
Parallel Monte Carlo Tree Search from Multi-core to

Many-core Processors

S. Ali Mirsoleimani∗†, Aske Plaat∗, Jaap van den Herik∗ and Jos Vermaseren†

∗Leiden Centre of Data Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
†Nikhef Theory Group, Nikhef

Science Park 105, 1098 XG Amsterdam, The Netherlands

Abstract—In recent years there has been much interest in
the MCTS algorithm, a new, adaptive, randomized optimization
algorithm. In fields as diverse as Artificial Intelligence, Operations
Research, and High Energy Physics, research has established that
MCTS can find good solutions without domain dependent heuris-
tics. However, practice shows that reaching high performance
on large parallel machines is not so successful as expected. So
far, the reasons are not well understood. This paper investigates
the scalability of two popular parallelization approaches (tree
parallelization and root parallelization) of the MCTS algorithm,
using the Intel Xeon Phi highly multi-threaded shared-memory
system. Moreover, we compare the results on a Xeon CPU and
a Xeon Phi to understand the scalability of the parallel MCTS
algorithms, and to understand their absolute performance. We
find that tree parallelization can achieve near perfect speedup
for up to 16 threads on the Xeon CPU and up to 64 threads on
the Xeon Phi. For root parallelization we find that the effect of
locks is small. Moreover, we establish the overall parallel speedup
of the two parallelization methods of the MCTS algorithm is
fundamentally limited on the Xeon Phi for games such as Hex or
Go. The limiting factor is not, as might be expected, the parallel
algorithm, or its implementation, but the high level of sequential
calculations in each thread, for which no vectorization method is
known.

I. INTRODUCTION

Since its inception in 2006 [1], the Monte Carlo Tree
Search (MCTS) algorithm has gained much interest among
optimization researchers. Starting with the game of Go, an
oriental board game, MCTS has achieved performance break-
throughs in domains ranging from planning and scheduling to
high energy physics [2], [3]. MCTS is a sampling algorithm
that uses search results to self-guide the algorithm through
the search space, obviating the need for domain-dependent
heuristics. One way to improve the quality of the search
is to increase the number of samples and thus enlarge the
size of the MCTS tree. This can be done by parallelizing
the search. Earlier work identified three main parallelization
approaches: leaf, root, and tree parallelization [4]. With a few
modifications, these are still the main parallelization strategies
among researchers.

In 2012/2013 Intel introduced the Intel Xeon Phi (Xeon
Phi), a new architecture featuring, for the first time, large
scale shared memory parallelization, with support for up to 244
hardware threads [5]. It is speculated that future architectures
might support even higher numbers of hardware threads. An
important question, therefore, is to what extent the paralleliza-
tion of the three strategies of the MCTS algorithm will be

effective on modern parallel processors such as Xeon Phi.
Mirsoleimani et al. provided a first study using a state of the art
Go program for lock-free tree parallelization [6]. It showed that
achieving good performance on the Xeon Phi was a non-trivial
task, and that more research was needed to fully understand
the complications. One of the complicating factors is that the
search in MCTS contains sequence-dependencies, e.g., results
in the early part of the search influence the expansion strategy
later on in the search. The search sequence of a parallel exe-
cution will therefore be different from a sequential execution,
and typically be less efficient. The inefficiency is defined as
search overhead. The complication gives rise to two differ-
ent speedup-measures by which the efficiency of the MCTS
algorithm parallelizations is measured: (1) playout speedup
and (2) strength speedup. The first measure corresponds to
the improvement in execution time caused by doing more
simulations per second (excluding search overhead), and the
second measure corresponds to the improvement in quality of
playing (including search overhead). However, practice shows
that reaching good speedups on shared-memory machines
has some limitations. Segal’s [7] simulation study of tree
parallelization on an ideal shared-memory system suggested
that perfect strength speedup beyond 64 threads may not be
possible, presumably due to increased search overhead. Baudiš
et al. reported almost near perfect strength speedup up to 22
threads for a lock-free tree parallelization [8].

These reports warrant an investigation of parallel MCTS
beyond 22 threads on real shared-memory hardware. The Xeon
Phi co-processor with 244 parallel threads and 61 cores is
a perfect candidate. The goal of this paper is to investigate
the performance of parallel MCTS algorithms on Xeon CPU
and Xeon Phi and to understand whether a comparable high
performance parallelization of the MCTS algorithm can be
achieved on Xeon Phi. We answer this question by reporting
both playout speedup and strength speedup of root and tree
parallelization (the two major and most successful parallel
implementations of MCTS).

This paper has three main contributions.

• We have performed an in depth scalability analysis of
both root and tree parallelizations of MCTS algorithm
on Xeon CPU and Xeon Phi for the game of Hex.
Previous works only targeted strength speedup on
CPU [9] or used simulated hardware [7], or a complex
Go program [6].

• Contrary to previous results [10], we show that the



effect of using locks is not a limiting factor on the
performance of a tree parallelization for 16 threads
on Xeon CPU and 64 threads on Xeon Phi.

• Instead, the Xeon Phi features a high communi-
cate/compute ratio, a factor of 30 higher than for the
standard Xeon CPU and a vector pipeline. We find
that this high ratio, in combination with the amount
of sequential work in MCTS, fundamentally limits
performance of parallel MCTS on Xeon Phi to a
playout speedup of 30% of the Xeon CPU.

The remainder of this paper is structured as follows.
In section 2 the required background information is briefly
discussed. Section 3 discusses related work. Section 4 gives
the experimental setup, and section 5 gives the experimental
results. Finally, in Section 6 we conclude the paper.

II. BACKGROUND

MCTS is a tree search method that has been successfully
applied in games such as Go, Hex and other applications
with a large state space [1], [11], [2]. It works by selectively
building a tree, expanding only branches it deems worthwhile
to explore. MCTS consists of four steps [12]. (1) In the
selection step, a leaf (or a not fully expanded node) is selected
according to some criterion (see II-A). (2) In the expansion
step, a random unexplored child of the selected node is added
to the tree. (3) In the simulation (also called playout step),
the rest of the path to a final node is completed using random
child selection. At the end a score ∆ is obtained that signifies
the score of the chosen path through the state space. (4) In the
backprogagation step (also called backup step), this value is
propagated back through the tree, which affects the average
score (win rate) of a node. The tree is built iteratively by
repeating the four steps. In the games of Hex and Go, each
node represents a player move and in the expansion phase
the game is played out, in basic implementations, by random
moves. In many MCTS implementations UCT is chosen as the
selection criterion [13], [14]. UCT provides a trade-off between
exploitation and exploration that is one of the hallmarks of the
algorithm.

A. UCT Algorithm

The Upper Confidence Bounds for Trees (UCT) algorithm
addresses the problem of exploitation and exploration in the
selection phase of the MCTS algorithm [14]. A child node j
is selected to maximize:

UCT (j) = Xj + Cp

√

ln(n)

nj

(1)

where Xj =
wj

nj
, wj is the number of wins in child j, nj is

the number of times child j has been visited, n is the number
of times the parent node has been visited, and Cp ≥ 0 is a
constant. The first term in the UCT equation is for exploitation
of known parts of the tree and the second one is for exploration
of unknown parts [13]. The level of exploration of the UCT
algorithm can be adjusted by the Cp constant.

△ △

△

Fig. 1: Different independent MCTS trees are used in root
parallelization

△ △

Fig. 2: Tree parallelization with local lock. The curly arrows
represent threads. The grey nodes are locked ones. The dark
nodes are newly added to the tree.

B. Parallel MCTS

In MCTS root parallelization [4], each thread builds simul-
taneously a private and independent MCTS search tree with a
unique random seed. Fig. 1 illustrates root parallelism. When
root parallelization wants to select the next move to play, one
of the threads collects the number of visits and the number of
wins in the first level nodes of all trees and then computes the
total sum for each child [4]. Subsequently, it selects a move
based on one of the possible policies. Note that UCT with root
parallelization is not algorithmically equivalent to plain UCT,
but is equivalent to Ensemble UCT [13].

In tree parallelization one MCTS tree is shared among
several threads that are performing simultaneous searches [4].
The main challenge in this method is using data locks to
prevent data corruption. Figure 2 shows the tree parallelization
algorithm with local locks. A lock-free implementation of this
algorithm reportedly addresses the aforementioned problem
with better scaling than a locked approach [10].

In our implementation of tree parallelization, locks are only
used in the expansion phase of the MCTS algorithm in order
to avoid the loss of any information (cf. [10]). To allocate
all children of a given node, the algorithm uses (1) A pre-
allocated vector of children and (2) A single atomic increment
instruction updating the index to the next children at the
expansion phase. This allows vectorization of the selection and
expansion phases in order to achieve the highest performance.

C. The Game of Hex

Previous scalability studies used artificial trees [15], simu-
lated hardware [7], or a complex program [6]. None of them
allowed a truly realistic performance profiling and analysis. For
this reason, we developed from scratch a program specifically
for the purpose of generating realistic trees that are sufficiently



Fig. 3: Abstract of Intel Xeon Phi microarchitecture

clean to allow good performance analysis, using the game of
Hex.

Hex is a board game with a board of hexagonal cells [11].
Each player is represented by a color (White or Black). Players
take turns placing a stone of their color on a cell on the board.
The goal for each player is to create a connected chain of
stones between the opposing sides of the board marked by their
colors. The first player to complete this path wins the game.
Since the first player to move in Hex has a distinct advantage,
the swap rule is generally implemented for fairness. This rule
allows the second player to choose whether to switch positions
with the first player after the first player has made the move.

In our implementation of Hex, a disjoint-set data structure
is used to determine the connected stones. Using this data
structure the evaluation of the board position to find the player
who won the game becomes very efficient [16].

D. Architecture of the Intel Xeon Phi

We will now provide an overview of Xeon Phi co-processor
architecture (see Figure 3). A Xeon Phi co-processor board
consists of up to 61 cores based on the Intel 64-bit ISA.
Each of these cores contains vector processing units (VPU) to
execute 512 bits of 8 double-precision floating point elements
or 16 single-precision floats or 32-bit integers at the same
time, 4-way SMT, and dedicated L1 and fully coherent L2
caches [5]. The tag directories (TD) are used to look up cache
data distributed among the cores. The connection between
cores and other functional units such as memory controllers
(MC) is through a bidirectional ring interconnect. There are 8
distributed memory controllers as interface between the ring
burst and main memory which is up to 16 GB.

III. RELATED WORK

Below we review related work on MCTS parallelizations.
The two major parallelization methods for MCTS are root
parallelization and tree parallelization [4]. There are also
other techniques such as leaf parallelization [4] and ap-
proaches based on transposition table driven work scheduling
(TDS) [15] [17].

1) Tree Parallelization: For shared memory machines, tree
parallelization is a suitable method. It is used in FUEGO, an
open source Go program. In tree parallelization one MCTS
tree is shared among several threads that are performing
simultaneous searches [4]. It is shown in [4] that the playout
speedup of tree parallelization with virtual loss cannot scale
perfectly for up to 16 threads. The main challenge is the use
of the data locks to prevent data corruption. Figure 2 shows
a tree parallelization algorithm with local locks. Moreover,
it is shown in [10] that a lock-free implementation of this
algorithm provides better scaling than a locked approach.
In [10] such a lock free tree parallelization for MCTS is
proposed. They intentionally ignored rare faulty updates inside
the tree and studied the scalablity of the algorithm for up
to 8 threads. In [8], the performance of a lock free tree
parallelization for up to 22 threads is reported. The strength
speedup is perfect for 16 threads but the improvement drops
for 22 threads. There is also a case study that shows good
performance of a (non-MCTS) Monte Carlo simulation on the
Xeon Phi co-processor [18].

2) Root Parallelization: Chaslot et al. [4] reported results
that root parallelization shows perfect playout speedup for up
to 16 threads. Soejima et al. [9] analyzed the performance of
root parallelization in detail. They showed that a Go player
that uses lock free tree parallelization with 4 to 8 threads
outperformed the same program with root parallelization which
utilizes 64 distributed CPU cores. This result suggests the
superiority of tree parallelization over root parallelization in
shared memory machines.

IV. EXPERIMENTAL SETUP

In order to generate statistically significant results in a
reasonable amount of time, both players do playouts for 1
second to choose a move. The board size is 11x11. To calculate
the strength speedup for the first player, we perform matches
of two players against each other. Each match consists of 200
games, 100 with White and 100 with Black for each player.
A statistical method based on [19] and similar to [6] is used
to calculate 95%-level confidence lower and upper bounds on
the real winning rate of a player, indicated by error bars in the
graphs. Cp is set at 1.0 in all our experiments. To calculate
the playout speedup for the first player when considering the
second move of the game, the average of the number of
playouts per second over 200 games is measured. Taking the
average removes (1) The randomized feature of MCTS in game
playing and (2) The so called warm up phase on Xeon Phi [20].

The results were measured on a dual socket Intel machine
with 2 Intel Xeon E5-2596v2 CPUs running at 2.40GHz.
Each CPU has 12 cores, 24 hyperthreads and 30 MB L3
cache. Each physical core has 256KB L2 cache. The peak
TurboBoost frequency is 3.2 GHz. The machine has 192GB
physical memory. Intel’s icc 14.0.1 compiler is used to compile
the program. The machine is equipped with an Intel Xeon
Phi 7120P 1.238GHz which has 61 cores and 244 hardware
threads. Each core has 512KB L2 cache. The co-processor has
16GB GDDR5 memory on board with an aggregate theoretical
bandwidth of 352 GB/s. The peak turbo frequency is 1.33GHz.
The theoretical performance of the 7120P is 2.416 TFLOPS
or TIPS and 1.208 TFLOPS for single-precision or integer



and double-precision floating-point arithmetic operations, re-
spectively [21]. Intel’s icc 14.0.1 compiler is used to compile
program in native mode. A native application runs directly on
the Xeon Phi and its embedded Linux operating system.

V. EXPERIMENTAL RESULTS

The scalability of parallel MCTS is measured by using
empirical data from self-play experiments [4]. Each self-play
experiment consists of 200 head-to-head matches between the
first player with N threads and the second player with N/2
threads. Both players are given 1 second of time to do a
move. If the algorithm scales perfectly then the number of
playouts per second for the first player should be two times
more than the second player. The percentage of wins (or win
rate) for the first player should also be always more than for the
second player for a constant rate. The ideal playout speedup is
represented by a diagonal straight line and the ideal strength
speedup is represented by a horizontal straight line.

A. Playout Speedup

1) Tree Parallelization: In Fig. 4 the scalability of tree
parallelization on Xeon CPU and Xeon Phi are compared.
Fig. 4a shows playout speedup on Xeon CPU. We see a perfect
playout speedup up to 4 threads and a near perfect speedup up
to 16 threads. The increase in the number of playouts continues
up to 32 threads, although the increase is no longer perfect.
There is a sharp decrease in the number of playouts for 48
threads. The available number of cores on the Xeon CPU is 24
cores, with 2 hyperthreads per core available, for a total of 48
hyperthreads. Thus, we see the benefit of hyperthreading up to
32 threads. We surmise that using a lock in the expansion phase
of the MCTS algorithm is visible in playout speedup after 4
threads but the effect is not severe. Our results are different
from the results in [4] and [11] where the authors reported
no speedup beyond 4 threads for locked tree parallelization.

In Fig. 4b the playout speedup on Xeon Phi is shown. A
perfect playout speedup is observed up to 64 threads. We see
that, using a lock has no effect on the performance of the
algorithm up to this point. After 64 threads the performance
drops, although the number of playouts per second still in-
creases up to 240 threads. It should be noted that even with
playout speedup increasing up to 240 threads, we see that at
240 threads on Xeon Phi still the number of playouts per
second is less than on 8 threads on Xeon CPU. In fact the
performance for tree parallelization on Xeon Phi is almost 30%
of the peak performance on Xeon CPU.

2) Root Parallelization: Next we will discuss the root
parallelization, where threads are running independently and
where no locking mechanism exists. Root parallelization is
well suited to see whether the decrease in playout speedup
in tree parallelization is due to locks or not. As is shown in
Fig. 5a for Xeon CPU, the playout speedup is perfect for up
to 16 threads (while in tree parallelization it is for up to 4
threads). The second difference between these two algorithms
is revealed at 48 threads where root parallelization still shows
improvement in playout speedup. We may conclude that re-
moving the lock in the expansion phase of tree parallelization
improves performance for a high number of threads on Xeon
CPU.

The performance of root parallelization on Xeon Phi is
shown in Fig. 5b. Here, we require at least 8 threads on
Xeon Phi to reach almost the same number of playouts per
second as 1 thread on Xeon CPU. On Xeon Phi with root
parallelization perfect playout speedup is achieved for up to
64 threads, which implies that the drops on 64 threads in
tree parallelization performance are likely not due to locking.
However, for 240 threads the number of playouts increases by
a higher rate compared to tree parallelization. Overall, the peak
performance for root parallelization on Xeon Phi is almost 30%
of its counterpart on Xeon CPU.

3) Section Conclusions: To understand the reason for this
low performance we performed a detailed timing analysis to
find out where the most time of the algorithm has been spent
in the selection, expansion, playout, or backup phase. For the
Hex board size of 11x11, MCTS spends most of its time in
the playout phase. This phase of the algorithm is problem
dependent, for example it is different for Go and Hex; and
the difference is even different for distinct board sizes. In our
program around 80% of the total execution time for performing
a move is spent in playout phase.

The Xeon Phi co-processor is designed especially for high
throughput communication, with a wide memory bandwidth
of 352 GB/s, higher than that of ordinary Xeon CPU ar-
chitectures. Combined with the modest integer performance
of 1.33GHz, it has a high communicate/computation ratio, a
factor of 30 higher than for the standard Xeon CPU. To achieve
full performance on Xeon Phi, programs must make use of
communication and vectorization.

Since the playout phase dominates execution time of each
thread, Xeon CPU outperforms Xeon Phi significantly because
of more powerful cores. No method for vectorization has been
devised for the playout phase. Therefore, for the current ratio
of Xeon CPU cores versus Xeon Phi cores (24 versus 61) it
is not possible to reach the same performance on Xeon Phi
because each core of Xeon CPU is more powerful than each
core of Xeon Phi for sequential execution. From these results
we may conclude that for the current ratio of Xeon CPU cores
versus Xeon Phi cores the parallel MCTS algorithms for games
such as Hex or Go on Xeon Phi have a limitation. Therefore, it
is interesting to investigate the limitation problem in the other
domains in which MCTS has been successful such as [2].

B. Strength Speedup

1) Tree Parallelization: As already mentioned, it is also
important to evaluate the playing strength of the MCTS
player for a game such as Hex. The goal is to see how the
increase in the number of playouts per second reflects into
a more powerful player. In Fig. 6a strength speedup for tree
parallelization on Xeon CPU is shown. Note that, since we
compare the performance of N threads against N/2 threads, an
ideal perfect strength speedup would give a straight, horizontal
line of, say, 60% win rate for the player with more threads.

We see good strength speedup up to 32 threads. The win
rate drops to 50 percent for 48 threads. This decrease in win
rate is consistent with the drop in the number of playouts per
second for 48 threads in Fig. 4a. On the Xeon CPU, strength
speedup follows playout speedup closely.



1 2 4 8 16 22 32 48
Number of Threads

1703
4.1

2525
5.2

5619
3.6

1001
49.0

1899
63.0

2508
98.0

3136
84.0

P
la
y
o
u
ts
/s
e
c

(a)

8/2 16/4 32/8 64/16 128/32 240/60
Number of Threads/Cores

1134
6.5

2181
0.7

4135
2.5

7559
3.8

8776
9.39724
6.1

P
la
y
o
u
ts
/s
e
c

(b)

Fig. 4: Playout speedup for tree parallelization. (a) Xeon CPU (b) Xeon Phi.

1 2 4 8 16 24 32 48
Number of Threads

1681
4.3

2692
2.2

6486
5.7

1239
18.0

2396
68.0

3522
37.03796
71.0

4606
11.0

P
la
y
o
u
ts
/s
e
c

(a)

8/2 16/4 32/8 64/16 128/32 240/60
Number of Threads/Cores

1137
9.0

2243
6.3

4451
4.3

8441
6.2

1007
13.0

1418
11.0

P
la
y
o
u
ts
/s
e
c

(b)

Fig. 5: Playout speedup for root parallelization. (a) Xeon CPU (b) Xeon Phi

Interestingly, the strength speedup on Xeon Phi is quite
different from Xeon CPU. The win rate for 8 threads is more
than 80%. This is due to an insufficient number of playouts per
second for 4 threads (the opponent player of the player with
8 threads), caused by the slow compute performance of Xeon
Phi as described above. For 16 and 32 threads the win rate
is consistent with perfect playout speedup (Fig. 6b). After 32
threads the decrease in strength speedup starts and continues
to 240 threads.

2) Root Parallelization: In Fig. 7 the strength speed up for
root parallelization on the Xeon CPU and Xeon Phi are shown.
Again, the shape of the graphs are consistent with the playout
speedup.

3) Section Conclusion: In both tree and root parallelization
algorithms the differences between strength speedup graphs on
Xeon CPU and Xeon Phi is due to an insufficient number of
playouts per second on Xeon Phi compared to the Xeon CPU
for each player.

VI. CONCLUSION AND FUTURE WORK

In many fields of research, randomized algorithms show
a rather strong promise. One of these algorithms is MCTS,
which has proven good solutions in Artificial Intelligence,
Operations Research, and High Energy Physics [2]. It is an
open question whether it is possible to parallelize MCTS
efficiently on large scale machines [4]. Previous works have
performed simulations or used either artificially generated
trees [15], or complicated programs that precluded analysis



2 4 8 16 22 32 48
Number of Threads

0

10

20

30

40

50

60

70

80

90

100

Pe
rc
e
n
ta
g
e
 W

in
s

(a)

8/2 16/4 32/8 64/16 128/32 240/60
Number of Threads/Cores

0

10

20

30

40

50

60

70

80

90

100

Pe
rc
e
n
ta
g
e
 W

in
s

(b)

Fig. 6: Strength speedup for tree parallelization. (a) Xeon CPU (b) Xeon Phi.

2 4 8 16 32 48
Number of Threads/Cores

0

10

20

30

40

50

60

70

80

90

100

Pe
rc
e
n
ta
g
e
 W

in
s

(a)

8/2 16/4 32/8 64/16 128/32 240/60
Number of Threads/Cores

0

10

20

30

40

50

60

70

80

90

100

Pe
rc
e
n
ta
g
e
 W

in
s

(b)

Fig. 7: Strength speedup for root parallelization. (a) Xeon CPU (b) Xeon Phi.

and profiling [6]. This paper studies both the scalability and
absolute performance of tree parallelization on Xeon CPU and
Xeon Phi. We distinguish between playout speedup (no search
overhead) and strength speedup (including search overhead).

With a specifically developed clean implementation of a
real game-playing program we find that absolute performance
of playout speedup on Xeon Phi is dominated by the time
spent in the sequential part of the playout, and that current
Xeon CPUs at 24 cores substantially outperform the Xeon Phi
co-processor on 61 cores.

Finally, we may conclude that performance of paralleliza-
tions of the MCTS algorithm on Xeon Phi for games such
as Hex or Go is limited by integer performance in sequential
parts of the playout phase for which no vectorization method

is known. However, since strength speedup follows playout
speedup so closely, and since the scaling of the playout
speedup continues upward up to 240 threads, we speculate
that for a different problem in the other domains where the
playout phase could be vectorized more promising results will
be found. Our results warrant a more thorough analysis of
playout speedup in the 64-240 thread region on Xeon Phi.

For the future work, we are working on a heterogeneous
solution for executing parallel MCTS on both Xeon CPU and
Xeon Phi similar to [22].

ACKNOWLEDGMENT

The authors would like to thank Jan Just Keijser for his
helpful support with the Intel Xeon Phi co-processor. This



work is supported in part by the ERC Advanced Grant no.
320651, HEPGAME.

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Proceedings of the 5th International Conference on

Computers and Games, ser. CG’06. Berlin, Heidelberg: Springer-
Verlag, May 2006, pp. 72–83.

[2] H. J. van den Herik, A. Plaat, J. Kuipers, and J. Vermaseren, “Connect-
ing Sciences,” In 5th International Conference on Agents and Artificial

Intelligence (ICAART 2013), vol. 1, pp. IS–7 – IS–16, 2013.

[3] J. Kuipers, A. Plaat, J. Vermaseren, and J. van den Herik, “Improving
multivariate Horner schemes with Monte Carlo tree search,” Computer

Physics Communications, vol. 184, no. 11, pp. 2391–2395, Nov. 2013.

[4] G. Chaslot, M. Winands, and J. van den Herik, “Parallel monte-carlo
tree search,” Computers and Games, vol. 5131, pp. 60–71, 2008.

[5] R. Rahman, Intel Xeon Phi Coprocessor Architecture and Tools: The

Guide for Application Developers. Apress, Sep. 2013.

[6] S. A. Mirsoleimani, A. Karami, and F. Khunjush, “A Two-Tier Design
Space Exploration Algorithm to Construct a GPU Performance Pre-
dictor,” in Architecture of Computing Systems–ARCS 2014. Springer,
2014, pp. 135–146.

[7] R. B. Segal, “On the Scalability of Parallel UCT,” in Proceedings of

the 7th International Conference on Computers and Games, ser. CG’10.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 36–47.

[8] P. Baudiš and J.-l. Gailly, “Pachi: State of the Art Open Source Go
Program,” in Advances in Computer Games 13, Nov. 2011.

[9] Y. Soejima, A. Kishimoto, and O. Watanabe, “Evaluating
Root Parallelization in Go,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 2,
no. 4, pp. 278–287, Dec. 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5654650

[10] M. Enzenberger and M. Müller, “A lock-free multithreaded Monte-
Carlo tree search algorithm,” Advances in Computer Games, vol. 6048,
pp. 14–20, 2010.

[11] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree
Search in Hex,” IEEE Transactions on Computational Intelligence and

AI in Games, vol. 2, no. 4, pp. 251–258, Dec. 2010.

[12] G. M. J. B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W.
H. M. Uiterwijk, and B. Bouzy, “Progressive strategies for Monte-Carlo
tree search,” New Mathematics and Natural Computation, vol. 4, no. 03,
pp. 343–357, 2008.

[13] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” Computational

Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1,
pp. 1–43, 2012.

[14] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
Machine Learning: ECML 2006, 2006.

[15] K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa,
“Scalable Distributed Monte-Carlo Tree Search,” Fourth Annual Sym-

posium on Combinatorial Search, pp. 180–187, May 2011.

[16] Z. Galil and G. F. Italiano, “Data Structures and Algorithms
for Disjoint Set Union Problems,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 319–344, Sep. 1991. [Online]. Available:
http://doi.acm.org/10.1145/116873.116878

[17] J. Romein, A. Plaat, H. E. Bal, and J. Schaeffer, “Transposition Table
Driven Work Scheduling in Distributed Search,” in In 16th National

Conference on Artificial Intelligence (AAAI’99), 1999, pp. 725–731.

[18] S. Li, “Case Study: Achieving High Performance
on Monte Carlo European Option Using Step-
wise Optimization Framework,” 2013. [Online]. Avail-
able: https://software.intel.com/en-us/articles/case-study-achieving-
high-performance-on-monte-carlo-european-option-using-stepwise

[19] E. Heinz, “New self-play results in computer chess,” in Computers and

Games, 2001, pp. 262–276.

[20] J. Reinders, J. Jeffers, I. Meyerov, A. Sysoyev,
N. Astafiev, and I. Burylov, High Performance

Parallelism Pearls. Elsevier, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128021187000194

[21] Intel, “Intel Xeon Phi Product Family Highly parallel processing to
power your breakthrough innovations,” 2013. [Online]. Available:
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-
phi/xeon-phi-theoretical-maximums.html

[22] S. A. Mirsoleimani, A. Karami, and F. Khunjush, “A parallel
memetic algorithm on GPU to solve the task scheduling problem in
heterogeneous environments,” in Proceeding of the fifteenth annual

conference on Genetic and evolutionary computation conference, ser.
GECCO ’13. New York, NY, USA: ACM, 2013, pp. 1181–1188.
[Online]. Available: http://doi.acm.org/10.1145/2463372.2463518


