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ABSTRACT

Sequential decision making, commonly formalized as Markov
Decision Process (MDP) optimization, is a important chal-
lenge in artificial intelligence. Two key approaches to this
problem are reinforcement learning (RL) and planning. This
paper presents a survey of the integration of both fields,
better known as model-based reinforcement learning. Model-
based RL has two main steps. First, we systematically cover
approaches to dynamics model learning, including challenges
like dealing with stochasticity, uncertainty, partial observ-
ability, and temporal abstraction. Second, we present a
systematic categorization of planning-learning integration,
including aspects like: where to start planning, what bud-
gets to allocate to planning and real data collection, how
to plan, and how to integrate planning in the learning and
acting loop. After these two sections, we also discuss im-
plicit model-based RL as an end-to-end alternative for model
learning and planning, and we cover the potential benefits
of model-based RL. Along the way, the survey also draws
connections to several related RL fields, like hierarchical
RL and transfer learning. Altogether, the survey presents a
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broad conceptual overview of the combination of planning
and learning for MDP optimization.



1
Introduction

Sequential decision making, commonly formalized as Markov Decision
Process (MDP) (Bellman, 1954; Puterman, 2014) optimization, is a key
challenge in artificial intelligence. Two successful approaches to solve
this problem are planning (Russell and Norvig, 2016; Bertsekas et al.,
1995) and reinforcement learning (Sutton and Barto, 2018). Planning
and learning may actually be combined, in a field which is known as
model-based reinforcement learning. We define model-based RL as: ‘any
MDP approach that i) uses a model (known or learned) and ii) uses
learning to approximate a global value or policy function’.

While model-based RL has shown great success (Silver et al., 2017b;
Levine and Koltun, 2013; Deisenroth and Rasmussen, 2011), literature
lacks a systematic review of the field (although Hamrick et al. (2020)
does provide an overview of mental simulation in deep learning, see
Sec. 9 for a detailed discussion of related work). Therefore, this article
presents a survey of the combination of planning and learning. A general
scheme of the possible connections between planning and learning, which
we will use throughout the survey, is shown in Figure 1.1.

The survey is organized as follows. After a short introduction of the
MDP optimization problem (Sec. 2), we first define the categories of

3



4 Introduction

model-based reinforcement learning and their relation to the fields of
planning and model-free reinforcement learning (Sec. 3). Afterwards,
Sections 4-7 present the main body of this survey. The crucial first step
of most model-based RL algorithms is dynamics model learning (Fig
1.1, arrow g) which we cover in Sec. 4. When we have obtained a model,
the second step of model-based RL is to integrate planning and learning
(Fig 1.1, arrows a-f), which we discuss in Sec. 5. Interestingly, some
model-based RL approaches do not explicitly define one or both of these
steps (model learning and integration of planning and learning), but
rather wrap them into a larger (end-to-end) optimization. We call these
methods implicit model-based RL, which we cover in Sec. 6. Finally, we
conclude the main part of this survey with a discussion of the potential
benefits of these approaches, and of model-based RL in general (Sec. 7).

While the main focus of this survey is on the practical/empirical
aspects of model-based RL, we also shortly highlight the main theoretical
results on the convergence properties of model-based RL algorithms (Sec.
8). Additionally, note that model-based RL is a fundamental approach
to sequential decision making, and many other sub-disciplines in RL
have a close connection to model-based RL. For example, hierarchical
reinforcement learning (Barto and Mahadevan, 2003) can be approached
in a model-based way, where the higher-level action space defines a
model with temporal abstraction. Model-based RL is also an important
approach to transfer learning (Taylor and Stone, 2009) (through model
transfer between tasks) and targeted exploration (Thrun, 1992). When
applicable, the survey also presents short overviews of such related RL
research directions. Finally, the survey finishes with Related Work (Sec.
9), Discussion (Sec. 10), and Summary (Sec. 11) sections.



5

Figure 1.1: Overview of possible algorithmic connections between planning
and learning. Learning can take place at two locations: in learning a dynamics
model (arrow g), and/or in learning a policy/value function (arrows c and
f). Most algorithms only implement a subset of the possible connections.
Explanation of each arrow: a) plan over a learned model, b) use information
from a policy/value network to improve the planning procedure, c) use the
result from planning as training targets for a policy/value, d) act in the real
world based on the planning outcome, e) act in the real world based on a
policy/value function, f) generate training targets for the policy/value based
on real world data, g) generate training targets for the model based on real
world data.



2
Background

The formal definition of a Markov Decision Process (MDP) (Puterman,
2014) is the tuple {S,A, T ,R, p(s0), γ}. The environment consists of
a transition function T : S × A → p(S) and a reward function R :
S ×A× S → R. At each timestep t we observe some state st ∈ S and
pick an action at ∈ A. Then, the environment returns a next state
st+1 ∼ T (·|st, at) and associated scalar reward rt = R(st, at, st+1). The
first state is sampled from the initial state distribution p(s0). Finally,
γ ∈ [0, 1] denotes a discount parameter.

The agent acts in the environment according to a policy π : S → p(A).
In the search community, a policy is also known as a contingency plan
or strategy (Russell and Norvig, 2016). By repeatedly selecting actions
and transitioning to a next state, we can sample a trace through the
environment. The cumulative return of a trace through the environment
is denoted by: Jt = ∑K

k=0 γ
k · rt+k, for a trace of length K. For K =∞

we call this the infinite-horizon return.

Define the action-value function Qπ(s, a) as the expectation of the

6
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cumulative return given a certain policy π:

Qπ(s, a)=̇Eπ,T

[
K∑
k=0

γkrt+k
∣∣∣st = s, at = a

]
(2.1)

This equation can be written in a recursive form, better known as
the Bellman equation:

Qπ(s, a) = Es′∼T (·|s,a)

[
R(s, a, s′) + γ Ea′∼π(·|s′)

[
Qπ(s′, a′)

]]
(2.2)

Our goal is to find a policy π that maximizes our expected return
Qπ(s, a):

π? = arg max
π

Qπ(s, a) = arg max
π

Eπ,T

[
K∑
k=0

γkrt+k
∣∣∣st = s, at = a

]
(2.3)

There is at least one optimal policy, denoted by π?, which is better or
equal than all other policies (Sutton and Barto, 2018). In the planning
and search literature, the above problem is typically formulated as a
cost minimization problem (Russell and Norvig, 2016), instead of a
reward maximization problem. That formulation is interchangeable with
our presentation by negating the reward function.



3
Categories of Model-based Reinforcement

Learning

To properly define model-based reinforcement learning, we first need
individual definitions of planning and reinforcement learning. There are
in principle two ways to distinguish both fields: based on their access to
the MDP dynamics, and based on the way they represent the solution.
Regarding the first distinction, planning methods tend to have reversible
access to the MDP dynamics, which allows the agent to repeatedly plan
forward from the same state (similar to the way humans plan in their
mind). Thereby, reversible access to the MDP dynamics allows the agent
to query the MDP at any preferred state-action pair (in any preferred
order). We call such reversible access to the MDP dynamics a model.

A model is a form of reversible access to the MDP
dynamics (known or learned).

In contrast, model-free reinforcement learning approaches typically have
irreversible access to the MDP dynamics, which means that the agent
has to move forward from the resulting next state after executing a
particular action (similar to the way we act in the real world). This
essentially restricts the order in which we can visit state-action pairs in
the MDP.

8
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Table 3.1: Distinction between planning, model-free RL, and model-based
RL, based on 1) the presence of reversible access to the MDP dynamics (a
model, known or learned) and 2) the presence of a global (learned) solution
(e.g., policy or value function).

Model Global
solution

Planning + -
Reinforcement learning +/- +

Model-free reinforcement learning - +
Model-based reinforcement learning + +

Based on this different type of access to the MDP dynamics, both
fields have also focused on a different type of representation of the
solution. Planning methods typically use a local representation of the
solution, which only stores the solution for a subset of all states (for
example around a current state, which gets discarded afterwards). In
contrast, learning methods cannot repeatedly plan from the same state,
and therefore have to store a global solution, which stores a value
function or policy for the entire state space.

Unfortunately, the two distinctions between planning and learning
(reversible versus irreversible MDP access and local versus global solu-
tion) do not always agree. For example, AlphaZero (Silver et al., 2018)
combines reversible access to the MDP dynamics (which would make it
planning) with a global policy and value function (which would make it
learning). Since many researchers consider AlphaZero a (model-based)
reinforcement learning algorithm, we decide to define RL based on
the presence of a global (learned) solution. This leads to the following
definitions of (MDP) planning and learning (Table 3.1):

Planning is a class of MDP algorithms that 1) use a model
and 2) store a local solution.

Reinforcement learning is a class of MDP algorithms that
store a global solution.

Starting from their different assumptions, both research fields have
developed their own methodology. Along the way they started to meet, in
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a field that became known asmodel-based reinforcement learning (Sutton,
1990). The principles beneath model-based RL were also discovered
in the planning community, in the form of Learning Real-Time A?

(Korf, 1990), while the underlying principles already date back to the
Checkers programme by Samuel (1967). The key idea of model-based
reinforcement learning is to combine a model and a global solution in
one algorithm (Table 3.1):

Model-based reinforcement learning is a class of MDP
algorithms that 1) use a model, and 2) store a global

solution.

Regarding the combination of planning and learning, ‘learning’ is
itself actually an overloaded term, since it can happen at two locations
in the algorithm: 1) to learn a dynamics model, and 2) to learn a global
solution (e.g., a policy or value function). Since learning can happen
at two locations in algorithms that combine planning and learning, we
actually end up with three subcategories of planning-learning integration
(Table 3.2):

• Model-based RL with a learned model, where we both learn a
model and learn a global solution. An example is Dyna (Sutton,
1991).

• Model-based RL with a known model, where we plan over a known
model, and only use learning for the global solution. An example is
AlphaZero (Silver et al., 2018), while also Dynamic Programming
(Bellman, 1966) technically belongs to this group.

• Planning over a learned model, where we do learn a model, but
subsequently locally plan over it, without learning a global solution.
An example is Embed2Control (Watter et al., 2015).

Note that ‘planning over a learned model’ is not considered model-
based RL, since it does not learn a global solution to the problem (see
Table 3.1). However, it is a form of planning-learning integration, and
we therefore still include this topic in the survey. It is important to
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Table 3.2: Categories of planning-learning integration (as covered in this
survey). In MDP algorithms that use planning, learning may happen at two
locations: i) to learn a model, and 2) to learn the global solution (e.g., a policy
or value function). These leads to three possible combinations of planning and
learning, as shown in the table.

Learned model Learned
solution

Model-based RL with a known model - +
Model-based RL with a learned model + +
Planning over a learned model + -

distinguish between the subcategories of planning-learning integration,
because they also need to cope with different challenges. For example,
approaches with a learned dynamics model typically need to account
for model uncertainty, while approaches with a known/given dynamics
model can ignore this issue, and put stronger emphasis on asymptotic
performance. In the next section (Sec. 4) we will first discuss the
various approaches to model learning (first column of Table 3.2), while
the subsequent Sec. 5 will cover the ways to integrate planning with
learning of a global value or policy function (second column of Table
3.2).



4
Dynamics Model Learning

The first step of model-based RL (with a learned model) involves
learning the dynamics model from observed data. In the control litera-
ture, dynamics model learning is better known as system identification
(Åström and Eykhoff, 1971; Ljung, 2001). We will first cover the general
considerations of learning a one-step model (Sec. 4.1). Afterwards, we
extensively cover the various challenges of model learning, and their
possible solutions. These challenges are stochasticity (Sec. 4.2), uncer-
tainty due to limited data (Sec. 4.3), partial observability (Sec. 4.4),
non-stationarity (Sec. 4.5), multi-step prediction (4.6), state abstraction
(Sec. 4.7) and temporal abstraction (Sec. 4.8). The reader may wish to
skip some of these section if the particular challenge is not relevant to
your research problem or task of interest.

4.1 Basic considerations

Model learning is essentially a supervised learning problem (Jordan
and Rumelhart, 1992), and many topics from the supervised learning
community apply here. We will first focus on a simple one-step model,
and discuss the three main considerations: what type of model do we
learn, what type of estimation method do we use, and in what region

12



4.1. Basic considerations 13

should our model be valid?

Type of model We will here focus on dynamics models, which attempt
to learn the transition probabilities between states. Technically, the
reward function is also part of the model, but it is usually easier to
learn (since we only need to predict an additional scalar in our learned
dynamics function). We therefore focus on the dynamics model here.
Given a batch of one-step transition data {st, at, rt, st+1}, there are
three main types of dynamics functions we might be interested in:

• Forward model: (st, at)→ st+1. This predicts the next state given
a current state and chosen action (Figure 4.1, arrow 1). It is by far
the most common type of model, and can be used for lookahead
planning. Since model-based RL has mostly focused on forward
models, the remainder of this section will primarily focus on this
type of model.

• Backward/reverse model: st+1 → (st, at). This model predicts
which states are the possible precursors of a particular state.
Thereby, we can plan in the backwards direction, which is for
example used in prioritized sweeping (Moore and Atkeson, 1993).

• Inverse model: (st, st+1)→ at. An inverse model predicts which
action is needed to get from one state to another. It is for example
used in RRT planning (LaValle, 1998). As we will later see, this
function can also be useful as part of representation learning (Sec.
4.7).

Estimation method We also need to determine what type of approxi-
mation method (supervised learning method) we will use. We discrim-
inate between parametric and non-parametric methods, and between
exact and approximate methods.

• Parametric: Parametric methods are the most popular approach
for model approximation. Compared to non-parametric methods,
a benefit of parametric methods is that their number of parameters
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Figure 4.1: Overview of different types of mappings in model learning. 1)
Standard Markovian transition model st, at → st+1. 2) Partial observability
(Section 4.4). We model s0...st, at → st+1, leveraging the state history to
make an accurate prediction. 3) Multi-step prediction (Section 4.6), where
we model st, at...at+n−1 → st+n, to predict the n step effect of a sequence
of actions. 4) State abstraction (Section 4.7), where we compress the state
into a compact representation zt and model the transition in this latent space.
5) Temporal/action abstraction (Section 4.8), better known as hierarchical
reinforcement learning, where we learn an abstract action ut that brings us to
st+n. Temporal abstraction directly implies multi-step prediction, as otherwise
the abstract action ut is equal to the low level action at. All the above ideas
(2-5) are orthogonal and can be combined.

is independent of the size of the observed dataset. There are two
main subgroups:

– Exact: An important distinction in learning is between ex-
act/tabular and approximate methods. For a discrete MDP
(or a discretized version of a continuous MDP), a tabular
method maintains a separate entry for every possible transi-
tion. For example, in a stochastic MDP (in which we need
to learn a probability distribution, see next section) a tabu-
lar maximum likelihood model (Sutton, 1991) estimates the
probability of each possible transition as

T (s′|s, a) = n(s, a, s′)∑
s′ n(s, a, s′) , (4.1)

where T denotes the approximation of the true dynamics
T , and n(s, a, s′) denotes the number of times we observed
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s′ after taking action a in state s. This approach therefore
effectively normalizes the observed transition counts. Tabular
models were popular in initial model-based RL (Sutton, 1990).
However, they do not scale to high-dimensional problems,
as the size of the required table scales exponentially in the
dimensionality of S (the curse of dimensionality).

– Approximate: We may use function approximation methods,
which lower the required number of parameters and allow
for generalization. Function approximation is therefore the
preferred approach in higher-dimensional problems. We may
in principle use any parametric approximation method to
learn the model. Examples include linear regression (Sutton
et al., 2008; Parr et al., 2008), Dynamic Bayesian networks
(DBN) (Hester and Stone, 2012b), nearest neighbours (Jong
and Stone, 2007), random forests (Hester and Stone, 2013),
support vector regression (Müller et al., 1997) and neural
networks (Werbos, 1989; Narendra and Parthasarathy, 1990;
Wahlström et al., 2015; Oh et al., 2015). Especially (deep)
neural networks have become popular in the last decade, for
function approximation in general (Goodfellow et al., 2016),
and therefore also for dynamics approximation. Compared to
the other methods, neural networks especially scale (compu-
tationally) well to high-dimensional inputs, while being able
to flexibly approximate non-linear functions. Nevertheless,
other approximation methods still have their use as well.

• Non-parametric: The other main supervised learning approach
is non-parametric approximation. The main property of non-
parametric methods is that they directly store and use the data
to represent the model.

– Exact: Replay buffers (Lin, 1992) can actually be regarded
as non-parametric versions of tabular transition models, and
the line between model-based RL and replay buffer methods
is indeed thin (Vanseijen and Sutton, 2015; Hasselt et al.,
2019).
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– Approximate: We may also apply non-parametric methods
when we want to be able to generalize information to similar
states. For example, Gaussian processes (Wang et al., 2006;
Deisenroth and Rasmussen, 2011) have been a popular non-
parametric approach. Gaussian processes can also provide
good uncertainty estimates, which we will further discuss in
Sec. 4.3.

The computational complexity of non-parametric methods de-
pends on the size of the dataset, which makes them in general
less applicable to high-dimensional problems, where we usually
require more data.

Throughout this work, we sometimes refer to the term ‘function ap-
proximation’. We then imply all non-tabular (non-exact) methods (both
parametric and non-parametric), i.e., all methods that can generalize
information between states.

Region in which the model is valid The third important consideration
is the region of state space in which we aim to make the model valid:

• Global: These models approximate the dynamics over the entire
state space. This is the main approach of most model learning
methods.

• Local: The other approach is to only locally approximate the dy-
namics, and each time discard the local model after planning over
it. This approach is especially popular in the control community,
where researchers frequently fit local linear approximations of the
dynamics around some current state (Atkeson et al., 1997; Bagnell
and Schneider, 2001; Levine and Abbeel, 2014). A local model
restricts the input domain in which the model is valid, and is
also fitted to a restricted set of data. A benefit of local models is
that we may use a more restricted function approximation class
(like linear), and potentially have less instability compared to
global approximation. On the downside, we continuously have
to estimate new models, and therefore cannot continue to learn
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Figure 4.2: Illustration of stochastic transition dynamics. Left: 500 samples
from an example transition function T (s′|s, a). The vertical dashed line indi-
cates the cross-section distribution on the right. Right: distribution of st+1
for a particular s, a. We observe a multimodal distribution. The conditional
mean of this distribution, which would be predicted by mean squared error
(MSE) training, is shown as a vertical line.

from all collected data (since it is infeasible to store all previous
datapoints).

The distinction between global and local is equally relevant for repre-
sentation of a value or policy function, as we will see in Sections 5 and
7.

This concludes our discussion of the three basic considerations
(type of model, type of estimation method, region of validity) of model
learning. In practice, most model learning methods actually focus on
one particular combination: a forward model, with parametric function
approximation, and global coverage. The remainder of this section will
discuss several more more advanced challenges of model learning, in
which this particular setting will also get the most attention.

4.2 Stochasticity

In a stochastic MDP the transition function specifies a distribution
over the possible next states, instead of returning a single next state
(Figure 4.2, left). In those cases, we should also specify a model that
can approximate entire distributions. Otherwise, when we for example
train a deterministic neural network fφ(s, a) on a mean-squared error
loss (e.g., Oh et al. (2015)), then the network will actually learn to
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predict the conditional mean of the next state distribution (Moerland
et al., 2017b). This problem is illustrated in Figure 4.2, right.

We can either approximate the entire next state distribution (de-
scriptive models), or approximate a model from which we can only
draw samples (generative model). Descriptive models are mostly feasi-
ble in small state spaces. Examples include tabular models, Gaussian
models (Deisenroth and Rasmussen, 2011) and Gaussian mixture mod-
els (Khansari-Zadeh and Billard, 2011), where the mixture contribu-
tion typically involved expectation-maximization (EM) style inference
(Ghahramani and Roweis, 1999). However, these methods do not scale
well to high-dimensional state spaces.

In high-dimensional problems, most successful attempts are based
on neural network approximation (deep generative models). One ap-
proach is to use variational inference (VI) to estimate dynamics models
(Depeweg et al., 2016; Moerland et al., 2017b; Babaeizadeh et al., 2017;
Buesing et al., 2018). Competing approaches include generative ad-
versarial networks (GANs), autoregressive full-likelihood models, and
flow-based density models, which were applied to sequence modeling
by Yu et al. (2017), Kalchbrenner et al. (2017) and Ziegler and Rush
(2019), respectively. Detailed discussion of these methods falls outside
the scope of this survey, but there is no clear consensus yet which deep
generative modeling approach works best.

4.3 Uncertainty

A crucial challenge of model-based learning is dealing with uncertainty
due to limited data. Uncertainty due to limited data (also known as
epistemic uncertainty) clearly differs from the previously discussed
stochasticity (also known as aleatoric uncertainty) (Der Kiureghian and
Ditlevsen, 2009), in the sense that epistemic uncertainty can be reduced
by observing more data, while stochasticity can never be reduced. We
will here focus on methods to estimate (epistemic) uncertainty, which is
an important topic in model-based RL, since we need to assess whether
our plan is actually reliable. Note that uncertainty is even relevant in
the absence of stochasticity, as illustrated in Figure 4.3.

We therefore want to estimate the uncertainty around our pre-
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Figure 4.3: Illustration of uncertainty due to limited data. Red dotted line
depicts an example ground truth transition function. Left: Gaussian Process
fit after 3 observations. The predictions are clearly off in the right part of the
figure, due to wrong extrapolation. The shaded area shows the 95% confidence
interval, which does identify the remaining uncertainty, although not completely
correct. Right: Gaussian Process fit after 10 observations. Predictions are
much more certain now, mostly matching the true function. There is some
remaining uncertainty on the far right of the curve.

dictions. Then, when we plan over our model, we can detect when
our predictions become less trustworthy. There are two principled ap-
proaches to uncertainty estimation in statistics: frequentist and Bayesian.
A frequentist approach is for example the statistical bootstrap, applied
to model estimation by Fröhlich et al. (2014) and Chua et al. (2018).
Bayesian RL methods were previously surveyed by Ghavamzadeh et
al. (2015). Especially successful have been non-parametric Bayesian
methods like Gaussian Processes (GPs), for example used for model
estimation in PILCO (Deisenroth and Rasmussen, 2011). However, GPs
scale (computationally) poorly to high-dimensional state spaces. There-
fore, there has been much recent interest in Bayesian methods for neural
network approximation of dynamics, for example based on variational
dropout (Gal et al., 2016) and variational inference (Depeweg et al.,
2016). Note that uncertainty estimation is also an active research topic
in the deep learning community itself, and advances in those fields will
likely benefit model-based RL as well. We will discuss how to plan over
an uncertain model in Sec. 5.
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4.4 Partial observability

Partial observability occurs in an MDP when the current observation
does not provide all information about the ground truth state of the
MDP. Note the difference between partial observability and stochasticity.
Stochasticity is fundamental noise in the transition of the ground truth
state, and can not be mitigated. Instead, partial observability originates
from a lack of information in the current observation, but can partially
be mitigated by incorporating information from previous observations
(Figure 4.1, arrow 2). For example, a first-person view agent can not see
what is behind itself right now, but it can remember what it saw behind
itself a few observations ago, which mitigates the partial observability.

So how do we incorporate information from previous observations?
We largely identify four approaches: i) windowing, ii) belief states, iii)
recurrency and iv) external memory (Figure 4.4).

• Windowing: In the windowing approach we concatenate the n
most recent observations and treat these together as the state
(Lin and Mitchell, 1992). McCallum (1997) extensively studies
how to adaptively adjust the window size. In some sense, this
is a tabular solution to partial observability. Although this ap-
proach can be effective in small problems, they suffer from high
memory requirements in bigger problems, and cannot profit from
generalization.

• Belief states: Belief states explicitly partition the learned dynamics
model in an observation model p(o|s) and a latent transition
model T (s′|s, a) (Chrisman, 1992). This structure is similar to
the sequence modeling approach of state-space models (Bishop,
2006), such as hidden Markov models (HMM). This approach
represents the dynamics model as a probabilistic graph, in which
the parameters are for example estimated through expectation-
maximization (EM) (Ghahramani and Hinton, 1996). There is
also specific literature on planning for such belief state models,
known as POMDP planners (Spaan and Spaan, 2004; Kurniawati
et al., 2008; Silver and Veness, 2010). The principles of belief state
models have also been combined with neural networks (Krishnan
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Figure 4.4: Example approaches to partial observability. The window ap-
proach concatenates the most recent n frames and treats this as a new state.
The recurrent approach learns a recurrent mapping between timesteps to
propagate information. The Neural Turing Machine uses an external memory
to explicitly write away information and read it back when relevant, which is
especially applicable to long-range dependencies.

et al., 2015; Karl et al., 2016), which makes them applicable to
high-dimensional problems as well.

• Recurrency: The most popular solution to partial observability
is probably the use of recurrent neural networks, first applied
to dynamics learning in Lin (1993) and Parlos et al. (1994). A
variety of papers have studied RNNs in high-dimensional settings
in recent years (Chiappa et al., 2017; Ha and Schmidhuber, 2018;
Gemici et al., 2017). Since the transition parameters of the RNN
are shared between all timesteps, the model size is independent
of the history length, which is one the main benefits of RNNs.
They also neatly integrate with gradient-based training and high-
dimensional state spaces. However, they do suffer from vanishing
and exploding gradients to model long-range dependencies. This
may be partly mitigated by long short-term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997) or temporal skip connections
(El Hihi and Bengio, 1996). Beck et al. (2020) recent proposed
aggregators, which are more robust to long-range stochasticity in
the observed sequences, as frequently present in RL tasks.

• External memory: The final approach to partial observability is
the use of an external memory. Peshkin et al. (1999) already gave
the agent access to arbitrary bits in its state that could be flipped
by the agent. Over time it learned to correctly flip these bits to
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memorize historical information. A more flexible extension of this
idea are Neural Turing Machines (NTM) (Graves et al., 2014),
which have read/write access to an external memory, and can be
trained with gradient descent. Gemici et al. (2017) study NTMs
in the context of model learning. External memory is especially
useful for long-range dependencies, since we do not need to keep
propagating information, but can simply recall it once it becomes
relevant. The best way to store and recall information is however
still an open area of research.

Partial observability is an inherent property of nearly all real-world
tasks. When we ignore partial observability, our solution may completely
fail. Therefore, many research papers that focus on some other research
question, still incorporate methodology to battle the partial observability
in the domain. Note that the above partial observability methodology
is equally applicable to a learned policy or value function.

4.5 Non-stationarity

Non-stationarity in an MDP occurs when the true transition and/or
reward function change(s) over time. When the agent keeps trusting
its previous model, without detecting the change, then its performance
may deteriorate fast (see Figure 4.5 for an illustration of the problem).
The main approach to non-stationarity are partial models (Doya et al.,
2002). Partial models are an ensemble of stationary models, where the
agent tries to detect a regime switch to subsequently switch between
models as well. Da Silva et al. (2006) detect a switch based on the
prediction errors in transition and reward models, while Nagabandi
et al. (2018b) makes a soft assignment based on a Dirichlet process.
Jaulmes et al. (2005) propose a simpler approach than partial models,
by simply strongly decaying the contribution of older data (which is
similar to a high learning rate). However, a higher learning rate may
also make training unstable.
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Figure 4.5: Illustration of non-stationarity. Left: First 150 data points sam-
pled from initial dynamics. Black line shows the prediction of a neural network
with 2 hidden layers of 50 units and tanh activations trained for 150 epochs.
Right: Due to non-stationarity the dynamics changed to the blue curve, from
which we sample an additional 50 points. The black curve shows the new
neural network fit without detection of the dynamics change, i.e., treating all
data as valid samples from the same transition distribution. We clearly see
the network has trouble adapting to the new regime, as it still tries to fit to
the old dynamics data points as well.

4.6 Multi-step Prediction

The models we discussed so far made one-step predictions of the next
state. However, we eventually intend to use these in models in multi-step
planning procedures. Of course, we can make multi-step predictions
with one-step models by repeatedly feeding the prediction back into the
learned model. However, since our learned model was never optimized
to make long-range predictions, accumulating errors may actually cause
our multi-step predictions to diverge from the true dynamics. Several
authors have identified this problem (Talvitie, 2014; Venkatraman et al.,
2015; Talvitie, 2017; Machado et al., 2018).

We therefore require models that are robust at long range predictions
(Figure 4.1, arrow 3). There are largely two approaches to this challenge:
i) different loss functions and ii) separate dynamics functions for 1,2..n-
step predictions. In the first approach we simply include multi-step
prediction losses in the overall training target (Abbeel and Ng, 2005;
Chiappa et al., 2017; Hafner et al., 2019b; Ke et al., 2019). These
models still make 1-step predictions, but during training they are
unrolled for n steps and trained on a loss with the ground truth n-
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step observation. The second solution is to learn a specific dynamics
model for every n-step prediction (Asadi et al., 2018). In that case, we
learn for example a specific function T 3(ŝt+3|st, at, at+1, at+2), which
makes a three step prediction conditioned on the current state and
future action sequence. Some authors directly predict entire trajectories,
which combines predictions of multiple depths (Mishra et al., 2017).
The second approach will likely have more parameters to train, but
prevents the instability of feeding an intermediate prediction back into
the model.

Some papers do not explicitly specify how many steps in the future
to predict (Neitz et al., 2018), but for example automatically adjust
this based on the certainty of the predicted state (Jayaraman et al.,
2018). The topic of multi-step prediction also raises a question about
performance measures. If our ultimate goal is multi-step planning,
then one-step prediction errors are likely not a good measure of model
performance.

4.7 State abstraction

Representation learning is a crucial topic in reinforcement learning and
control (Lesort et al., 2018). Good representations are essential for
good next state predictions, and equally important for good policy and
value functions. Representation learning is an important research field
in machine learning itself, and many advances in state abstraction for
model estimation actually build on results in the broader representation
learning community.

Early application of representation learning in RL include (soft)
state aggregation (Singh et al., 1995) and principal component analysis
(PCA) (Nouri and Littman, 2010). Mahadevan (2009) covers various
approaches to learning basis functions in Markov Decision Processes.
However, by far the most successful approach to representation learning
in recent years have been deep neural networks, with a variety of example
applications to model learning (Oh et al., 2015; Watter et al., 2015;
Chiappa et al., 2017).

In the neural network-based approach, the dynamics model is typi-
cally factorized into three parts: i) an encoding function zt = f enc

φ (st),
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which maps the observation to a latent representation zt, ii) a latent
dynamics function zt+1 = f trans

φ (zt, at), which transitions to the next
latent state based on the chosen action, and iii) a decoder function
st+1 = fdec

φ (zt+1), which maps the latent state back to the next state
prediction. This structure, visualized in Figure 4.1, arrow 4, reminds of
an auto-encoder (with added latent dynamics), as frequently used for
representation learning in the deep learning community.

There are three important additional themes for state representation
learning in dynamics models: i) how do we ensure that we can plan at
the more abstract level, ii) how may we better structure our models to
emphasize objects and their physical interactions, and iii) how may we
construct loss functions that retrieve more informative representations.

Planning at a latent level We ideally want to be able to plan at a
latent level, since it allows for faster planning. Since the representation
space is usually smaller than the observation space, this may save much
computational effort. However, we must ensure that the predicted next
latent state lives in the same embedding space as the encoded current
latent state. Otherwise, repeatedly feeding the latent prediction into
the latent dynamics model will lead to predictions that diverge from
the truth. One approach is to add an additional loss that enforces the
next state prediction to be close to the encoding of the true next state
(Watter et al., 2015). An alternative are deep state-space models, like
deep Kalman filters (Krishnan et al., 2015) or deep variational Bayes
filters (Karl et al., 2016). These require probabilistic inference of the
latent space, but do automatically allow for latent level planning.

We may also put additional restrictions on the latent level dynamics
that allow for specific planning routines. For example, (iterative) linear-
quadratic regulator (LQR) (Todorov and Li, 2005) planning requires a
linear dynamics function. Several authors (Watter et al., 2015; Van Hoof
et al., 2016; Fraccaro et al., 2017) linearize their learned model on the
latent level, and subsequently apply iLQR to solve for a policy (Watter
et al., 2015; Zhang et al., 2019; Van Hoof et al., 2016). In this way,
the learned representations may actually simplify planning, although
it does require that the true dynamics can be linearly represented at
latent level.
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State abstraction is also related to grey-box system identification.
In system identification (Åström and Eykhoff, 1971), the control term
for model learning, we may discriminate ‘black box’ and ‘grey box’
approaches (Ljung, 2001). Black box methods, which do not assume any
task-specific knowledge in their learning approach, are the main topic of
Section 4. Grey box methods do partially embed task-specific knowledge
in the model, and estimate remaining free parameters from data. The
prior knowledge of grey box models is usually derived from the rules
of physics. One may use the same idea to learn state abstractions. For
example, in a robots task with visual observations, we may known the
required (latent) transition model (i.e., f trans

φ is known from physics),
but not the encoding function from the visual observations (f enc

φ is
unknown). Wu et al. (2015) give an example of this approach, where the
latent level dynamics are given by a known, differentiable physics engine,
and we optimize for the encoding function from image observations.

Objects A second popular approach to improve representations is by
focusing on objects and their interactions. Infants are able to track
objects at early infancy, and the ability to reason about object inter-
action is indeed considered a core aspect of human cognition (Spelke
and Kinzler, 2007). In the context of RL, these ideas have been for-
mulated as object-oriented MDPs (Diuk et al., 2008) and relational
MDPs (Guestrin et al., 2003). Compared to models that predict raw
pixels, such object-oriented models may better generalize to new, unseen
environments, since they disentangle the physics rules about objects
and their interactions.

We face two important challenges to learn an object-oriented model:
1) how do we identify objects, and 2) how do we model interaction
between objects at a latent level. Regarding the first questions, several
methods have provided explicit object recognizers in advance (Fragki-
adaki et al., 2015; Kansky et al., 2017), but other recent papers manage
to learn them from the raw observations in a fully unsupervised way
(Van Steenkiste et al., 2018; Xu et al., 2019; Watters et al., 2019). The
interaction between objects is typically modeled like a graph neural
network. In these networks, the nodes should capture object features
(e.g., appearance, location, velocity) and the edge update functions
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predict the effect of an interaction between two objects (Van Steenkiste
et al., 2018). There is a variety of recent successful examples in this direc-
tion, like Schema Networks (Kansky et al., 2017), Interaction Networks
(Battaglia et al., 2016), Neural Physics Engine (Chang et al., 2016),
Structured World Models (Kipf et al., 2020) and COBRA (Watters
et al., 2019). In short, object-oriented approaches tend to embed (graph)
priors into the latent neural network structure that enforce the model to
extract objects and their interactions. We refer the reader to Battaglia
et al. (2018) for a broader discussion of relational world models.

Better loss functions Another way to achieve more informative rep-
resentations is by constructing better loss functions. First of all, we
may share the representation layers of the model with other prediction
tasks, like predicting the reward function. The idea to share different
prediction targets to speed-up representation learning is better known
as an ‘auxilliary loss’ (Jaderberg et al., 2016).

We may also construct other losses for which we do not directly
observe the raw target. For example, a popular approach is to predict the
relative effect of actions: st+1 − st (Finn et al., 2016). Such background
subtraction ensures that we focus on moving objects. An extension
of this idea is contingency awareness, which describes the ability to
discriminate between environment factors within and outside our control
(Watson, 1966). We would also like to emphasize these controllable
aspects in our representations. One way to achieve this is through an
inverse dynamics loss, where we try to predict the action that achieves
a certain transition: (s, s′)→ a (Pathak et al., 2017). This will focus on
those parts of the state that the chosen action affects. Other approaches
that emphasize controllable factors can be found in Choi et al. (2018),
Thomas et al. (2018), and Sawada (2018).

There is another important research line which improves represen-
tations through contrastive losses. A contrastive loss is not based on a
single data point, but on the similarity or dissimilarity with other obser-
vations. As an example, Sermanet et al. (2018) record the same action
sequence from different viewpoints, and obtains a compact representa-
tion by enforcing similar states from different viewpoints to be close to
eachother in embedding space. Ghosh et al. (2018) add a loss based on
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the number of actions needed to travel between states, which enforces
states that are dynamically close to be close in representation space as
well. This is an interesting idea, since we use representation learning
to actually make planning easier. Contrastive losses have also been
constructed from the rules of physics in robotics tasks (Jonschkowski
and Brock, 2015), have been applied to Atari models (Anand et al.,
2019), and have combined with the above object-oriented approach
(Kipf et al., 2020).

Finally, there is an additional way to improve representations through
value equivalent models (Grimm et al., 2020). These models are trained
on their ability to predict a value or (optimal) action. We will cover this
idea in Sec. 6 on implicit model-based RL, which covers methods that
optimize elements of the model-based RL process for the ability to out-
put an (optimal) action or value. To summarize, this section discussed
the several ways in which the state representation learning of models
may be improved, for example by embedding specific substructure in
the networks (e.g., to extract objects and their interactions), or by con-
structing smarter loss functions. All these topics have their individual
benefit, and future work may actually focus on ways to combine these
approaches.

4.8 Temporal abstraction

The MDP definition typically involves low-level, atomic actions executed
at a high-frequency. This generates deep search trees with long-range
credit assignment. However, many of these paths give the same end-state,
and some end-states are more useful than others. The idea of temporal
abstraction, better known as hierarchical reinforcement learning (Barto
and Mahadevan, 2003; Hengst, 2017; Thrun and Schwartz, 1995), is to
identify a high-level action space that extends over multiple timesteps
(Figure 4.1, arrow 5 and Figure 4.6). Indeed, temporal abstraction
can theoretically reduce both the sample (Brunskill and Li, 2014) and
computational complexity (Mann and Mannor, 2014) of solving the
MDP.

There are a variety of frameworks to define abstract actions. One
popular choice is the options framework (Sutton et al., 1999). Options
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Figure 4.6: Conceptual illustration of a two-level hierarchy, partially based on
Nachum et al. (2018). Standard low-level interaction is shown with solid lines,
temporal abstraction is shown with dashed lines. The high-level controller
picks a high-level action (goal) gt according to πhigh. After fixing gt, the low
level controller executes the relevant subpolicy, for example in the form of
a goal-conditioned policy πlow(s, g). The number of steps between high-level
actions can be fixed or variable, depending on the framework. The illustration
assumes full observability, in which case we only need to condition πhigh on the
current observation. We may also feed g back into the next high-level decision
to enable temporal correlation between goals.

are a discrete set of high-level actions. Each option u has its own
initiation set Iu ∈ S from which the option can be started, a sub-policy
πu for execution, and a state-dependent termination probability βu(s)
for the option to end in a reached state. A popular competing approach
are goal-conditioned policy/value functions (GCVF), also known as
universal value function approximators (Schaul et al., 2015). These
ideas originally date back to work on Feudal RL (Dayan and Hinton,
1993). GCVFs use a goal space G as the abstract action space. They
learn a goal-conditioned value function Q(s, a, g), which estimates the
value of a in s if we attempt to reach g. We train such models on
a goal-parametrized reward function, which for example rewards the
agent for getting closer to g in Euclidean distance (Nachum et al., 2018).
Afterwards, we can plan by chaining multiple subgoals (Eysenbach et al.,
2019a; Zhang et al., 2021).

Options and goal-conditioned value functions are conceptually dif-
ferent. Most importantly, options have a separate sub-policy per option,
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while GCVFs attempt to generalize over goals/subpolicies. Moreover,
options fix the initiation and termination set based on state information,
while GCVFs can initiate and terminate everywhere. Note that GCVFs
can some sense interpolate from one-step models (plan a next subgoal
which is only one step away) to model-free RL (directly give the final
goal to the GCVF, without any planning), as for example shown by
Pong et al. (2018).

Discovery of relevant sub-routines Whether we use options, GCVFs,
or some other definition of abstract actions, the most important question
is often: how do we actually identify the relevant subroutines, i.e.,
relevant end-states for our options, or goal states for our GCVF. We
summarize the most important approaches below:

• Graph structure: This approach identifies ‘bottleneck’ states as
end-points for the subroutines. A bottleneck is a state that con-
nects two densely interconnected subgraphs in the MDP graph
(Menache et al., 2002). Therefore, a bottleneck is a crucial state
in order to reach another region of the MDP, and therefore a
candidate subgoal. There are several ways to identify bottlenecks:
McGovern and Barto (2001) identify bottlenecks from overlapping
states in successful trials, Şimşek et al. (2005) run a graph parti-
tioning algorithm on a reconstruction of the MDP graph, and Goel
and Huber (2003) search for states with many predecessors, but
whose successors do not have many predecessors. The bottleneck
approach received much attention in smaller problems, but does
not scale well to higher-dimensional problems.

• State-space coverage: Another idea is to spread the end-states of
subroutines over the entire state-space, in order to reach good
coverage. Most approaches first cluster the state space, and sub-
sequently learn a dynamics model to move between the cluster
centers (Mannor et al., 2004; Lakshminarayanan et al., 2016;
Machado et al., 2017). Instead of the raw state space, we may also
cluster in a compressed representation of it (Ghosh et al., 2018)
(see previous section as well).
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• Compression (information-theoretic): We may also attempt to
simply compress the space of possible end-points. This idea is
close to the state space coverage ideas above. Gregor et al. (2016),
Eysenbach et al. (2019b), and Achiam et al. (2018) associate
the distribution of observed end-states with a noise distribution.
After training, the noise distribution acts as a high-level action
space from which we can sample. Various approaches also include
additional information-theoretic regularization of this compression.
For example, Gregor et al. (2016) add the criterion that action
sequences in the compressed space should make the resulting state
well predictable (‘empowerment’). Other examples are provided
by Florensa et al. (2017), Hausman et al. (2018), and Fox et al.
(2016).

• Reward relevancy: The idea of this approach is that relevant
subroutines will help incur extra reward, and they should therefore
automatically emerge from a black-box optimization approach.
These approaches embed the structure of subroutines into their
algorithms, ensure that the overall model is differentiable, and
run an end-to-end optimization. Examples are the Option-Critic
(Bacon et al., 2017; Riemer et al., 2018) and Feudal Networks
(Vezhnevets et al., 2017), with more examples in Frans et al.
(2018), Levy et al. (2019), Heess et al. (2016), and Nachum et al.
(2018). Daniel et al. (2016) and Fox et al. (2017) use probabilistic
inference based on expectation-maximization, where the E-step
infers which options are active, and the M-step maximizes with
respect to the value. A challenge for end-to-end approaches is
to prevent degeneration, i.e., preventing that a single subroutine
starts to solve the entire task, or that every subroutine terminates
after one step.

• Priors: Finally, we may also use prior knowledge to identify useful
subroutines. Sometimes, the prior knowledge is domain-specific,
like pre-training on hand-coded sub-tasks (Tessler et al., 2017;
Heess et al., 2016). Kulkarni et al. (2016) identify all objects in
the scene as end-points, which may generalize over domains when
combined with a generic object recognizer. Several papers also
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infer relevant subroutines from expert demonstrations (Konidaris
et al., 2012; Fox et al., 2017; Hamidi et al., 2015), which is of
course also a form of prior knowledge.

This concludes our discussion of temporal abstraction, and thereby
also our discussion of model learning as a whole. In summary, we have
seen a variety of important challenges in model learning, which several
research papers have addressed. In all directions important progress
has been made, but most papers tend to focus on a specific problem
in isolation. Since complex real-world tasks likely require many of the
discussed aspects, the combination of these methods in more complex
tasks seems an important future research direction.



5
Integration of Planning and Learning

The importance of models for intelligence has been long recognized in
various research fields: machine learning (Bellman, 1966; Jordan and
Rumelhart, 1992), neuroscience (Tolman, 1948; Doll et al., 2012) and
behavioural psychology (Craik, 1943; Wolpert et al., 1995; Doll et al.,
2012). In this section we will discuss the integration of planning and
learning to arrive at a policy π(a|s), i.e., a local or global specification
of action prioritization. We will specify a taxonomy that disentangles
four central questions of the integration of planning and learning. The
four main questions we need to answer are:

1. At which state do we start planning? (Sec. 5.1)

2. How much planning budget do we allocate for planning and real
data collection? (Sec. 5.2)

3. How to plan? (Sec. 5.3)

4. How to integrate planning in the learning and acting loop? (Sec.
5.4)

The first three questions mostly focus on the planning method itself
(Fig. 1.1, arrow a), while the last question covers the way planning

33
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is integrated in the learning and acting loop (Fig. 1.1, arrows b-g).
Note that each of the above questions actually have several important
subconsiderations, which leads to the overall taxonomy summarized in
Table 5.1. The next sections will discuss each of these subconsiderations.

5.1 At which state do we start planning?

The natural first question of planning is: at which state do we start?
There are several options:

• Uniform: A straightforward approach is to uniformly select states
throughout the state space. This is for example the approach of
Dynamic Programming (Bellman, 1966), which selects all possible
states in a sweep. The major drawback of this approach is that
it does not scale to high dimensional problems, since the total
number of states grows exponentially in the dimensionality of the
state space. The problem is that we will likely update many states
that are not even reachable from the start state.

• Visited: We may ensure that we only plan at reachable states by
selecting previously visited states as starting points. This approach
is for example chosen by Dyna (Sutton, 1990).

• Prioritized: Sometimes, we may be able to obtain an ordering over
the reachable states, identifying their relevancy for a next planning
update. A good example is Prioritized Sweeping (Moore and
Atkeson, 1993), which identifies states that likely need updating.
Prioritization has also been used in replay database approaches
(Schaul et al., 2016).

• Current: Finally, a common approach is to only spend planning
effort at the current state of the real environment. This puts
emphasis at finding a better solution or more information in
the region where we are currently operating. Even model-based
RL methods with a known model, like AlphaGo Zero (Silver et
al., 2017b), sometimes (because of the problem size) introduce
the notion of a real environment and current state. The real
environment step introduces a form of pruning, as it ensures that
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we move forward at some point, obtaining information about
deeper nodes (see Moerland et al., 2020b as well).

5.2 How much budget do we allocate for planning and real data
collection?

We next need to decide i) after how many real environment steps we
start to plan, and ii) when we start planning for a particular state,
what planning budget do we allocate? Together, these two questions
determine an important trade-off in model-based RL.

When to start planning? We first need to decide how many real steps
we will make before a new planning cycle. Many approaches plan after
every irreversible environment step. For example, Dyna (Sutton, 1990)
makes up to a hundred planning steps after every real step. Other
approaches collect a larger set of data before they start to plan. For
example, PILCO (Deisenroth and Rasmussen, 2011) collects data in
entire episodes, and replans an entire solution after a set of new real
transitions has been collected. The extreme end of this spectrum is
batch reinforcement learning (Lange et al., 2012), where we only get
a single batch of transition data from a running system, and we need
to come up with a new policy without being able to interact with the
real environment. Some methods may both start with an initial batch
of data to estimate the model, but also interact with the environment
afterwards (Watter et al., 2015).

How much time to spend on planning? Once we decide to start
planning, the next question is: how much planning budget do we allocate.
We define a planning cycle to consist of multiple planning iterations,
where each iteration is defined by fixing a new planning start state. The
total planning effort is then determined by two factors: i) how many
times do we fix a new start state (i.e., start a new planning iteration),
and ii) how much effort does each iteration get?

We will use Dyna (Sutton, 1990) and AlphaGo Zero (Silver et al.,
2017b) as illustrative examples of these two questions. In between every
real environment step, Dyna samples up to a 100 one-step transitions.
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This means we have 100 planning iterations, each of budget 1. In
contrast, in between every real step AlphaGo Zero does a single MCTS
iteration, which consists of 1600 traces, each of approximate depth 200.
Therefore, AlphaGo Zero performs 1 planning iteration, of budget ∼
1600 ∗ 200 = 320.000. The total budget per planning cycle for Dyna and
AlphaGo Zero are therefore 100 and ∼ 320.000, respectively. Note that
we measure planning budget as the number of model calls here, while
the true planning effort of course also depends on the computational
burden of the full planning algorithm itself (which in AlphaGo Zero for
example contains expensive neural network evaluations).

Some approaches, especially the ones that target high data efficiency
(see Sec. 7.1) in the real environment, allow for a high planning bud-
get once they start planning. These methods for example plan until
convergence on an optimal policy (given the remaining uncertainty)
(Deisenroth and Rasmussen, 2011). We call this a squeezing approach,
since we attempt to squeeze as much information out of the available
transition data as possible. We further discuss this approach in Sec. 7.1.

Adaptive trade-off Our choice on the above two dimensions essentially
specifies a trade-off between planning and real data collection, with
model-free RL (no planning effort) and exhaustive search (infinite
planning effort) on both extremes. Most model-based RL approaches set
the above two considerations to fixed (intermediate) values. However,
humans make a more adaptive trade-off (Keramati et al., 2011), where
they adaptively decide a) when to start planning, and b) how much time
to spend on that plan (i.e., the two considerations discussed above). See
Hamrick (2019) for a more detailed discussion, which also incorporates
more literature from human psychology. We will also return to this
topic in Sec. 7.3.

A few authors have investigated an adaptive trade-off between
planning and acting in model-based RL. Pascanu et al. (2017) add a
small penalty for every planning step to the overall objective, which
ensures that planning should provide reward benefit. This approach is
very task specific. Hamrick et al. (2017) learn a meta-controller over
tasks that learns to select the planning budget per timestep. In contrast
to these optimization-based approaches, Kalweit and Boedecker (2017)
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derive the ratio between real and planned data from the variance of the
estimated Q-function. When the variance of the Q-function is high, they
sample additional data from the model. This ensures that they only use
ground-truth data near convergence, but accept noisier model-based
data in the beginning. Lu et al. (2019) propose a similar idea based
on the epistemic uncertainty of the value function, by also increasing
planning budgets when the uncertainty rises above a threshold. However,
when we have a learned model, we probably do not want to plan too
extensively in the beginning of training either (since the learned model
is then almost random), so there are clear open research questions here.

5.3 How to plan?

The third crucial consideration is: how to actually plan? Of course,
we do not aim to provide a full survey of planning methods here, and
refer the reader to Moerland et al. (2020b) for a recent framework
to categorize planning and RL methods. Instead, we focus on some
crucial decisions we have to make for the integration, on a) the use of
potential differentiability of the model, b) the direction of planning,
c) the breadth and depth of the plan, and d) the way of dealing with
uncertainty.

Type One important distinction between planning methods is whether
they require differentiability of the model:

• Discrete planning: This is the main approach in the classic AI
and reinforcement learning communities, where we make discrete
back-ups which are stored in a tree, table or used as training
targets to improve a value or policy function. We can in principle
use any preferred planning method. Examples in the context of
model-based RL include the use of probability-limited search (Lai,
2015), breadth-limited depth-limited search (François-Lavet et al.,
2019), Monte Carlo search (Silver et al., 2008), Monte Carlo Tree
Search (Silver et al., 2017b; Anthony et al., 2017; Jiang et al.,
2018; Moerland et al., 2018b), minimax-search (Samuel, 1967;



38 Integration of Planning and Learning

Baxter et al., 1999), or a simple one-step search (Sutton, 1990).
These methods do not require any differentiability of the model.

• Differential planning: The gradient-based approach requires a
differentiable model. If the transition and reward models are dif-
ferentiable, and we specify a differentiable policy, then we can
directly take the gradient of the cumulative reward objective with
respect to the policy parameters. While a real world environ-
ment or simulator is by definition not differentiable, our learned
model of these dynamics (for example a neural network) usually is
differentiable. Therefore, model-based RL can utilize differential
planning methods, exploiting the differentiability of the learned
model. Note that differentiable models may also be obtained from
the rules of physics, for example in differentiable physics engines
(Degrave et al., 2019; Avila Belbute-Peres et al., 2018).
A popular example is the use of iterative linear quadratic regu-
lator planning (Todorov and Li, 2005), which requires a linear
model, and was, for example, used as a planner in Guided Pol-
icy Search (Levine and Koltun, 2013). In the RL community,
the gradient-based planning approach is better known as value
gradients (Fairbank and Alonso, 2012; Heess et al., 2015). Suc-
cessful examples of model-based RL that use differential planning
are PILCO (Deisenroth and Rasmussen, 2011), which differenti-
ates through a Gaussian Process dynamics model, and Dreamer
(Hafner et al., 2019a) and Temporal Segment Models (Mishra
et al., 2017), which differentiate through a (latent) neural network
dynamics model.

Gradient-based planning is especially popular in the robotics and
control community, since it requires relatively smooth underlying tran-
sition and reward functions. In those cases, it can be very effective.
However, it is less applicable to discrete problems and sparse reward
functions.

Direction We also have to decide on the direction of planning (see
also Sec. 4.1):
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• Forward: Forward simulation (lookahead) is the standard approach
in most planning and model-based RL approaches, and actually
assumed as a default in all other paragraphs of this section. We
therefore do not further discuss this approach here.

• Backward: We may also learn a reverse model, which tells us
which state-action pairs lead to a particular state (s′ → s, a). A
reverse model may help spread information more quickly over the
state space. This idea is better known as Prioritized sweeping (PS)
(Moore and Atkeson, 1993). In PS, we track which state-action
value estimates have changed a lot, and then use the reverse model
to identify their possible precursors, since the estimates of these
state-actions are now likely to change as well. This essentially
builds a search tree in the backward direction, where the planning
algorithm follows the direction of largest change in value estimate.

Various papers have shown the benefit of prioritized sweeping
with tabular models (Moore and Atkeson, 1993; Dearden et al.,
1999; Wiering and Schmidhuber, 1998), which are trivial to invert.
Example that use function approximation include linear approx-
imation (Sutton et al., 2012), nearest-neighbour models (Jong
and Stone, 2007), and neural network approximation (Agostinelli
et al., 2019; Edwards et al., 2018; Corneil et al., 2018). The benefit
of prioritized sweeping can be large, due to its ability to quickly
propagate relevant new information, but in combination with
function approximation it can also be unstable.

Breadth and depth A new planning iteration starts to lookahead from
a certain start state. We then still need to decide on the the breadth
and the depth of the lookahead. For model-free RL approaches, breadth
is not really a consideration, since we can only try a single action in a
state (a breadth of one). However, a model is by definition reversible,
and we are now free to choose and adaptively balance the breadth and
depth of the plan. We will list the possible choices for both breadth and
depth, which are summarized in Figure 5.1.

For the breadth of the plan, there are three main choices:
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• Breadth = 1: These methods only sample single transitions or in-
dividual traces from the model, and still apply model-free updates
to them. Therefore, they still use a breadth of one. The cardinal
example of this approach is Dyna (Sutton, 1990), which sampled
additional one-step data for model-free Q-learning (Watkins and
Dayan, 1992) updates. More recently, Kalweit and Boedecker
(2017) applied the above principle to deep deterministic policy
gradient (DDPG) updates, Kurutach et al. (2018) to trust region
policy optimization (TRPO) updates and Gu et al. (2016) to
normalized advantage function (NAF) updates.

• Breadth = adaptive: Many planning methods adaptively scale the
breadth of planning. The problem is of course that we cannot
afford to go full breadth and full depth, because exhaustive search
is computationally infeasible. A method that adaptively scales
the breadth of the search is for example Monte Carlo Tree Search
(Kocsis and Szepesvári, 2006; Coulom, 2006; Browne et al., 2012),
by means of the upper confidence bounds formula. This ensures
that we do go deeper in some arms, before going full wide at the
levels above. This approach was for example also used in AlphaGo
Zero (Silver et al., 2017b).

• Breadth = full: Finally, we may of course go full wide over the
action space, before we consider searching on a level deeper. This
is for example the approach of Dynamic Programming, which goes
full wide with a depth of one. In the context of model-based RL,
few methods have taken this approach.

For the depth of the plan, there are four choices:

• Depth = 1: We may of course stop after a depth one. For example,
Dyna (Sutton, 1990) sampled transition of breadth one and depth
one.

• Depth = intermediate: We may also choose an intermediate search
depth. RL researchers have looked at balancing the depth of the
back-up for long, since it trades off bias against variance (a shallow
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back-up has low variance, while a deep back-up is unbiased). In
the context of Dyna, Holland et al. (2018) explicitly studied the
effect of deeper roll-outs, showing that traces longer than depth 1
give better learning performance. Of course, we should be careful
that deeper traces do not depart from the region where the model
is accurate.

• Depth = adaptive: Adaptive methods for depth go together with
adaptive methods for breadth. For example, an MCTS tree does
not have a single depth, but usually has a different depth for many
of its leafs.

• Depth = full: This approach samples traces in the model until
an episode terminates, or until a large horizon. PILCO and Deep
PILCO for example sample deep traces from their models (Gal
et al., 2016).

This was a shallow treatment of the crucial breadth versus depth
balancing in planning, which has a close relation to exploration methods
as well. From a model-based RL perspective, the crucial realization is
that compared to model-free RL, we can suddenly use a breadth larger
than one (i.e., backtrack over multiple actions in a state). Nevertheless,
many model-based RL methods still choose to stick to a breadth of one
in their model samples, likely because this gives seamless integration
with model-free updates. We further discuss this topic in Sec. 7.1.

Dealing with uncertainty When we plan over a learned model, we
usually also need to deal with the uncertainty of a learned model. There
are two main approaches:

• Data-close planning: The first approach is to ensure that the
planning iterations stay close to regions where we have actually
observed data. For example, Dyna (Sutton, 1990) samples start
states at the location of previously visited states, and only samples
one-step transitions, which ensures that we do not depart from
the known region of state space. Other approaches, like Guided
Policy Search (Levine and Abbeel, 2014), explicitly constrain the
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Figure 5.1: Breadth and depth of a single planning iteration. For every
planning iteration, we need to decide on the breadth and depth of the lookahead.
In practice, planning iterations usually reside somewhere left of the red dashed
line, since we cannot afford a full breadth, full depth (exhaustive) search.
Most planning methods, like MCTS, adaptively balance breadth and depth
throughout the tree, where the breadth and depth differ throughout the tree.
Figure is based on Sutton and Barto, 2018, who used it to categorize different
types of back-ups. A single planning iteration, which we define by fixing a new
root state, can indeed be seen as a large back-up.

new plan to be close to the current policy (which generated the
data for the model).

• Uncertainty propagation: We may also explicitly estimate model
uncertainty, which allows us to robustly plan over long horizons.
Once we depart too far from the observed data, model uncertainty
will increase, predictions will start to spread out over state space,
and the learning signal will naturally vanish. Estimation of model
uncertainty was already discussed in Sec. 4.3. We will here focus
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on propagation of uncertainty over timesteps, since the next state
uncertainty is of course conditioned on the uncertainty of the
previous step. There are two main propagation approaches:

– Analytic: This propagation method fits a parametric distri-
bution to the uncertainty at every timestep, and tries to
analytically propagate the distribution over passes through
the model. A well-known example is PILCO (Deisenroth
and Rasmussen, 2011), which derives closed form analytic
expressions to propagate uncertainty through a Gaussian
Process model. However, analytic propagation is usually not
possible for more complicated models, like for example neural
networks.

– Sample-based: This propagation approach, also known as
particle methods, tracks the distributions of uncertainty by
propagating a set of particles forward. The particles together
represent the predicted distribution at a certain number
of steps. Particle methods are for example used in Deep
PILCO (Gal et al., 2016) and PETS (Chua et al., 2018).
Note that fitting to a distribution, or matching moments of
distributions, may have a regularizing effect. Therefore, Deep
PILCO (Gal et al., 2016) does propagate particles through
the dynamics function, but then refits these particles to
a (Gaussian) distribution at every step. See Chua et al.
(2018) for a broader discussion of uncertainty propagation
approaches.

We may also use uncertainty to determine the depth of our value es-
timates. Stochastic ensemble value expansion (STEVE) (Buckman
et al., 2018) reweights value targets of different depths according
to their associated uncertainty, which is derived from both the
value function and transition dynamics uncertainty. Thereby, we
base our value estimates on those predictions which have highest
confidence, which may lead to more stable learning.

This concludes our discussion of the actual planning approach in
planning-learning integration. As mentioned before, there are many more
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considerations in a planning algorithm, such as managing exploration
(i.e., balancing breadth and depth in the planning tree). However, these
challenges are not a specific aspect of planning-learning integration (but
rather of RL and planning in general), and are therefore not further
discussed in this survey (although we do discuss model-based exploration
in Sec. 7.2).

5.4 How to integrate planning in the learning and acting loop?

We have now specified how to plan (the start point, budget and planning
method). However, we still need to integrate planning in the larger
learning and acting loop. We now get back to Figure 1.1, which presented
a conceptual overview of the overall training loop in planning-learning
integration. We have so far focused on the planning box (arrow a), but
we will now focus on the connection of planning to other aspects of the
learning loop. These include: i) directing new planning iterations based
on learned knowledge in value or policy functions (Fig. 1.1, arrow b),
ii) using planning output to update learned value or policy functions
(Fig. 1.1, arrow c), and iii) using planning output to select actions in
the real world (Fig. 1.1, arrow d).

Planning input from learned functions The learned value or policy
functions may store much information about the current environment,
which may direct the next planning iteration. We distinguish the use of
value and policy information:

• Value priors: The most common way to incorporate value informa-
tion is through bootstrapping (Sutton and Barto, 2018), where we
plug in the current prediction of a state or state-action value to
prevent having to search deeper (reducing the depth of the search).
Various model-based RL algorithms use bootstrapping in their
planning approach, for example Baxter et al. (1999), Silver et al.
(2017b), Jiang et al. (2018), and Moerland et al. (2018b), while is
is technically also part of Dynamic Programming (Bellman, 1966).
Note that bootstrapping is also a common principle in model-free
RL. We may also use the learned value function to initialize the
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values of the action nodes at the root of the search (Silver et al.,
2008; Hamrick et al., 2020), which we could interpret as a form of
bootstrapping at depth 0.

• Policy priors: We can also leverage a learned policy in a new
planning iteration. Several ideas have been proposed. AlphaGo
Zero (Silver et al., 2017b) uses the probability of an action as a
prior multiplication term on the upper confidence bound term in
MCTS planning. This gives extra exploration pressure to actions
with high probability under the current policy network. Guided
Policy Search (GPS) (Levine and Koltun, 2013) penalizes a newly
planned trajectory for departing too much from the trajectory
generated by the current policy network. As another example,
Guo et al. (2014) let the current policy network decide at which
locations to perform the next search, i.e., the policy network
influences the distribution of states used as a starting point for
planning (Sec. 5.1, a form of prioritization). In short, there are
various ways in which we may incorporate prior knowledge from a
policy into planning, although it is not clear yet which approach
works best.

Planning update for policy or value update Model-based RL meth-
ods eventually seek a global approximation of the optimal value or
policy function. The planning result may be used to update this global
approximation. We generally need to i) construct a training target from
the search, and ii) define a loss for training. We again discuss value and
policy updates separately:

• Value update: A typical choice for a value target is the state(-
action) value estimate at the root of the search tree. The estimate
of course depends on the back-up policy, which can either be on- or
off-policy. For methods that only sample a single action (i.e., use
a breadth of one), like Dyna (Sutton, 1990), we may use a classic
Q-learning target (one-step, off-policy). For planning cycles that
do consider multiple actions in a state (that go wide and possibly
deep), we can combine on- and off-policy back-ups throughout the
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tree in various ways. Willemsen et al. (2020) present a recent study
of the different types of back-up policies in a tree search. After
constructing the value target, the value approximation is usually
trained on a mean-squared error (MSE) loss (Veness et al., 2009;
Moerland et al., 2018b). However, other options are possible as
well, like a cross-entropy loss between the softmax of the Q-values
from the search and the Q-values of a learned neural network
(Hamrick et al., 2020).

• Policy update: For the policy update we again observe a variety
of training targets and losses, depending on the type of planning
procedure that is used. For example, AlphaGo Zero (Silver et al.,
2017b) uses MCTS planning, and constructs a policy training
target by normalizing the visitation counts at the root node. The
policy network is then trained on a cross-entropy loss with this
distribution. Guo et al. (2014) apply the same idea with a one-hot
encoding of the best action, while Moerland et al. (2018b) cover
an extension to a loss between discrete counts and a continuous
policy network. As a different approach, Guided Policy Search
(GPS) (Levine and Abbeel, 2014) minimizes the Kullback-Leibler
(KL)-divergence between a planned trajectory and the output of
the policy network. Some differential planning approaches also
directly update a differentiable global representation (Deisenroth
and Rasmussen, 2011).

We may also train a policy based on a value estimate. For exam-
ple, Policy Gradient Search (PGS) (Anthony et al., 2019) uses
the policy gradient theorem (Williams, 1992) to update a policy
from value estimates in a tree. Note that gradient-based planning
(discussed in Sec. 5.3) also belongs here, since it directly generates
gradients to update the differentiable policy.

Most of the above methods construct training targets for value
or policy at the root of the search. However, we may of course also
construct targets at deeper levels in the tree (Veness et al., 2009).
This extracts more information from the planning cycle. Many papers
update their value or policy from both planned and real data, but
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other papers exclusively train their policy or value from planning (Ha
and Schmidhuber, 2018; Kurutach et al., 2018; Depeweg et al., 2016;
Deisenroth and Rasmussen, 2011), using real data only to train the
dynamics model.

Note that arrows b and c in Figure 1.1 form a closed sub-loop in the
overall integration. There has been much recent interest in this sub-loop,
which iterates planning based on policy/value priors (arrow b), and
policy/value learning based on planning output (arrow c). A successful
algorithm in this class is AlphaGo Zero (Silver et al., 2017b), which is
an instance of multi-step approximate real-time dynamic programming
(MSA-RTDP) (Efroni et al., 2019a). MSA-RTDP extends the classic
DP ideas by using a ‘multi-step’ lookahead, learning the value or policy
(‘approximate’), and operating on traces through the environment (‘real-
time’). Efroni et al. (2019a) theoretically study MSA-RTDP, showing
that higher planning depth d decreases sample complexity in the real
environment at the expense of increased computational complexity.
Although this is an intuitive result, it does prove that planning may
lead to better informed real-world decisions, at the expense of increased
(model-based) thinking time. In addition, iterated planning and learning
may also lead to more stable learning, which we discuss in Sec. 7.3.

Planning output for action selection in the real environment We
may also use planning to select actions in the real environment. While
model-free RL has to use the value or policy approximation to select
new action in the environment (Fig. 1.1, arrow e), model-based RL
may also select actions directly from the planning output (Fig. 1.1,
arrow d). Some methods only use planning for action selection, not for
value/policy updating (Tesauro and Galperin, 1997; Silver et al., 2008),
for example because planning updates can have uncertainty. However,
many methods actually combine both uses (Silver et al., 2017b; Silver
et al., 2018; Anthony et al., 2017; Moerland et al., 2018b).

Selection of the real-world actions may happen in a variety of ways.
First of all, we may greedily select the best action from the plan. This
is the typical approach of methods that ‘plan over a learned model’
(Table 3.2). The cardinal example in this group are model predictive
control (MPC) or receding horizon control approaches. In MPC, we
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find the greedy action of a k-step lookahead search, execute the greedy
action, observe the true next state, and repeat the same procedure from
there. The actual planning algorithm in MPC may vary, with examples
including iLQR (Watter et al., 2015), direct optimal control (Nagabandi
et al., 2018c; Chua et al., 2018), Dijkstra’s algorithm (Kurutach et al.,
2018), or repeated application of an inverse model (Agrawal et al., 2016).
MPC is robust to (changing) constraints on the state and action space
(Kamthe and Deisenroth, 2017), and is especially popular in robotics
and control tasks.

Note that we do not have to execute the greedy action after a
planning cycle ends, but can introduce additional exploration noise
(like Dirichilet noise in Silver et al. (2017b)). We can also explicitly
incorporate exploration criteria in the planning process, which we may
call ’plan to explore’ (Sekar et al., 2020; Lowrey et al., 2018). For
example, Dearden et al. (1998) explore based on the value of perfect
information’ (VPI), which estimates from the model which action has
the highest potential to change the greedy policy. Indeed, planning
may identify action sequences that perform ‘deep exploration’ towards
new reward regions, which one-step exploration methods would fail to
identify due to jittering behaviour (Osband et al., 2016).

This concludes our discussion of the main considerations in planning-
learning integration. Table 5.1 summarizes the framework, showing the
potential decisions on each dimension.

5.5 Conceptual comparison of approaches

This section discussed the various ways in which planning and learning
can be integrated. We will present two summaries of the discussed
material. First of all, Figure 5.2 summarizes the different types of
connectivity that may be present in planning-learning integration. The
figure is based on the scheme of Figure 1.1, as used throughout this
section, and the classification of model-based RL methods described in
Table 3.2.

We see how well-known model-based RL algorithms like Dyna (Sut-
ton, 1991) and AlphaGo Zero (Silver et al., 2017b) use different connec-
tivity. For example, Dyna learns a model, which AlphaGo Zero assumes
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Figure 5.2: Comparison of planning and learning algorithms, based on the
general visualization of learning/planning integration from Figure 1.1. Thick
lines are used by an algorithm. Dyna (Sutton, 1991) (top-left) is an example
of model-based RL with a learned model. AlphaGo Zero (Silver et al., 2017b)
(top-right) is an example of model-based RL with a known model. Note that
therefore the model does not need updating from data. Embed2Control (Watter
et al., 2015) (bottom-left) is an example of planning over a learned model. For
comparison, the bottom right shows a model-free RL algorithm, like Deep
Q-Network (Mnih et al., 2015) or SARSA (Rummery and Niranjan, 1994) with
eligibility traces

.
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to be known, and AlphaGo Zero selects actions from planning, while
Dyna uses the learned value approximation. The bottom row shows
Embed2Control (Watter et al., 2015), a method that only plans over
a learned model, and completely bypasses any global policy or value
approximation. For comparison, the bottom-right of the figure shows
a model-free RL approach, like DQN (Mnih et al., 2015) or SARSA
(Rummery and Niranjan, 1994) with eligibility traces.

As a second illustration, Table 5.2 compares several well-known
model-based RL algorithms on the dimensions of our framework for
planning-learning integration (Table 5.1). We see how different inte-
gration approaches make different choices on each of the dimensions.
It is hard to judge whether some integration approaches are better
than others, since they are generally evaluated on different types of
tasks (more on benchmarking in Sec. 10. The preferred choices of course
also depend on the specific problem and available resources. For ex-
ample, a problem like Go requires are relatively high planning budget
per timestep (Silver et al., 2017b), while for smaller problems a lower
planning budget per timestep may suffice. Gradient-based planning
can be useful, but is mostly applicable to continuous control tasks,
due to the relatively smooth dynamics. For many considerations, there
are both pros and cons. Usually, the eventual decisions depends on
hyperparameter optimization and the type of benefit (of model-based
RL) we aim for, which we will discuss in Sec 7.
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Table 5.1: Overview of taxonomy of planning-learning integration. These
considerations are discussed throughout Sec. 5. Table 5.2 summarizes several
model-based RL algorithms on these dimensions.

Dimension Consideration Choices

1. Start state (5.1) - Start state Uniform↔ visited↔ prioritized↔ current

2. Budget (5.2) - Number of real steps
before planning

1 ↔ n, episode, etc.

- Effort per planning cy-
cle

1 ↔ n ↔ convergence

3. Planning ap-
proach (5.3)

- Type Discrete ↔ gradient-based

- Direction Forward ↔ Backward

- Breadth 1 ↔ adaptive ↔ full

- Depth 1 ↔ interm./adaptive ↔ full

- Uncertainty Data-close ↔ Uncertainty propagation
(-Prop.method: parametric ↔ sample)

4. Integration
in learning loop
(5.4)

- Planning input from
learned function

Yes (value/policy) ↔ No

- Planning output for
training targets

Yes (value/Policy) ↔ No

- Planning output for ac-
tion selection

Yes ↔ No
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6
Implicit Model-based Reinforcement Learning

We have so far discussed the two key steps of model-based RL: 1)
model learning and 2) planning over the model to recommend an action
or improve a learned policy or value function. All the methodology
discussed so far was explicit, in a sense that we manually specified
each part of the algorithm. This is the classical, explicit approach to
model-based RL (and to algorithm design in general), in which we
manually design the individual elements of the algorithms.

An interesting observation about the above process is that, although
we may manually design various aspects of model-based RL algorithms,
we ultimately only care about one thing: identifying the (optimal)
value or policy. In other words, the entire model-based RL procedure
(model learning, planning, and possibly integration in value/policy
approximation) can from the outside be seen as a single optimization
objective, since we want it to predict an (optimal) action or value. This
intuition leads us to the field of implicit model-based RL. The common
idea underneath all these approaches is to take one or more aspects
of the model-based RL process and optimize these for the ultimate
objective, i.e., (optimal) value or policy computation.

In particular, we will focus on methods that use gradient-based
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Figure 6.1: Categories of implicit model-based RL (Sec. 6). Graphs schemati-
cally illustrate a differentiable computation graph, with transitions (T) denoted
as lines, and planning/policy improvement (P) denoted as an arc between
alternative actions (which are not explicitly drawn). The depiction of planning
(policy improvement in the graph) is of course conceptual, and may in practice
involve several networks (e.g., an action selection network and a back-up
network). For each graph, black lines are known (in differentiable form), while
orange lines are learned. Top-left: Value equivalent model in the policy eval-
uation setting, of which MuZero (Schrittwieser et al., 2019) is an example.
Top-right: Value equivalent model with implicit planning, of which Value
Iteration Networks (Tamar et al., 2016) are an example. Bottom-left: Learning
to plan, of which MCTSNet (Guez et al., 2018) is an example. Bottom-right:
Full implicit model-based RL, of which TreeQN (Farquhar et al., 2018) is an
example.



55

optimization. In those cases, we embed (parts of) the model-based RL
process within a differentiable computational graph, which eventually
outputs a value or action recommendation. Since the graph remains
end-to-end differentiable, we may optimize one or more elements of our
model-based RL procedure for an eventual value prediction or action
recommendation. One would be tempted to therefore call the field ‘end-
to-end model-based RL’, but note that the underlying principles are
more general, and could also work with gradient-free optimization.

We may use implicit model-based RL to replace each (or both)
of the steps of explicit model-based RL: 1) to optimize a transition
model and 2) to optimize for the actually planning procedure (i.e.,
some form of policy optimization). This leads to the possible settings
shown in Fig. 6.1. The figure schematically shows the different types
of computational graphs we may construct, and which elements of this
graph are optimized for (shown in orange). We will discuss these possible
settings shown in the later part of this section.

The differentiable computational graphs of course need to be opti-
mized against some outer objective, for which there are two options.
First, we may train the graph for its ability to predict the correct
(optimal) value (an RL loss). This value is frequently obtained from a
standard model-free RL target constructed from observed traces. The
second option is to train the graph against its ability to output the
correct (optimal) action or policy (an imitation loss). Such knowledge
may either be available from expert demonstrations, or can be obtained
from running a separate model-free RL agent. The underling intuition
is to first optimize the model and/or planning procedure against correct
value or action targets in a task, which may afterwards lead to superior
performance in the same task, or generalization to other tasks.

The remainder of this section will discuss the three possible forms
of computational graphs shows in Fig. 6.1: value equivalent models
(Sec. 6.1), where we only optimize the transition dynamics in the
graph, learning to plan (Sec. 6.2), where we only optimize the planning
operations, and full implicit model-based RL (Sec. 6.3), where we jointly
optimize the transition model and planning operations. A structured
overview of the papers we discuss is provided in Table 6.1.
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6.1 Value equivalent models

Standard model learning approaches, as discussed in Section 4, learn a
forward model that predicts the next state of the environment. However,
such models may predict several aspects of the state that are not
relevant for the value. In some domains, the forward dynamics might
be complicated to learn, but the aspects of the dynamics that are
relevant for value prediction might be much simpler. Grimm et al. (2020)
theoretically study this idea, which they name value equivalent models.
Value equivalent models are unrolled inside the computation graph to
predict a future value (or action), instead of a future state. As such,
these models are enforced to emphasize value-relevant characteristics of
the environment.

An example of a successful value-equivalent approach is MuZero
(Schrittwieser et al., 2019). To learn a transition function, MuZero
internally unrolls a model to predict a multi-step, action-conditional
value (Fig. 6.1, top-left). The graph is then optimized for its ability to
predict a model-free value estimate at each step. The obtained value-
equivalent model is subsequently use in an MCTS procedure, which
achieved state-of-the-art performance in the Chess, Go and Shogi. Other
successful examples of this approach are Value Prediction Networks
(VPN) (Oh et al., 2017) and the Predictron (Silver et al., 2017a).

A crucial aspect of the above methods is that they unroll a single
trace, and therefore train in the policy evaluation setting. In contrast,
we may also optimize the transition model in an implicit planning
graph, which does contain policy improvement (Fig. 6.1, top-right). Two
example papers that take this approach are Value Iteration Networks
(VIN) (Tamar et al., 2016) and Universal Planning Networks (UPN)
(Srinivas et al., 2018). Both papers specify a known, differentiable
planning procedure in the graph (VIN embeds value iteration, UPN
embeds value-gradient planning). The entire planning procedure consist
of multiple cycles through the transition model and planner, which
is then optimized for its ability to predict a correct optimal action
or value. Since VINs and UPNs do incorporate policy improvement
in the computational graph, they may learn slightly different aspects
of the dynamics than MuZero and VPN (i.e., VIN/UPN will only
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emphasize aspects necessary to predict the optimal action/value, while
MuZero/VPN will emphasize aspects necessary to make correct multi-
step predictions for all observed action sequences).

6.2 Learning to plan

We may also use the implicit planning idea to optimize the planning
operations themselves (Fig. 6.1, bottom-left). So far, we encountered two
ways in which learning may enter model-based RL: i) to learn a dynamics
model (Sec. 4), and ii) to learn a value or policy function (from planning
output) (Sec. 5). We now encounter a third level in which learning may
enter model-based RL: to learn the actual planning operations (and its
integration with a learned value or policy function). End-to-end learning
has of course shown success in other machine learning fields, such as
computer vision, where it has gradually replaced manually constructed
features. A similar trend starts to appear for entire algorithms, which
we may better learn through optimization than manually specify. This
idea is known as algorithmic function approximation (Guez et al., 2019),
where our learned approximator makes multiple internal cycles (like
a recurrent neural network) to improve the quality of its prediction.
Note that this differs from standard RNNs, where the recurrence is
typically used to deal with additional inputs or outputs (e.g., in the time
dimension), while in algorithmic function approximation the additional
internal cycles improve the quality of the predictions.

An example of learning to plan are MCTSNets (Guez et al., 2018).
This approach specifies elements of the MCTS algorithm, like selection,
back-up and final recommendation, as neural networks, and optimizes
these against the ability to predict the correct optimal action in the
game Sokoban. While MCTSNets assume a known dynamics model,
Imagination-augmented agents (I2A) (Racanière et al., 2017) first sepa-
rately learn a differentiable dynamics model (in the standard way), and
then learn how to aggregate information from roll-outs in this model
through the implicit-model-based RL approach (which shows we can ac-
tually combine conventional and implicit model-based RL approaches).
While both these algorithms (MCTSNets and I2A) still include some
manual design in their planning procedure (like the order of node ex-
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pansion), Imagination-based planner (IBP) (Pascanu et al., 2017) also
includes a differentiable manager network that in each iteration decides
whether we continue planning and from which state we will plan. This
gives the algorithm almost full freedom in the algorithmic planning
space, and the authors therefore also include a cost for simulation, which
ensures that the agent will not continue to plan forever. Results show
that the agent indeed learns both how to plan and for how long to plan.

6.3 Combined learning of models and planning

We may also combine both ideas introduced in the previous sections
(value equivalent models and learning to plan): if we specify a parame-
terized differentiable model and a parameterized differentiable planning
procedure, then we can optimize the resulting computational graph
jointly for the model and the planning operations (Fig. 6.1, bottom-
right). This of course creates a harder optimization problem, since the
gradients for the planner depend on the quality of the model, and vice
versa. However, it is the most end-to-end approach to model-based RL
we can imagine, as all aspects discussed in Sections 4 and 5 get wrapped
into a single optimization.

An example approach in this category is TreeQN (Farquhar et al.,
2018). From the outside, TreeQN looks like a standard value network,
but internally it is structured like a planner. The planning algorithm
of TreeQN unrolls itself up to depth d in all directions, and aggregates
the output of these predictions through a back-up network, which out-
puts the value estimate for the input state. We then optimize both the
dynamics model and the planning procedure (back-up network) against
a standard RL loss. While TreeQN still has some internal structure,
full algorithmic freedom is provided by the Deep Repeated ConvLSTM
(DRC) (Guez et al., 2019). DRC is a high-capacity recurrent neural
network without any planning or MDP specific internal structure. It is
therefore entirely up to the DRC to approximate both an appropriate
(value-equivalent) model and an appropriate planning procedure, which
the authors call model-free planning. Indeed, DRC does show charac-
teristics of planning after training, like an increase in test performance
with increasing computational budget.
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An overview of the discussed papers in this section is provided in
Table 6.1. The strength of the implicit model-based RL approach is
tied to the strength of optimization in general, which, as other fields of
machine learning have shown, may outperform manual design. Moreover,
value equivalent models may be beneficial in tasks where the dynamics
are complicated, but the dynamics relevant for value estimation are
easier to learn. On the other hand, implicit model-based RL has its
challenges as well. For value-equivalent transition models, all learned
predictions focus on the value and reward information, which is derived
from a scalar signal. These methods will therefore likely not capture
all relevant aspects of the environment, which may be problematic
for transfer. A similar problem occurs for learning to plan, where we
risk that our planner will learn to exploit task-specific characteristics,
which does not generalize to other tasks. The true solution to these
problems is of course to train on a wide variety of tasks, which is
computationally demanding, while implicit model-based RL is already
computationally demanding in itself (the computational graphs grow
large, and the optimization can be unstable). Model-based RL therefore
faces the same fundamental question as many other artificial intelligence
and machine learning directions: to what extend should our systems
incorporate human priors (explicit), or rely on black-box optimization
instead (implicit).
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Benefits of Model-based Reinforcement Learning

Model-based RL may provide several benefits, which we will discuss
in this section. However, in order to identify benefits, we first need to
discuss performance criteria, and establish terminology about the two
types of exploration in model-based RL.

Performance criteria There are two main evaluation criteria for (model-
based) RL algorithms:

• Cumulative reward/optimality: the quality of the solution, mea-
sured by the expected cumulative reward that the solution achieves.

• Time complexity: the amount of time needed to arrive at the
solution, which actually has three subcategories:

– Real-world sample complexity: how many unique trials in
the real (irreversible) environment do we use?

– Model sample complexity: how many unique calls to a (learned)
model do we use? This is an infrequently reported measure,
but may be a useful intermediate.

– Computational complexity: how much unique operations
(flops) does the algorithm require.

61
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Papers usually report learning curves, which show optimality (cu-
mulative return) on the y-axis and one of the above time complexity
measures on the x-axis. As we will see, model-based RL may actually
be used to improve both measures.

We will now discuss the potential benefits of model-based RL (Fig-
ure 7.1). First, we will discuss enhanced data efficiency (Sec. 7.1), which
uses planning (increased model sample complexity) to reduce the real-
world sample complexity. Second, we discuss exploration methods that
use model characteristics (Sec. 7.2). As a third benefit, we discuss the
potential of model-based RL with a known model to reach higher asymp-
totic performance (optimality/cumulative reward) (Sec. 7.3). A fourth
potential benefit is transfer (Sec. 7.4), which attempts to reduce the
sample complexity on a sequence of tasks by exploiting commonalities.
Finally, we also shortly touch upon safety (Sec. 7.5), and explainability
(Sec. 7.6).

7.1 Data Efficiency

A first approach to model-based RL uses planning to reduce the real-
world sample complexity. Real-world samples are expensive, both due
to wall-clock time restrictions and hardware vulnerability. Enhanced
data efficiency papers mostly differ by how much effort they invest per
planning cycle (Sec. 5.2). A first group of approaches tries to squeeze out
as much information as possible in every planning loop. These typically
aim for maximal data efficiency, and apply each planning cycle until
some convergence criterion. Note that batch reinforcement learning
(Lange et al., 2012), where we only get a single batch of data from a
running system and need to come up with an improved policy, also falls
into this group. The second group of approaches continuously plans in
the background, but does not aim to squeeze all information out of the
current model.

• Squeezing: The squeezing approach, that plans from the current
state or start state until (near) convergence, has theoretical mo-
tivation in the work on Bayes-adaptive exploration (Duff and
Barto, 2002; Guez et al., 2012). All data efficiency approaches
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crucially need to deal with model uncertainty, which may be es-
timated with a Bayesian approach (Guez et al., 2012; Asmuth
et al., 2009; Castro and Precup, 2007). These approaches are
theoretically optimal in real world sample complexity, but do so
at the expense of high computational complexity, and crucially
rely on correct Bayesian inference. Due to these last two chal-
lenges, Bayes-adaptive exploration is not straightforward to apply
in high-dimensional problems.
Many empirical papers have taken the squeezing approach, at least
dating back to Atkeson and Santamaria (1997) and Boone (1997).
We will provide a few illustrative examples. A breakthrough ap-
proach was PILCO (Deisenroth and Rasmussen, 2011), which used
Gaussian Processes to account for model uncertainty, and solved a
real-world Cartpole problem in less than 20 seconds of experience.
PETS (Chua et al., 2018) used a bootstrap ensemble to account
for uncertainty, and scales up to a 7 degrees-of-freedom (DOF)
action space, while model-based policy optimization (MBPO)
(Janner et al., 2019), using a similar bootstrap ensemble for model
estimation, even scales up to a 22 DOF humanoid robot (in sim-
ulation). Embed2Control (Wahlström et al., 2015) managed to
scale model-based RL to a pixel input problem. Operating on a
51x51 pixel view of Pendulum swing-up, they show a 90% success
rate after 15 trials of a 1000 frames each.

• Mixing: The second group of approaches simply mixes model-based
updates with model-free updates, usually by making model-based
updates (in the background) throughout the (reachable) state
space. The original idea dates back to the Dyna architecture of
Sutton (1990), who reached improved data efficiency of up to
20-40x in a gridworld problem. In the context of high-dimensional
function approximation, Gu et al. (2016) and Nagabandi et al.
(2018c) used the same principle to reach a rough 2-5 times im-
provement in data efficiency.
An added motivation for the mixing approach is that we may
still make model-free updates as well. Model-free RL generally
has better asymptotic performance than model-based RL with a
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Figure 7.1: Benefits of model-based reinforcement learning, as discussed in
Section 7.

learned model. By combining model-based an model-free updates,
we may speed-up learning with the model-based part, while still
reaching the eventual high asymptotic performance of model-free
updates. Note that model-based RL with a known model may
actually reach higher asymptotic performance (Sec. 7.3) than
model-free RL, which shows that the instability is really caused
by the uncertainty of a learned model.

In short, model-based RL has a strong potential to increase data
efficiency, by means of two-phase exploration. Strong improvements in
data efficiency have been shown, but are not numerous, possibly due to
the lack of stable uncertainty estimation in high-dimensional models,
or the extensive amount of hyperparameter tuning required in these
approaches. Nevertheless, good data efficiency is crucial for scaling RL
to real world problems, like robotics (Kober et al., 2013), and is a major
motivation for the model-based approach.
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7.2 Exploration

The trade-off between exploration and exploitation is a crucial topic
within reinforcement learning, in which model-based approaches can
play an important role. There are two important considerations that
determine whether a particular exploration approach is model-based, as
visualized in Table 7.1. First, we need to distinguish one-phase versus
two-phase exploration (Table 7.1, columns). Model-free RL methods and
pure planning methods use ‘one-phase exploration’: they use the same
exploration principle in the entire algorithm, i.e., either within a trace
(model-free RL) or within a planning tree. In contrast, model-based
RL agents use ‘two-phase exploration’, since they may combine 1) an
exploration strategy within the planning cycle, and 2) a (usually more
conservative/greedy) strategy for the irreversible (real environment)
step. In the case of model-based RL with a learned model, the aim of
this approach is usually to reduce real world sample complexity at the
expense of increased model sample complexity. This has a close relation
to the previous section (on data efficiency), although we there mostly
focused on additional model-based back-ups, not exploration. In the
case of model-based RL with a known model we also observe two-phase
exploration, like confidence bound methods inside the tree search and
Dirichlet noise for the real steps in AlphaGo Zero (Silver et al., 2017b).
However, with a known model (in which case planning and real steps
both happen in the same reversible model), the second phase rather
seems a pruning technique, to ensure that we stop planning at some
point and advance to a next state.

The second important distinction is between value-based and state-
based exploration (intrinsic motivation) (Table 7.1, rows). Value-based
methods based their exploration strategy on the current value estimates
of the available actions. Actions with a higher value estimate will also
get a higher probability of selection, where the perturbation may for
example be random (Plappert et al., 2017; Mnih et al., 2015) or based
on uncertainty estimates around these values (Auer, 2002; Osband et
al., 2016; Moerland et al., 2017a). The model-based alternative is to
use ‘state-based’ exploration. In this case, we do not determine the
exploration potential of a state based on reward or value relevancy, but
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Table 7.1: Categories of exploration methods. Grey cells are considered
‘model-based exploration’, since they either use state-based characteristics
and/or plan over the model to find better exploration decisions (two-phase
exploration).

One-phase exploration Two-phase exploration
Value-based exploration e.g., ε-greedy on value

function
e.g., planning to find a high

value/reward region
State-based exploration e.g., intrinsic reward for

novelty without planning
e.g., planning towards an

novel (goal) state

rather based on state-specific, reward independent properties derived
from the interaction history with that state. A state may for example
be interesting because it is novel or has high uncertainty in its model
estimates. These approaches are better known as intrinsic motivation
(IM) (Chentanez et al., 2005).

The two above distinctions together lead to four possible combi-
nations, as visualized in the cells of Table 7.1. We define model-based
exploration as ‘any exploration approach that uses either state-based
exploration and/or two-phase exploration’ (indicated by the grey boxes
in Table 7.1). We therefore consider all state-based exploration meth-
ods as model-based RL. State-based exploration methods often use
model-based characteristics or a density model over state space (which
in the tabular setting can directly be derived from a tabular model),
and therefore have a close relation to model-based RL, even when it is
applied without actual planning (one-phase).

Considerations in exploration To get a better understanding of the
main challenges in (model-based) exploration, we will first discuss the
most important general challenges in exploration:

• Shallow versus deep exploration: Every exploration method can be
classified as either shallow or deep. Shallow exploration methods
redecide on their exploratory decision at every timestep. In the
model-free RL context, ε-greedy exploration is a good example
of this approach. The potential problem of these approaches is
that they do not stick with an exploratory plan over multiple
timestep. This may lead to ‘jittering’ behaviour, where we make
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an exploratory decision in a state, but decide to undo it at the
next timestep.
Intuitively, we rather want to fix an interesting exploration target
in the future, and commit to a sequence of actions to actually get
there. This approach is known as deep exploration (Osband et al.,
2016) (note that ‘deep’ in this case has nothing to do with the
depth of a network). In the model-free RL setting, we may try to
achieve deeper exploration through, for example, parameter space
noise over episodes (Plappert et al., 2017) or through propagation
of value uncertainty estimates (Osband et al., 2016; Moerland
et al., 2017a). However, deep exploration is natural to model-based
RL, since the planning cycle can perform a deeper lookahead, to
which we can then commit in the real environment (Lowrey et al.,
2018; Sekar et al., 2020). Note that for model-based exploration
there is one caveat: when we plan for a deep sequence, but then
only execute the first action of the sequence and replan (a receding-
horizon), we still have the risk of jittering behaviour.

• Task-conflated versus task-separated exploration back-ups: Once
we identify an interesting new state (e.g., because it is novel), we
want to back-up this information to potentially return there in a
next episode. Therefore, back-ups are a crucial element of the ex-
ploration cycle. Many intrinsic motivation approaches use intrinsic
rewards (Chentanez et al., 2005) (e.g., for novelty), and simply
add these as a bonus to the extrinsic reward. The exploration po-
tential of a state is then propagated inside the global value/policy
function, together with information about the extrinsic reward.
We will call this task-conflated propagation, since exploration in-
formation (intrinsic rewards) is merged with information about
the true task (extrinsic rewards). A potential downside of this
approach is that exploration information modifies the global so-
lution, and, after an intrinsic reward has worn out, it may take
time before its effect on the value function has faded out.
As an alternative, we may also use task-separated exploration
back-ups. In this case, the global solution (value or policy func-
tion) is explicitly separated from the exploration information,
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like the way to get back to a particular interesting region. For
example, Shyam et al. (2019) propose to train separate value
functions for the intrinsic and extrinsic rewards. We can also use
a goal-conditioned policy or value function, which automatically
separates information for each potential goal state. In general,
task-separated exploration back-ups come at additional computa-
tional (and memory) cost, but they do allow for better separation
of exploration information and the true extrinsic task.

• Parametric versus non-parametric (deep) exploration back-ups:
Similar to the depth of exploration in the forward sense, the depth
of the back-up also plays a crucial role for exploration. Imagine
our agent just discovered an interesting novel state, which we
would like to visit again in a next episode. However, we use a
one-step back-up (which only propagates information about this
state one step back), and we store this information in a deep
policy or value network, to which we make small updates. A a
consequence of these choices, information may not propagate far
enough (only one step), and/or the change to the global value or
policy function may not be large enough to change the behaviour
of the agent at the start states. The effect is that the agent has
actually found an interesting new region, but due to its type of
back-up is not able to directly visit this region again. Ecoffet et al.
(2019) call this the ‘detachment’ problem, since the information
does not propagate far enough, and the agent therefore detaches
from it in its initial states.
A potential solution to this problem is the use of deeper back-ups,
especially in combination with semi-parametric or non-parametric
representation for the exploratory information. In the context of
reinforcement learning, non-parametric representations are better
known as episodic memory (Blundell et al., 2016). In episodic
memory, we store the exact action sequence towards a particular
state, based on a non-parametric overwrite of information in
a table. Note that this approach can also be extended to the
semi-parametric setting, where we train a neural network to read
and write to this table (Graves et al., 2014; Pritzel et al., 2017).
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The benefit of episodic memory is a fast change of information,
which can help the agent to directly get back to an interesting
region (by simply copying the actions that previously brought it
there). Indeed, episodic memory is known to play an important
role in human and animal learning as well (Gershman and Daw,
2017). Go-Explore (Ecoffet et al., 2019) implicitly uses this idea,
but directly resets the agent to a previously seen state (without
actually replaying the action sequence from the start). Note that
there is a variety of other research into episodic memory for
reinforcement learning (Blundell et al., 2016; Pritzel et al., 2017;
Lin et al., 2018; Loynd et al., 2018; Ramani, 2019; Fortunato et al.,
2019; Hu et al., 2021).

With our understanding of the above concepts, we are now ready
to discuss model-based exploration. We will focus on the intrinsic
motivation (IM) literature (i.e., state-based exploration, the bottom row
of Table 7.1) (Chentanez et al., 2005). This field is traditionally split
up in two sub-fields (Oudeyer, Kaplan, et al., 2008): knowledge-based
and competence-based intrinsic motivation (Fig. 7.2), which differ in the
way they define the exploration potential of a certain state.

Knowledge-based intrinsic motivation Knowledge-based intrinsic mo-
tivation prioritizes states for exploration when they provide new in-
formation about the MDP. Most approaches in this category specific a
specific intrinsic reward, which is then propagated together with the
extrinsic reward (task-conflated exploration back-ups). Writing ri(s)
or ri(s, a, s′) for specific intrinsic reward of a certain state or transi-
tion, these methods use a total reward that combines the intrinsic and
extrinsic part:

rt(s, a, s′) = re(s, a, s′) + η · ri(s, a, s′), (7.1)
where re denotes the external reward, and η ∈ R is a hyperparameter

that controls the relative strength of the intrinsic motivation.
Most knowledge-based IM literature focuses on different ways to

specify ri. By far the largest category uses the concept of novelty (Hester
and Stone, 2012a; Bellemare et al., 2016; Sequeira et al., 2014). For
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example, the Bayesian Exploration Bonus (BEB) (Kolter and Ng, 2009)
uses

ri(s, a, s′) ∝ 1/(1 + n(s, a)), (7.2)

where n(s, a) denotes the number of visits to state-action pair (s, a).
Novelty ideas were studied in high-dimensional problems as well, using
the concept of pseudo-counts, which closely mimick density estimates
(Bellemare et al., 2016; Ostrovski et al., 2017).

There are various other ways to specify the intrinsic reward signal.
Long before the term knowledge-based IM became established, Sutton
(1990) already included an intrinsic reward for recency:

ri(s, a, s′) =
√
l(s, a), (7.3)

where l(s, a) denotes the number of timesteps since the last trial at
(s, a). More recent examples of intrinsic rewards include model prediction
error (Stadie et al., 2015; Pathak et al., 2017), surprise (Achiam and
Sastry, 2017), information gain (Houthooft et al., 2016), and feature
control (the ability to change elements of our state over time) (Dilok-
thanakul et al., 2019). Note that intrinsic rewards for recency and model
prediction error may help overcome non-stationarity (Sec. 4.5) as well
(Lopes et al., 2012). Multiple intrinsic rewards can also be combined,
like a combination of novelty and model uncertainty (Hester and Stone,
2012a). Note that many of these intrinsic motivation ideas can be related
to emotion theory, which was surveyed for RL agents by Moerland et al.
(2018a).

Many of the above knowledge-based IM methods are implemented in
a one-phase way, i.e., the intrinsic reward is computed when encountered,
but there is not explicit planning towards it. We can of course also
combine knowledge-based IM with two-phase exploration (Sekar et al.,
2020), i.e. ‘plan to explore’. As mentioned before, nearly all knowledge-
based IM approaches use task-conflated propagation, while Shyam et al.
(2019) do learn separate value functions for the intrinsic and extrinsic
rewards. Note that novelty is also an important concept in theoretical
work on the sample complexity of exploration (Kakade et al., 2003;
Brafman and Tennenholtz, 2002), which we further discuss in Sec. 8.
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Competence-based intrinsic motivation Competence-based intrinsic
motivation builds on the same curiosity principles as knowledge-based
IM. However, competence-based IM selects new exploration targets
based on learning progress, which focuses on the agent’s competence
to achieve something, rather than knowledge about the MDP (e.g., we
may have visited a state often, which would make it uninteresting for
knowledge-based IM, but if we are still getting better/faster at actually
reaching the state, i.e., we still make learning progress, then the state
does remain interesting for competence-based IM). In competence-based
IM the intention is usually to generate an automatic curriculum of tasks,
guided by learning progress (Bengio et al., 2009).

A popular formulation of compentence-based IM methods are In-
trinsically Motivated Goal Exploration Processes (IMGEP) (Baranes
and Oudeyer, 2009), which consist of three steps: 1) learn a goal space,
2) sample a goal, and 3) plan/get towards the goal. Goal space learning
was already discussed in Sec. 4.7 and 4.8. The general aim is to learn
a representation that captures the salient directions of variation in a
task. For competence-based IM, it may be useful to learn a disentangled
representation, where each controllable object is captured by a separate
dimension in the representation. Then, we can create a better curricu-
lum by sampling new subgoals that alter only one controllable object
at a time (Laversanne-Finot et al., 2018).

The second step, goal space sampling, is a crucial part of competence-
based IM, since we want to select a goal that has high potential for
learning progress (Oudeyer et al., 2007; Baranes and Oudeyer, 2013).
One approach is to track a set of goals, and reselect those goals for which
the achieved return has shown positive change recently (Matiisen et al.,
2017; Laversanne-Finot et al., 2018). As an alternative, we may also fit
a generative model to sample new goals from, which may for example
be trained on all previous goals (Péré et al., 2018) or on a subset of
goals of intermediate difficulty (Florensa et al., 2018). Note that the
concept of learning progress has also appeared in knowledge-based IM
literature (Schmidhuber, 1991).

In the third step, we actually attempt to reach the sampled goal.
The key idea is that we should already know how to get close to the
new goal, since we sampled it close to a previously reached state. Goal-
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Figure 7.2: Knowledge-based versus competence-based intrinsic motivation.
Solid circle identifies the current agent position. Left: In knowledge-based
intrinsic motivation, every state (the arrows show two examples) in the domain
gets associated with an intrinsic reward based on local characteristics, like
visitation frequency, uncertainty of the model, prediction error of the model,
etc. Right: In competence-based intrinsic motivation, we learn some form of
a goal-space that captures (and compresses) the directions of variation in the
domain. We then sample a new goal, for example at the edge of our current
knowledge base, and explicitly try to reach it, re-using the way we previously
got close to that state.

conditioned value functions (discussed in Sec. 4.8) can be one way to
achieve this, but we may also attempt to learn a mapping from current
state and goal to policy parameters (Laversanne-Finot et al., 2018).
Episodic memory methods could also be applied here.

In short, model-based exploration is an active research topic, which
has already made important contributions to exploration research. An
important next step would be to show that these methods can also
outperform model-free RL in large applications. Another important
aspect, which we have not discussed in this section, is the potential
benefit of hierarchical RL for exploration. We already covered the
challenge of learning good hierarchical actions in Sec. 4.8. However,
once good abstract actions are available, they will likely be a crucial
component of (model-based) exploration as well, due to a reducing of
the lookahead and propagation depth.
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7.3 Optimality

Another benefit of model-based RL, in the context of a known model,
seems better asymptotic performance. For model-based RL with a
learned model, the common knowledge is that we may improve data
efficiency, but lose asymptotic performance in the long run. However,
recent attempts of model-based RL with a known model, like AlphaGo
Zero (Silver et al., 2017b) and Guided Policy Search (Levine and Koltun,
2013), manage to outperform model-free attempts on long-run empirical
performance. MuZero (Schrittwieser et al., 2019), which uses a (value-
equivalent) learned model, further outperforms the results of AlphaGo
Zero. This suggests that with a perfect (or good) model, model-based
RL may actually lead to better (empirical) asymptotic performance.

A possible explanation for the mutual benefit of planning and learn-
ing originates from the type of representation they use. The atomic
(tabular) representation of planning does not scale to large problems,
since the table would grow too large. The global approximation of
learning provides the necessary generalization, but will inevitably make
local approximation errors. However, when we add local planning to
learning, the local representation may help to locally smooth out the
errors in the function approximation, by looking ahead to states with
more clearly discriminable value predictions. These local representations
are often tabular/exact, and can thereby give better local separation.
For example, in Chess the learned value prediction for the current state
of the board might be off, but through explicit lookahead we may find
states that are a clear win or loss in a few steps. As such, local planning
may help learning algorithms to locally smooth out the errors in its
approximation, leading to better asymptotic performance.

There is some initial work that supports these ideas. Silver et al.
(2008) already described the use of transient and permanent memory,
where the transient memory is the local plan that fine-tunes the value
estimates. Both Moerland et al. (2020a) and Wang et al. (2019) recently
studied the trade-off between planning and learning (already mentioned
in Sec. 5.2), finding that optimal performance requires an intermediate
planning budget per real step, and not a high budget (exhaustive search),
or no planning budget per timestep at all (model-free RL). Since model-
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free RL is notoriously unstable in the context of function approximation
(Henderson et al., 2018), we may hypothesize that the combination
of global function approximation (learning) and local atomic/tabular
representation (planning) helps stabilize learning and achieve better
asymptotic performance (see Hamrick et al. (2020) as well).

To conclude, we note that this combination of local planning and
global approximation also exists in humans. In cognitive science, this
idea is known as dual process theory (Evans, 1984), which was more
recently popularized as ‘thinking fast and slow’ (Kahneman, 2011).
Anthony et al. (2017) connect planning-learning integration to these
ideas, suggesting that global policy or value functions are like ‘thinking
fast’, while local planning relates to explicit reasoning and ‘thinking
slow’.

7.4 Transfer

In transfer learning (Taylor and Stone, 2009; Lazaric, 2012) we re-use
information from a source task to speed-up learning on a new task. The
source and target tasks should neither be the same, as then transfer
is trivial, nor completely unrelated, as then there is no information to
transfer. Konidaris (2006) covers a framework for transfer, specifying
three types: i) transfer of a dynamics model, ii) transfer of skills or
sub-routines, and iii) transfer of ‘knowledge’, like shaping rewards and
representations. For this model-based RL survey we only discuss the
first category, transfer of a dynamics model. There are largely two
scenarios: i) similar dynamics function but different reward function, for
example a new level in a video game, and ii) slightly changed transition
dynamics, for example transfer from simulation to real-world tasks. We
discuss examples in both categories.

Same dynamics with different reward The first description of model
transfer with a changed reward function is by Atkeson and Santamaria
(1997). The authors change the reward function in a Pendulum swing-up
task after 100 trials, and show that the model-based approach is able to
adapt much faster, requiring less data from the real environment. Later
on, the problem (different reward function with stationary dynamics)
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became better known as multi-objective reinforcement learning (MORL)
(Roijers and Whiteson, 2017; Roijers et al., 2013). A multi-objective
MDP has a single dynamics function but multiple reward functions.
These rewards can be combined in different ways, each of which lead to
a new task specification. There are many model-free approaches for the
MORL setting (Roijers et al., 2013), with model-based examples given
by Wiering et al. (2014), Yamaguchi et al. (2019). Other examples of
model-based transfer to different reward functions (goals) are provided
by Sharma et al. (2019) and Sekar et al. (2020).

Another approach designed for changing reward functions is the
successor representation (Dayan, 1993; Barreto et al., 2017). Successor
representations summarize the model in the form of future state occu-
pancy statistics. It thereby falls somewhere in between model-free and
model-based methods (Momennejad et al., 2017), since these methods
can partially adapt to a different reward function, but it does not fully
compute new occupancy statistics like a full model-based method would.

Different dynamics In the second category we find transfer to a task
with slightly different dynamics. Conceptually, Konidaris and Barto
(2007) propose to disentangle the state into an agent space (which can
directly transfer) and a problem space (which defines the new task).
However, disentanglement of agent and problem space is still hard
without prior knowledge.

One way to achieve good transfer is by learning representations
that generalize well. The object-oriented and physics-based approaches,
already introduced in Sec. 4.7, have shown success in achieving this.
For example, Schema Networks (Kansky et al., 2017) learn object
interactions in Atari games, and manage to generalize well to several
variations of Atari Breakout, like adding a new wall or slightly changing
the dynamics (while still complying with the overall physics rules).

Simulation-to-real transfer is popular in robotics, but most re-
searchers transfer a policy or value function (Tobin et al., 2017). Ex-
ample approaches that do transfer a dynamics model to the real world
are Christiano et al. (2016) and Nagabandi et al. (2018a). Several re-
searchers also take a zoomed out view, where they attempt to learn a
distribution over the task space, better known as multi-task learning
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(Caruana, 1997). Then, when a new task comes in, we may quickly
identify in which cluster of known tasks (dynamics models) it belongs
(Wilson et al., 2007). Another approach is to learn a global neural
network initialization that can quickly adapt to new tasks sampled
from the task space (Clavera et al., 2018), which implicitly transfers
knowledge about the dynamics of related tasks.

In short, transfer is one of the main benefits of model-based RL. Van
Seijen et al. (2020) even propose a metric, the Local Change Adaptation
(LoCA) regret, to compare model-based RL algorithms based on their
ability to learn on new, slightly altered tasks. An overview of transfer
methods for deep reinforcement learning in general is provided by Zhu
et al. (2020).

7.5 Safety

Safety is an important issue, especially when learning on real-world
systems (Amodei et al., 2016). For example, with random exploration it
is easy to break a robot before any learning has taken place. Berkenkamp
et al. (2017) studies a model-based safe exploration approach based on
the notion of asymptotic stability. Given a ‘safe region’ of the current
policy, we want to explore while ensuring that we can always get back
to the safe region. As an alternative, Aswani et al. (2013) keep two
models: the first one is used to decide on an exploration policy, while the
second model has uncertainty bounds and is used for verification of the
safety of the proposed policy. Ostafew et al. (2016) ensure constraints
by propagating uncertainty information in a Gaussian Process model.
Safety is a vital aspect of real-world learning, and it may well become
an important motivation for model-based RL in forthcoming years.

7.6 Explainability

Explainable artificial intelligence (XAI) has received much attention in
the AI community in recent years. Explainable reinforcement learning
(XRL) was studied by Waa et al. (2018), who generated explanations
from planned traces. The authors also study contrastive explanations,
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where the user can ask the agent why it did not follow another policy.
There is also work on RL agent transparency based on emotion elicitation
during learning (Moerland et al., 2018a), which largely builds on model-
based methods. Finally, Shu et al. (2017) study language grounding in
reinforcement learning, which is an important step to explainability as
well. Explainability is now widely regarded as a crucial prerequisite for
AI to enter society. Model-based RL may be an important element of
explainability, since it allows the agent to communicate not only its
goals, but also the way it intends to achieve them.

7.7 Disbenefits

Model-based RL has disbenefits as well. First, model-based RL typically
requires additional computation, both for training the model, and for the
planning operations themselves. Second, model-based RL methods with
a learned model can be unstable due to uncertainty and approximation
errors in the model. Therefore, although these approaches can be more
data efficient, they also tend to have lower asymptotic performance. We
already extensively discussed how to deal with model uncertainty. Third,
model-based RL methods require additional memory, for example to
store the model. However, with function approximation this is typically
not a large limitation. Finally, model-based RL algorithms typically
have more tunable hyperparameters than model-free algorithms, includ-
ing hyperparameters to estimate uncertainty, and hyperparameters to
balance planning and real data collection. Most of these disbenefits
are inevitable, and we are essentially trading extra computation, mem-
ory and potential instability (for a learned model) against better data
efficiency, targeted exploration, transfer, safety and explainability.
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Theory of Model-based Reinforcement Learning

There is also a large body of literature on the theoretical convergence
properties of model-based reinforcement learning. Although the pri-
mary focus of this survey was on the practical/empirical aspects of
model-based RL, we will shortly highlight some main theoretical results.
Classic convergence results in dynamic programming are for example
available for policy iteration (Puterman, 2014), approximate policy
iteration (Kakade and Langford, 2002; Munos, 2003), and real-time
dynamic programming (RTDP) (Barto et al., 1995). Efroni et al. (2018)
show multi-step policy iteration also converges, as does multi-step and
approximate RTDP (Efroni et al., 2019a).

Much theoretical work tries to quantify the rate at which algorithms
converge, which we can largely split up in sample complexity bounds
(PAC bounds) and regret bounds. Sample complexity is typically as-
sessed through the Probably Approximately Correct (PAC) framework.
Here, we try to bound the number of timesteps an algorithm may select
an actions whose value is not near-optimal (Strehl et al., 2006). An
algorithm is PAC if this number is bounded by a function polynomial
in the problem characteristics, like the MDP horizon H and the dimen-
sionality of the state (|S|) and action space (|A|). There are a variety
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of papers that provide PAC bounds for MDP algorithms (Kakade et al.,
2003; Strehl et al., 2006; Dann and Brunskill, 2015; Asmuth et al., 2009;
Szita and Szepesvári, 2010).

An alternative approach is to bound the regret during the learning
process. The regret measures the average total loss of reward of the
learned policy compared to the optimal policy. The regret at timestep
T is therefore defined as

Regret(T ) = Eπ? [
T∑
t=1

rt]− Eπ[
T∑
t=1

rt], (8.1)

where π? denotes the optimal policy, and π denotes the (changing)
policy of our learning algorithm. While PAC bounds the total number
of sub-optimal actions a learned policy will take, regret bounds limit
the total size of the mistakes. The lower bound of the above regret
is known to be Ω(

√
H|S||A|T ) (Jaksch et al., 2010; Osband and Van

Roy, 2016). Table 8.1 lists several model-based RL algorithms with
proven upper regret bounds. UCRL2 (Jaksch et al., 2010) obtains a
regret bound of Õ(H|S|

√
|A|T ), which Agrawal and Jia (2017) im-

prove to Õ(H
√
|S||A|T ) for large T . UCBVI (Azar et al., 2017) and

vUCQ (Kakade et al., 2018) further improve these results, with UCBVI
achieving Õ(

√
H|S||A|T +

√
H2T ). While these algorithms provide

worst-case regret bounds, EULER (Zanette and Brunskill, 2019) actu-
ally matches the theoretical lower bound under additional assumptions
on the variance of the optimal value function.

All previously discussed algorithms use a variant of optimism in the
face of uncertainty (Lai and Robbins, 1985) in their algorithms, usually
through upper confidence bounds on either estimated dynamics models
or value functions. There is an alternative Bayesian approach known
as posterior sampling reinforcement learning (PSRL) (Osband et al.,
2013), which instead estimates a Bayesian posterior and generally uses
Thompson sampling (Thompson, 1933). Algorithms in this category
(Osband et al., 2013; Gopalan and Mannor, 2015; Osband and Van Roy,
2017) do use a Bayesian formulation of regret, which is less strict than
the worst-case (minimax) regret. However, some Bayesian approaches
also come with frequentist worst-case regret bounds (Agrawal and Jia,
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Table 8.1: Minimax regret bounds for different model-based reinforcement
learning algorithms. |S| and |A| denote the size of the state and action space,
respectively. H denotes the MDP horizon, and T is the total number of samples
of the algorithm. EULER uses additional assumptions on the variance of the
optimal value function.

Algorithm Regret
UCRL2 (Jaksch et al., 2010) Õ(H|S|

√
|A|T )

(Agrawal and Jia, 2017) (for large T ) Õ(H
√
|S||A|T )

UCBVI (Azar et al., 2017) Õ(
√
H|S||A|T +H

√
T )

EULER (Zanette and Brunskill, 2019) Õ(
√
H|S||A|T )

Model-free (Q-learning) (Jin et al., 2018) Õ(
√
H3|S||A|T )

Lower bound (Jaksch et al., 2010) Ω(
√
H|S||A|T )

2017).
Note that there are also regret bounds for model-free RL algorithms

(Jin et al., 2018) (Table 8.1), but these fall outside the scope of this
survey. The main overall story is that model-based RL allows for better
PAC/regret bounds than model-free RL, but also suffers from worse
(computational) time and space complexity (since we need to estimate
and store the transition function). Moreover, all previously discussed
methods assume full planning, which also adds to the computational
burden. However, Efroni et al. (2019b) interestingly show that one-
step greedy planning, as for example used in Dyna (Sutton, 1990),
can actually match the regret bounds of UCRL2 and EULER, while
reducing its time and space complexity.



9
Related Work

While model-based RL has been successful and received much attention
(Silver et al., 2017b; Levine and Koltun, 2013; Deisenroth and Ras-
mussen, 2011), a survey of the field currently lacks in literature. Hester
and Stone (2012b) gives a book-chapter presentation of model-based RL
methods, but their work does not provide a full overview, nor does it
incorporate the vast recent literature on neural network approximation
in model-based reinforcement learning.

Moerland et al. (2020b) present a framework for reinforcement learn-
ing and planning that disentangles their common underlying dimensions,
but does not focus on their integration. In some sense, Moerland et al.
(2020b) look ‘inside’ each planning or reinforcement learning cycle, strap-
ping their shared algorithmic space down into its underlying dimensions.
Instead, our work looks ‘over’ the planning cycle, focusing on how we
may integrate planning, learning and acting to provide mutual benefit.

Hamrick (2019) presents a recent coverage of mental simulation
(planning) in deep learning. While technically a model-based RL survey,
the focus of Hamrick (2019) lies with the relation of these approaches to
cognitive science. Our survey is more extensive on the model learning
and integration side, presenting a broader categorization and more
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literature. Nevertheless, the survey by Hamrick (2019) is an interesting
companion to the present work, for deeper insight from the cognitive
science perspective. Plaat et al. (2020) also provide a recent description
of model-based RL in high-dimensional state spaces, and puts additional
emphasis on implicit and end-to-end model-based RL (see Sec. 6 as
well).

Finally, several authors (Nguyen-Tuong and Peters, 2011; Polydoros
and Nalpantidis, 2017; Sigaud et al., 2011) have specifically surveyed
structured model estimation in robotics and control tasks. In these
cases, the models are structured according to the known laws of physics,
and we want to estimate a number of free parameters in these models
from data. This is conceptually similar to Sec. 4, but our work discusses
the broader supervised learning literature, when applicable to dynamics
model learning. Thereby, the methods we discuss do not need any prior
physics knowledge, and can deal with much larger problems. Moreover,
we also include discussion of a variety of other model learning challenges,
like state and temporal abstraction.
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Discussion

This chapter surveyed the full spectrum of model-based RL, including
model learning, planning-learning integration, and the benefits of model-
based RL. To further advance the field, we need to discuss two main
topics: benchmarking, and future research directions.

Benchmarking Benchmarking is crucial to the advancement of a field.
For example, major breakthroughs in the computer vision community
followed the yearly ImageNet competition (Krizhevsky et al., 2012).
We should aim for a similar benchmarking approach in RL, and in
model-based RL in particular.

A first aspect of benchmarking is proper assessment of problem
difficulty. Classic measures involve the breadth and depth of the full
search tree, or the dimensionality of the state and action spaces. While
state dimensionality was for long the major challenge, breakthroughs
in deep RL are now partially overcoming this problem. Therefore,
it is important that we start to realize that state and action space
dimensionality are not the only relevant measures of problem difficulty.
For example, sparse reward tasks can be challenging for exploration,
even in low dimensions. Osband et al. (2019) recently proposed a
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benchmarking suite that disentangles the ability of an algorithm to deal
with different types of challenges.

A second part of benchmarking is actually running and comparing
algorithms. Although many benchmarking environments for RL have
been published in recent years (Bellemare et al., 2013; Brockman et al.,
2016), and benchmarking of model-free RL has become quite popular,
there is relatively little work on benchmarking model-based RL algo-
rithms. Wang et al. (2019) recently made an important first step in this
direction by benchmarking several model-based RL algorithms, and the
field would profit from more efforts like these.

For reporting results, an important remaining challenge for the
entire RL community is standardization of learning curves and results.
The horizontal axis of a learning curve would ideally show the number
of unique flops (computational complexity) or the number of real world
or model samples. However, many papers report ‘training time in
hours/days’ on the horizontal axis, which is of course heavily hardware
dependent. Other papers report ‘episodes’ on the horizontal axis, while
a model-based RL algorithm uses much more samples than a model-free
algorithm per episode. When comparing algorithms, we should always
aim to keep either the total computational budget or the total sample
budget equal.

Future work There is a plethora of future work directions in the
intersection of planning and learning. We will mention a few research
areas, which already received much attention, but have the potential to
generate breakthroughs in the field.

• Asymptotic performance: Model-based RL with a learned model
tends to have better sample complexity, but inferior asymptotic
performance, compared to model-free RL. This is an important
limitation. AlphaGo Zero recently illustrated that model-based
RL with a known model should be able to surpass model-free
RL performance. However, in the context of a learned model,
a major challenge is to achieve the same optimal asymptotic
performance as model free RL, which probably requires better
ways of estimating and dealing with model uncertainty.
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• Hierarchy: A central challenge, which has already received much
attention, is temporal abstraction (hierarchical RL). We still lack
consistent methods to identify useful sub-routines, which com-
press, respect reward relevancy, identify bottleneck states and/or
focus on interaction with objects and salient domain aspects. The
availability of good temporal abstraction can strongly reduce the
depth of a tree search, and is likely a key aspect of model-based
learning.

• Exploration & Competence-based intrinsic motivation: A promis-
ing direction within exploration research could be competence-
based intrinsic motivation (Oudeyer et al., 2007), which has re-
ceived less attention than its brother knowledge-based intrinsic
motivation (see Sec. 7.2). By sampling goals close to the border of
our currently known set, we generate an automated curriculum,
which may make exploration more structured and targeted.

• Transfer: We believe model-based RL could also put more emphasis
on the transfer setting, especially when it comes to evaluating data
efficiency. It can be hard to squeeze out all information on a single,
completely new task. Humans mostly use forward planning on
reasonably certain models that generalize well from previous tasks.
Shifting RL and machine learning from single task optimization
to more general artificial intelligence, operating on a variety of
tasks, is an important challenge, in which model-based RL may
definitely play an important role.

• Balancing: Another important future question in model-based RL
is balancing planning, learning and real data collection. These
trade-offs are typically tuned as hyperparameters, which seem to
be crucial for algorithm performance (Wang et al., 2019; Moerland
et al., 2020a). Humans naturally decide when to start planning,
and for how long (Kahneman, 2011). Likely, the trade-off between
planning and learning should be a function of the collected data,
instead of a fixed hyperparameter.

• Prioritized sweeping: Prioritized sweeping has been successful in
tabular settings, when the model is trivial to revert. As mentioned
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throughout the survey, it has also been applied to high-dimensional
approximate settings, but this creates a much larger challenge.
Nevertheless, exploration in the forward direction may actually be
just as important as propagation in the backwards direction, and
prioritized sweeping in high-dimensional problems is definitely a
topic that deserves attention.

• Optimization: Finally, note that RL is effectively an optimiza-
tion problem. While this survey has focused on the structural
aspects of this challenge (what models to specify, how to algorith-
mically combine them, etc.), we also observe much progress in
combining optimization methods, like gradient descent, evolution-
ary algorithms, automatic hyperparameter optimization, etc. Such
research may have an equally big impact on progress in MDP
optimization and sequential decision making.
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Summary

This concludes our survey of model-based reinforcement learning. We
will briefly summarize the key points:

• Nomenclature in model-based RL is somewhat vague. We define
model-based RL as ‘any MDP approach that uses i) a model
(known or learned) and ii) learning to approximate a global value
or policy function’. We distinguish three categories of planning-
learning integration: ‘model-based RL with a learned model’,
‘model-based RL with a known model’, and ‘planning over a
learned model’ (Table 3.2).

• Model-based reinforcement learning may first require approxima-
tion of the dynamics model. Key challenges of model learning
include dealing with: environment stochasticity, uncertainty due
to limited data, partial observability, non-stationarity, multi-step
prediction, and representation learning methods for state and
temporal abstraction (Sec. 4).

• Integration of planning and learning involves a few key aspects:
i) where to start planning, ii) how much budget to allocate to
planning and acting, iii) how to plan, and iv) how to integrate the
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plan in the overall learning and acting loop. Planning-learning
methods widely vary in their approach to these questions (Sec. 5).

• Explicit model-based RL manually designs model learning, plan-
ning algorithms and the integration of these. In contrast, implicit
model-based RL optimizes elements of this process, or the entire
model-based RL computation, against the ability to predict an
outer objective, like a value or optimal action (Sec. 6).

• Model-based RL can have various benefits, including aspects like
data efficiency, targeted exploration, transfer, safety and explain-
ability (Sec. 7). Recent evidence indicates that the combination of
planning and learning may also provide more stable learning, pos-
sibly due to the mutual benefit of global function approximation
and local tabular representation.

In short, both planning and learning are large research fields in MDP
optimization that depart from a crucially different assumption: the
type of access to the environment. Cross-breeding of both fields has
been studied for many decades, but a systematic categorization of the
approaches and challenges to model learning and planning-learning
integration lacked so far. Recent examples of model-based RL with a
known model (Silver et al., 2017b; Levine and Koltun, 2013) have shown
impressive results, and suggest much potential for future planning-
learning integrations. This survey conceptualized the advancements in
model-based RL, thereby: 1) providing a common language to discuss
model-based RL algorithms, 2) structuring literature for readers that
want to catch up on a certain subtopic, for example for readers from
either a pure planning or pure RL background, and 3) pointing to future
research directions in planning-learning integration.
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