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Abstract

Smartphones and similar devices allow access to a wealth of information. Navigating this wealth of information is
problematic. Semantic locations, assigned to observed GPS user movements, can help in providing inforamtion that
is useful to the user at a specific time or place. This paper shows how a stream of sensor data can be processed
and interpreted to determine (i) the locations of interest for a user, such as home, work, etc, and (ii) to predict
the expected future transitions between such locations. We have implemented our algorithms in a fully functional
prototype smartphone app and backend, and we present results based on actual usage data gathered over the past
few months. We conclude that inferred semantic location information allows a smart device to offer personalized,
contextual, information without the need for the user to perform any explicit query. Our system is open source, and
can be used to build context-aware recommender systems that suggest content which is at the right time and at the
right place.
c© 2014 The Authors. Published by Elsevier B.V.
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Keywords: recommender systems, mobile systems, clustering

1. Introduction

Smartphones and similarly “always on, always connected” devices allow access to a wealth of information1.
Public transportation time-tables, shops with sales, new restaurants, public events, etc. can be accessed
through these devices. This is one of the major contributing factors of the widespread adoption of mobile
devices in modern society2. To make smartphone even more useful, two drawbacks must be solved: (i) the
amount of available information is overwhelming, and is not all relevant for each user; and (ii) small devices
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can be cumbersome to type on for extended periods, often making navigation of this wealth of information
problematic.

In this paper we discuss a working implementation of how observation of user movements (via GPS),
together with an Internet connection, allows inferencing semantic locations3 such as home, favourite shops
and restaurants, gyms, parks, workplace, etc. Such knowledge is used to offer personalized, contextual
information without the need for the user to perform a query; for example, the device can vibrate when
passing in front of a shop, displaying the message “this shop now has a sale, you may want to check it!”.
By anticipating the most likely immediate movement of a user it also becomes possible to offer information
that is contextual with respect to likely future circumstances, such as “the 9.45 train from London to Paris
is late!”

Problem statement: in this paper, we show how the stream of sensor data gathered from
a smartphone can be automatically processed in order to determine: (i) the locations of
interest of a user and their semantic label such as home, work, etc; and (ii) the predicted
future transitions between such locations. We present a working implementation of our algorithms,
and an evaluation.

We begin by proposing the overview of a system (Section 3) for storing the user history and inferring his
next most likely activities. We make use (Section 4) of a layered, density-based clustering system to identify
the locations of interest, and of a multi-resolution table of transitions to identify the typical patterns of
travel between the clusters; the transition tables are also used to detect the semantic (home, work, etc.)
of the clusters. Preliminary tests (Section 5) on human subjects yield promising results. In particular, our
tests show good prediction accuracy, and low computational requirements.

Our system is open source. Our work will allow building context-aware recommender systems that suggest
content which is at the right time and at the right place.

2. Related work

Mobile computing has seen, in recent years, a large body of research work. Various forms of location-based
inference of activities have been the subject of related research.

One significant line of research uses multiple, cheap radio-frequency-identification (RFID) devices in order
to track fine-grained activities such as using specific objects in a room or a gym5,6,7,8,9. As an alternative to
RFID, other studies focus on using various other kinds of sensors in order to determine indoors location and
offer contextual services through computing devices10,11,12,13. Of course, these RFID-enabled environments
must first be set up manually, a slow and expensive process, although it is expected that deployment will
proliferate, increaing the applicability of such techniques.

There exist various other research efforts in the direction of using mobile phone sensors to infer user
information. These efforts are related to our approach14,15,16,17,3,2. Many of the proposed solutions rely on
a single technique, such as clustering, Bayesian networks, or some other statistical learning technique. Our
approach differs in that it offers a layered mechanism that combines multiple machine/statistical learning
approaches such as clustering and probabilistic models. Given our results, we have come to believe that
layered systems, possibly even capable of integrating multiple unreliable sensors, are the most promising
direction of investigation.

3. The idea

The location inference system is based on density-based clustering. The shape (see Figure 1) of clusters
is determined by the average velocity of the samples associated with the cluster. We distinguish samples
in two groups: (i) static, the user was not moving; and (ii) dynamic, the user was moving. Clusters that
contain static entries have a circular shape defined by the maximum radius allowed for clusters. Moving
clusters are shaped like an ellipse, where the ellipse axis is parallel to the average velocity of the entries
recorded in the cluster.
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Fig. 1: Moving and static clusters
Fig. 2: Some entries from the transi-
tions tables; color of arrow represents
length of transition

Fig. 3: Home hits by hour

Clusters “degrade” over time. If a cluster is not updated regularly, then it is removed from the system.
This ensures that only fresh information is maintained.

We use the history of visited locations to infer a Markov process. The nodes of the process are the clusters
found at the previous step of the algorithm, and the transitions are (intuitively enough) the transitions
between clusters that were witnessed so far. For an example, see Figure 2. Transitions also have a duration.
The duration of a transition measures how long it took to travel between the clusters that this transition
connected. For each supported transition duration, we store a separate table. The supported transition
durations grow exponentially.

The Markov process is also used for semantic label inference. We built, off-line, a series of probabil-
ity distributions for each possible label. These distributions describe the expected patterns for assigning
labels to a cluster. For example, we expect that the user will spend late afternoons and nights at home,
and so the probability distribution of expected home usage will look like Figure 3. We compare the ex-
pected distributions with those we observed with the Kullback-Leibler (KL)4 distance between probability
distributions.

We can also build a reliability estimator that helps us improving correctness by avoiding potentially wrong
predictions. By computing the KL distance between the complete distributions of all observations, and that
of just a subset of the last observations, we can estimate how well the complete distribution predicts recent
events, that is the current reliability of the system.

4. Technical details

We now illustrate the system in more detail and with extensive pseudo-code in the ML style. At the
core of the system we have the Analyzer, which is responsible for storing all the information about clusters,
transition tables, etc. The Analyser data type contains: the set of Clusters, which are all the clusters
that have been detected so far in the system; the PreviousHits, which are the clusters where the latest
observations fell (and when they happened); and the total number NumHits of observations seen so far:

type Analyser = { Clusters : [ Cluster ]; PreviousHits : [ Cluster×DateTime ]; NumHits : int }

A Cluster is defined as: a series of Cells; the last time LastHit when this cluster was hit by an
observation; the transitions Transitions, indexed by the hour of the day, into other clusters; the distribution
of stays Stays in this cluster, indexed by the hour of the day; and the optional user annotation of this cluster
UserAnnotation:

type Cluster = { Cells : [Cell ]; LastHit : DateTime ; Transitions : Transitions
Stays : Stays ; UserAnnotation : Option <string > }

The Stays is, at its core, the histrogram Stays of how many times we have recorded observations at a
given hour and minute. We also store a queue LastHits of the last hits that went into the Stays histogram.
We also store a smaller version of the Stays histogram, which is called RecentStays, and its associated
RecentLastHits queue. RecentStays will be used in order to determine how much the Stays histogram is
a good approximation of the most recent user behaviour. If Stays and RecentStays differ too much, then
it means that the user is behaving in an unexpected way, and thus predictions from Stays are less reliable:
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type Stays = { Stays : [[ int ]]; LastHits : [Hour × Minute ]; RecentStays : [[ int ]];
RecentLastHits : [Hour × Minute ] }

The transitions are stored similarly to the Stays, but of course with some additional data that represents
the movements between clusters. Most importantly, we store the Transitions table, which for every hour
and minute of the day, and for every possible transition duration (logarithmically indexed), maintains a map
that for every reached cluster stores how many times this transition has happened. We also store the same
queues as we did for Stays, plus the table of the latest observations:
type Transitions = { Transitions : (∆T×Hour×Minute×Cluster )→int; LastHits : [ Cluster×∆t×

Hour×Minute ]; RecentTransitions : (∆T×Hour×Minute×Cluster )→int; RecentLastHits : [
Cluster×∆t×Hour×Minute ] }

A cell is a simple data structure. It stores a position, the average speed and movement direction of the
hits recorded in the cell, and the average position of the hits recorded. The cell also stores the number
of hits recorded here so far. An observation records the user position, heading, speed, and also when the
observation was taken. We omit both cell and observation as they are trivially defined.

When we obtain a new observation, we must add it to an existing cluster or create a new cluster for it:
let AddObservation (cs:Analyser , o: Observation ) =

We look for a cluster that is sufficiently1 close to the current observation:
if ∃ c ∈ cs. Clusters | AdjustedDistance (c, o) ≤ ε2) then

If we find such a cluster, then we add a hit to the cluster, store the current hit in the PreviousHits, and
update the transitions and stays of the hit cluster:

do cs. PreviousHits ← cs. PreviousHits + (c, o.Time)
do cs. UpdateStays (c, o)
do cs. UpdateTransitions (c, o)

We then look for a cell that contains the observation. If there is such a cell, then we add the observation
to it, otherwise we just add a new cell to the cluster:

if ∃ c ∈ cluster . Cells | Distance (c.Position , o. Position ) ≤ ε1) then
cluster . AddToCell (c,o)

else
cluster . AddNewCell (o)

If the appropriate cluster could not be found, then we simply create a new cluster, store the current hit
in the PreviousHits, and update the transitions and stays of the hit cluster:

else
let new_cluster = Cluster . Create (o)
do cs. Clusters ← cs. Clusters + new_cluster
do cs. PreviousHits ← cs. PreviousHits + ( new_cluster , o.Time)
do cs. UpdateStays ( new_cluster , o)
do cs. UpdateTransitions ( new_cluster , o)

Every time we have recorded a certain number of observations, we perform some clean up by removing
all previous hits that are beyond the interesting event horizon. We then iterate all clusters in the system.
If a cluster is too old, then we will remove it. Removing a cluster also requires to remove it from all the
transition tables of connected clusters:

do cs. PreviousHits ← { c,t | (c,t) ∈ cs. PreviousHits ∧ not( too_old (t)))
do cs. Clusters ← { c | c ∈ cs. Clusters ∧ not( too_old (c)))

1 Controlled by one of the multiple customizable parameters, which are named εi.
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We update the transitions into a newly observed cluster with the PreviousHits. For each previous
hit, we determine the logarithm of the time difference in minutes between that hit and the current hit.
The logarithm of the difference in minutes allows us to maintain a variable resolution of our transitions:
transitions in the immediate future are allocated more indices, while transitions further away take less indices
and are thus less precise:

let UpdateTransitions (cs:Analyser , c:Cluster , o: Observation ) =
for p,tp in cs. PreviousHits do

let ∆m2 = log2 ((o.Time - tp) / ε5)

We then add a transition from the time (hour and minute) of the previous observation, with the transition
length we have just computed:

p. Transitions . AddHit (c,∆m2 ,tp.Hour ,tp. Minute / ε5)

The user may also choose to add an annotation for the clustering system. When this is done, we look for
the closest cluster and then simply add the label to its UserAnnotation field.

We can now perform predictions about what clusters are the most likely to be visited in a given amount
of time:

let PredictFutureClusters (cs:Analyser ,∆t: TimeSpan ) =

We find the last previous hit as the starting point of our prediction:

let c0 ,t0 = max
c,t∈cs.Clusters

t

We then find the indices of the prediction. The prediction will be taken from the Transitions table
at the index given by the hour and minute of the last hit, plus the logarithm of the prediction delta time.
For each transition found, we extract the destination cluster c1. We then estimate the reliability of the
prediction by combining the probability of the transition, and the overall confidence of the transitions table
that we used:

{ c0 ,c1 ,ptrans |
trans ∈ c0. Transitions .[ log2(∆t. TotalMinutes / ε5)].[t0.Hour ].[t0. Minute / ε5] ∧ c1 =

trans . Cluster ∧ ptrans = | trans | / |c0. Transitions | }

We compute the distance between a cluster and an observation by adjusting the shape of the cluster
depending on its average speed:

let AdjustedDistance (c:Cluster , o: Observation ) =

We begin by computing the distance between the cluster and the observation:

let distance = Distance (c, o)

If both cluster and observation are moving, then we adjust the distance so that it is reduced along the
direction of movement and increased when perpendicular to it:

if c. Moving then
let axis_alignment = 1.0f - abs(Dot(c. AverageHeading . Normalized , Normalize (o.

Position - c. AveragePosition )))
if o. Speed > e3 then

let vel_alignment = 1.0f - abs(Vector2 <1 >. Dot(c. AverageHeading . Normalized , o.
Heading . Normalized ))

let elongation = smoothstep (c. AverageSpeed / 10.0f) 0.1f 5.0f
distance × smoothstep axis_alignment 0.5f 10.0f ×

smoothstep vel_alignment 0.5f 10.0f / elongation

If the cluster is moving but the observation is not (or the opposite), then we return a distance of +∞
because a moving observation cannot go into a static cluster and vice-versa:
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else +∞
elif o. Speed > ε3 then +∞

If neither the cluster nor the observation are moving, then we return the linear distance:
else distance

Clusters estimate their semantic location by comparing their stays and transitions with an expected
pattern of the Stays. An Activity is simply a histogram of the expected distribution of hits with respect
to time at a given location:

let SemanticLocationDistance (c:Cluster ,a: Activity ) =

If the cluster is already annotated with the name of the activity, then we return the lowest possible
distance (which corresponds to the highest possible confidence) value:

if c. UserAnnotation = a.Name then log 0.0

We begin by extracting the stays, condensed by hour, and we compute the Kullback-Leibler divergence
between these stays and those coming from the activity to match:

else
let stays =∑

{p × log(p / q) | h ∈ [0..23] ∧ p =
∑

{ c. Stays .[h].[m] | m ∈ [0..59/ε5 ]} ∧ /
|c. Stays | ∧ q = a. Stays .[h] ∧ q > 0.0 ∧ p > 0.0 }

We also use the transitions from the cluster into itself. This allows us to estimate how many of the stays
are likely to be sequential, because if that is not the case then the number of transitions from the cluster
into itself at that hour will be quite low:

let transitions =∑
{ p × log(p / q) | h ∈ [0..23] ∧ p = c. Transitions . SelfTransitions (c, 1.0) .[h]
∧ q = a. Stays .[h] ∧ q > 0.0 ∧ p > 0.0 }

The final estimate is the combined probability of the stays and transition estimates:
log stays + log transitions

When we register a hit at a given time (hour and minute) then we add it to the Stays of a cluster:
let AddHit (t:Stays ,h,m) =

We enqueue the hit in the LastHits and increase by one the Stays histogram at location h, m:
do t. LastHits . Enqueue (h,m)
do t. Stays .[h].[m] ← t. Stays .[h].[m] + 1

We then remove all the LastHits in excess, decreasing the appropriate entries in Stays. This ensure
that Stays will only contain a certain number of the most recent observations:

while (|t. LastHits | ≥ ε8) do
let h,m = t. LastHits . Dequeue ()
do t. Stays .[h].[m] ← t. Stays .[h].[m] - 1

We perform the same insertion and clean up operations on the RecentStays and RecentLastHits, in
order to also track a smaller, more recent subset of observations:

do t. RecentLastHits . Enqueue (h,m)
do t. RecentStays .[h].[m] ← t. RecentStays .[h].[m] + 1
while (|t. RecentLastHits | ≥ ε9) do

let h,m = t. RecentLastHits . Dequeue ()
do t. RecentStays .[h].[m] ← t. RecentStays .[h].[m] - 1
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The confidence of a Stays histogram is then given by how much the long-term prediction Stays is
reflected by the recently observed behaviour RecentStays. If the recent behaviour is not well predicted by
the long-term observation, whether because of a temporary change in user behaviour or because of a deeper
change in the user habits, then we will be able to measure a decrease in Confidence. The Confidence is
computed as the Kullback-Leibler distance between Stays and RecentStays:

let Confidence (t. Stays ) =∑
{ q × log(q / p) | h ∈ [0..t. Stays .Length -1] ∧ m ∈ [0.. to t. Stays .[h]. Length -1] ∧

p = t. Stays .[h].[m] / |t. LastHits | ∧ q = t. RecentStays .[h].[m] / |t.
RecentLastHits | ∧ q > 0.0 ∧ p > 0.0 }

The management of the transitions is extremely similar to that of the stays, with some added book-
keeping in storing and separating transitions by destination cluster. When a new hit is recorded, we also
update the transitions table. We only need to know the destination cluster c2 where the transition ended,
the length of the transition e, and the time (h, m) when the transition started. Finally, we add the new hit
to the RecentLastHits and RecentTransitions, in order to track some of the most recent transitions. We
compute the Kullback-Leibler distance between Transitions and RecentTransitions as a measure of the
confidence in our ability to estimate the recent transitions through the full history of transitions. Some care
must be taken because some of the clusters may be present in Transitions but not in RecentTransitions.
We omit the pseudo-code as it is almost identical to the previous listings.

5. Evaluation

We measure the accuracy of activities and locations with a single experiment. We tested the system on
data gathered from a small group of 10 students. We performed an analysis of the output of the system,
which showed clusters and connectors on a map. As a result, we observe that the following locations of
interest were consistently identified by the system:

a) school (as workplace); b) main home (the one where the student lives during the week); c) secondary
home(s) (parents place visited during the weekend, or girlfriend home where many days are spent); d) pubs
and similar entertainment locations; e) train and bus stations.

The following transitions of interest were consistently identified by the system between:
a) main and the secondary homes (and any bus/train stations in between); b) main home and school (and

any bus/train stations in between); c) homes and pubs.

Fig. 4: Clusters over time

We believe that this preliminary evaluation
clearly shows that our system is a promising
conceptual and engineered tool for automatically
identifying locations of interest in users and their
transitions.

We also show that the system remains rea-
sonably lean over time. This means that the
number of clusters should not just grow indefi-
nitely, and that old and less useful clusters which
are just noise are cleaned up routinely. Figure 4
shows that the number of clusters stabilizes after
a while.

Finally, we measured the performance of the system 3. The average time it took to add an observation
to the clustering system was 2 milliseconds, while the average time it took to perform predictions was 1
millisecond. Both operations are fast enough to be performed in real-time for a single user.

2 The source cluster is implicitly the one that stores the transition table itself
3 On a core i5 CPU from a Surface 2 convertible laptop.
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6. Conclusions and future work

Smartphones and similar “always on, always connected” devices offer large amounts of information that
can be used in order to better understand some aspects of the user, such as frequently visited places and
routines.

In this paper, we have shown how the stream of sensor data gathered from a smartphone can be auto-
matically processed in order to determine: a) the locations of interest of a user and their semantic label
such as home, work, etc. b) the expected future transitions between such locations

We have tested our prototype on a group of students, obtaining encouraging results. Our system iss able
to correctly identify their locations of interest and their movements.

The work as presented offers possibilities for extension. On the one hand the accuracy of the activity
inference system can be improved, using larger amounts of data from which to extract staying patterns. On
the other hand, we will work on ways to use the inferred data for contextual, personalized recommendations.
For example, we might connect locations and browsing preferences, so that when the user is at home then
the appropriate content is offered.

Our system shows that a layered combination of smeantic location techniques allows powerful inference
about users, and offers useful techniques for improved location-aware recommendations.
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