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Abstract

We present an extension of Monte Carlo Tree Search (MCTS) that strongly in-
creases its efficiency for trees with asymmetry and/or loops. Asymmetric termina-
tion of search trees introduces a type of uncertainty for which the standard upper
confidence bound (UCB) formula does not account. Our first algorithm (MCTS-T),
which assumes a non-stochastic environment, backs-up tree structure uncertainty
and leverages it for exploration in a modified UCB formula. Results show vastly
improved efficiency in a well-known asymmetric domain in which MCTS performs
arbitrarily bad. Next, we connect the ideas about asymmetric termination to the
presence of loops in the tree, where the same state appears multiple times in a
single trace. An extension to our algorithm (MCTS-T+), which in addition to non-
stochasticity assumes full state observability, further increases search efficiency for
domains with loops as well. Benchmark testing on a set of OpenAI Gym and Atari
2600 games indicates that our algorithms always perform better than or at least
equivalent to standard MCTS, and could be first-choice tree search algorithms for
non-stochastic, fully-observable environments.

1 Introduction

Monte Carlo Tree Search (MCTS) (Coulom, 2006) is a state-of-the-art algorithm in general game
playing (Browne et al., 2012; Chaslot et al., 2008). The strength of MCTS is the use of statistical
uncertainty to balance exploration versus exploitation (Munos et al., 2014), thereby effectively
balancing breath and depth in the search tree. Probably the best known MCTS selection rule is
Upper Confidence Bounds for Trees (UCT) (Kocsis and Szepesvári, 2006; Cazenave and Jouandeau,
2007), which explores based on the Upper Confidence Bound (UCB) (Auer et al., 2002) of the
mean action value estimate. More recently, MCTS also proved its benefit in combination with
function approximation, either by generating targets for supervised learning Guo et al. (2014), or in
combination with (self-play) reinforcement learning Silver et al. (2016, 2017).

In this work we identify a fundamental deficit in the current MCTS algorithm. The problem is that
MCTS cannot efficiently deal with asymmetric tree structure. Asymmetric tree structure occurs when
the depth of the subtrees differs between the available actions at a state, which frequently happens in
reinforcement learning (RL) tasks like navigation, robotics control and (single-player) games. MCTS
does not take this uncertainty into account, because the information about the subtree structure is not
backed-up in any way. In Section 3 we illustrate how MCTS can perform arbitrarily bad in domains
with strong asymmetry, like the well-known RL task known as the Chain Osband et al. (2016).

This paper proposes a solution to this problem, by backing-up the uncertainty related to the tree
structure (στ ). By leveraging the tree structure uncertainty in the UCT exploration formula, we get a
new algorithm (MCTS-T) that does efficiently solve asymmetric problems. Subsequently, we show
that domain loops,1 where the same state appears twice in the same trace, can be regarded as a special

1It is important to discriminate a loop from a transposition. We provide details in the Discussion.
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case of asymmetric termination. A simple extension (MCTS-T+) of the tree uncertainty back-ups
further enhances the efficiency of search in domains with loops as well. Both our algorithms do
assume non-stochastic environments, while MCTS-T+ additionally requires full state observability
(see Section 6). Results on a set of OpenAI Gym tasks suggest that our algorithms could be first-
choice when these assumptions are full-filled, especially since they are not harmful when the tree is
actually symmetric without loops.

The remainder of this paper is organized as follows. Section 2 provides essential preliminaries on
Markov Decision Processes (MDP) and MCTS. In Section 3 we illustrate the asymmetric termination
problem, introduce the MCTS-T algorithm, and show initial results on the Chain domain. Section
4 identifies the problem of domain loops, extends the algorithm to MCTS-T+, and shows results
on a Chain domain with loops. Section 5 tests our algorithms an a range of tasks from the OpenAI
Gym repository, including a set of Atari 2600 games. We finish with a discussion (Section 6) and
conclusion (Section 7) of our work.

2 Preliminaries

2.1 Markov Decision Process

We adopt a finite-horizon Markov Decision Process (MDP) (Sutton and Barto, 2018) given by the
tuple {S,A, f,R, γ, T}, where S ⊆ RNs is a state set, A = {1, 2, .., Na} is a discrete action set,
f : S×A → S denotes a deterministic transition function,R : S×A → R a (bounded) deterministic
reward function, γ ∈ (0, 1] a discount parameter and T the time horizon. At every time-step t we
observe a state st ∈ S and pick an action at ∈ A, after which the environment returns a reward
rt = R(st, at) and next state st+1 = f(st, at). We act in the MDP according to a stochastic policy
π : S → P (A). Define the (policy-dependent) state value V π(st) = Eπ[

∑T
k=0(γ)

k · rt+k] and
state-action value Qπ(st, at) = Eπ[

∑T
k=0(γ)

k · rt+k], respectively. Our goal is to find a policy π
that maximizes this cumulative, discounted sum of rewards.

2.2 Monte Carlo Tree Search

One approach to solving the MDP optimization problem is through planning. Before we perform an
action at in a state st, we get to expend some computational budget of forward simulation to find out
which action is best. A particular successful class of planning algorithms are known as Monte Carlo
Tree Search (MCTS). MCTS builds a search tree which it repeatedly traverses based on the upper
confidence bound of each available action. We will here introduce a variant of the PUCT algorithm
(Rosin, 2011), as this recently showed strong performance in the game of Go (Silver et al., 2017).
Every state node s in the tree has edges (s, a) for each available action a. The edges store statistics
{n(s, a),W (s, a), Q(s, a)}, where n(s, a) is the visitation count, W (s, a) the cumulative return over
all roll-outs through (s, a), and Q(s, a) =W (s, a)/n(s, a) is the mean action value estimate. MCTS
repeatedly performs four subroutines Browne et al. (2012):

1. Select In the first stage of MCTS, we descend the tree from the root s0 according to the tree
policy. The tree policy selects actions according to statistics in the current tree:

πtree(a|s) = argmax
a

[
Q(s, a) + c ·

√
n(s)

n(s, a)

]
(1)

where n(s) =
∑
a n(s, a) is the total number of visits to state s, and c ∈ R+ is a constant that

scales the amount the exploration/optimism. For an untried action (n(s, a) = 0) the upper
confidence bound is assumed to be∞. The tree policy is followed until we either reach a
terminal state or select an action we have not tried before. The tree policy naturally balances
exploration versus exploitation, as it initially prefers all actions (due to low visitation count),
but asymptotically only selects the optimal action(s).

2. Expand We next expand the tree with a new leaf state sL obtained from simulating the
environment with the new action from the last state in the current tree. Subsequently, we ini-
tialize the child edges (actions) of the new leaf sL with statistics {n(sL, a) = 0,W (sL, a) =
0, Q(sL, a) = 0}∀a ∈ A.
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3. Roll-out We then require an estimate of the value V (sL) of the new leaf node, for which
MCTS uses a random roll-out from sL. We estimate V (sL) from the sum of rewards in
the random roll-out: R(sL) =

∑D
i=L r(si, ai), where D denotes some termination depth.

Note that the roll-out estimate can be improved by using a better roll-out policy or replaced
by a learned value function, e.g. when learning off-line with neural networks as function
approximator (Silver et al., 2016, 2017).

4. Back-up Finally, we recursively back-up the results of the roll-out in the tree. Denote the
current forward trace in the tree as {s0, a0, s1, ..sL−1, aL−1, sL}. Then, for each state-action
edge (si, ai), L > i ≥ 0, we recursively estimate the state-action value as

R(si, ai) = r(si, ai) + γR(si+1, ai+1). (2)

where R(sL, aL) := R(sL). We then increment W (si, ai) with the new estimate R(si, ai),
increment the visitation count n(si, ai) with 1, and set the mean estimate to Q(si, ai) =
W (si, ai)/n(si, ai). We repeatedly apply this back-up one step higher in the tree until we
reach the root node s0.

This procedure is repeated until the overall MCTS trace budget Ntrace is reached. Finally, the real
environment action is picked based on the highest visitation count at the search tree root:

π(st) = argmax
a∈A

n(s0, a) (3)

3 Asymmetric Termination

We now identify the problems of MCTS with asymmetric tree structure. MCTS uses the local
uncertainty (based on the counts n(s, a)) to forward traverse the tree, see Eq. 1. Thereby, the actions
at the root node will have the lowest uncertainty, as they will have the highest number of visits.
However, there is actually a ‘backward’ component to uncertainty. We actually become completely
certain about the value of an action when we have enumerated the entire subtree below that action.2
However, the standard MCTS visitation count does not contain this information, because it is not
backed-up in any way.

This termination uncertainty especially becomes useful when the underlying domain has an asymmet-
ric tree structure. To illustrate this setting (and the suboptimal performance of MCTS) we consider a
well-known RL domain: the Chain (Figure 1 left) (Osband et al., 2016). The Chain can be interpreted
as a long, narrow path that we need to walk all the way to the end. At each timestep we have two
actions available. One action always terminates the domain with a reward of 0. The other action
moves the player one state further in the chain, but also gives a reward of 0. The only non-zero
reward is received when the agent walks all the way along the chain up to depth N . The right of Fig.
1 displays the search tree of the Chain domain. When visualizing the domain as a tree, we can clearly
see the asymmetry. The domain is much deeper in one direction. Actually, the number of unique
traces in this domain equals only N + 1 for a Chain of length N , and exhaustive search solves the
domain in O(N) time complexity.

Surprisingly, MCTS suffers a much higher sample complexity in this task. The problem is that for
higher chain lengths, the MCTS roll-out are unlikely to sample the full chain correctly and find the
sparse reward. Therefore, both arms at the root will appear to be returning the same pay-off (of 0 in
this case), and MCTS will equally spread its traces at the root node. This problem recursively appears
at states further in the Chain. Therefore, for longer chains the time complexity of MCTS approaches
the exponential O(2N ), which is poor for a problem that actually has linear time complexity. The
underlying problem is that MCTS does not back-up the fact that one of both arms at the root has
been completely enumerated (which already happens after 1 trace), while the other direction still has
unexplored traces.

2Note that we assume deterministic environments in this paper. See the Discussion as well.
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Figure 1: Left: Chain domain. Right: Search tree of the Chain domain.

3.1 MCTS with Tree Uncertainty Back-up (MCTS-T)

We now extend the MCTS algorithm to back-up and utilize the uncertainty due to the tree structure
στ (s) ∈ [0, 1]. For each state in the tree, we will estimate and recursively back-up στ , where
στ (s) = 1 indicates a completely unexplored subtree below s, while στ (s) = 0 indicates a fully
enumerated subtree. We therefore define the στ (sL) of a newly expanded leaf state sL as:

στ (sL) =

{
0 , if sL is terminal
1 , otherwise

We next recursively back-up στ (the tree uncertainty) to previous states in the search tree, i.e., we
update στ (si) from the uncertainties of its successors στ (si+1). We could use a uniform policy for
this back-up, but one of the strengths of MCTS is that it gradually starts to prefer (i.e., more strongly
weigh) the outcomes of good arms. We therefore weigh the στ back-ups by the empirical MCTS
counts. Moreover, if an action has not been tried yet (and we therefore lack an estimate of στ ),
then we initialize the action as if tried once and with maximum uncertainty (the most conservative
estimate):

m(s, a) =

{
n(s, a) , if n(s, a) ≥ 1

1 , otherwise
σ?τ (s

′) =

{
στ (s

′) , if n(s, a) ≥ 1

1 , otherwise.
(4)

We then back-up στ weighed according to these visitation counts:

στ (s) =

∑
am(s, a) · σ?τ (s′)∑

am(s, a)
(5)

for s′ = f(s, a) given by the deterministic environment dynamics. This back-up process is illustrated
in Figure 2.

Modified select step Small στ reduces our need to visit that subtree again for exploration, as we
already (largely) know what will happen there. We therefore modify our tree policy at node s to:

πtree(s) = argmax
a

[
Q(s, a) + c · στ (s′) ·

√
n(s)

n(s, a)

]
(6)

for s′ = f(s, a) the successor state of action a in s. The introduction of στ acts as a prior on the
upper confidence bound, reducing exploration pressure on those arms of which we have (largely)
enumerated the subtree.

Value back-up MCTS uses on-policy value back-ups, i.e., the value of a state-action is estimated
as the mean of all traces that passed through it. However, the στ mechanism has introduced additional
exploration pressure on deeper subtrees in the forward pass. In the value back-up, we ideally ignore
our optimism of the forward pass (if necessary).3 In reinforcement learning terminology, we ideally

3This problem disappears for number of traces N → ∞, as the policy eventually becomes greedy on the
optimal action. However, in practice we have to deal with finite computational budgets per step.
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Figure 2: Process of στ back-ups. Graphs a-e display subsequent estimates and back-ups of στ . In a)
and b) we arrive at a non-terminal leaf node, of which the στ automatically becomes 1. In the next
subtree visit (c), we encounter a terminal leaf, and the uncertainty about the subtree at the subtree
root decreases to 1

2 . In d) we encounter another terminal leaf. Because the back-ups are on-policy,

we now estimate the root uncertainty as στ =
(2· 12 )+(1·0)

2+1 = 1
3 (Eq. 5). Finally, at e) we enumerated

the entire sub-tree, and the tree structure uncertainty at the subtree root is reduced to 0.

require an off-policy back-up. To stay as close to the original MCTS algorithm (which we use as
our baseline comparison), we will use the standard UCB policy counts without στ as the empirical
back-up policy. Define a separate set of ‘backward counts’ b(s, a) obtained from Eq.1, then our value
back-up is

Q(s, a) =

∑
a′ b(s

′, a′) ·Q(s′, a′)∑
a′ b(s

′, a′)
. (7)

This requires calculating the UCB formula twice per timestep, but this increase is generally negligible
compared to the computational time required for the environment simulations. Finally, because the
forward counts are inflated in the direction of deeper subtrees, we can no longer use the counts at
the root node for the final decision (Eq. 3) either. Instead, we base our decision on the highest mean
action value:

π(s) = argmax
a∈A

Q(s, a) (8)

This completes our proposed algorithm, which we call MCTS-T (MCTS with tree uncertainty).

3.2 Results on Chain

Figure 3 shows the performance of MCTS versus MCTS-T on the Chain (Fig. 1). Plots progress
horizontally for longer lengths of the Chain, i.e., stronger asymmetry and therefore a more difficult
exploration challenge. In the short Chain of length 10 (Fig. 3 left), we see that both algorithms do
learn, although MCTS-T is already more efficient. For the deeper chains of length 25, 50 and 100,
we see that MCTS does not learn at all (as it starts to suffers an exponential time complexity). In
contrast, MCTS-T does perform well in longer domains.

Figure 3: Comparison of vanilla MCTS (red) versus MCTS-T (blue) on the Chain domain of various
lengths (progressing horizontally over the plots). Each plot displays computational budget per
timestep (x-axis) versus average return per episode (y-axis). Results averaged over 25 episodes.
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4 Loops

We will now generalize the ideas about tree asymmetry to the presence of loops in the domain. A
loop occurs when the same state appears twice in a single trace.4 We will conceptually illustrate
this in a variant of the Chain where the ‘wrong’ action at each timestep returns the agent to state
s1, i.e., without terminating the episode (Figure 4, left). Figure 4, right displays the unfolded tree
structure of this domain. This tree clearly shows that state s1 repeatedly occurs in nearly all traces.
Below each repetition, the entire root tree essentially repeats itself. The problem is that everything
that might be learned below such a repetition, should actually be learned at the first occurrence of the
state. However, standard MCTS will keep on expanding these nodes as if they are truly novel.

4.1 MCTS-T+: blocking loops.

The solution of this problem is a natural extension of the στ mechanism introduced in the previous
section. Most importantly, when we encounter a duplicate state s◦ in the trace, we set στ (s◦) = 0.
Thereby, we pretend as if the looped state is terminal with respect to its tree uncertainty, because
there is nothing novel to explore beyond that state (i.e., other actions should be explored at the first
occurrence of the looped state). The value/roll-out estimate of the duplicate state R(s◦) technically
depends on the sum of reward in the loop S◦ =

∑
s,a∈g r(s, a), where g = {s�, .., s◦} specifies the

subset of the trace containing the loop (i.e., s� = s◦). For infinite time-horizon problems, we can
theoretically repeat the loop forever, and therefore:

R(s◦) =


∞ , if S◦ ≥ 0

−∞ , if S◦ ≤ 0

0 , if S◦ = 0

(9)

For finite horizon problems we need to account for the number of remaining steps that we can repeat
the loop. However, most frequently loops with a net positive or negative return are actually a domain
artifact, as the solution of a (real-world) sequential decision making task is usually not to walk the
same loop forever.

We can efficiently check for a domain loop during the back-up phase of a trace. For each trace,
we compare the expanded state sL to every state in the trace above it. When the norm between
the expanded state sL and a previous state si, 0 ≤ i < L is smaller than some threshold η, we set
στ (s

◦
L) = 0 and R(s◦L) as indicated above. Besides that, all the methodology from the previous

section applies. Checking for a domain loop does incur an extra computational burden, although its
effect is again relatively small compared to the cost of environment simulations in more complex
domains (like Atari 2600 games). We call the extended algorithm with loop detection MCTS-T+.

4Loops actually occur in many RL tasks, for example navigation tasks or Atari 2600 games, where we may
step in one direction and (approximately) return a few steps later. Such loops waste a lot of computational effort.

Figure 4: Left: Chain domain with loops/cycles. Right: Search tree of the cyclic Chain domain. Red nodes
indicate a loop, i.e., the repetition of a state which already occurred in the trace above it.
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Figure 5: Comparison of MCTS (red) versus MCTS-T+ (green). MCTS-T+ uses tree uncertainty and
loop blocking. Chain length progresses over the horizon plots. Results averaged over 25 episodes.

4.2 Results on Chain with loops.

We illustrate the performance of MCTS-T+ on the Chain with loops (Figure 4). The results are shown
in Figure 5. We observe a similar pattern as in the previous section, where MCTS only (partially)
solves the shorter chains, but does not solve the longer chains at all. In contrast, MCTS-T+ does
efficiently solve the longer chains as well. Note that MCTS-T (with loop detection) does not solve
this problem either (curves not shown), as the loops prevent any termination, and therefore all στ
estimates stay at 1.

5 Gym Experiments

The previous experiments on the Chain are of course extreme cases of asymmetry and looping, where
the tree uncertainty and loop blocking have most potential to be beneficial. We now experiment
with our algorithms on a set of tasks from the OpenAI Gym repository, to verify whether these ideas
are still beneficial in a general set of tasks. Figure 6 shows the learning performance on CartPole
and FrozenLake, respectively. We see that MCTS-T and MCTS-T+ consistently outperform MCTS,
especially for a small number of traces. This is probably due to the fact that MCTS-T(+) can more
efficiently direct its traces. Figure 7 shows the results of our algorithms on a subset of Atari 2600
games. Again, both MCTS-T and MCTS-T+ outperform MCTS for a smaller number of traces,
and generally perform at least equally well when N grows larger. Code to replicate experiments is
available from www.github.com/anonymous.git.

6 Discussion

There are two important assumptions that need to be fulfilled for the current work. First, the current
work is not yet applicable to stochastic domains. The problem with stochastic domains is that we can

Figure 6: Learning curves on CartPole and FrozenLake. CartPole rewards are 0.005 for every timestep
that the pole does not fall over, and -1 when the pole falls (episode terminates). Compared to the
default Gym implementation, we use a FrozenLake variant without stochasticity. Episodes last 400
steps.
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Figure 7: Learning curves on several Atari 2600 games. All domains clip rewards to [−1, 1]. Each
episode simulates 400 steps with a frameskip of 3.

never bring the uncertainty of an arm to 0 based on fully enumerating each unique trace. Therefore, we
should probably not add στ in the UCB formula like in the present paper, as this completely collapses
the confidence interval when the subtree is enumerated. Nevertheless, tree structure uncertainty is
still relevant in stochastic domains, and coming up with a different incorporation in the UCB equation
would be an interesting direction for future work. Second, loop blocking (MCTS-T+) can only be
applied with fully observable states. For example, if we detect a loop in a partially observable domain,
then the true environment state may actually have changed, and it could be harmful to block the
apparent loop.

MCTS has predominantly shown its success in two-player board games. These environments, like
the game of Go, usually show a rather symmetric search tree without many loops. In contrast, many
tasks in which MCTS has shown less impressive results, like robotic control, single-player video
games and navigation tasks, do exhibit asymmetry or loops. For example, in Atari 2600 a variety
of wrong moves may suddenly end the game, while navigation tasks frequently allow to step back
to a previous state after a few moves. The present work may extend the applicability of MCTS to
domains with asymmetry and loops as well.

We want to stress that a loop is something different than a transposition (Plaat et al., 1996). In tree
search, a transposition happens when a particular state appears in the subtrees of multiple arms of
a state. As an illustration, in Fig.4 right, all the red s1 states are loops (as state s1 already appears
in the same trace at the root). However, state s2 shows a transposition, as it occurs both in the left
(at depth 2) and right arm from the root state s1. Transpositions can for example be handled by
off-line learning and generalization of a value function, which stores what we already learned about
the transposition in a different arm.

Another open problem in tree search is determining the number of traces before making a decision
in the real environment. In practice, the number of traces per search N is usually fixed in advance
and always fully expended. This implies that we spend our full budget even when we are very
close to domain termination. In contrast, the στ back-up provides us with additional information to
prematurely stop the search if new traces can no longer provide useful information. A simple choice
would be to stop the search when στ = 0 for all root arms (which implies fully enumerated subtrees).

7 Conclusion

This paper introduces two extensions to standard MCTS. For non-stochastic environments, MCTS-
T improves MCTS efficiency by backing-up the uncertainty due to the structure of the tree (στ ).
Under the additional assumption of full state observability, MCTS-T+ further extends the algorithm
to also efficiently deal with potential loops in the domain. Our results indicate that MCTS-T(+)
significantly outperforms MCTS on domains with strong asymmetry and loops. Moreover, MCTS-T+
also improves performance on domains with less asymmetry, and - importantly - never performs
suboptimal compared to standard MCTS. Therefore, MCTS-T(+) could be a first-choice search
algorithm for domains with frequent asymmetry, like robotic control, navigation and single-player
video games.
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