they can trust the advice.

Most decision support systems that are based on symbolic AI can be made to
provide such reasoning. Decision trees [540], graphical models [340, 404], and search
trees are eminently suited for following the decision points of advice.

Connectionist approaches such as deep learning are more opaque. However, the
accuracy of deep learning approaches has assured their popularity. The area of
explainable AI aims to combine the ease of reasoning of symbolic AI with the
accuracy of connectionist approaches [266, 182, 107]. Hybrid approaches combining
aspects of planning and learning are among the techniques that hold promise. Soft
decision trees [229, 292] and adaptive neural trees [669] are ways to distill knowledge
from neural nets (that generalize well) into decision trees (that are highly interpretable).
These works build in part on research on model compression [136, 111].

Another area of interest is the intersection of knowledge representation and
reinforcement learning, also driven by the desire for decision support where the
reasoning behind a recommendation is also provided. This field is related to learning
Bayesian networks and belief networks [282, 480, 612, 165, 51, 678, 96, 21].
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7.4 Practice

We have now come to the end of a chapter that covered many advanced topics, and
provided pointers to even more research. Let us turn to practice now, to implementa-
tions.

First are questions to check your understanding of this chapter. Each question is a
closed question where a simple, one sentence answer is possible.

Questions

1. What are the differences between AlphaGo, AlphaGo Zero, and AlphaZero?
2. What is the dan-rating of Fan Hui, Lee Sedol, and Ke Jie?
3. Which networks does AlphaGo have, and which training methods?
4. Which networks does AlphaGo Zero have, and which training methods?
5. What is a double-headed network?
6. What is the error function that is trained in a double-headed value/policy net?
7. What is a TPU, and how is it different from a GPU?
8. What is the Elo rating of AlphaGo in 2016 (approximately: around 2000, around

2500, or around 3000)?
9. Which three elements make up the self-play loop? (You may draw a picture.)

10. How is self-play recursive?
11. What is the network architecture of AlphaGo?
12. What is the network architecture of AlphaGo Zero?
13. What is tabula rasa learning?
14. How can tabula rasa learning be faster than reinforcement learning on top of

supervised learning of grandmaster games?
15. What is the main result of the AlphaZero paper?
16. Name a top traditional Chess program.
17. Name a top traditional Shogi program.
18. Was the style of play of AlphaGo described by the Go community as boring or as

exciting?
19. What decorrelation efforts does AlphaGo use?
20. What decorrelation efforts does AlphaGo Zero use?
21. What decorrelation efforts does AlphaZero use?
22. Explain similarities between planning, learning, system 1, and system 2.
23. What is curriculum learning?
24. What is transfer learning?
25. What is multi-task learning? Does AlphaGo have multi-task learning? Does

AlphaGo Zero have multi-task learning?
26. What is meta-learning?
27. Describe three kinds of recursion in AlphaGo Zero-like self-play?
28. What is hyperparameter optimization, and how does it apply to reinforcement

learning?
29. What is neural architecture search, and how does it apply to reinforcement learning?
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30. What is hierarchical reinforcement learning? Name three approaches.
31. Why are games with sparse rewards difficult for reinforcement learning?
32. Why are domains with continuous action spaces difficult for reinforcement

learning?
33. What is explainable AI?

7.4.1 Exercises

The AlphaZero General (A0G) code base is well suited for experimentation with
self-play. We use it in the exercises of this chapter. A0G can be found at A0G.17 Note
that you also have to install TensorFlow and Keras. They are at tensorflow.org.

1. Install and run A0G Othello 6x6. Play against the computer to see if everything
works. Look at the source code, especially at Coach.py. Can you see a relation
with the code in Listing 7.1? What is an episode?

2. Observe the learning processes of the different games Tic Tac Toe, Connect4, and
Gobang. See how self-learning progresses.

3. Vary learning rate, vary MCTS Nsims, vary iterations. How is performance
impacted? How is learning time impacted?

4. A stable self-play process in A0G depends in part on the amount of exploration in
MCTS. Vary the Cpuct constant, and observe if training is impacted adversely.

5. Try different net architectures. How is performance impacted?
6. Take a traditional alpha-beta Othello program, for example Othello.18 See if A0G

can learn a strong enough player to beat it.
7. Choose a simple game of your own preference, and implement it in A0G. Does it

learn quickly?
8. *Implement Chess input and output layers in A0G, learn it tabula rasa, and play

against Sunfish. You may want to have a look at LeelaZero Chess or ELF OpenGo
for inspiration.

9. Play with tensorboard to look inside the brain/training process and try to understand
the training process.

10. Implement hyperparameter tuning of A0G parameters.
11. *Write a hyperparameter optimizer for A0G, trying different net architectures.

This is challenging and quite computationally intensive. How can you reduce the
computational demands?

12. Can single-agent optimization problems benefit from self-play? Implement the 15
Puzzle in A0G, and Travelling Salesperson. See also [403, 768].

13. See if transfer learning of 4x4 Othello, to 6x6 to 8x8 works, and works faster. Are
you seeing a curriculum learning effect?

17 https://github.com/suragnair/alpha-zero-general

18 http://dhconnelly.com/paip-python/docs/paip/othello.html

https://github.com/suragnair/alpha-zero-general
https://www.tensorflow.org
http://dhconnelly.com/paip-python/docs/paip/othello.html
https://github.com/suragnair/alpha-zero-general
http://dhconnelly.com/paip-python/docs/paip/othello.html
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Summary

The challenge of this chapter was to combine planning and learning, to create a self-
playing self-learning system. We described the performance of AlphaGo, AlphaGo
Zero, and AlphaZero in depth. There was great interest in Go and AI from science
and society.

Issues of coverage, correlation, and convergence (the deadly triad) were mostly
overcome by the AlphaGo team through science and engineering, for which they
received many accolades.

The main conceptual innovation of this chapter is self-play, a combination of
planning and a training loop, a combination of MCTS and deep reinforcement
learning. Self-play (Fig. 7.3) takes evaluation (system 1) and planning (system 2) and
adds a third item, a learning loop, creating a self-learning search-eval system.

The self-play loop uses MCTS to generate high-quality examples, which are used
to train the neural net. This new neural net is then used in a further self-play iteration
to refine the network further (and again, and again, and again). Alpha(Go) Zero thus
learns starting at zero knowledge, tabula rasa. And, just as impressively, the same
self-play architecture can learn tabula rasa Chess and Shogi as well, defeating decades
of heuristic refinement.

Self-play makes use of many reinforcement learning techniques. In order to
ensure stable, high performance learning, exploration is important. MCTS is used for
high-quality sampling. Exploration parameters in MCTS are set high, and convergent
training is achieved by a low training rate. Because of these parameter settings many
games have to be played. The computational demands of self-play are large.

MCTS has been changed significantly in the self-play setting. Gone are the random
play outs that gave MCTS the name Monte Carlo, and much of the performance is
due to a high-quality policy and value approximation residual network. (The name
Deep Q Tree Search might be more appropriate.)

Reproducibility in science is of great importance to progress [289]. The impact
of benchmarks and open-source algorithms in this respect is important. The reim-
plementations of the self-play results in A0G, ELF OpenGo, PhoenixGo, and Leela
will stimulate experimentation and are of importance for progress towards general
learning systems.

In this chapter we discussed enhancements of self-play, to understand why it
works, and how its performance can be enhanced further. Self-play learns faster
than a database approach. Self-play creates a natural curriculum learning situation,
where the examples are ordered from easy to hard. We discussed the links between
curriculum learning and transfer learning. The self-play success stimulates research
interest in curriculum and transfer learning.

We also discussed further enhancements to self-play. Optimization of the network
architecture and the training hyperparameters are active fields of research. Another
field in which planning and learning come together is explainable AI.



7.4 Practice 231

Historical and Bibliographical Notes

Self-learning systems are exciting. Self-learning is a holy grail of artificial intelligence:
the emergence of intelligent behavior out of basic interactions [411]. Machines that
teach themselves how to play have intrigued researchers since the start of game
playing research.

The work on AlphaGo is a landmark achievement in AI. Every AI researcher is
encouraged to study it well. The primary sources of information for AlphaGo are the
three AlphaGo papers by Silver et al. [623, 626, 625]. The papers contain a lot of
information, and can be a bit overwhelming at times, especially the detailed methods
sections. Many blogs and popular press articles have been written about AlphaGo
that might be more accessible.

Do not forget to watch the AlphaGo movie. Although it does not go too deep
into the details, it is a fascinating account of the match, and its significance in AI.
It is at AlphaGo Movie.19 There are also explanations on YouTube, for example at
AlphaZero Explanation.20

A book devoted to building your own state-of-the-art self learning Go bot is Deep
Learning and the Game of Go by Pumperla and Ferguson [537].

AlphaGo was not created in a vacuum. There is a large body of research of which
we will now discuss some of the more notable papers. Pre-MCTS, there are works on
shape and move prediction [644, 67]. In the contexts of MCTS, many researchers
worked on combining MCTS with learned patterns, especially to improve the random
roll outs of MCTS. Supervised learning on grandmaster games was used to improve
playouts and also to improve UCT selection. Gelly and Silver et al. published notable
works in this area [239, 627, 237], and others [63].

Patterns are also important in Othello. Around 1995 very good results were
achieved by Logistello [113]. Logistello used logistic regression on patterns. The
author also successfully introduced probabilistic depth reduction methods [115]. Graf
et al. [253] describe experiments with adaptive playouts in MCTS with deep learning.
Convolutional neural nets were also used in Go by Clark and Storkey [144, 145],
who had used a CNN for supervised learning from a database of human professional
games, showing that it outperformed GNU Go and scored wins against Fuego. In
Chess, the program DeepChess by David et al. [160] performed end-to-end deep
learning in Chess, achieving results on par with two alpha-beta-based programs.
In Checkers, Blondie24 [133, 221] used a network to evolve board features, also
achieving good results.

Tesauro’s success inspiredmany others to try temporal difference learning.Wiering
et al. and Van der Ree [757, 707] report on self-play and TD learning in Othello and
Backgammon. The program Knightcap [42, 43] and Beal et al. [48] also use temporal
difference learning on evaluation function features. Veness et al. [719] use self-play
to learn evaluation function weights. They name their approach search bootstrapping
and, referencing Samuel’s Checkers program, describe it as follows: “The idea of

19 https://www.alphagomovie.com

20 https://www.youtube.com/watch?v=MgowR4pq3e8

https://www.alphagomovie.com
https://www.youtube.com/watch?v=MgowR4pq3e8
https://www.alphagomovie.com
https://www.youtube.com/watch?v=MgowR4pq3e8
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search bootstrapping is to adjust the parameters of a heuristic evaluation function
towards the value of a deep search.” This sentence captures the idea of self-play, as
used in AlphaZero, quite well. Arenz [18] applied MCTS to Chess.

Heinz also reported on self-play experiments in Chess [287]. In other games, Guo
et al. [267] report on the use of MCTS to play Atari games; their combination of
MCTS and DQN outperforms DQN on Atari.

In Poker impressive results have been published [92, 470] with combinations of
planning and learning algorithms, most notably counterfactual regret minimization
and self-play.

Since the AlphaGo results many other applications of machine learning have
been shown to be successful. Complex combinatorics is of interest to theoretical
physics [569, 503], chemistry, and pharmacology, specifically for retrosynthetic
molecular design [615] and drug design [716]. Image recognition is of interest to
experimental physics [32], biology [486], and medicine [166]. Decision support is of
interest tomedical decisionmaking [307]. Reasoning and image analysis are of interest
to smart industry [244, 335], linguistics, and humanities [646], and strategic reasoning
is of interest to law, international relations, and policy analysis [25, 422, 712, 122].
Finally, the applications of robotics and reinforcement learning are of great interest to
the cognitive and social sciences [337, 100]. Of particular interest are cheminformatics
including drug design [615], theoretical physics, cognitive robotics, and law and
negotiation.

For more information on hyperparameter optimization, see [66, 324]. A reference
work on evolutionary strategies is [27]. To learn more about curriculum learning,
see [755, 62, 438]. For more information on transfer learning, see [532, 688].

Ever since his paper on reinforcement learning for aerobatic helicopter flight [3]—
there are videos on the web—Pieter Abbeel’s work in robotics and in reinforcement
learning has been influential.

The study of model-based reinforcement learning is an active area of research.
Recent experiments are reported in [629, 667, 206, 750, 350, 271, 524].

Meta-learning and transfer learning are related, and active areas of research [226,
611, 724, 270, 269, 542, 639, 694, 321].

Hierarchical reinforcement learning is an active field of research with a long
history. See for further reading for example [343, 519, 226, 437, 36, 31, 632, 389,
415, 650, 346, 723]. Applications of hierarchical reinforcement learning to self-play
remain to be explored, see also [652].

Readable and insightful introductions into the field of abstraction in deep repre-
sentation learning are [60, 405]. A good place to start for network visualization is the
ZFnet paper [774]. Wang et al. [737] study the optimization target of a dual-headed
self-play network in AlphaZeroGeneral.



Chapter 8
Conclusion

Computers are now faster at learning Go than humans: it takes AlphaGo Zero days to
reach world champion level, for humans this takes years.

This chapter is about the future. We summarize the lessons learned in this book,
to reflect upon where AI may go next.

In the previous chapters we have discussed in depth the methods that have been
used to achieve artificial intelligence in games. The focus has been on single games,
on narrow intelligence.

The purpose of this chapter is to see how narrow intelligence can be extended to
general intelligence, or at least to some extent. We will approach this goal in three
steps. First, in Sect. 8.1, we will analyze the methods of the previous chapters, to find
common threads. Second, in Sect. 8.2, we will discuss new problem domains that
expand our horizon beyond zero-sum perfect-information games. Then, in Sect. 8.3,
we will compare human and artificial intelligence, and look into future methods of
artificial intelligence.

Core Problems

• How are artificial and human intelligence related?
• What games can be used in our quest towards general intelligence?
• What are essential methods of intelligent decision making in games?

Core Concepts

• Specialized intelligence and general intelligence
• Sample efficiency, transfer learning, and population-based methods
• Multi-agent, imperfect-information games

233
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3. Common language (reinforcement learning)

4. Direct traversal (Chess)

5. Adaptive traversal (Go)

6. Train on examples (Atari)

7. Adaptively generate curriculum to train on (Go)

8. Future mappings (Poker, StarCraft, . . .)

Fig. 8.1 Stack of chapters, with (from bottom to top) increasingly advanced mappings from problems
to paradigms

8.1 Artificial Intelligence in Games

In this section we will review the methods that we have seen in the book so far.
We will analyze them to see how they created an artificial kind of intelligence. We
will look for common aspects in the hope that we can extend them to create new
methods, to create an even more human kind of artificial intelligence, allowing better
human-computer interaction and better human-computer understanding.

8.1.1 Summary of Paradigms

Figure 8.1 shows the structure of this book as a stack of chapters, with the paradigms
building on top of each other. At the bottom is the reinforcement learning layer (3)
that provides a common language and formalism for this book.

Planning

The paradigms start with being closely related to the state space. The methods in
the second layer (4) in Fig. 8.1 directly traverse the state space, enumerating the
states one by one. Basic undergraduate planning methods such as depth-first and
breadth-first search are used [572].

Heuristics

When the state space is larger, the time complexity of full enumeration becomes
prohibitive, and manually constructed features are introduced, based on heuristics.
The heuristics are used in both backward and forward fashion: in evaluation functions
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(backward propagation) and in transition functions or move generation (forward
pruning). Through these heuristics, depth-first and breadth-first search are transformed
into best-first search: the heuristics guide node expansion towards parts of the tree
that the heuristics deem best.

Heuristic planning combines the traversal algorithms with these heuristics and
has been quite successful. This field of artificial intelligence has also been called
heuristic search, or simply heuristics [511]. The Deep Blue–Kasparov match in 1997
marked the success of this approach.

Adaptive

Already with the heuristics enhancements arrived that softened the rigid depth-first
fixed-depth expansion, when transpositions and search extensions were introduced,
amongst many, many others. Going towards the next layer (5) in Fig. 8.1, we arrive
at the adaptive paradigm. Node selection rules such as UCT based on exploration
and exploitation provide a formal basis and greatly improve on the ad hoc forward
pruning idea in many new domains.

Sampling

Furthermore, an alternative, non-minimax, backup rule is introduced. Averaging,
together with a sampling evaluation function and UCT selection, provides a new
search paradigm. The new paradigm works in domains with large branching factors
where no efficient heuristic features have been found.

Together these methods constitute MCTS, which took the field of heuristic search
into the realm of reinforcement learning, where methods are adaptive (i.e., they
learn) and where methods balance exploration with exploitation. Through MCTS the
application domain of combinatorial methods has expanded greatly.

Supervised Generalization

Still, the states that were explored in the state space are treated separately by MCTS.
Commonalities between states, such as shared features, are not exploited explicitly.
Even worse, in MCTS, in its most basic form, features of states are deliberately
ignored, since node evaluation is solely based on random playouts. Moving to the
next layer (6) in Fig. 8.1, this fact already suggests a further paradigm. This new
paradigm, function approximation, opens up the states, looks at individual features,
and uses methods to learn common features by training on examples of states.
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search eval

train
examples new net

reward

Fig. 8.2 Simplified self-play loop

Reinforcement Learning Generalization

The field of deep learning has introduced methods to learn features from examples,
balancing generalization and overfitting. In supervised learning a fixed database
of examples exists from which features must be learned. In reinforcement learning
the training process generates the new examples as part of the training process.
Because of this, there is a high degree of correlation between subsequent examples.
In reinforcement learning special care must be taken to explore a sufficiently large
and diverse part of the state space, since otherwise the training gets stuck in a local
optimum, or the training process itself may even diverge (due to the deadly triad).

Self-Play

In the next layer (7) in Fig. 8.1, self-play is shown, which uses the generalization
methods in a self-play setting. Here, the neural network is combined with MCTS. It is
used for node selection, incorporating it in UCT, and for evaluation, replacing random
playouts. In addition, the game playing program is used to generate the examples for
the generalization process, which is used to train the evaluation features of the neural
network, which is used by the program to generate the next (better) set of examples,
etc.

Self-play is a highly recursive approach in which many aspects of the algorithm
feed upon themselves (see also Fig. 8.2). Stability issues are plentiful, and various
exploration methods must be used (and tuned well) for self-play to work. When
it works, we find that it is quite an efficient way of training features, because of
curriculum learning.

Other application domains and learning methods are shown in the next layer (8).

8.1.2 Summary of Methods

There are a few methods, or principles, that occur frequently in the paradigms of
reinforcement learning that we have seen in different shapes and forms in this book.
Let us now summarize these common principles.



8.1 Artificial Intelligence in Games 237

Recursion and Bootstrapping

First of all is recursion. Recursion is the calling of a function by the same function
with different parameters. It is used to traverse trees and graphs, it is the basis of
Bellman’s dynamic programming, and it is also behind the idea of self-play: reusing
parts of the algorithm in a slightly different way to achieve your goal. Recursion is
a standard way of traversing a state space, for example, to search for some optimal
value, or for traversing the weights in a network to update them according to an error
gradient.

Bootstrapping determines a state’s value by making use of its previous values.
Bootstrapping is often implemented using recursion, and dynamic programming
makes use of this principle. Bootstrapping is at the basis of reinforcement learning,
in Bellman’s equation, defining the value of a state based on the discounted value of
future actions. Minimax, the principle of using the same model for the player and the
opponent, also finds the value at the root of the game tree by bootstrapping on the
tree of child values.

Finally, bootstrapping and recursion feature three times in AlphaZero self-play,
in the move selection of MCTS, in the generalization of the network for example
states, and in the curriculum of games that are generated in a tournament against an
identical copy of the player.

Optimization

This brings us to the next method that is used in all paradigms: optimization.
Optimization is, again, everywhere. Optimization is used to find the best value, to
find the best action, to find the best weights, and to find a global optimum.

Optimization is the principle of choosing the best item out of a set, preferably
using some smart means or extra information to do so efficiently. All reinforcement
learners and all game playing programs are nothing more than advanced optimizers,
using many times the principle of optimization to select best actions, best states, best
examples, best network architectures, and best training hyperparameters.

The principles of optimization and of bootstrapping work together in the search-
eval architecture. Other examples exist, many exact algorithms use the principle of
optimization, such as SARSA, A*, and depth-first search, and many other algorithms
exist for the other three cells as well.

Optimization methods can also be used to approximate, for example, by using the
features of states.

Exploration

Exploration is essential for stable deep reinforcement learning, to ensure broad
coverage of the state space, to break through correlated subsequent states in rein-
forcement learning loops, and to ensure convergent training methods. Exploration
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is of crucial importance in MCTS, DQN, and PPO, and it is at the core of efficient
simple reinforcement learning (such as Q-learning) and of stable deep reinforcement
learning and self-play.

Search-Eval

The search-eval architecture provides a framework for the trade-off between exact
planning algorithms and approximate learning algorithms. In two-player games the
use of a combination of exact and approximate methods has proven to be essential for
success, and all programs follow this model-based architecture. In self-play an extra
learning loop is added to search-eval, to allow for the evaluation network to bootstrap
itself on the search-eval examples.

Deep learning is a model-free method that takes many samples to learn the features.
It is not very sample efficient because it lacks a model, although curriculum learning
helps since examples are easy to learn. Deep learning is important because it is, in
contrast to heuristic planning, able to learn an evaluation function. Planning and
learning can be sequenced together to make a powerful model-based/model-free
self-play system (which is not very sample efficient).

End-to-End

A final principle of this book is the progression of compute power, allowing larger
and larger problems to be addressed. Where 60 years ago Samuel could only train
coefficients of hand-crafted features, 30 years ago TD-Gammon could train end-to-end
temporal difference learning on a small network, now AlphaGo can do tabula rasa
end-to-end learning with a deep network. Being able to train end-to-end allows us to
forgo hand-crafted features, with all their inherent errors and biases, achieving high
performance and true (but still narrow) artificial intelligence.

8.1.3 On the Importance of Enhancements

The search-eval architecture provides a conceptual framework for game playing
programs. To achieve a high level of performance, the enhancements, however, are
as important. High-performing game playing programs from 1950-2006 were based
on alpha-beta. Without transposition tables and singular extensions there would be
no Deep Blue. Without fast playout patterns there would be no AlphaGo, without
specific input layers no AlphaZero, without ReLU, dropouts, and GPUs, no deep
learning Turing award, and without the replay buffer there would be no success in
Atari. The enhancements are the result of deep understanding by the researchers
of their domains. Understanding that is more specialized, and less general, than
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abstract principled frameworks such as minimax, reinforcement learning, or function
approximation.

In addition to the elegant conceptual frameworks, deep, dirty, domain-specific
understanding is necessary for progress in this field [594].

8.1.4 Towards General Intelligence

Let us revisit the problem statement from the Introduction.

What are the machine learning methods that are used in Chess and Go to achieve a level of
play stronger than the strongest humans?

Various reinforcement learning methods have beaten human champions in Chess and
Go, ranging from heuristic planning, adaptive sampling, function approximation, to
self-play. All methods fit in the classic search-eval architecture, and all use variants
of the principles of bootstrapping and optimization. Heuristic planning can achieve
levels of play far surpassing human ability in Chess and Checkers. We have also seen
how to combine planning and learning into a self-play system that learns to play from
scratch, achieving even higher levels in Chess, Shogi, and Go.

Did we achieve intelligence? For these three games, we certainly passed the Turing
test.1 Systems were created that behave at a level for which a human would need
super human intelligence. The intelligence is, however, single-domain intelligence.
AlphaGo cannot play Shogi, and it cannot think of an entertaining joke.

Joining the two fields of symbolic AI and connectionist AI, AlphaZero showed
that the methods generalize to three games, hinting at artificial general intelligence.
However, it is more precise to speak of training three almost identical systems to
become three different systems specialized in their own kind of special intelligence
(since the net, once trained for Go, cannot play Chess). (GGP systems can play general
games, but do not achieve performance close to AlphaZero; Sect. 8.2.5.)

8.2 Future Drosophilas

The reinforcement learning results in Atari andGo have inspiredmuch further research.
The use of concrete games, the Drosophilas, has stimulated progress in game playing
greatly. In addition to the usual two-person zero-sum perfect-information games,
researchers have looked for games that capture other elements of real life, such as
non-zero-sum (collaboration) games, imperfect information, and multi-agent games.
In this section we will review some of these aspects.

1 Actually, since we far surpassed human play, an argument can be made that in doing so we failed
the Turing test, since no human can play at this level.
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8.2.1 Real-Time Strategy Games

Imperfect information games have been studied extensively in reinforcement learn-
ing [640, 344]. Multi-agent imperfect-information Drosophilas can be card games
(such as Bridge and Poker) and real-time strategy games (such as Defense of
the Ancients (DOTA) 2 and StarCraft). StarCraft has been studied for some
time [727, 692, 703], as have DOTA 2 [185, 34, 497] and other RTS games
[535, 402, 671, 332]. Easy-to-use Python interfaces have been created for Star-
Craft and DOTA 2. These games are highly challenging for current methods. They are
multi-player, imperfect information, have large and continuous action spaces and very
large and sparse states spaces, and long-time credit assignment challenges. Impressive
results are already being achieved. Leibo et al. [411] have written a manifesto for
further research into curriculum learning in multi-agent games.

Vinyals et el. have success in StarCraft II with their programAlphaStar [725] which
uses multi-agent reinforcement learning in combination with supervised learning
for subparts of the game. The notion of self-play is extended to a group of agents,
the league. Using population-based methods agents try to improve the strategies of
others in their own league, so that the collective becomes stronger.

Jaderberg et al. [331, 332] describe an impressive result of a multi-level learning
system. Their system uses a variant of reinforcement learning that learns a population
of agents, in a multiplayer real-time strategy capture-the-flag game, Quake III. The
computational demands of their approach are mitigated by not using an MCTS search
and using relatively simple and fast RNNs (see also Sect. 8.2.1).

OpenAI is performing research on cooperation with OpenAI Five in DOTA 2,
again demonstrating that self-play reinforcement learing can achieve super-human
performance in complex environments [70].

8.2.2 Negotiation and Collaboration

Non-zero-sum games are close to everyday life situations. Many real-world situations
include negotiation and collaboration and offer win/win situations. AI has studied
negotiation and collaboration extensively.

Negotiation and collaboration also occur in card games. Poker and Bridge have
large action spaces and a large state space. Poker has been researched for some time,
and for simpler (two-player) versions of the game successful programs have been
written [92, 470, 103, 376]. Recently, success has also been reported in multi-player
Poker. Cooperation and negotiation are central elements of Bridge, and research is
continuing [636, 11]. Negotiation has also been studied for some time [338, 383, 339],
including negotiation in games such as Diplomacy [505, 13, 167, 170, 169, 168,
384, 550].

Let us now have a closer look at two games, Poker and StarCraft.
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8.2.3 Poker

Poker is an excellent game to show what progress has been made in imperfect-
information games.

Poker has been studied for some time in artificial intelligence, and computer Poker
championships have been conducted regularly [78, 79, 243, 566, 35, 92, 79, 243, 93,
579, 470]. No-limit Texas hold’em is the most popular form of poker. The two-player
variant (called Heads Up) prevents opponent collusion. Heads-up no-limit Texas
hold’em (HUNL) has been the primary benchmark for imperfect-information game
play for several years.

Poker features face-down cards, whose value is unknown to the other players. The
face-down cards constitute hidden information. This hidden information creates a
large number of possible states, making Poker a game that is far more complex than
Chess or Checkers. There are many variants of Poker; the state space of HUNL is
reported to be 10161, so simply enumerating the state space to find an optimal policy
is infeasible [103]. A further complication is that a player reveals information during
the course of play. Therefore, an AI must balance actions, so that the opponent does
not find out too much about the cards that the AI has. Players may be misled through
bluffing, i.e., deliberately betting a large sum to make the opponent believe that one
has stronger cards than one has.

In 2018, one of the top programs, Libratus, defeated top human professionals in
HUNL in a 20-day, 120,000-hand competition featuring a $200,000 prize pool. We
will now describe this program in more details, based in [103]. Libratus consists of
three main modules.

The first module computes a smaller version of the game, and then computes
game-theoretic strategies. The algorithm used is a variant of counterfactual regret
minimization (CFR). CFR is an algorithm to find Nash equilibrium strategies that is
widely used in computer Poker [779]. CFR is based on multi-armed bandit theory.
CFR is a recursive algorithm that starts with a random strategy. It then simulates
playing games against itself. After every game, it improves its decisions. It repeats
this process many times, constantly improving the strategy. As it plays, it comes
closer to an optimal strategy, a strategy that can do (on average) no worse than tie
against any opponent. CFR generates strategies that minimize exploitability, which
means that it plays conservatively. CFR algorithms do not exploit imperfect play
from opponents in a way that a human would. From a game-theoretic point of view,
a perfect strategy is one that cannot expect to lose to any other player’s strategy. A
perfect strategy in the presence of suboptimal players who have weaknesses would be
one that exploits those weaknesses.

When a later part of the game is reached during play, the second module of
Libratus constructs a finer-grained abstraction for that subgame and solves it in real
time.

The third module is the self-improver, which enhances the first policy. It fills in
missing branches in the first version of the game and computes a game-theoretic
policy for those branches. Computing this in advance is infeasible. Libratus uses the
opponents’ actual moves to suggest where in the game tree this is worthwhile.
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In the experiment against human players Libratus analyzed the bet sizes that were
most heavily used by its opponents during each day of the competition. On the basis
of the frequency of the opponent bet, the program chose some bet sizes for which it
would try to calculate a response overnight. Each of those bet sizes was then added to
the strategy, together with the newly computed policy following that bet size. In this
way, the program was able to narrow its gaps as the competition proceeded.

Interestingly, Libratus was originally based on heuristics, abstraction, and game-
theoretical algorithms, and not on deep reinforcement learning. However, later
work introduced deep counterfactual regret minimization [102], a form of CFR that
approximates CFR equilibria in large games, using a 7 layer neural network. This
algorithm is also the basis for Pluribus, the later multi-player program, defeating top
players in six-player Poker [104]. Pluribus uses a form of self-play in combination
with search.

Another top program, DeepStack, does use randomly generated games to train
its deep value function network [470]. In Poker we see two different approaches
achieving success.

8.2.4 StarCraft

StarCraft is a multi-player real-time strategy game of even larger complexity [496]. It
is a good test bed for AI research, since it features decision making under uncertainty,
spatial and temporal reasoning, collaboration and competition, opponent modeling,
and real-time planning. The companies DeepMind and Blizzard have released a
Python interface to stimulate research in StarCraft [727, 725].

The state space of real-time strategy games is larger than traditional board games
such as Chess, Checkers, or Go. The state space has been estimated to be on the order
of 101685, a very large number, even for this book [496]. The number of actions in
each state is also large. Standard exact planning methods are not feasible, and need
to be augmented with approximate methods to be effective. Planning in real-time
strategy games has multiple levels of abstraction (see hierarchical reinforcement
learning in Sect. 7.3.5). At a high level of abstraction, long-term planning is needed;
at a low level of abstraction, tactical battles must be fought and individual units must
be moved.

StarCraft offers opportunities to explore many challenging new methods in
reinforcement learning. First, it is an imperfect-information game. The terrain map is
partially visible. A local camera must be moved by the player to acquire information.
There is a “fog-of-war” that obscures unvisited regions. The map must be explored
proactively to determine the opponents’ state. Second, StarCraft is a multi-agent
game in which several players compete for influence and resources. StarCraft is also
multi-agent at another level. Each player controls many units that need to cooperate to
achieve the player’s goal. Third, the action space is large and diverse. There are around
108 actions for a player, which can be selected with a point-and-click interface. There
are many different types of units and buildings, each type with its own local actions.
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Furthermore, the legal actions vary during play as it advances through possible
technologies. Finally, games are long. They last for thousands of states and actions.
Decisions early in the game, such as which units to build, have consequences that will
be seen much later in the game when armies meet in battle. There is a long distance
in credit assignment, and exploration is important in StarCraft [496].

In a series of test matches held in December 2018, DeepMind’s AlphaStar beat
two top players in two-player single-map matches, using a different user interface.
The neural network was initially trained by supervised learning from anonymized
human games, that were then further trained by playing against other AlphaStar
agents, using a population-based version of self-play reinforcement learning [725].

8.2.5 General Game Playing

As has already been mentioned a few times, another approach to studying generality
in game intelligence is general game playing (GGP). GGP takes a different approach,
not using concrete existing games, but using abstract generative games.

GGP started after Deep Blue won from Kasparov, and the field was looking for
their new Drosophila. One of the criticisms of the field of game playing was that all
programs had to be specifically developed for each game anew. Human intelligence,
on the other hand, is general, and can just as easily be applied to different tasks.

A general game playing system should be able to play any game for which it is
given the rules. It was hoped that the general methods coming out of GGP research
would also be able to help in other areas, such as in assisting search and rescue
missions [514, 240]. The Logic group at Stanford University currently hosts the
General Game Playing project [240, 683] and initiates competitions.

The GGP approach is to create a system and a language in which many games
can be expressed. The challenge is then to create a single game player that can play
any game that occurs in a tournament. A GGP program must be able to accept any
model that can be expressed in the game description language. The game description
language is similar to PROLOG. In GGP a parser for the game description must be
written, which implements the state/action transition function, and termination rules.
The program has to come up with an efficient search procedure, and a good evaluation
function. It is hard to preprogram heuristics when the domain is unknown. It was
hoped that GGP would stimulate the creation of general problem solving methods. It
is therefore curious to note that a method developed in Go, the other Drosophila, has
been successful in GGP. Monte Carlo Tree Search is a general search procedure that
does not need domain-specific heuristics, and turned out to be well suited for GGP.

Arguably GGP is a less spectacular Drosophila, since there is no human world
champion to beat, and there is no active human gaming community. In another sense
GGP is more spectacular since it tries to find solutions that work for all games.

GGP has yielded a range of interesting advances towards more general AI. Much
research in GGP is being performed [516, 681, 598, 682, 683, 604, 447, 605, 216,
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83, 633, 634, 740, 736]. It will be interesting to see if more techniques from the two
fields (i.e., general and special game playing) will cross over.

There are other general game playing systems, which use their own languages for
defining the game rules. In 1992, Pell introduced Meta-Game Playing, one of the
earliest programs to use automated game generation. Pell’s Metagamer was able to
play Chess-like games, given game rules definition in a language called the Game
Description Language [514, 515, 240]. Following the GGP idea a General Video
Game Playing competition has been started [518, 517, 391].2

Both AlphaZero and GGP show how general game play can be achieved. The
AlphaZero approach to general game playing is less general, requiring hand-designed
input and output layers, where GGP programs generate these automatically from a
description of the rules. The game complexity of Go, Chess, and Shogi is much larger
than that of typical GGP challenges.

8.3 A Computer’s Look at Human Intelligence

Now that we have discussed the reinforcement learning methods, and discussed future
challenges in reinforcement learning in games, it is time to compare the artificial
approach to intelligence with the other approach, the human kind.

8.3.1 Human Intelligence

As we already mentioned in Chap. 2, human intelligence is a complex, multifaceted
concept. Many different definitions of intelligence have been proposed. Intelligence
involves recognition, reasoning, memory, learning, problem solving, and creativity.
Human intelligence is usually also assumed to include understanding, emotion,
self-awareness, and purpose (volition). Intelligence is the ability to infer knowledge
from information, and to apply that knowledge towards adaptive behavior within a
context. See, for example, Legg et al. [410] or Neisser et al. [482].

We will now discuss these elements of intelligence in more detail, and analyze
how human and artificial intelligence differ in their approach.

Memory and Recognition

One of the basic elements of intelligence is the ability to recognize objects or features
that have been encountered before. This requires sensors, a recognition system,
and a functioning memory. All have been studied widely in human perception. In

2 http://www.gvgai.net

http://www.gvgai.net
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Kahneman’s terminology, system 1 is the part of our thinking that recognizes objects.
Human recognition works fast and associatively.

Computers have always had memories, and over the years the amount of memory
of computers has grown greatly. Computers have long struggled with the kind of
recognition that humans do so easily. Only after CNNs were introduced (fashioned
after an animal visual cortex) and after enough training data became available in
MNIST and ImageNet, and after enough computing power in the form of GPUs
became available, did computer recognition for images start to achieve impressive
results.

Reasoning

Reasoning is another core element of intelligence. In Kahneman’s terminology,
reasoning is system 2, or thinking slow. Reasoning is considered a positive trait, and
many humans and scientists pride themselves on their capacity for elaborate and deep
logic reasoning. It is something that children are trained at in school topics such as
calculus, mathematics, and history. It is the reason why Chess classes are present at
schools.

Indeed, one of the precepts of classical economics is the assumption of rational
behavior of the homo economicus. One of the interesting aspects of Kahneman’s
book is that it stresses the importance of system 1, the fast, intuitive, type of thinking.
The non rational part of our thinking is guiding much of our daily behavior. (Why do
people buy lottery tickets, if we know that the expected value of a lottery is negative?)
Indeed, Kahneman’s work on prospect theory, together with many other important
insights from psychology, has been instrumental for the field of behavioral economics.
Thaler and Sunstein have written a popular book on nudging [680], applying insights
from behavioral economics to influence behavior of people.

Computers are good at reasoning, and are typically considered to be faster at
reasoning than humans. In artificial intelligence, systems for logic reasoning were
one of the first systems built, right up there with Chess and Checkers programs [764,
396, 484]. Some of the many successful results of this research are the programming
language PROLOG [147, 94], research into semantic reasoning [17, 301], and
negotiation [423].

Learning

One of the central aspects of intelligence is the ability to adapt one’s behavior based
on information from the environment. The ability to learn is certainly a crucial aspect
of intelligence. When children are young, learning and playing are closely related.
Johan Huizinga, an eminent Dutch historian, argues in Homo Ludens [322] that play
may be the primary educational element in human culture. Small children learn
through playing, through interaction with their environments. Later, they learn in
school, in a less-playful regimented curriculum. Some of our learning is by repeated
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exposure to examples. In supervised learning we teach ourselves associations and
reflexes. Children who have been taught the tables of multiplication can immediately
answer the question: “What is six times seven?” using their system 1. Others have to
use system 2 to answer this question.

In computers, machine learning also uses memory and recognition capacities to
build up associations. If we teach (supervise) ourselves, we use our rational reasoning
capacities to do so. Learning was recognized early on as a second central element
of artificial intelligence. Computers have become quite good at learning, in image
recognition, and now also in Go. Due to curriculum learning AlphaGo Zero learns
Go in days, where for humans this takes years of study.

Indeed, since the impressive results with deep learning in image recognition, the
term machine learning has become almost synonymous with artificial intelligence,
sometimes forgetting about symbolic reasoning altogether (our societal memory is
imperfect).

Creativity

Creativity is the process by which something new and valuable is created [529].
Creativity is strongly associated with human intelligence.

There have been quite some studies into artificial creativity. A computational
view has emerged, in which creativity emerges out of computational processes [600].
Indeed, in addition to automated theorem proving [764, 430, 76], fields such as
artificial painting [148] and artificial music [211, 702] have a long history in AI.3
A formal theory of creativity has been put forward by Schmidhuber [601]. If we
think back to Fan Hui’s description of AlphaGo’s moves (“speechless”) we see words
describing beauty and creativity (Sect. 2.3.5).

Understanding

Understanding is a concept that is related to human intelligence. Clearly, humans
can lay claim to understanding something. Insofar as computers are not self-aware
or have an identity, computers cannot be said to understand something. Computers
can be made to analyze a concept and explain the reasoning that supports a certain
conclusion, but it would be harder to claim that an explanation is equivalent to
understanding [126].

A Chess end-game analysis can produce the exact subtree proving why a certain
move is the best move in a position. That does not mean that the computer has an
understanding of what it analyzed, even if the explanation is identical to one given by
a human.

3 See, for example, the International ComputerMusic Association at http://www.computermusic.
org.

http://www.computermusic.org
http://www.computermusic.org
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Emotion

A similar reasoning applies to emotion. Emotion is an important aspect that determines
much of human thought and behavior. Much of our evolutionary survival skills are
encoded in our emotional reactions, and much of our daily behavior is too [347, 424,
99].

In artificial intelligence, the field of affective computing studies the formalization,
recognition, and reasoning with emotions [424, 89]. As with understanding, a
computer may be able to recognize emotions, it can be made to behave as if it has
emotions, but few people would say that it has emotions.

Affective computing, and themodels of emotion, will yield better human–computer
interactions, and interactions with robots that appear more natural.

Self-Awareness, Purpose

Most people would argue that computers do not possess self-awareness, but humans
do. Together with our free will, we believe that it guides much of our intelligent
behavior. Intelligent computer behavior is guided by one or more goals that it tries
to achieve. Humans decide on their own goal; for computers the goal is externally
specified.

Note that the strict behavioral approach of the Turing test could allow a situation
where a machine is so good at answering questions concerning self-awareness and
introspection that we must conclude that it is indistinguishable from a sentient
human. The question of self-aware machines raises many interesting neurological
and philosophical question. See, for example, [372, 259].

System 1 and System 2

Kahneman describes two kinds of human thinking: thinking fast and thinking
slow [347], also known as system 1 and system 2. In this book, we have seen how
artificial intelligence in games is created out of planning and learning. The exact and
approximate methods in the search-eval architecture all have parallels to thinking fast
and slow (Table 8.1).

In addition to these parallels, there are important differences between human and
artificial intelligence. Human intelligence is genera; artificial intelligence is mostly
specific to one domain. Human intelligence is self-aware; artificial intelligence is
judged by behavior, to pass the Turing test.

Let us first look at thinking fast. Thinking fast is reflex-like recognition. It is not
so much like the training of the function approximator, which is off-line, and takes
days, as it is the usage of the approximator, which is on-line, and takes milliseconds.

This brings us to revisit a point made earlier. We want to understand Kahneman’s
scheme of two kinds of thinking, in which system 1 is thinking fast, and system 2 is
thinking slow. Now self-play has an analogon in Kahneman’s world. Self-play consists
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System 1 System 2
fast slow

recognition reasoning
reflex rational

approximate exact
train plan
eval search

Table 8.1 Fast and slow, eval and search

of exact planning methods being used to generate examples to train the function
approximator (Fig. 8.2). System 2 (slow) can be used not only to reason and solve
complicated problems such as what is the product of 6 and 7, but can also be used to
train system 1 by repeatedly exposing system 1 to examples that system 2 generates.
In this way we create a mode of thinking that can be called conscious learning or
training. Anyone who has learned words of a different language, or has recited the
tables of multiplication at school is familiar with this kind of learning. Practice makes
perfect. Learning by self-play exists both in AI and in human intelligence. In the next
section we will discuss a consequence of the fact that artificial intelligence is now
able to do this kind of training.

Now that we have seen some similarities between human and artificial intelligence,
let us have a look at some of the differences.

8.3.2 General Intelligence

We have superficially explored the limits of artificial intelligence; let us also look at
its strengths. Some of the aspects of human intelligence can readily be simulated by a
computer, such as recognition, memory, reasoning, and learning.

Artificial Intelligence

For a computer to behave artificially intelligent it should behave the same as human
intelligence. An intelligent computer must be able to remember, to recognize, to
reason, and to learn, in order to pass the Turing test.

As we have seen in this book, there is much research on techniques for recognition,
memory, reasoning, and learning. In describing the behavior of Deep Blue and
AlphaGo, some Chess and Go players have described it in terms of beauty, divine
intervention, and other language usually used for creative works.

In the fields of game playing it can reasonably be argued that genuine artificial
intelligence exists. In Backgammon, Checkers, Chess, Atari, and Go, the best games
are played by silicon.
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Game Intelligence

Exceptional intelligence in a single field is valued highly among humans. Exceptional
Soccer intelligence, Tennis intelligence, violin intelligence, novelist intelligence, or
Chess intelligence is scarce (and can be monetized through prize money and sponsor
deals).

Computers have such specialized intelligence. In fact, that is all they have.
Computers can do one thing wel; humans can do many things. Evolution has endowed
humans with intelligence that allows them to do many things, in order to survive
in the world in which they live. The intelligence of game playing programs has not
evolved. Game playing programs have been programmed to (learn to) excel at one
game. They have specific intelligence.

When looking carefully at the history of game intelligence, an interesting pattern
emerges. The specific game intelligence started with search algorithms that exploit
the game structure (two-player zero-sum adversarial games following the minimax
rule). Game-specific heuristic search enhancements made the programs even more
game specific, and the eval algorithms are based on game-specific heuristics as well.
In some cases the evaluation function is tuned with a (general) learning algorithm.

The minimax algorithm itself is general in the sense that it applies to all two-player
zero-sum games.

A subsequent search algorithm is MCTS. It is more general than minimax, since it
also works for single-agent problems. It also is more general because it works without
a domain-specific evaluation function.

To achieve high performance, domain-specific heuristic methods were added, such
as pattern-based playouts, and selection rules that can incorporate priors.

Next are even more general learning algorithms, such as supervised and rein-
forcement learning neural network function approximators. They are more general,
in theory, although tuning a network architecture is a long and tedious process in
which different network architectures and hyperparameters are tried and tested on the
specific game for which it should work.

Self-play takes this a step further, forgoing the games databases of grandmaster
games, and learning itself in a curriculum learning fashion to play a game.

The pattern that emerges is that the methods in reinforcement learning in games
have progressed from domain specific to general (which is then partly undone
by domain-specific performance tuning). The trend is towards more generality in
methods, and this generality has now reached the point where it is starting to spill over
to general application domains. As we saw in Sect. 8.2, more and more applications
emerge where the self-play AI methods work, and a single architecture may even
work in a few different games.

General Intelligence

For humans, intelligence is general. The intelligence of humans applies to many
different domains. A human being with little general intelligence and high intelligence
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in one special domain is unusual. However, most individual humans do have certain
specialities in which they excel.

Some game playing programs have been designed to exhibit general intelligence.
The AlphaZero architecture can teach itself to play three games exceedingly well,
provided that the right input and output layer of the neural network are specialized.
General game playing programs are designed to be general enough to interpret all
games that can be specified by the Game Description Language.

Practicing, or the 10,000 Hour Rule

How does one achieve high levels of intelligence? To reach the top in Tennis, soccer,
violin playing, writing, or Chess requires talent and practice. Indeed, it is sometimes
argued that “all” it takes to achieve success is a total of 10,000 hours of focused
practice [245]. Scientific studies dispute this point of view and the number of 10,000,
and argue that the focus on practice is an oversimplification. However, it is clear
that, in addition to talent, practice is indeed important in games, music, and sports
(see [434]).

To learn new behavior, deliberate attention of system 2 is necessary. During
training we perform the actions repeatedly, under the conscious guidance of system
2. At some point, system 1 will have picked up enough to perform the behavior
semi-automatically. Less attention of system 2 is needed. After enough practice, the
behavior will be performed without any deliberate attention. System 1 has learned to
do it unattended. 6 × 7 = 42.

8.3.3 Next Steps: Sample Efficiency and Collaboration

Although artificial intelligence achieves impressive results in single domains, and
methods are becoming more general, the difference with human intelligence remains
large. The steps that will be made on the path to achieve general, human, intelligence
will be small.

Two important challenges towards general intelligence are sample efficiency and
collaboration. The training time for current AI is still quite long. For each new task a
very large number of samples is needed for current reinforcement learning methods.

Collaboration is the second challenge. The essence of zero-sum games is competi-
tion. Multi-agent games feature collaboration, and allow modeling of teamwork and
forms of man/machine interaction.

Curriculum Learning

Following a suitable curriculum improves training results. A good curriculum speeds
up training, and achieves better end results [194]. Human formal teaching (in schools)
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follows a curriculum, and the same improvements have been found in supervised and
reinforcement learning in artificial intelligence.

Self-play in games creates a curriculum-like setting, where training examples are
generated from easy to hard. This allows for quick and effective training. Indeed,
as was mentioned in Sect. 7.1.4, AlphaZero learns to play at a level beyond that of
human world champions in days, where human champions take years of dedicated
training to reach that level.

AlphaZero is not only better at playing, but also learns much faster than human
champions.

Sample Efficiency for AGI

However, the sample efficiency for each task is still low, since for each new task
learning is starting all over, from scratch. Even AlphaZero did not achieve transfer
learning, where (a part of) a trained network could be transfered for (pre)training of
another task.

The field of transfer learning studies how sample efficiency in new tasks can be
increased through the reuse of trained knowledge between related tasks. Transfer
learning can thus contribute to more general AI. Knowledge transfer can be achieved
in various ways: through network parameters, or through hyperparameters.

Transfer learning is related to pretraining, few-shot learning, and life-long learn-
ing [687]. Section 7.3.2 discussed transfer learning. Related to transfer learning
is meta-learning. Meta-learning studies mechanisms that learn to learn. It is re-
lated to algorithm selection and to transfer learning in the sense that its aim is to
adapt to new environments with few training examples. It is a very active area of
research [214, 226, 321].

Two other methods that aim at reducing the sample efficiency problem are
hierarchical learning and model-based learning. Hierarchical learning aims to model
problems hierarchically so that a subproblem can be solved independently, in sequence.
Model-based learning aims to learn a model of the problem first, and then use the
model with other methods, such as planning [524]. In doing so model-based learning
is more sample efficient than model-free learning. The AlphaGo approach is a
model-based approach. More recently MuZero is a model-based approach that learns
a latent model of the problem end-to-end [607]: AlphaGo Zero needed to be provided
with the rules of the game, but MuZero infers the rules from the environment, and
then learns to play at a high level.

The promise of life-long learning, transfer learning, and meta-learning is faster
learning, by reusing knowledge that was learned in one domain for a new domain.
These methods are inspired by human learning, just as the original inspiration of
reinforcement learning is in conditioning experiments with humans and animals.
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Collaboration

Artificial intelligence has achieved very strong results in specific domains, and the
challenge is now to extend these results to more general domains, to different games,
and beyond games, to fields such as negotiation and human-robot interaction.

As our computational abilities increase, collaboration is becoming more important
in reinforcement learning and games. Recent advances in Poker [104], StarCraft [725],
Capture the Flag [332], and DOTA 2 [497] show that reinforcement learning versions
of population-based methods are able to achieve a high level of collaboration in
leagues consisting of humans and computers.

Researchers are arguing for more research into curriculum learning in multi-agent
games [411]. More can be expected in AI for negotiation and team collaboration.

Faster and Together

We have come to the end of this book. We have discussed a wide array of artificial
intelligence technologies, and we have seen programs reach amazing achievements.
In reinforcement learning agents can train to transcend the level of supervisors or
teachers. The search-eval architecture has been the basis for all technological advances
that we covered in this book—from planning, sampling, and function approximation
to self-play.

This book has shown how game playing programs have progressed from game-
specific heuristic methods to general learning methods that teach themselves to play
(and beat world champions). In this chapter we have looked at the link between
artificial and human intelligence, in general terms of recognition, reasoning, and
self-awareness. Although progress has been made, the gap with human intelligence
remains large. So far, AI has achieved success in narrow fields. In describing this
progress, we have noted parallels between planning and learning, symbolic and
connectionst, and thinking fast and slow.

With progress in transfer learning, we can expect AI to become more general in
the near future. With self-play, computers fashion their own training curriculums
and training progresses faster than before. For the games of Chess, Shogi, and Go, a
computer was able to teach itself to play at world champion level and beyond in a
matter of days. Humans take years of dedicated study to reach this level of play. In
these games, computers not only play better, but also learn faster.

Collaboration and negotiation are becoming increasingly important in AI research.
Research in games such as Poker and StarCraft has shown fast and powerful learning
in team play. Games research is continuing towards faster learning and towards teams
in which computers and humans collaborate.

The future of AI is human.
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8.4 Practice

Below are some questions to check your understanding of this chapter. Each question
is a closed question where a simple, one sentence answer is possible.

Questions

1. Explain the search-eval architecture briefly.
2. Describe bootstrapping and optimization.
3. Why is diversity important in learning?
4. Explain triple-nested recursive optimization.
5. How does automation lead to generalization?
6. Why are enhancements important?
7. Describe the relation between recursion, optimization, features, generalization,

learning, and intelligence.
8. Why is Poker an interesting research topic?
9. What is general game playing?

10. How does AlphaGo Zero join symbolic AI and connectionist AI?
11. Describe system 1, system 2, and self-play learning.
12. Describe general and special intelligence.

At this point, you have become quite proficient at implementing reinforcement
learning in games technology. Below are ideas for larger projects, to help you on the
path to further research. These are challenging projects, perhaps suitable for a thesis.

Exercises

1. Design a simple imperfect-information game and implement it in A0G. For
example: Blackjack. Does it learn? Does self-play work in imperfect information?

2. Write a self-play single-agent player for your single-agent optimization problem
of choice. [challenging]

3. Interface A0G with the StarCraft interface, and create a multi-player self-play
system. [challenging]

4. Design a a cooperative multi-player game. For example, merging traffic on a
highway on-ramp, with or without signalling/negotiation. [challenging]

5. Write a negotiation or Diplomacy game. See [25] for negotiation competitions.
[highly challenging]
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Summary

In order to look to the future, in this chapter we have looked back at what we have
covered in this book. We have looked at the methods that form the search-eval
architecture. The search-eval architecture can also be seen as an architecture with
several nested levels of optimization, of which self-play is just one. We see how
artificial intelligence methods are used to achieve higher levels of intelligence, or
more general intelligence.

We have also briefly discussed other application domains, beyond two-player
zero-sum perfect information. Multi-agent imperfect-information games approach
more aspects of the real world. Our techniques have progressed to the point where
creating players for Poker and StarCraft are realistic challenges that are succeeding.

We discussed an alternative Drosophila, general game playing (GGP). Where the
challenge of Go lies primarily in the size of the state space, in GGP the challenge lies
in being able to play a game for which the rules are not known beforehand.

We have compared artificial intelligence with human intelligence. We have looked
at Kahneman’s two systems, system 1 for thinking fast, and system 2 for thinking
slow. Thinking fast resembles a function approximator, and thinking slow resembles
planning. Self-play uses planning to generate examples for the function approximator
to learn from.

Self-play learns relatively fast, due to curriculum learning. We have noted that
AlphaGo Zero needed days to teach itself to play Go, whereas humans need years of
dedicated study to learn this level of Go, if they succeed at all.

We have looked at the elements that compose human intelligence, and noted again
that artificial intelligence is special. At least in the narrow domain of zero-sum board
games, we have the situation that computers play better and learn faster then humans.
However, human intelligence is more general.

Future research will try to enlarge the domains in which artificial intelligence
works. Sample efficiency and collaboration will be important topics. The techniques
covered in this book will contribute to this research.



Appendix A
Deep Reinforcement Learning Environments

Artificial intelligence is an open field of research. Many researchers publish their code,
allowing for easy reproduction of experiments, and allowing researchers to build
upon each other’s progress. This appendix contains pointers to software environments
that are meant to help you further in your own research.

We list three types of environments: general programming and learning environ-
ments, deep learning environments, and self-learning environments.

We start with general learning environments.

General Learning Environments

Name Type URL Ref.
Python General-purpose language https://www.python.org [562]
Weka Machine learning env. https://www.cs.waikato.ac.nz/ml/weka [762]
Scikit-Learn Machine learning env. https://scikit-learn.org [513]
Caffe Deep learning env. http://caffe.berkeleyvision.org [334]
PyTorch Deep learning env. https://pytorch.org [508]
TensorFlow Deep learning env. https://www.tensorflow.org [2]
Keras Deep learning library https://keras.io [140]

Table A.1 General learning environments

General-purpose programming languages such as Python allow us to program
the experiments that we wish to perform. One step further are machine learning
environments such as Weka [762, 272] and Scikit-Learn [513].

For deep learning, well-known environments are Caffe [334], Facebook’s Py-
Torch [508], Theano [64] which has been subsumed by Google’s TensorFlow [1, 2],
and its user friendly add-on Keras [139]. Keras is perhaps the easiest way to start
with deep learning. PyTorch offers great flexibility. TensorFlow may well be the most
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popular environment. All environments offer seamless integration with CPU and
GPU backends; no specialized GPU programming knowledge is needed.

Table A.1 summarizes the general learning environments.

Deep Reinforcement Learning Environments

Name Type URL Ref.
ALE Atari Games https://github.com/mgbellemare/Arcade-

Learning-Environment
[53]

Gym RL environments https://gym.openai.com [98]
Stable RL algorithms https://stable-baselines.readthedocs.io [291]
Baselines
Dopamine Deep RL env. https://github.com/google/dopamine [123]
RLlib Distributed RL https://docs.ray.io/en/latest/rllib.html [417]
Bsuite RL environments https://github.com/deepmind/bsuite [498]
OpenSpiel RL in games env. https://github.com/deepmind/open_spiel [399]
Meta World Meta-learning https://meta-world.github.io [773]

Table A.2 Deep reinforcement learning environments

Reinforcement learning has seen much interest from researchers. The availability
of environments has stimulated this research greatly. Bellemare et al. introduced
the Atari Learning Environment [53] that has subsequently been incorporated into
OpenAI Gym. The Gym Github page can be found here.1 OpenAI Gym has, in
addition to ALE, classic reinforcement learning examples such as Cartpole and
Mountain Car. OpenAI also provides baseline implementations of reinforcement
learning algorithms [173]. A great introduction on their use is at Spinning up:
OpenAIs Spinning Up, and the code repo, which is here.2

Subsequently, refactored versions of baselines are presented as the Stable Baselines.
Note: Stable Baselines supports TensorFlow versions from 1.8.0 to 1.14.0, and may
not yet work on TensorFlow versions 2.0.0 and above. Support for TensorFlow 2 API
is planned.

The Baseline Zoo contains trained models for the stable baselines.
Dopamine [123] is a framework by DeepMind for deep reinforcement learning.
RLlib [417] provides abstractions for distributing reinforcement learning on

large-scale clusters of machines.
Bsuite [498] is a behavior suite for reinforcement learning.
OpenSpiel [399] is a framework for reinforcement learning in games, implementing

many of the algorithms that are discussed in this book.

1 https://github.com/openai/gym

2 https://github.com/openai/spinningup

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment
https://gym.openai.com
https://stable-baselines.readthedocs.io
https://github.com/google/dopamine
https://docs.ray.io/en/latest/rllib.html
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https://github.com/deepmind/open_spiel
https://meta-world.github.io
https://github.com/openai/gym
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Meta World [773] is a benchmark and evaluation suite for multi-task and meta
reinforcement learning.

Table A.2 summarizes the deep reinforcement learning environments.

Open Reimplementations of AlphaZero Self-Play

Name Type URL Ref.
AlphaZero
General

AlphaZero in Python https://github.com/suragnair/alpha-
zero-general

[679]

ELF Game framework https://github.com/pytorch/ELF [689]
Leela AlphaZero for Chess, Go https://github.com/LeelaChessZero/

lczero
[507]

PhoenixGo AlphaZero-based Go prog. https://github.com/Tencent/PhoenixGo [775]
PolyGames Env. for Zero learning https://github.com/facebookincubator/

Polygames
[124]

Table A.3 Self-learning environments

The publication of the AlphaGo papers created great interest in the research
community in self-learning self-play approaches. The DeepMind team has not yet
published their code, but the publications [623, 624] (and especially [626]) provide
enough detail for researchers to create their own versions, some of which are open
sourced on GitHub. We will describe some of them.

A0G: AlphaZero General

Thakoor et al. [679] created a self-play system as part of a course project. The system
is called AlphaZero General (A0G), and is on GitHub. It is implemented in Python and
TensorFlow, Keras, and PyTorch, and suitably scaled down for smaller computational
resources. It has implementations for 6 × 6 Othello, Tic Tac Toe, Gobang, and
Connect4, all small games of significantly less complexity than Go. Its main network
architecture is a four layer CNN followed by two fully connected layers. The code
is easy to understand in an afternoon of study, and is well suited for educational
purposes. The course project write-up provides some documentation [679].

Facebook ELF

ELF stands for Extensible Lightweight Framework. It is a framework for game
research in C++ and Python [689]. Originally developed for real-time strategy games

https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/pytorch/ELF
https://github.com/LeelaChessZero/lczero
https://github.com/LeelaChessZero/lczero
https://github.com/Tencent/PhoenixGo
https://github.com/facebookincubator/Polygames
https://github.com/facebookincubator/Polygames
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general/raw/master/pretrained_models/writeup.pdf


258 A Deep Reinforcement Learning Environments

by Facebook, it includes the Arcade Learning Environment and the Darkforest3 Go
program [691]. ELF can be found at GitHub ELF. ELF also contains the self-play
program OpenGo [690], a reimplementation of AlphaGo Zero (in C++).

Leela

Another reimplementation of AlphaZero is Leela. Both a Chess and a Go version of
Leela exist. The Chess version is based on Chess engine Sjeng. The Go4 version is
based on Go engine Leela. Leela does not come with trained weights of the network.
Part of Leela is a community effort to compute these weights.

PhoenixGo

PhoenixGo is a strong self-play Go program by Tencent [775]. It is based on the
AlphaGo Zero architecture. It can be found at Github PhoenixGo. A trained network
is available as well.

PolyGames

PolyGames [124] is an environment for Zero-based learning (MCTS with deep
reinforcement learning) inspired by AlphaGo Zero. Relevant learning methods are
implemented, and bots for Hex, Othello, and Havannah have been implemented.
PolyGames can be found at PolyGames.

Table A.3 summarizes the self-learning environments.

3 https://github.com/facebookresearch/darkforestGo

4 https://github.com/gcp/leela-zero
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https://github.com/Tencent/PhoenixGo
https://github.com/facebookincubator/Polygames
https://github.com/facebookresearch/darkforestGo
https://github.com/gcp/leela-zero
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*AlphaGo Technical Details

This appendix contains more technical details for the AlphaGo, AlphaGo Zero, and
AlphaZero programs, that were too technical to fit in the main text of Chap. 7, but are
important to truly understand how things work. All information in this appendix is
from the three papers by Silver et al. [623, 626, 625].

B.1 AlphaGo

We start with AlphaGo. The AlphaGo program is a complicated program. All details
are described in Silver et al. [623]. In this appendix we summarize some of the more
technical details from this publication.

Search Algorithm

The search algorithm of AlphaGo is MCTS (see also Sect. 5.2 and [108]). The four
MCTS operations are implemented as follows.

Selection For selection, a variant of P-UCT [561, 440] is used, which allows
integration of prior information into the UCT selection formula. This is especially
important for new, unexplored children, to be able to use the information of the policy
net. With the policy net, AlphaGo does not employ the all-moves-as-first or rapid
action value estimation heuristics used in most other programs, since the policy net
provides priors of better quality (Sect. 5.3.2). In addition AlphaGo does not use
progressive widening [132], dynamic komi [39], or an opening book, which most
other Go programs do.

The constant Cp determines the exploration/exploitation trade-off. A high value
means more exploration. AlphaGo uses Cp = 5. This is high compared with most Go
programs, where values of Cp < 0.75 or even Cp ≈ 0 were used for programs that use
RAVE [239, 129]. AlphaGo favors a considerable amount of exploration compared
with earlier Go programs. Section 5.3.1 discusses the performance sensitivity of Cp .
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Expansion Children of leaves of the MCTS tree are expanded when the visit count
exceeds a threshold. New children get prior probabilities from the policy network,
and are put in the queue for evaluation by the GPU with both the policy and the value
network. The threshold is determined by the length of the work queue for the GPU.

Rollout Leaves in AlphaGo are evaluated both by the value network (GPU queue)
and rollouts with the fast rollout network. Results are combined with a parameter
λ = 0.5 (half rollout, half value network).

Backup The rollout statistics are updated as usual in MCTS (visit count and
win count). AlphaGo is a tree parallel program [131], which means that multiple
processes can update the MCTS tree concurrently. AlphaGo uses standard techniques
for ensuring efficient parallel selection (virtual loss [614, 453]) and correctness of
the tree (lock free updates [200, 455]).

Network Architecture

For the fast rollout policy network, the function approximator is based on a hash
table. The fast rollout policy is based on small (3 × 3) patterns that are also found
in other Go programs [239, 236]. It is based on a hash table of the last good reply
heuristic [29].

The function approximator for the selection policy is based on a 13-layer convolu-
tional neural network. It has 12 convolutional hidden layers (plus one input layer and
one fully connected output layer). The first convolutional layers uses a kernel size of
5 × 5; the other hidden layers use 3 × 3. A ReLU unit is applied at each layer.

The network for the value network has one convolutional layer more than the
policy network, for a total of 14 layers.

Input/Output Features

The input layer is 19× 19× 48 with 48 feature planes. The inputs to the AlphaGo nets
are more than just the stones on the board. The features of each point include stone
color, how many times ago a turn was played, the number of liberties, how many
opponent stones would be captured, how many own stones would be captured, the
number of liberties after the move is played, ladder status, ladder escape, if a point
fills an own eye, and color to play.

The output layer is a fully connected layer with a soft-max function for the policy
network and a single tanh unit for the value network.

Performance of the Three Networks

We will now discuss the three networks in more detail.
Fast Rollout Policy Network The fast rollout policy network is based on 3 × 3

patterns. Its function is to replace (or enhance) the random rollouts of MCTS. It
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achieves only 24% accuracy on a test set, but it replies with an answer in 2µs, which is
1500 times faster than the slow policy network, on the hardware used by the AlphaGo
team.

Selection Policy Network The network trained by supervised learning is trained on
29 million positions for classification of expert moves on a dataset of internet games
(split into a test set of one million positions, and a training set of 28 million positions).
This policy network achieves 57% accuracy of correct actions after training. Its time
to compute an answer is 3 ms. It is trained by asynchronous stochastic gradient
descent. The supervised training took three weeks; 340 million training steps were
performed.

The policy network is further refined by reinforcement learning with self-play
positions. It was trained for one full day of self-play of 10,000 mini-batches of
128 games, randomized to prevent correlations using positions from a pool of
opponents. The training algorithm is policy gradient descent, with the REINFORCE
algorithm [659]. This network performs quite well. Without any search at all, it
won 85% of games against Pachi, a strong open-source MCTS program.1 The
reinforcement learning is important, since a no-search network based on supervised
learning won only 11% against Pachi. Curiously, it is the weaker supervised net that
was used in MCTS selection in AlphaGo. The paper speculates that this is because
of greater variation in the supervised network, it chooses from a wider repertoire
of “best” moves, whereas the reinforcement network chooses always the single best
move [623]. Still, it is surprising that a weaker network is used in favor of a stronger
network, and more work is needed to fully understand the reasons.

Value Network The value network is trained as a regression of the policy network.
The value represents the probability of winning. For the value network 30 million
training positions were used from self-play games. To avoid overfitting the training
positions were created so as not to be correlated, using a small self-play search based
on the positions that were used for the supervised selection policy network. The
training algorithm is stochastic gradient descent as in the supervised training phase,
based on the mean squared error between the predicted values and the observed
rewards. This training phase took 50 GPUs one week.

Many more details of the various training methods can be found in the original
publication [623].

Compute Hardware

Training the networks occurs off-line, before a match is played, and large amounts of
computation power and time are available. During a match the time to compute is
limited. Function approximation does not come cheap. Position evaluation requires
evaluating multiple networks, which costs orders of magnitude more computation
than traditional heuristic programs. Combining MCTS with deep neural networks
has required quite some software engineering. AlphaGo uses an asynchronous multi-

1 Pachi code is at http://pachi.or.cz

http://pachi.or.cz
http://pachi.or.cz
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threaded search that executes simulations on CPUs, and computes policy and value
networks in parallel on GPUs. AlphaGo used 40 search threads, 48 CPU cores, and 8
GPUs. A distributed version was also developed, to make use of a cluster of machines.
It has been run on 1202 CPUs and 176 GPUs.

Google developed a special kind of GPU optimized for tensor computations in
TensorFlow, named TPU, for tensor processing unit. DeepMind started using TPUs for
AlphaGo in 2016. TPUs are designed for high-throughput low-precision computations
(as low as 8-bit precision) whereas GPUs are typically optimized for 32- or 64-bit
precision operations, and memory throughput is often a bottleneck [341].

B.2 AlphaGo Zero

A year later, AlphaGo Zero was introduced. The paper by Silver et al. [626] contains
all the details. We highlight some here.

Detailed Self-Play Training

Let us look at how self-play is implemented. The neural network is trained as follows.
A self-play reinforcement learning algorithm uses MCTS to play each move. First,
the neural network is initialized to random weights θ0. At each subsequent iteration i,
games of self-play, or episodes, are generated, consisting of a sequence of moves. For
each move of each episode t, an MCTS search πt is performed using the previous
neural network θi−1 and a move is played sampled from πt . The game t terminates
when both players pass at step T at which point the game is scored z = {−1,+1}. The
data are stored in a state-policy-distribution-reward triple (st, πt, zt ) as examples in
the example buffer for training the network parameters θi . The network (p, v) = fθi (s)
is trained by sampling uniformly over the example triples of all time steps (episodes)
of the last iterations of self-play. A loss function is chosen to minimize the error
between predicted value v and self-play outcome z, and to maximize the similarity of
predicted move probabilities p and search probabilities π. Policy and value were used
as a combined loss function that sums over the mean squared value error and cross
entropy policy losses: l = (z − v)2 − πT log p + c‖θ‖2, where c is the controlling
parameter for L2 weight regularization to prevent overfitting [250, 626].

Network Architecture

The new function approximation architecture is simpler than in AlphaGo. It consists
of one residual network (Sect. 6.2.1) instead of a value net, a slow selection policy
net, and a fast rollout policy net. The ResNet has one input and two outputs: a policy
head and a value head. The ResNet is trained by self-play; the databases of positions
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Fig. B.1 Comparison of dual-headed and separate, and of convolutional and residual networks [626]

for supervised and reinforcement learning have disappeared. MCTS no longer does
rollouts, so the fast rollout net has gone as well.

It is reported that combining policy and value into a single network slightly
reduces move prediction accuracy, but also reduces the value error. It improved
playing performance in AlphaGo Zero by 600 Elo points, in part because the dual
objective regularizes the network better.

Figure B.1 shows the difference in performance between the combined dual
policy/value network and the separate networks, and the convolutional and residual
networks [626].

The ResNet consists of blocks of convolutions [281] with batch normalization [328]
and ReLU units. Interestingly, after experimenting with 40 block ResNets against 20
block ResNets, the team decided to use the 20 block net in the tournament version
of the player. The added complexity of 40 block nets did not increase performance
enough to outweigh computational cost.

As before, neural network parameters are optimized by stochastic gradient descent
with momentum and learning rate annealing. In a comparison against AlphaGo the
ResNet was more accurate, achieved lower errors and improved performance in
AlphaGo by over 600 Elo [626].

The input to the neural network is a 19 × 19 × 17 image stack comprising 17
binary feature planes. The 17 feature planes contain the current board and a history
of the 8 previous moves, both for black and for white, and the color to play. The input
features are processed by a residual network tower. The tower consists of a single
convolutional block followed by either 19 or 39 residual blocks, one of which is
shown in Fig. B.2. The total network depth, in the 20 or 40 block network, is thus 39
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Fig. B.2 AlphaGo Zero residual block [626]

Fig. B.3 Comparison of power consumption for training [582]

or 79 parameterized layers (since a ResNet block has 2 convolutional layers) plus 2
layers for the policy head and 3 layers for the value head, consisting of a block ending
in a fully connected layer. See the paper for details [626].

Compute Hardware

Originally, each neural network was trained with TensorFlow, with 64 GPU workers
and 19CPU parameter servers. Later, TPUswere used. Figure B.3 shows the difference
in total dissipated power consumption between the different versions of AlphaGo.
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Search Algorithm

The search algorithm of AlphaGo Zero isMCTS. For selection, the same P-UCT [561]
variant was used, which incorporates priors from the policy head, and not RAVE. This
MCTS did not use rollouts at the leaves of the MCTS tree, but value head lookups. In
the self-play, a total of 25,000 games were played in each self-play iteration. MCTS
performs 1600 simulations for each move. MCTS hyperparameters were selected by
Gaussian process optimization [617].

Input/Output Features

The input planes of AlphaGo Zero are simpler than in AlphaGo. Only the board
information is used; no additional information such as ko, or liberties, is used. Even
the basic heuristic of not playing moves that would fill the player’s own eyes is
excluded. AlphaGo Zero learns from scratch. No heuristic information is given to the
program.

B.3 AlphaZero

Again a year later Silver et al. [625] published their AlphaZero paper, showing how
the simpler architecture of AlphaGo Zero was also a more general architecture. This
appendix describes some of the more technical elements.

Input/Output Features

The input and output layers are different for each game. For Go, the same 19× 19× 17
planes as in AlphaGo Zero were used in AlphaZero, where 8 moves of history is
encoded in addition to the stones on the board (Table 7.2). Move encoding in Go is
simply a coordinate of a stone.

For Chess, a similar encoding scheme is used, although more elaborate using many
more planes. The scheme encodes all possible moves from a position in different
binary planes. In Chess there is a greater variety of possible moves, and the encoding
scheme therefore uses more planes than in Go, 8 × 8 × 73.2

Shogi has an even greater variety of moves, leading to a stack of 9× 9× 139 planes
as input. The paper mentions that experiments with different coding schemes worked
as well, although training efficiency was affected somewhat.

2 Silver et al. [625] contains the details of their elaborate encoding. The encoding scheme is quite
complex, although it is noted that simpler encoding schemes also work.
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Compute Hardware

Both Stockfish (Chess) and Elmo (Shogi) ran with 44 threads on 44 cores (2 Intel
Xeon Broadwell CPUs with 22 cores) with 32 GB transposition tables and 3 hour
per match time controls with 15 seconds per move extra. AlphaZero ran on a single
machine with 44 CPU cores, and 4 first-generation TPUs.



Appendix C
Matches of Fan Hui, Lee Sedol, and Ke Jie

This appendix contains the games of the matches played by AlphaGo against Fan
Hui, Lee Sedol, and Ke Jie.

Note that games can be played online at DeepMind.1 You can also find match
commmentary at this site. SGF files of the games are easily found online, allowing
interactive replay with an SGF viewer. The match diagrams below are based on [623,
626].

Fan Hui

In October 2015 European Champion Fan Hui 2p played the following games against
AlphaGo in London. AlphaGo won 5-0. See the games in Figs. C.1–C.5.

Lee Sedol

In March 2016 Lee Sedol 9p played the following games against AlphaGo in Seoul.
AlphaGo won 4-1. See Figs. C.6–C.10.

Ke Jie

In May 2017 Ke Jie 9p played the following games against AlphaGo in Wuzhen.
AlphaGo won 3-0. See Figs. C.11–C.13. AlphaGo played white in game 1 and black
in game 2 and 3.

1 https://deepmind.com/research/alphago/match-archive/alphago-games-
english/
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Fig. C.1 Game 1 Fan Hui (black) vs. AlphaGo
(white): move 1–99, move 100–199, and move
200–272. Move 234 is played at triangle, move
250 at square. AlphaGo won by 2.5 points.

Fig. C.2 Game 2 AlphaGo (black) vs. Fan Hui
(white): move 1–99, and move 100–183 (move
182 at 169). AlphaGo did not play 135 at “a,”
but played a safer move to win. AlphaGo won
by resignation.
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Fig. C.3 Game 3 Fan Hui (black) vs. AlphaGo
(white): move 1–99, and move 100–166. Al-
phaGo won by resignation.

Fig. C.4 Game 4 AlphaGo (black) vs. Fan Hui
(white): move 1–99 (move 96 at 10), and move
100–165. AlphaGo won by resignation.
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Fig. C.5 Game 5 Fan Hui (black) vs. AlphaGo
(white): move 1–99, move 100–199 (moves
151/157/163 at 141, 154/160 at 148), and move
200–214. AlphaGo won by resignation.
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Fig. C.6 Game 1 Lee Sedol (black) vs. AlphaGo
(white): move 1–99, and move 100–186. Al-
phaGo won by resignation.

Fig. C.7 Game 2AlphaGo (black) vs. Lee Sedol
(white): move 1–99, move 100–199, and move
200–211.Move 37 is a famousmove byAlphaGo.
AlphaGo won by resignation.
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Fig. C.8 Game 3 Lee Sedol (black) vs. AlphaGo
(white): move 1–99, and move 100–176 (move
122 at 113, 154 at white triangle, 163 at 145,
164 at 151, 166 and 171 at 160, 169 at 145, 175
at black triangle). AlphaGo won by resignation.

Fig. C.9 Game 4AlphaGo (black) vs. Lee Sedol
(white): move 1–99, and move 100–180 (move
177 at square, 178 at triangle). Move 78 by Lee
Sedol is considered a brilliant move. Lee Sedol
won by resignation.
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Fig. C.10 Game 5 Lee Sedol (black) vs. Al-
phaGo (white): move 1-99, move 100-199 (118
at 107, 161 at square), and move 200-280 (240
at 200, 271 at black square, 275 at white square,
276 at black triangle). AlphaGo won by resigna-
tion.
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Fig. C.11 Game 1 Ke Jie (black) vs. AlphaGo
(white): move 1-99, move 100-199 (139 at tri-
angle), and move 200-289. AlphaGo won by
resignation.

Fig. C.12 Game 2 AlphaGo (black) vs. Ke
Jie (white): move 1-99, and move 100-155
(104/132/137 at triangle, 129/135 at 101). Al-
phaGo won by resignation.
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Fig. C.13 Game 3 AlphaGo (black) vs. Ke Jie
(white): move 1-99, move 100-199, and move
200-209. AlphaGo won by resignation.





Appendix D
Learning to Play and Program Go and Chess

Go and Chess are challenging games. They challenge computers as well as humans,
and they provide endless fun and enjoyment. If you would like to learn to play Go
or Chess, then this appendix provides links to help you get started in the world of
game playing. If you would like to learn to program these games, then you will find
pointers here as well.

D.1 Learning to Play

D.1.1 Go

The best and most fun way to learn to play Go is by playing against people. Find
a local club and go. Go is played by millions of people, and there are many clubs
around the world. Your school may have a Go club. Search for “Go Club” on the
internet and you will find nearby clubs where you will find people to play Go with,
and you will start to learn this fascinating game. Once you make progress, you may
even want to join one of the national Go associations. All addresses can be found
easily online.

There are also many online possibilities to play Go. Table D.1 lists a few of the
better known online Go servers. Just click on the link, maybe download a client,
follow some games, and start playing. There are also tutorials and books on learning
to play online (Table D.2), and in your library and book store.

D.1.2 Chess

Chess is a different game, with more types of pieces than Go, and a more tactical
kind of play. Like Go, it is a game requiring a high level of intelligence to play well
(and to program well). Chess has a long and distinguished history of well-known
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Server Name Link
OGS Online Go Server https://online-go.com
KGS Kiseido Go Server http://www.gokgs.com
IGS Pandanet Internet Go Server http://www.pandanet-igs.com
Tygem Tygem Baduk http://www.tygembaduk.com
Fox Fox Weiqi (Chinese) https://www.foxwq.com
Dragon Dragon Go Server for correspondence https://www.dragongoserver.net

Table D.1 Internet Go Servers

Tutorial Link
Kiseido https://www.kiseido.com/ff.htm
Nordic https://www.nordicgodojo.eu/post/212/a-simple-beginners-guide-

to-go
Online Go https://online-go.com/learn-to-play-go
Wikipedia https://en.wikipedia.org/wiki/Go_(game)

Table D.2 Go Tutorials

players and champions. Chances are that your school has a Chess club. Many books
have been written, for beginners and for advanced players.

There are many servers on the Internet where you can play online Chess. Table D.3
lists a few of the better known online Chess servers. They also provide tutorial
material on how to learn to play.

Server Link
Chess.com https://chess.com
Internet Chess Club http://chessclub.com
Chessbase https://en.chessbase.com
Chess24 https://chess24.com/en/play/chess
Lichess https://lichess.org
Wikipedia https://en.wikipedia.org/wiki/Chess

Table D.3 Internet Chess Resources

D.2 Learning to Program

Software for Go and Chess is widely available. On your computer or phone you can
probably find a program or app for playing Go or Chess.

There are also many resources avaliable if you want to learn how to program.

https://online-go.com
http://www.gokgs.com
http://www.pandanet-igs.com
http://www.tygembaduk.com
https://www.foxwq.com
https://www.dragongoserver.net
https://www.kiseido.com/ff.htm
https://www.nordicgodojo.eu/post/212/a-simple-beginners-guide-to-go
https://www.nordicgodojo.eu/post/212/a-simple-beginners-guide-to-go
https://online-go.com/learn-to-play-go
https://en.wikipedia.org/wiki/Go_(game)
https://chess.com
http://chessclub.com
https://en.chessbase.com
https://chess24.com/en/play/chess
https://lichess.org
https://en.wikipedia.org/wiki/Chess
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D.2.1 Go

For Go, there are three basic approaches: heuristic planning, MCTS, and self-play.
Software for hand-held devices is typically of the first two categories, because of the
computational demands of self-play. At Senseis.net1 many articles can be found on
computer Go for all three approaches. The Computer Go Server2 allows Go programs
to play against each other over the internet using the Go Text Protocol.3. A mailing
list for computer Go can be found here.4

Self-play environments were listed in a previous appendix in Table A.3. The
environments are open-source, so you can learn from the code and experiment with
your own improvements. A book devoted to building your own Alpha(Go) Zero clone
is [537].

D.2.2 Chess

For Chess, there are also many open-source programs available. Most programs
follow the classic and highly successful heuristic planning approach, see Table D.4.
A valuable resource with a wealth of information is the Chess Programming Wiki.5
Many of the concepts and programming tricks that are used in the programs are
explained in the wiki.

Engine Link
Stockfish https://stockfishchess.org
Komodo http://komodochess.com
Houdini http://www.cruxis.com/chess/houdini.htm
Critter http://www.vlasak.biz/critter/
Ethereal https://github.com/AndyGrant/Ethereal
Gull https://sourceforge.net/projects/gullchess/
Leela Chess Zero https://github.com/LeelaChessZero/lc0

Table D.4 Open-source Chess Programs

1 https://senseis.xmp.net/?ComputerGoProgramming

2 http://www.yss-aya.com/cgos/19x19/standings.html

3 http://www.lysator.liu.se/~gunnar/gtp/

4 http://computer-go.org

5 https://www.chessprogramming.org/Main_Page

https://stockfishchess.org
http://komodochess.com
http://www.cruxis.com/chess/houdini.htm
http://www.vlasak.biz/critter/
https://github.com/AndyGrant/Ethereal
https://sourceforge.net/projects/gullchess/
https://github.com/LeelaChessZero/lc0
https://senseis.xmp.net/?ComputerGoProgramming
http://www.yss-aya.com/cgos/19x19/standings.html
http://www.lysator.liu.se/~gunnar/gtp/
http://computer-go.org
https://www.chessprogramming.org/Main_Page
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D.3 Scientific Journals and Conferences

From an AI perspective the question whether a program can play games for which
humans need intelligence, is a highly relevant question. Many of the papers on
computer game programming have been published in AI journals (Table D.5 lists a
few relevant journals). Games papers are often published at AI conferences (Table D.6
lists a few relevant conferences). Your library and the internet should have the issues
and proceedings.

Most authors make their work available as preprint at the arXiv preprint server for
early access before a paper is accepted for publication.6 The latest news can be found
at this server, unfiltered.

Abbreviation Journal
PAMI IEEE Transactions on Pattern Analysis and Machine Intelligence
AIJ Artificial Intelligence Journal
JAIR Journal of AI Research
ToG IEEE Transactions on Games
ICGAJ ICCA/ICGA Journal
Science Science
Nature Nature

Table D.5 Journals

Abbreviation Conference
IJCAI International Joint Conference on AI
AAAI Association for the Advancement of AI
ECAI European Conference on AI
FDG Foundations of Digital Games
CoG Conference on Games
NeurIPS Neural Information Processing Systems
ICML International Conference on Machine Learning
ICLR International Conference on Learning Representations
ACC/ACG Advances in Computer Chess/Games
CG Conference on Computers and Games

Table D.6 Conferences

6 https://arxiv.org/list/cs.AI/recent

https://arxiv.org/list/cs.AI/recent


Appendix E
Running Python

Python is a modern programming language that is quite popular in AI. Many machine
learning packages have Python interfaces, such as TensorFlow and Keras. This
appendix shows how to start working with Python. Python was developed by Guido
van Rossum while he was a researcher at the national research center for mathematics
and computer science CWI in Amsterdam [432].

Before you install Python you should check if it is already available on your
computer. Start a terminal, or a command prompt, and, at the prompt $ , type
python. Now one of two things will have happened. If you see an error message then
Python is not installed correctly on your computer. If you see a response of the form

Python 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more

information.
>>>

then Python is working already on your computer. You can get out of Python by typing
Ctrl-D or quit(). Interactive help is available by typing help(). You can skip the
rest of this appendix, and start playing around with the examples and exercises. How
to install TensorFlow and Keras is discussed in the chapters (Sect. 6.5).

To install Python, go to the python.org website.1 Go to Downloads, click on
it, and you should see the latest version of Python being offered for your current
operating system (Linux, macOS, or Windows). Click the button to start the download,
and when the download is finished after a few minutes, launch the installer. While you
are waiting, browse around on the website to the Documentation section. There are
great reference works and tutorials on learning Python. Please consult your library or
bookstore or the Internet. Try Google or Stackoverflow.

One of the advantages of Python is the wealth of high-quality software packages
that are available, especially for data science and artificial intelligence. Among them
are popular packages such as scikit-learn, numpy, matplotlib, TensorFlow, PyTorch,

1 https://www.python.org
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and Gym. These packages can be installed easily by typing pip install numpy
for installing the numpy numerical package.

Python 2 and Python 3

There are two version of Python that you may encounter, version 2 and version 3.
There are small but critical differences in the language. For example, the print
statement in Python 2 does not use parentheses, but in Python 3 it follows the ordinary
function call convention and it does.

We use Python 3 in this book, and I suggest you do the same. So if you start up
python on your machine you may want to check for the version number that it prints.
And perhaps install Python 3.

You may also want to consider using an integrated development environment
of graphical editor, interpreter, and debugger to ease your development. PyCharm,
Netbeans, Spyder, and Visual Studio are popular choices, but feel free to look around.
Most are free or have free student editions.

Python is a highly popular programming language, because it is powerful and
elegant, but also because it is easy and fun to learn to program in Python. Please go
ahead and enjoy programming in Python!



References

1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S.Corrado,AndyDavis, JeffreyDean,MatthieuDevin, SanjayGhemawat, IanGoodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org. 155, 255

2. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 265–283, 2016. 155, 255

3. Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of
reinforcement learning to aerobatic helicopter flight. In Advances in Neural Information
Processing Systems, pages 1–8, 2007. 225, 232

4. Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and interpretation of
computer programs. MIT Press, 1996. 164

5. Bruce Abramson. Expected-outcome: A general model of static evaluation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(2):182–193, 1990. 115

6. L Victor Allis. Searching for solutions in games and artificial intelligence. PhD thesis,
Maastricht University, 1994. 74, 75, 100

7. L Victor Allis, Maarten van der Meulen, and H Jaap Van Den Herik. Proof-number search.
Artificial Intelligence, 66(1):91–124, 1994. 100

8. Ethem Alpaydin. Introduction to machine learning. MIT press, 2009. 51, 325
9. Ingo Althöfer. Root evaluation errors: How they arise and propagate. ICGA Journal,

11(2-3):55–63, 1988. 102
10. Thomas Anantharaman, Murray S Campbell, and Feng-hsiung Hsu. Singular extensions:

Adding selectivity to brute-force searching. Artificial Intelligence, 43(1):99–109, 1990. 101
11. Takahisa Ando, Noriyuki Kobayashi, and Takao Uehara. Cooperation and competition of

agents in the auction of computer bridge. Electronics and Communications in Japan (Part III:
Fundamental Electronic Science), 86(12):76–86, 2003. 240

12. Anonymous. Go AI strength vs. time. Reddit post, 2017. 211, 321
13. Thomas Anthony, Tom Eccles, Andrea Tacchetti, János Kramár, Ian Gemp, Thomas C Hudson,

Nicolas Porcel, Marc Lanctot, Julien Pérolat, Richard Everett, et al. Learning to play no-press
diplomacy with best response policy iteration. arXiv preprint arXiv:2006.04635, 2020. 240

283



284 References

14. Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Policy
gradient search: Online planning and expert iteration without search trees. arXiv preprint
arXiv:1904.03646, 2019. 226

15. Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Advances in Neural Information Processing Systems, pages 5360–5370,
2017. 184, 186

16. Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. arXiv
preprint arXiv:1810.09502, 2018. 221

17. Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. 2004. 11, 245
18. Oleg Arenz. Monte Carlo Chess. Master’s thesis, Universität Darmstadt, 2012. 232
19. Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning.

In Advances in Neural Information Processing Systems, pages 41–48, 2007. 220
20. Broderick Arneson, Ryan B Hayward, and Philip Henderson. Monte Carlo Tree Search in Hex.

IEEE Transactions on Computational Intelligence and AI in Games, 2(4):251–258, 2010. 133
21. John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A Bayesian

sampling approach to exploration in reinforcement learning. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 19–26. AUAI Press, 2009. 227

22. Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov):397–422, 2002. 53, 122, 133

23. Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002. 115, 122

24. Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010. 122

25. Tim Baarslag, Katsuhide Fujita, Enrico H Gerding, Koen Hindriks, Takayuki Ito, Nicholas R
Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, et al. Evaluating practical
negotiating agents: Results and analysis of the 2011 international competition. Artificial
Intelligence, 198:73–103, 2013. 232, 253

26. Thomas Bäck. Evolutionary algorithms in theory and practice: evolutionary strategies,
evolutionary programming, genetic algorithms. Oxford University Press, 1996. 222

27. Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1–23, 1993. 11, 222, 232

28. Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-
skyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark.
arXiv preprint arXiv:2003.13350, 2020. 172, 190

29. Hendrik Baier and Peter D Drake. The power of forgetting: Improving the last-good-reply
policy in Monte Carlo Go. IEEE Transactions on Computational Intelligence and AI in Games,
2(4):303–309, 2010. 260

30. Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016. 222

31. Bram Bakker and Jürgen Schmidhuber. Hierarchical reinforcement learning based on subgoal
discovery and subpolicy specialization. In Proc. of the 8-th Conf. on Intelligent Autonomous
Systems, pages 438–445, 2004. 232

32. Pierre Baldi, Peter Sadowski, andDanielWhiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature Communications, 5:4308, 2014. 232

33. BruceWBallard. The *-minimax search procedure for trees containing chance nodes. Artificial
Intelligence, 21(3):327–350, 1983. 100

34. Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
complexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017. 240

35. Nolan Bard, John Hawkin, Jonathan Rubin, and Martin Zinkevich. The annual computer poker
competition. AI Magazine, 34(2):112, 2013. 241

36. Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003. 232

37. Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss. Experimental
methods for the analysis of optimization algorithms. Springer, 2010. 67, 110



References 285

38. OpenAI Baselines. https://openai.com/blog/openai-baselines-dqn/, 2017. 174,
177

39. Petr Baudiš. Balancing MCTS by dynamically adjusting the komi value. ICGA Journal,
34(3):131–139, 2011. 259

40. Petr Baudiš and Jean-loup Gailly. Pachi: State of the art open source Go program. In Advances
in Computer Games, pages 24–38. Springer, 2011. 116

41. Seth Baum. A survey of artificial general intelligence projects for ethics, risk, and policy.
2017. 17

42. Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Knightcap: a chess program that learns
by combining TD (λ) with game-tree search. arXiv preprint cs/9901002, 1999. 104, 231

43. Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Learning to play chess using temporal
differences. Machine Learning, 40(3):243–263, 2000. 231

44. Don Beal. Recent progress in understanding minimax search. In Proceedings of the 1983
Annual Conference on Computers: Extending the Human Resource, pages 164–169. ACM,
1983. 80, 92, 112

45. Don Beal. Experiments with the null move. Advances in Computer Chess, 5:65–79, 1989. 102
46. Don Beal. A generalised quiescence search algorithm. Artificial Intelligence, 43(1):85–98,

1990. 102, 106
47. Don Beal and Martin C Smith. Learning piece-square values using temporal differences.

ICGA Journal, 22(4):223–235, 1999. 104
48. Don Beal and Martin C. Smith. Temporal difference learning for heuristic search and game

playing. Information Sciences, 122(1):3–21, 2000. 231
49. Mark F Bear, Barry W Connors, and Michael A Paradiso. Neuroscience, volume 2. Lippincott

Williams & Wilkins, 2007. 139
50. Harkirat Singh Behl, Atılım Güneş Baydin, and Philip HS Torr. Alpha MAML: Adaptive

Model-Agnostic Meta-Learning. arXiv preprint arXiv:1905.07435, 2019. 221
51. Marc Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively factored

environments. In International Conference on Machine Learning, pages 1211–1219, 2013.
227

52. Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. arXiv preprint arXiv:1707.06887, 2017. 178, 180, 223

53. Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013. 63, 171, 172, 173, 186, 213, 256

54. Richard Bellman. Dynamic programming. Courier Corporation, 1957, 2013. 49
55. Richard Bellman. On the application of dynamic programing to the determination of optimal

play in chess and checkers. Proceedings of the National Academy of Sciences, 53(2):244–247,
1965. 105

56. Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940,
2016. 224

57. Yoshua Bengio. Learning Deep Architectures for AI. Now Publishers Inc, 2009. 141
58. Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures.

In Neural networks: Tricks of the trade, pages 437–478. Springer, 2012. 205
59. Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.

Technical report, Montreal, 1990. 220
60. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review

and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013. 142, 157, 232

61. Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in Neural Information Processing Systems, pages
153–160, 2007. 142, 144

62. Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages
41–48, 2009. 142, 144, 205, 232

https://openai.com/blog/openai-baselines-dqn/


286 References

63. David B Benson. Life in the game of Go. Information Sciences, 10(1):17–29, 1976. 231
64. James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier

Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud Bergeron,
et al. Theano: Deep learning on GPUs with Python. In NIPS 2011, BigLearning Workshop,
Granada, Spain, volume 3, pages 1–48. Citeseer, 2011. 155, 255

65. James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281–305, 2012. 221

66. James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages
2546–2554, 2011. 222, 232

67. Elwyn Berlekamp and David Wolfe. Mathematical Go: Chilling gets the last point. AK
Peters/CRC Press, 1994. 231

68. Hans J Berliner. Experiences in evaluation with BKG—a program that plays backgammon. In
IJCAI, pages 428–433, 1977. 27

69. Hans J Berliner. Backgammon computer program beats world champion. Artificial Intelligence,
14(2):205–220, 1980. 27

70. Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2
with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019. 240

71. Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific American,
284(5):28–37, 2001. 11

72. R Bertolami, H Bunke, S Fernandez, A Graves, M Liwicki, and J Schmidhuber. A novel
connectionist system for improved unconstrained handwriting recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31(5), 2009. 162

73. Dimitri P Bertsekas. Rollout algorithms for discrete optimization: A survey. In Handbook of
combinatorial optimization, pages 2989–3013. Springer, 2013. 130

74. Dimitri P Bertsekas and John Tsitsiklis. Neuro-dynamic programming. MIT Press Cambridge,
1996. 69

75. Shalabh Bhatnagar, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei, and
Csaba Szepesvári. Convergent temporal-difference learning with arbitrary smooth function
approximation. In Advances in Neural Information Processing Systems, pages 1204–1212,
2009. 194

76. Wolfgang Bibel. Automated theorem proving. Springer Science & Business Media, 1987. 246
77. Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence

Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for
full-scale poker. In IJCAI, volume 3, page 661, 2003. 27

78. Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The challenge of
poker. Artificial Intelligence, 134(1-2):201–240, 2002. 241

79. Darse Billings, Aaron Davidson, Terence Schauenberg, Neil Burch, Michael Bowling, Robert
Holte, Jonathan Schaeffer, and Duane Szafron. Game-tree search with adaptation in stochastic
imperfect-information games. In International Conference on Computers and Games, pages
21–34. Springer, 2004. 241

80. Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent modeling in
poker. AAAI/IAAI, 493:499, 1998. 105

81. Christopher M Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer Verlag, Heidelberg, 2006. 18, 60, 136, 137, 151, 194

82. Christopher M Bishop et al. Neural networks for pattern recognition. Oxford University Press,
1995. 141

83. Yngvi Bjornsson and Hilmar Finnsson. Cadiaplayer: A simulation-based general game player.
IEEE Transactions on Computational Intelligence and AI in Games, 1(1):4–15, 2009. 244

84. Yngvi Björnsson and TonyAMarsland. Multi-cutαβ-pruning in game-tree search. Theoretical
Computer Science, 252(1-2):177–196, 2001. 102

85. Eric Bonabeau, Marco Dorigo, Guy Theraulaz, et al. Swarm intelligence: from natural to
artificial systems. Number 1. Oxford University Press, 1999. 11



References 287

86. Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the complexity of trick-taking
card games. In IJCAI, pages 482–488, 2013. 74

87. Mark Boon. Overzicht van de ontwikkeling van een Go spelend programma. 1991. 114
88. Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
learning theory, pages 144–152. ACM, 1992. 193

89. Tibor Bosse, Catholijn M Jonker, and Jan Treur. Formalisation of Damasio’s theory of emotion,
feeling and core consciousness. Consciousness and Cognition, 17(1):94–113, 2008. 247

90. Bruno Bouzy and Bernard Helmstetter. Monte Carlo Go developments. In Advances in
Computer Games, pages 159–174. Springer, 2004. 115, 119

91. Bruno Bouzy, Marc Métivier, and Damien Pellier. MCTS experiments on the Voronoi game.
In Advances in Computer Games, pages 96–107. Springer, 2011. 125

92. Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015. 40, 232, 240, 241

93. Michael Bowling, Nicholas Abou Risk, Nolan Bard, Darse Billings, Neil Burch, Joshua
Davidson, John Hawkin, Robert Holte, Michael Johanson, Morgan Kan, et al. A demonstration
of the polaris poker system. InProceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 1391–1392. International Foundation for
Autonomous Agents and Multiagent Systems, 2009. 40, 241

94. Ivan Bratko. Prolog programming for artificial intelligence. Pearson Education, 2001. 245
95. Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:

Applications to data mining. Springer Science & Business Media, 2008. 220
96. Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization

of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010. 227

97. Mark G Brockington. Keyano unplugged—the construction of an Othello program. Technical
report, Technical Report TR 97-05, Department of Computing Science, University of Alberta,
1997. 103

98. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016. 186, 213, 256

99. Joost Broekens. Emotion and reinforcement: affective facial expressions facilitate robot
learning. In Artifical Intelligence for Human Computing, pages 113–132. Springer, 2007. 247

100. Joost Broekens, Marcel Heerink, Henk Rosendal, et al. Assistive social robots in elderly care:
a review. Gerontechnology, 8(2):94–103, 2009. 232

101. Rodney ABrooks. Intelligence without representation. Artificial Intelligence, 47(1-3):139–159,
1991. 11

102. Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret
minimization. arXiv preprint arXiv:1811.00164, 2018. 242

103. Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018. 27, 40, 240, 241

104. Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science,
365(6456):885–890, 2019. 28, 40, 242, 252

105. Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. arXiv preprint arXiv:1805.08195, 2018. 40

106. Cameron Browne. Hex strategy. AK Peters, Wellesley MA, 2000. 132
107. Cameron Browne, Dennis JNJ Soemers, and Eric Piette. Strategic features for general games.

In KEG@ AAAI, pages 70–75, 2019. 227
108. Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,

Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of Monte Carlo Tree Search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012. 113, 116, 117, 118, 119, 120, 126, 128, 132,
133, 202, 259, 320, 321, 325

109. Bernd Brügmann. Monte Carlo Go. Technical report, Syracuse University, 1993. 115, 119,
128



288 References

110. Bruno Buchberger, George E Collins, Rüdiger Loos, and Rudolph Albrecht. Computer algebra
symbolic and algebraic computation. ACM SIGSAM Bulletin, 16(4):5–5, 1982. 11
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